JP2013045957A - Wiring board and electronic device - Google Patents

Wiring board and electronic device Download PDF

Info

Publication number
JP2013045957A
JP2013045957A JP2011183810A JP2011183810A JP2013045957A JP 2013045957 A JP2013045957 A JP 2013045957A JP 2011183810 A JP2011183810 A JP 2011183810A JP 2011183810 A JP2011183810 A JP 2011183810A JP 2013045957 A JP2013045957 A JP 2013045957A
Authority
JP
Japan
Prior art keywords
layer
hole
wiring board
thin film
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011183810A
Other languages
Japanese (ja)
Inventor
Yukio Katahira
幸夫 片平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011183810A priority Critical patent/JP2013045957A/en
Publication of JP2013045957A publication Critical patent/JP2013045957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board in which conductivity of a small diameter through hole having a high aspect ratio is enhanced, and to provide an electronic device.SOLUTION: A wiring board 5 includes an insulation substrate 1 having a through hole 1a and containing aluminum nitride as a main component, an aluminum layer 2 provided from the upper end to the lower end of the inner surface of the through hole 1a, a thin film layer 3 provided on the surface of the aluminum layer 2, and a metal layer 4 provided on the surface of the thin film layer 3. Since the wiring board 5 includes such a configuration, a sufficient electric path can be provided from the upper end to the lower end of the through hole 1a by the aluminum layer 2, even if the thin film layer 3 is not provided in the center of the through hole 1a due to high aspect ratio thereof, and thereby the conductivity of a small diameter through hole 1a having a high aspect ratio is enhanced.

Description

本発明は、配線基板および電子装置に関するものである。   The present invention relates to a wiring board and an electronic device.

例えば、照明分野において、近年、高出力の発光ダイオード素子が開発されるに従い、寿命が長いことや消費電力が小さいことによって発光ダイオード装置が照明用の光源に用いられるようになっている。このような、発光ダイオード装置には、セラミック基板の表面に配線導体を形成したり内部に貫通導体を形成した配線基板が用いられている。   For example, in the illumination field, as high-power light-emitting diode elements have been developed in recent years, light-emitting diode devices have been used as illumination light sources due to their long life and low power consumption. In such a light emitting diode device, a wiring substrate having a wiring conductor formed on the surface of a ceramic substrate or a through conductor formed therein is used.

配線基板は、例えば発光装置が小型化、高密度化または高出力化が要求されるに伴い高い放熱性や耐熱性等のセラミック基板の特徴が生かされることで需要が高まりつつある。発光装置を小型化にする方法として、配線基板に高密度に貫通孔を形成し、LED素子を高密度に実装する方法がある。   For example, as a light-emitting device is required to have a smaller size, a higher density, or a higher output, a demand for a wiring board is increasing due to the utilization of ceramic substrate characteristics such as high heat dissipation and heat resistance. As a method for reducing the size of a light emitting device, there is a method in which through holes are formed in a wiring substrate at a high density and LED elements are mounted at a high density.

その方法の1つとして、窒化アルミニウムを主成分とする絶縁基板に貫通孔を形成した後に貫通孔内に金属層を設ける場合、絶縁基板と金属層との密着性向上のために、金属層を設ける前に、蒸着法やイオンプレーティング法、スパッタリング法等の薄膜形成技術により薄膜層を形成することがある(例えば、特許文献1を参照)。   As one of the methods, when a metal layer is provided in the through hole after the through hole is formed in the insulating substrate mainly composed of aluminum nitride, the metal layer is used to improve the adhesion between the insulating substrate and the metal layer. Before providing, a thin film layer may be formed by thin film formation techniques, such as a vapor deposition method, an ion plating method, and a sputtering method (for example, refer patent document 1).

