JP2013046960A - Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet - Google Patents

Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet Download PDF

Info

Publication number
JP2013046960A
JP2013046960A JP2012229352A JP2012229352A JP2013046960A JP 2013046960 A JP2013046960 A JP 2013046960A JP 2012229352 A JP2012229352 A JP 2012229352A JP 2012229352 A JP2012229352 A JP 2012229352A JP 2013046960 A JP2013046960 A JP 2013046960A
Authority
JP
Japan
Prior art keywords
grinding
diamond
abrasive
dlc
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229352A
Other languages
Japanese (ja)
Inventor
Minoru Saito
実 斉藤
Sen Maeba
宣 前場
Junichi Obara
純一 小原
Toru Mochida
徹 持田
Hiromichi Naito
寛道 内藤
Koji Hayashi
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2012229352A priority Critical patent/JP2013046960A/en
Publication of JP2013046960A publication Critical patent/JP2013046960A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a grinding wheel capable of machining a nitride-added cermet and cemented carbide with a high grinding ratio.SOLUTION: A diamond resin bond grinding wheel is configured such that mixed abrasive grains are used which contain a main component of abrasive powder composed of two kinds of diamond and DLC, and in which a ratio containing the diamond is 25% to 45% (55% to 75% in DLC ratio), and a grinding condition is set by which grinding heat produced during grinding does not become excessive, so that DLC to be preferentially lost is optimized to efficiently expose diamond abrasive grains of a sharp cutting edge.

Description

本発明は、特に窒素添加サーメットのような、一般に採用されている研削条件の下では研削比が低い被加工材を、高い研削比で研削できるレジンボンドダイヤモンド砥石に係わる。   The present invention relates to a resin-bonded diamond grindstone that can grind a workpiece having a low grinding ratio under a generally adopted grinding condition, such as nitrogen-added cermet, at a high grinding ratio.

耐摩耗工具や切削工具のうち、特に高い耐凝着摩耗性が要求される用途においては、窒素添加サーメットすなわちTi(C,N)−XC−Ni−CoやTiC−TiN−XC−Ni−Coサーメットが使用されている。ここで、C/N原子比は通常は3/7〜9/1、XはMo、W、Ta、Nb、Zr、V、Crなどの金属元素であり総量は炭化物XC換算で0〜45mass%、結合金属のNiとCoとの重量比は0/100〜100/0であり総量は0.1〜35mass%である。ここで、炭化物XCの代わりに、窒化物XNを用いても良い。   Among the wear-resistant tools and cutting tools, particularly in applications requiring high adhesion wear resistance, nitrogen-added cermets, that is, Ti (C, N) -XC-Ni-Co and TiC-TiN-XC-Ni-Co Cermet is used. Here, the C / N atomic ratio is usually 3/7 to 9/1, X is a metal element such as Mo, W, Ta, Nb, Zr, V, and Cr, and the total amount is 0 to 45 mass% in terms of carbide XC. The weight ratio of the binding metals Ni and Co is 0/100 to 100/0, and the total amount is 0.1 to 35 mass%. Here, nitride XN may be used instead of carbide XC.

窒素添加サーメット焼結体を所定寸法の耐摩耗工具や切削工具に加工するには、一般にダイヤモンド砥石による研削加工法が用いられる。従来のサーメット用砥石で、例えば、形状がφ200mm×10mmで、ナガセインテグレックス株式会社製平面研削盤EPG52を用いて、砥石周速度1500m/min、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液の供給量を60L/minとして、φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体を1mm研削加工した場合の研削比すなわち(研削除去体積)/(砥石摩耗体積)は約16である。   In order to process the nitrogen-added cermet sintered body into a wear-resistant tool or cutting tool having a predetermined dimension, a grinding method using a diamond grindstone is generally used. With a conventional cermet grindstone, for example, the shape is φ200 mm × 10 mm, and using a surface grinding machine EPG52 manufactured by Nagase Integrex Co., Ltd., the grindstone peripheral speed is 1500 m / min, the left and right feed speed is 12 m / min, the front and rear feed speed is 150 mm / min, Grinding ratio, ie (grinding removal volume) / (grinding wheel), when a 1mm grinding is performed on a φ60mm disc-shaped nitrogen-added cermet (hardness 91.0HRA) with a depth of 10 μm and a coolant supply rate of 60 L / min The wear volume is about 16.

同条件でWC−Co系超硬合金(硬さ88. 0HRA)を切削した場合の研削比が約780であることから、窒素添加サーメットの研削比は超硬合金に比べて約1/49であり著しく低い。この結果は、砥石の砥粒層の摩耗速度が、窒素添加サーメットでは超硬合金に比べて約49倍も大きいことを示す。   Since the grinding ratio when cutting WC-Co cemented carbide (hardness 88.0HRA) under the same conditions is about 780, the grinding ratio of nitrogen-added cermet is about 1/49 compared to cemented carbide. There is extremely low. This result indicates that the wear rate of the abrasive layer of the grindstone is about 49 times greater in the nitrogen-added cermet than in the cemented carbide.

この原因は、(1)窒素添加サーメットの中の炭窒化物相(Ti(C,N)およびXCを固溶した(Ti,X)(C,N)。後記)は、超硬合金の主成分であるWCと異なり、一般に非化学量論的化合物すなわち(C+N)/Ti原子比と(C+N)/(Ti+X)原子比がいずれも1以下でありCまたはNの結晶格子点が空孔となっていることから、研削加工で生じる研削熱に基づく温度上昇により原子の拡散が活発となると、砥粒のC原子を吸収しやすい、   This is because (1) the carbonitride phase (Ti (C, N) and XC in the nitrogen-added cermet (Ti, X) (C, N). Unlike WC as a component, it is generally a non-stoichiometric compound, that is, the (C + N) / Ti atomic ratio and the (C + N) / (Ti + X) atomic ratio are both 1 or less, and the crystal lattice point of C or N is a vacancy. Therefore, when the diffusion of atoms becomes active due to the temperature rise based on the grinding heat generated in the grinding process, it is easy to absorb C atoms in the abrasive grains.

(2)C原子が吸収されると、砥粒の摩擦面は摩耗し平滑となる(非特許文献1)、すなわち「平滑摩耗」が生じる、   (2) When C atoms are absorbed, the friction surface of the abrasive grains wears and becomes smooth (Non-Patent Document 1), that is, “smooth wear” occurs.

(3)このような砥粒の平滑化により砥粒/サーメット間の摩擦抵抗力が上昇して摩擦面の温度が一層上昇し、ますますC原子の吸収すなわち平滑摩耗が顕著となると共に、砥粒の酸化やグラファイト化が起こり、かつ摩擦抵抗力が一層上昇する、   (3) By smoothing the abrasive grains, the frictional resistance between the abrasive grains and the cermet is increased, the temperature of the friction surface is further increased, and absorption of C atoms, that is, smooth wear becomes more and more remarkable. Oxidation and graphitization of the grains occur, and the frictional resistance increases further.

(4)このような過度の平滑摩耗が起こり、摩擦抵抗力がボンド材の砥粒把持力を上回ると砥粒が砥石ボンド層から脱落し、場合によってはボンド層とサーメットとの焼付きが生じたり、あるいは脱落砥粒が残留砥粒と擦過(共擦り)することにより、残留砥粒の一層の平滑摩耗・脱落が進行し損耗する、ことにあると一般に考えられている。   (4) When such excessive smooth wear occurs and the frictional resistance exceeds the abrasive gripping force of the bond material, the abrasive grains fall off from the grindstone bond layer, and in some cases, seizure occurs between the bond layer and the cermet. It is generally considered that the falling abrasive grains rub against (co-rubb with) the remaining abrasive grains, resulting in further smooth wear and dropping of the remaining abrasive grains and wear.

これを避ける為に、従来の窒素添加サーメット用のダイヤモンド砥石は、破砕性の高いダイヤモンド砥粒粉を用いて、中程度の硬さのレジンボンド層で把持し、過度の平滑摩耗が起こる前に砥粒の早期破壊と脱落を繰り返し起こさせて常に新しい砥粒の切れ刃が生じるようにして研削加工するため、砥粒の損耗率が高い、すなわち研削比が低い。   In order to avoid this, conventional diamond wheels for nitrogen-added cermets are gripped by a resin bond layer with a medium hardness using a highly friable diamond abrasive powder before excessive smooth wear occurs. Since grinding is performed by repeatedly causing early breakage and dropping of the abrasive grains so that a new cutting edge of the abrasive grains is always generated, the wear rate of the abrasive grains is high, that is, the grinding ratio is low.

上記の段落0006で記した「平滑摩耗」について本発明者らも確認するために、まず、窒素添加サーメット(硬さ91.0HRA)焼結体を市販の窒素添加サーメット用ダイヤモンド砥石で研削加工し研削動力が初期よりもかなり増加した後の砥石の砥粒摩耗状態を調べた。その結果、各砥粒の殆どが平滑な摩耗面を呈していた。   In order to confirm the “smooth wear” described in the above paragraph 0006, the present inventors also first ground a nitrogen-added cermet (hardness 91.0HRA) sintered body with a commercially available diamond wheel for nitrogen-added cermet. The abrasive wear state of the grindstone after the grinding power increased considerably from the initial stage was investigated. As a result, most of the abrasive grains exhibited a smooth wear surface.

この原因は、本発明者らは、窒素添加サーメット中のTi(C,N)炭窒化物相またはTiN窒化物相およびこれらとMoCやWCなどの添加炭化物(XC)とが反応して生じる(Ti,X)(C,N)炭窒化物固溶体相(一般に(Ti,X)(C,N)粒の周辺に存在。すなわち硬質相粒子は、その芯部が(Ti,X)(C,N)、外周部が(Ti,X)(C,N)炭窒化物固溶体相となり、いわゆるコア/リム構造を示す。)が、ダイヤモンドやDLCから直接C原子を吸収するのではなく、ダイヤモンドやDLCがグラファイト化し、主としてそのグラファイトのC原子を吸収することにあると、考えた。なお、非特許文献1では原因はダイヤモンドと炭窒化物相や窒化物相との界面反応にあるとしている。 The reason for this is that the present inventors reacted Ti (C, N) carbonitride phase or TiN nitride phase in nitrogen-added cermet and these with added carbide (XC) such as Mo 2 C and WC. The resulting (Ti, X) (C, N) carbonitride solid solution phase (generally present around (Ti, X) (C, N) grains. That is, the hard phase particles have a core portion of (Ti, X) ( (C, N), the outer peripheral portion becomes a (Ti, X) (C, N) carbonitride solid solution phase, indicating a so-called core / rim structure), but not directly absorbing C atoms from diamond or DLC, It was thought that diamond and DLC were graphitized and mainly absorbed C atoms of the graphite. In Non-Patent Document 1, the cause is the interfacial reaction between diamond and the carbonitride phase or nitride phase.

次に、市販のレジンボンド用ダイヤモンド砥石用砥粒粉5種(A、B、C、D、Eと呼称)の粒子の外観(コーティング層があるものについては、酸で処理してコーティング層のみを除去したもの)とダイヤモンド比率(DLC比率)を詳しく調べた。図1には例としてA、C、Eの3種類の砥粒粉の外観を示した。これらの砥粒ひとつひとつを詳細に観察すると、何れの砥粒粉でも、その砥粒表面は、必ずしもダイヤモンド特有の多面的な状態のものばかりではなく、凸凹した状態のものが多く含まれており、それらの割合は砥粒粉の種類によって異なっている。これは、砥粒の表面を凸凹にして砥石のボンド材との密着性を確保する狙いがあるされている。   Next, the appearance of particles of five types of commercially available resin particles for resin-bonded diamond whetstones (referred to as A, B, C, D, and E) (if there is a coating layer, only the coating layer is treated with acid) The diamond ratio (DLC ratio) was examined in detail. FIG. 1 shows the appearance of three types of abrasive grains A, C, and E as an example. When observing each of these abrasive grains in detail, the surface of the abrasive grains of any abrasive powder is not necessarily limited to the multi-faceted state peculiar to diamond, but includes many irregularities. Their ratio varies depending on the type of abrasive powder. The aim of this is to make the surface of the abrasive grains uneven, and to ensure adhesion with the bond material of the grindstone.

本発明者らは、このような表面形状から、砥粒は完全なダイヤモンドのみから成るのではなく、一部ダイヤモンドライクカーボン(アモルファスカーボンともいう。以下DLCと表記)も含まれ、その比率は砥粒粉の種類により異なる可能性を感じた。そこで、ナノフォトン株式会社製走査型レーザラマン顕微鏡RAMAN−11で上記の市販のレジンボンド用ダイヤモンド砥粒粉5種(コーティング層があるものについては、酸で処理してコーティング層のみを除去したもの)をラマン分析(面分析)した。   Because of the surface shape, the inventors of the present invention do not include abrasive grains consisting of perfect diamond, but also include some diamond-like carbon (also referred to as amorphous carbon, hereinafter referred to as DLC), the ratio of which I felt the possibility of different depending on the type of grain. Therefore, the above-mentioned commercially available resin-bonded diamond abrasive powders 5 types by using a scanning laser Raman microscope RAMAN-11 manufactured by Nanophoton Co., Ltd. (If there is a coating layer, only the coating layer is removed by treatment with acid) Was subjected to Raman analysis (surface analysis).

この方法ではラマン分析で得られたラマン散乱光によって画像が得られ、ダイヤモンドのピーク(ラマンシフト1330cm−1)を緑色で、DLCのピーク(ラマンシフト1450cm−1)を黄色ないし赤色で表示すると、走査した範囲の砥粒が色分けされて表示される。そして、両種のピクセル数を測定することでそれぞれの比率が分ることを明らかにした。その結果は、表1に示す通りであり、各砥粒ともかなりの量のDLCを含むこと、そしてそのDLC含有率は砥粒の種類によって様々であることを見出した。 Image is obtained by the Raman scattered light obtained by the Raman spectrometry In this method, diamond peak (Raman shift 1330 cm -1) in green, when the DLC peaks (Raman shift 1450 cm -1) displayed in yellow to red, The abrasive grains in the scanned range are displayed in different colors. And it was clarified that each ratio can be found by measuring the number of pixels of both types. The results are as shown in Table 1, and it was found that each abrasive grain contains a considerable amount of DLC, and that the DLC content varies depending on the type of abrasive grains.

これらのダイヤモンドとDLCの、研削時の摩擦熱による温度上昇に対する安定性を見積もるために、ダイヤモンド砥粒粉およびDLC被膜の大気中加熱(加熱温度は前者では1400℃まで、後者では600℃まで。加熱時間は30分)による変化を調べた。ここでDLCの被膜を用いたのは、DLCが100%の粉末を見出せなかったからである。   In order to estimate the stability of these diamonds and DLC against temperature rise due to frictional heat during grinding, the diamond abrasive powder and DLC film were heated in the atmosphere (heating temperature up to 1400 ° C in the former and 600 ° C in the latter. Changes due to the heating time of 30 minutes were examined. The reason why the DLC film was used here was that a powder with 100% DLC could not be found.

その結果を図2および図3に示す。これより、ダイヤモンドは約810℃〜980℃で燃焼・消滅し、DLC被膜はこれよりはるかに低温の約300℃〜400℃で燃焼・消滅することが分る。これらは大気中の結果なので、酸化を示すが、研削時(湿式、すなわち冷却液を使用)の、酸素がほとんど供給されない摩擦面ではダイヤモンドとDLCはいずれも炭化(グラファイト化)すると推察される。   The results are shown in FIG. 2 and FIG. From this, it can be seen that diamond burns and disappears at about 810 ° C. to 980 ° C., and that the DLC film burns and disappears at a much lower temperature of about 300 ° C. to 400 ° C. Since these are atmospheric results, they show oxidation, but it is presumed that both diamond and DLC are carbonized (graphitized) on the friction surface where little oxygen is supplied during grinding (wet, ie, using a coolant).

このことから、本発明者らは、Ti(C,N)などの炭窒化物粒子が砥粒の炭素を吸収するのは、上記のようにTi(C,N)などの炭窒化物粒子が非化学量論的化合物すなわち(C+N)/Ti原子比および(C+N)/(Ti+X)が1以下でありCを吸収し易い化合物であること、さらに、研削時に冷却液を砥石/被削材間に掛けていても、砥粒と被研削材サーメットの摩擦面では研削熱により温度が上昇し、砥粒中の主としてDLCが炭化してグラファイトへ変化し(すなわち合成される前の状態の炭素に戻る)、その後、炭窒化物粒子が主としてDLC由来のグラファイトのC原子を優先的に吸収するためではないか、との発想を得た。   From this fact, the inventors of the present invention understand that the carbonitride particles such as Ti (C, N) absorb carbon of the abrasive grains because the carbonitride particles such as Ti (C, N) as described above. Non-stoichiometric compound, that is, (C + N) / Ti atomic ratio and (C + N) / (Ti + X) are 1 or less and are compounds that easily absorb C. Even if it is applied, the temperature of the friction surface between the abrasive grains and the cermet to be ground rises due to grinding heat, and mainly DLC in the abrasive grains is carbonized and converted to graphite (that is, to the carbon in the state before being synthesized). (Return) After that, the idea that carbonitride particles mainly absorb C atoms of DLC-derived graphite preferentially was obtained.

何故なら、C原子とC原子との結合力は、グラファイト<DLC<ダイヤモンドであるからである。ここで、本発明者らは、砥粒/被削材間の摩擦面(切削面)で発生する摩擦熱は摩擦面近傍では冷却液により瞬時にして除去されないことから、摩擦面近傍ではC原子の拡散が十分に起こる温度まで上昇すると考えている。   This is because the bonding force between C atoms and C atoms is graphite <DLC <diamond. Here, since the frictional heat generated on the friction surface (cutting surface) between the abrasive grains and the work material is not instantaneously removed by the cooling liquid in the vicinity of the friction surface, the inventors of the present invention have the C atom in the vicinity of the friction surface. It is believed that the temperature will rise to a temperature at which sufficient diffusion occurs.

以上のことから、窒素添加サーメットの研削加工では、砥粒の摩耗を抑制するために研削熱が発生し難い研削条件で加工しなければならないことが知られる。さらに研削熱が過度にならない研削条件を設定すれば、砥粒内の主としてDLCをグラファイト化し、これをサーメットのTi(C,N)などの炭窒化物粒子に吸収させることにより、(1)炭窒化物粒子の原子空孔を消滅させることが出来、これによってダイヤモンドからのC原子吸収を抑制出来ると共に、(2)砥粒のDLCが優先的に消失することから、砥粒表面に鋭い切れ刃のダイヤモンド部分を露出できるので、砥粒本来の性能を引き出せ効率良く研削出来る、という発想を得た。これが第1の知見である。   From the above, it is known that the grinding of nitrogen-added cermet must be performed under grinding conditions in which grinding heat is difficult to generate in order to suppress wear of abrasive grains. Further, if the grinding conditions are set so that the grinding heat does not become excessive, DLC in the abrasive grains is mainly graphitized, and this is absorbed by carbonitride particles such as Ti (C, N) of cermet (1) charcoal. Atom vacancies in nitride particles can be eliminated, thereby suppressing C atom absorption from diamond and (2) DLC of abrasive grains disappears preferentially, so that sharp cutting edges are formed on the abrasive grain surface. The idea is that the diamond part of the steel can be exposed, so that the original performance of the abrasive grains can be extracted and grinding can be performed efficiently. This is the first finding.

研削熱は、砥粒と被研削材との間の摩擦による発熱と切りくずの変形による発熱とに起因する。両者の単位時間当りの発熱量は、砥石周速度を低下させれば低減されるはずである。従って、砥粒の摩耗による平滑化は、砥石周速度を低下させると減少すると推察される。   The grinding heat is caused by heat generation due to friction between the abrasive grains and the material to be ground and heat generation due to chip deformation. The calorific value per unit time of both should be reduced if the grinding wheel peripheral speed is lowered. Therefore, it is presumed that smoothing due to abrasive wear decreases when the grindstone peripheral speed is lowered.

このことを確かめる為に、砥粒粉Cを用いたレジンボンド砥石φ200mm×10mmで、ナガセインテグレックス株式会社製平面研削盤EPG52を用いて、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液の供給量を60L/minとして、φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体を1mm研削した場合の砥石表面の砥粒損耗状態に及ぼす砥石周速度の影響を調べ、図4を得た(図の「平滑化率」は後記)。   In order to confirm this, a resin bond grindstone φ200 mm × 10 mm using abrasive powder C and a surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd., left / right feed rate 12 m / min, front / rear feed rate 150 mm / min, cutting The grinding wheel peripheral speed exerted on the abrasive wear state of the grinding wheel surface when grinding a 1 mm diameter disk-shaped nitrogen-added cermet (hardness: 91.0HRA) of φ60 mm at 10 μm and a coolant supply amount of 60 L / min. The influence was investigated and FIG. 4 was obtained (the “smoothing rate” in the figure is described later).

予想通り、平滑な摩耗面は砥石周速度を低下させるほど減少した。さらに、研削比は、同図に併示したように、砥石周速度を低下させるほど著しく大となった。ここで、本発明者らは、砥石表面における砥粒の拡大観察写真(250倍)上で、摩耗して平滑となった面と摩耗せず平滑でない面を色分けし、それらの各面積をピクセルで読み取って、両種の面積の和(すなわち観察面上での砥粒断面積)に対する摩耗平滑面の面積の比率を「平滑化率」と定義することとした。図5にその模式図と計算式を示した。   As expected, the smooth wear surface decreased as the wheel peripheral speed decreased. Further, as shown in the figure, the grinding ratio was remarkably increased as the grinding wheel peripheral speed was lowered. Here, the present inventors color-coded the surface that was worn and smoothed and the surface that was not worn and smooth on the magnified observation photograph (250 times) of the abrasive grains on the surface of the grindstone, and determined the respective areas as pixels. Thus, the ratio of the area of the wear smooth surface to the sum of the areas of both types (that is, the cross-sectional area of the abrasive grains on the observation surface) is defined as “smoothing rate”. FIG. 5 shows a schematic diagram and a calculation formula thereof.

研削比および平滑化率に及ぼす砥石周速度影響を図6に示す。この図より、砥石周速度を低下させると、平滑化率が低減すると共に研削比が飛躍的に改善されることが分る。すなわち、砥石周速度が従来の1500m/minの場合に比べ800m/minでは約94(図のみからでは読み取れないが、後掲の表2に示す実測値より、1509/16)倍にも達する。すなわち、本発明者らの「研削熱が過度にならない研削条件を設定することにより、砥粒本来の性能を引き出せ効率良く研削出来る」とする、上記の第1の知見が証明された。   FIG. 6 shows the influence of the grinding wheel peripheral speed on the grinding ratio and the smoothing rate. From this figure, it can be seen that when the grinding wheel peripheral speed is lowered, the smoothing rate is reduced and the grinding ratio is drastically improved. In other words, compared to the conventional 1500 m / min grinding wheel speed, it reaches about 94 times (1509/16 from the measured values shown in Table 2 below, although it cannot be read from the figure alone) at 800 m / min. That is, the above-mentioned first knowledge of the present inventors that “by setting the grinding conditions under which the grinding heat does not become excessive, the original performance of the abrasive grains can be extracted and can be efficiently ground” has been proved.

なお、砥石周速度を遅くした場合でも、切込み深さとテーブル送り速度を増大させた場合やサーメットの窒素含有量を増大させた場合、さらに硬質相粒径を微粒化(硬さHRAを増大)させた場合には、研削熱の発生量が上昇し、砥石の摩耗形態や平滑率が変るので、研削比は、上掲の図6に示した値よりも減少する傾向にある。しかし、研削除去体積が28.3cmの場合に、前述の砥粒の平滑率が70%未満の条件であれば、高い研削比が得られる。よって、窒素添加サーメットを研削加工した場合の砥石表面の砥粒平滑化率が70%未満の条件で研削加工すればよいことを見出した。これが第2の知見である。 Even when the grinding wheel peripheral speed is slowed, when the cutting depth and table feed speed are increased, or when the nitrogen content of the cermet is increased, the hard phase particle size is further atomized (hardness HRA is increased). In this case, the amount of generated grinding heat is increased, and the wear form and smoothness of the grindstone are changed. Therefore, the grinding ratio tends to decrease from the value shown in FIG. However, when the grinding removal volume is 28.3 cm 3 , a high grinding ratio can be obtained as long as the aforementioned smoothness of the abrasive grains is less than 70%. Therefore, it has been found that the grinding may be performed under the condition that the abrasive grain smoothing rate of the grindstone surface when the nitrogen-added cermet is ground is less than 70%. This is the second finding.

ところで、砥石周速度を低下させると砥粒の接線方向の応力が高くなり、砥粒が砥石ボンド層(レジン)から脱落しやすくなることが知られている。図7はそれを調べた結果で、砥粒粉Cより砥粒表面の凹凸が少ない砥粒粉Eを用いたレジンボンド砥石φ200mm×10mmで、ナガセインテグレックス株式会社製平面研削盤EPG52を用いて、砥石周速度800m/min、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液の供給量を60L/minとして、として、φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体を1mm研削した後の砥石表面を示す。   By the way, it is known that when the peripheral speed of the grindstone is lowered, the stress in the tangential direction of the abrasive grains increases, and the abrasive grains easily fall off from the grindstone bond layer (resin). FIG. 7 shows the result of the investigation, and a resin bond grindstone φ200 mm × 10 mm using an abrasive powder E with less irregularities on the abrasive grain surface than the abrasive powder C, and using a surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. Grinding wheel peripheral speed 800 m / min, left / right feed speed 12 m / min, front / rear feed speed 150 mm / min, depth of cut 10 μm, coolant supply rate 60 L / min. 0HRA) The grindstone surface after 1 mm grinding of the sintered body is shown.

この場合の、研削比は72であり砥粒粉C場合の1509より著しく低い。この原因は、摩耗状態の観察により、砥粒粉Eは脱落が多いためであることが分かった。すなわち、砥粒表面の凹凸形状が重要であることが分った。   In this case, the grinding ratio is 72, which is significantly lower than 1509 in the case of the abrasive powder C. The cause of this was found by observation of the wear state that the abrasive powder E was frequently dropped. That is, it has been found that the uneven shape of the abrasive grain surface is important.

次に、脱落を防ぐほど研削比が良くなるのかどうかを調べた。脱落を防ぐには同一ボンド材の下では砥粒表面を凹凸にすればよい。図8は、それを調べた結果で、砥粒粉Cよりも表面の凹凸が多い砥粒粉Aを用いたレジンボンド砥石φ200mm×10mmで、ナガセインテグレックス株式会社製平面研削盤EPG52を用いて、砥石周速度800m/min、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液の供給量を60L/minとして、φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体を1mm研削した後の砥石表面を示す。   Next, it was investigated whether or not the grinding ratio was improved to prevent dropping. In order to prevent the dropout, the surface of the abrasive grains may be uneven under the same bond material. FIG. 8 is a result of investigating it, and using a surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. with a resin bond grindstone φ200 mm × 10 mm using an abrasive powder A having more surface irregularities than the abrasive powder C, Grinding wheel peripheral speed 800m / min, left / right feed speed 12m / min, front / rear feed speed 150mm / min, depth of cut 10μm, coolant supply amount 60L / min, φ60mm disk-shaped nitrogen addition cermet (hardness 91.0HRA) The grindstone surface after grinding 1mm of a sintered compact is shown.

この場合の、研削比は98であり、砥粒粉Cの場合の1509より著しく低い。上掲の図7と図8における砥粒状態を比較すると明らかなように、砥粒粉Eでは砥粒粉Aに比べると砥粒の脱落は少ないが、摩耗が激しい。これは、砥粒粉Aは凹凸が多い、すなわち余りにもDLCが多いため、切れ刃となるべきダイヤモンドも少なくなり過ぎると共に、砥粒の強度と硬さも著しく低下すると看做せる。これらの両者が相乗的に作用して砥粒の耐摩耗性が不足した為と判断された。   In this case, the grinding ratio is 98, which is significantly lower than 1509 in the case of the abrasive powder C. As apparent from the comparison of the state of the abrasive grains in FIGS. 7 and 8 above, the abrasive powder E has less falling off of the abrasive grains than the abrasive powder A, but is severely worn. This can be considered that the abrasive powder A has many irregularities, that is, too much DLC, so that the diamond to be used as a cutting edge becomes too small, and the strength and hardness of the abrasive grains are significantly reduced. It was judged that both of these acted synergistically and the abrasive wear resistance was insufficient.

これらのことから、砥粒表面の凹凸形状すなわちDLC比率またはダイヤモンド比率が、きわめて重要となるが、砥粒粉A〜Eのそれらの比率は、既掲の表1のようになっている。両比率と研削比との関係を表2に示す。   For these reasons, the uneven shape on the abrasive grain surface, that is, the DLC ratio or the diamond ratio is extremely important, but those ratios of the abrasive powders A to E are as shown in Table 1 above. Table 2 shows the relationship between both ratios and the grinding ratio.

これより、砥粒粉Cでは、砥石周速度が従来の1500m/minの場合に比べ800m/minでは約94(1509/16)倍にも達することは図6で既に述べた通りであるが、砥粒粉B、C、Dを用い、砥石周速度を900と800m/minとした場合は、研削比は910〜1700であり、砥粒粉A、Eの場合は砥石周速度が800m/minで研削比はそれぞれ98と72であり著しく小さい。同一の800m/minの砥石周速度の下で、砥粒粉Cの砥石は砥粒粉AとEの砥石に比べてそれぞれ約15倍(1509/98)と約21(1509/72)倍となる。   From this, as already described in FIG. 6, the abrasive powder C reaches about 94 (1509/16) times at 800 m / min compared with the conventional 1500 m / min. When the abrasive powders B, C, and D are used and the grinding wheel peripheral speed is set to 900 and 800 m / min, the grinding ratio is 910 to 1700. In the case of the abrasive powders A and E, the grinding wheel peripheral speed is 800 m / min. The grinding ratios are 98 and 72, which are extremely small. Under the same 800 m / min grinding wheel peripheral speed, the grinding stone of abrasive powder C is about 15 times (1509/98) and about 21 (1509/72) times that of grinding stones A and E, respectively. Become.

これより、砥粒粉B、C、Dでは、砥粒粉AとEに比べて、研削比が著しく高いことが明らかである。従って、研削比を高くするためには、砥粒のダイヤモンドの比率は25%〜45%範囲(DLC比率75%〜55%範囲)が適切であることが分った。超硬合金(硬さ88.0HRA)の研削でも、砥石周速度が800m/minの場合砥粒粉がEに対してCでは約29倍(3938/136)である。なお、超硬合金では同一の砥粒粉Cの場合、砥石周速度が従来の1500m/minに対して800m/minでは約5倍(3938/780)へ増大しており、サーメットばかりでなく超硬合金でも砥石周速度を減少させると研削比が増大することが明らかである。   From this, it is clear that the abrasive powders B, C and D have a significantly higher grinding ratio than the abrasive powders A and E. Therefore, in order to increase the grinding ratio, it was found that the diamond ratio of the abrasive grains is appropriately in the range of 25% to 45% (DLC ratio in the range of 75% to 55%). Even in grinding of a cemented carbide (hardness 88.0 HRA), when the grinding wheel peripheral speed is 800 m / min, the abrasive powder is about 29 times (3938/136) in E with respect to E. In the case of the same abrasive powder C in the cemented carbide, the peripheral speed of the grinding wheel is increased to about 5 times (3938/780) at 800 m / min compared to the conventional 1500 m / min. Even with hard alloys, it is clear that the grinding ratio increases when the grinding wheel peripheral speed is decreased.

すなわち、砥粒のダイヤモンド比率が25%より少ない場合は、過度の研削熱が生じにくいような砥石周速度が小さい条件でも砥粒損耗量が多くなりすぎて、研削比が劣化する。逆にダイヤモンド比率が55%以上の場合は、過度の研削熱が生じにくいような砥石周速度が小さい条件では砥粒がボンド層から脱落してしまい研削比が劣化する。よって、砥粒のダイヤモンドの比率は25%〜45%範囲が適当である。これが第3の知見である。すなわち、砥粒粉の選定を行い砥石周速度の減少させることよって研削比を増大させることが出来る。   That is, when the diamond ratio of the abrasive grains is less than 25%, the abrasive wear amount increases excessively even under conditions where the grinding wheel peripheral speed is low so that excessive grinding heat is not easily generated, and the grinding ratio deteriorates. On the other hand, when the diamond ratio is 55% or more, the abrasive grains fall off from the bond layer under a condition that the grinding wheel peripheral speed is low so that excessive grinding heat is hardly generated, and the grinding ratio is deteriorated. Therefore, the range of 25% to 45% is appropriate for the proportion of diamond in the abrasive grains. This is the third finding. That is, the grinding ratio can be increased by selecting the abrasive powder and decreasing the grinding wheel peripheral speed.

上記の砥粒を保持するレジンボンドは、請求項1を満たす砥粒を把持出来るレジン主体の硬いボンドであればよい。また、上記の砥粒寸法は#140(平均直径が約108μm)での結果であるが、研削力を有する寸法範囲の砥粒粉であれば、同様の原理で、研削能力の優れる砥石の開発と研削条件の探索が可能である。   The resin bond that holds the abrasive grains may be a resin-based hard bond that can hold the abrasive grains satisfying claim 1. The above-mentioned abrasive grain size is the result of # 140 (average diameter is about 108 μm), but if the abrasive powder is in the size range having grinding power, development of a grinding wheel with excellent grinding ability based on the same principle. It is possible to search for grinding conditions.

なお、砥粒にはNi、Ti、Cu、Alなどをコーティングしたものがあるが、これらを用いる場合も実際の研削での砥粒の摩耗面はコーティングが剥がれているので、コーティング物質の種類を問わず本発明が適用される(有用である)ことを確認した。   In addition, some abrasive grains are coated with Ni, Ti, Cu, Al, etc. However, even when these are used, since the wear surface of the abrasive grains in actual grinding is peeled off, the type of coating material should be changed. It was confirmed that the present invention was applied (useful) regardless of the case.

ボンド材がレジン主体の研削加工用ダイヤモンド砥石において、ダイヤモンドの占める割合がナノフォトン株式会社製走査型レーザラマン顕微鏡RAMAN−11による面分析で25%〜45%(DLCの占める割合は55%〜75%)の砥粒粉を用いるレジンボンド砥石を使用して、窒素添加サーメット(硬さ91.0HRA)を28.3cm研削加工した場合の砥石表面の平滑化率が70%未満の条件で研削加工することで、研削比を従来値(16)の約94倍(1509)とすることができる。さらに、WC−Co系超硬合金(硬さ88.0HRA)では従来の研削比(136)の約29倍(3938)で研削加工することができる。 In the diamond grinding wheel for grinding, whose bond material is mainly resin, the proportion of diamond is 25% to 45% by surface analysis using a scanning laser Raman microscope RAMAN-11 manufactured by Nanophoton Co., Ltd. (the proportion of DLC is 55% to 75%) ) using the resin bonded grinding wheel using abrasive powder, grinding nitrogen added cermet (the hardness 91.0HRA) at 28.3 cm 3 grinding and smoothing rate of the grinding wheel surface if is less than 70% conditions By doing so, the grinding ratio can be about 94 times (1509) of the conventional value (16). Further, the WC-Co cemented carbide (hardness 88.0HRA) can be ground at about 29 times (3938) the conventional grinding ratio (136).

鈴木壽、松原秀影、林宏爾、辻郷康生:粉体および粉末冶金、30(1983)、p.235.Satoshi Suzuki, Hidekage Matsubara, Hiroshi Hayashi, Yasuo Sato: Powder and Powder Metallurgy, 30 (1983), p. 235.

レジンボンド用ダイヤモンド砥粒粉の外観である。It is the external appearance of diamond abrasive powder for resin bonds. ダイヤモンドの重量に及ぼす加熱温度の影響(雰囲気:大気、時間:30min)。最も結晶性の高いとされるダイヤモンド砥粒について測定した結果である。Effect of heating temperature on diamond weight (atmosphere: air, time: 30 min). It is the result measured about the diamond abrasive grain considered to have the highest crystallinity. ダイヤモンドライクカーボン(DLC) 被膜厚さに及ぼす加熱温度の影響(雰囲気:大気、時間:30min)である。Diamond-like carbon (DLC) Influence of heating temperature on the film thickness (atmosphere: air, time: 30 min). 窒素添加サーメットをレジンボンド砥石で研削した後の砥粒の損耗状態に及ぼす砥石周速度の影響である。砥石:レジンボンド砥石φ200mm×10mm、砥粒粉Cを使用加工装置:ナガセインテグレックス株式会社製平面研削盤EPG52加工条件:左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液供給量60L/min、総切り込み量1mm被加工材:φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体It is the influence of the grindstone peripheral speed on the wear state of the abrasive grains after grinding the nitrogen-added cermet with a resin bond grindstone. Grinding wheel: Resin bond grindstone φ200 mm × 10 mm, using abrasive powder C Processing equipment: Surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. Processing conditions: Left / right feed rate 12 m / min, front / rear feed rate 150 mm / min, depth of cut 10 μm, coolant supply 60L / min, total cutting depth 1mm Workpiece: φ60mm disk-shaped nitrogen-added cermet (hardness 91.0HRA) sintered body 平滑化率の計算式である。SFnは砥粒のうちの平滑な摩耗面SNFnは砥粒のうち平滑でない面積S0nはSFn+SNFn It is a formula for calculating the smoothing rate. S Fn is the smooth wear surface of the abrasive grains S NFn is the non-smooth area of the abrasive grains S 0n is S Fn + S NFn 研削比および砥粒の平滑化率に及ぼす砥石周速度の影響である。砥石:レジンボンド砥石φ200mm×10mm、砥粒粉Cを使用加工装置:ナガセインテグレックス株式会社製平面研削盤EPG52加工条件:左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液供給量60L/min、総切り込み量1mm被加工材:φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体It is the influence of the grinding wheel peripheral speed on the grinding ratio and the smoothing rate of the abrasive grains. Grinding wheel: Resin bond grindstone φ200 mm × 10 mm, using abrasive powder C Processing equipment: Surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. Processing conditions: Left / right feed rate 12 m / min, front / rear feed rate 150 mm / min, depth of cut 10 μm, coolant supply 60L / min, total cutting depth 1mm Workpiece: φ60mm disk-shaped nitrogen-added cermet (hardness 91.0HRA) sintered body 窒素添加サーメットをレジンボンド砥石で研削した後の砥粒の損耗状態である。砥石:レジンボンド砥石φ200mm×10mm、砥粒粉Eを使用加工装置:ナガセインテグレックス株式会社製平面研削盤EPG52加工条件:砥石周速度800m/min、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液供給量60L/min、総切り込み量1mm被加工材:φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体It is a worn state of abrasive grains after the nitrogen-added cermet is ground with a resin bond grindstone. Grinding wheel: Resin bond grindstone φ200 mm × 10 mm, using abrasive powder E Processing equipment: Surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. Processing conditions: grinding wheel peripheral speed 800 m / min, left-right feed speed 12 m / min, front-rear feed speed 150 mm / min , Cutting 10 μm, coolant supply amount 60 L / min, total cutting amount 1 mm Workpiece: φ60 mm disk-shaped nitrogen-added cermet (hardness 91.0 HRA) sintered body 窒素添加サーメットをレジンボンド砥石で研削した後の砥粒の損耗状態である。砥石:レジンボンド砥石φ200mm×10mm、砥粒粉Aを使用加工装置:ナガセインテグレックス株式会社製平面研削盤EPG52加工条件:砥石周速度800m/min、左右送り速度12m/min、前後送り速度150mm/min、切込み10μm、冷却液供給量60L/min、総切り込み量1mm被加工材:φ60mmの円板状窒素添加サーメット(硬さ91.0HRA)焼結体It is a worn state of abrasive grains after the nitrogen-added cermet is ground with a resin bond grindstone. Grinding wheel: Resin bond grindstone φ200 mm × 10 mm, using abrasive powder A Processing equipment: Surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd. Processing conditions: grinding wheel peripheral speed 800 m / min, left-right feed speed 12 m / min, front-rear feed speed 150 mm / min , Cutting 10 μm, coolant supply amount 60 L / min, total cutting amount 1 mm Workpiece: φ60 mm disk-shaped nitrogen-added cermet (hardness 91.0 HRA) sintered body

以下の条件1〜6で研削加工した結果、表2が得られた。
1.研削装置関係
ナガセインテグレックス株式会社製平面研削盤EPG52
砥石寸法φ200mm×10mm
テーブル左右速度12m/min
テーブル前後速度150mm/min
切り込み量10μm/pass
冷却液供給量60L/min
総切り込み量1mm
2.平滑化率
砥石表面の砥粒を拡大観察し、摩耗して平滑となった面と摩耗せず平滑でない面を色分けし、それらの各面積をピクセルで読み取って、両種の面積の和(すなわち観察面上での砥粒断面積)に対する摩耗平滑面の面積の比率を平滑化率とする。
3.被研削材寸法 φ60×10mm
4.被研削材 Ti(C,N)−MoC−WC−Niサーメット 硬さ91.0HRA
5.被研削材 WC−Co超硬合金 硬さ88.0HRA
As a result of grinding under the following conditions 1 to 6, Table 2 was obtained.
1. Grinding equipment related surface grinder EPG52 manufactured by Nagase Integrex Co., Ltd.
Wheel size φ200mm × 10mm
Table left / right speed 12m / min
Table longitudinal speed 150mm / min
Cutting depth 10μm / pass
Coolant supply amount 60L / min
Total depth of cut 1mm
2. Smoothing rate The surface of the grindstone is magnified, and the wear-smoothed surface and the non-smoothed and non-smoothed surface are color-coded, and each area is read with a pixel. The ratio of the area of the wear smooth surface to (that is, the abrasive grain cross-sectional area on the observation surface) is defined as the smoothing rate.
3. Material to be ground φ60 × 10mm
4). The abrasive Ti (C, N) -Mo 2 C-WC-Ni cermet hardness 91.0HRA
5. Material to be ground WC-Co Cemented Carbide Hardness 88.0HRA

Claims (1)

砥粒粉の主成分がダイヤモンドとダイヤモンドライクカーボン(DLC)の2種から成り、その比率が、ナノフォトン株式会社製走査型レーザラマン顕微鏡RAMAN−11による面分析(Niなどのコーティング層があるものについては、酸などで処理してコーティング層のみを除去したものについて面分析)において、ダイヤモンドが25%〜45%(従って、DLCは75%〜55%)であり、研削時に生じる研削熱が過度にならない研削条件を設定することで、優先的に消失するDLCを最適化し、鋭い切れ刃のダイヤモンドを効率よく露出することになるようにした、ダイヤモンドレジンボンド砥石。   The main component of the abrasive powder consists of two types of diamond and diamond-like carbon (DLC), the ratio of which is a surface analysis by a scanning laser Raman microscope RAMAN-11 manufactured by Nanophoton Co., Ltd. (with a coating layer such as Ni) Is 25% to 45% of diamond (and therefore DLC is 75% to 55%) in the case where only the coating layer is removed by treatment with acid or the like, and the grinding heat generated during grinding is excessive. A diamond resin bond grindstone that optimizes DLC that disappears preferentially by setting the grinding conditions that do not become necessary, so that diamonds with sharp cutting edges are efficiently exposed.
JP2012229352A 2012-10-16 2012-10-16 Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet Pending JP2013046960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229352A JP2013046960A (en) 2012-10-16 2012-10-16 Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229352A JP2013046960A (en) 2012-10-16 2012-10-16 Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008336260A Division JP5177422B2 (en) 2008-12-27 2008-12-27 Grinding method with resin bond grindstone suitable for grinding nitrogen-added cermet

Publications (1)

Publication Number Publication Date
JP2013046960A true JP2013046960A (en) 2013-03-07

Family

ID=48010287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229352A Pending JP2013046960A (en) 2012-10-16 2012-10-16 Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet

Country Status (1)

Country Link
JP (1) JP2013046960A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234165A (en) * 1988-03-11 1989-09-19 Goei Seisakusho:Kk Soot mixed diamond polishing grindstone
JPH06262520A (en) * 1993-03-10 1994-09-20 Canon Inc Grinding wheel and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234165A (en) * 1988-03-11 1989-09-19 Goei Seisakusho:Kk Soot mixed diamond polishing grindstone
JPH06262520A (en) * 1993-03-10 1994-09-20 Canon Inc Grinding wheel and its manufacture

Similar Documents

Publication Publication Date Title
TW201211222A (en) Bonded abrasive article and method of forming
KR101902856B1 (en) Sintered object of cubic boron nitride and cutting tool
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
JP5835307B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2010234519A (en) Cermet and coated cermet
JP2012140256A (en) Diamond sintered compact and method for producing the same
JP5177422B2 (en) Grinding method with resin bond grindstone suitable for grinding nitrogen-added cermet
JP5282911B2 (en) Diamond coated cutting tool
JPS6359827B2 (en)
JP2013046960A (en) Resin bond grinding wheel suitable for grinding processing of hard material such as nitride-added cermet
JP2008200780A (en) Mixed abrasive grain grinding wheel
JP5312095B2 (en) Cutting tools
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
JP6028374B2 (en) Target and hard coating coated cutting tool
JP6165388B1 (en) Abrasive tools
JP3751160B2 (en) Hard material abrasive grain densification structure
JPWO2016084738A1 (en) cBN sintered body and cutting tool
JP2008290168A (en) Super abrasive wheel and grinding method for sintered material
JP4845490B2 (en) Surface coated cutting tool
JPS61146763A (en) Manufacture of sintered body for cutting tool
JP2007253285A (en) Super-abrasive resin bond wheel
WO2017203848A9 (en) Superabrasive wheel
JP5721877B2 (en) Thin blade
JP5995076B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5644388B2 (en) Cermet and coated cermet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028