特開2005-101178号公報JP 2005-101178 A

しかしながら、特許文献1のようにすると、小径の貫通孔を高い寸法精度で形成することはできるものの、貫通孔の高アスペクト比化に伴って、貫通孔の中央部分において薄膜層が設けられないことがあった。そのため、薄膜層が貫通孔の上端部から下端部にかけて連続して設けられず、十分な電気的経路を設けることが不可能なことがあった。そのため、小径でアスペクト比の高い貫通孔について安定して導通させるためには改善が必要なものであった。   However, according to Patent Document 1, although a small-diameter through hole can be formed with high dimensional accuracy, a thin film layer is not provided in the central portion of the through hole as the through hole has a higher aspect ratio. was there. Therefore, the thin film layer is not continuously provided from the upper end portion to the lower end portion of the through hole, and it may be impossible to provide a sufficient electrical path. Therefore, it is necessary to improve the through hole with a small diameter and a high aspect ratio in order to conduct stably.

本発明の一つの態様による配線基板は、貫通孔を有しており、窒化アルミニウムを主成分として含んでいる絶縁基板と、前記貫通孔の内面の上端部から下端部にかけて設けられたアルミニウム層と、該アルミニウム層の表面に設けられた薄膜層と、該薄膜層の表面に設けられた金属層とを備えていることを特徴とする。   A wiring board according to one aspect of the present invention includes an insulating substrate having a through hole and containing aluminum nitride as a main component, and an aluminum layer provided from the upper end portion to the lower end portion of the inner surface of the through hole. And a thin film layer provided on the surface of the aluminum layer, and a metal layer provided on the surface of the thin film layer.

本発明の他の態様による電子装置は、配線基板と、該配線基板に搭載された電子部品を備えていることを特徴とする。   An electronic device according to another aspect of the present invention includes a wiring board and an electronic component mounted on the wiring board.

本発明の一つの態様による配線基板は、貫通孔を有しており、窒化アルミニウムを主成分として含んでいる絶縁基板と、貫通孔の内面の上端部から下端部にかけて設けられたアルミニウム層と、アルミニウム層の表面に設けられた薄膜層と、薄膜層の表面に設けられた金属層とを備えている。本発明の一つの態様による配線基板は、このような構成を含んでいることによって、貫通孔の高アスペクト比化が進んで仮に貫通孔の中央部分において
薄膜層が設けられなかったとしても、アルミニウム層によって貫通孔の上端部から下端部にかけて十分な電気的経路を設けることができる。
A wiring substrate according to one aspect of the present invention has a through hole, an insulating substrate containing aluminum nitride as a main component, an aluminum layer provided from the upper end to the lower end of the inner surface of the through hole, A thin film layer provided on the surface of the aluminum layer and a metal layer provided on the surface of the thin film layer are provided. Since the wiring board according to one aspect of the present invention includes such a configuration, even if a high aspect ratio of the through-hole is advanced and a thin film layer is not provided in the central portion of the through-hole, aluminum is used. The layer can provide a sufficient electrical path from the upper end to the lower end of the through hole.

本発明の他の態様による電子装置は、上記構成の配線基板を備えていることによって、アスペクト比の高い小径の貫通孔1aの導通性に関して向上されるものとなる。   The electronic device according to another aspect of the present invention includes the wiring board having the above-described configuration, whereby the electrical conductivity of the small-diameter through hole 1a having a high aspect ratio is improved.

(a)は本発明の一つの実施形態における電子装置を示す平面図であり、(b)は(a)に示された電子装置のA−A線における縦断面図である。(A) is a top view which shows the electronic device in one Embodiment of this invention, (b) is a longitudinal cross-sectional view in the AA line of the electronic device shown by (a). (a)は図1に示された電子装置に使用される配線基板(母配線基板)の一つの実施形態を示す平面図であり、(b)は(a)のB部の拡大図であり、(c)は(b)のC−C線における縦断面図である。(A) is a top view which shows one Embodiment of the wiring board (mother wiring board) used for the electronic apparatus shown by FIG. 1, (b) is an enlarged view of the B section of (a). (C) is a longitudinal cross-sectional view in CC line of (b). 図2(c)に示された配線基板の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the wiring board shown by FIG.2 (c). 本発明の他の実施形態における配線基板の要部の拡大図である。It is an enlarged view of the principal part of the wiring board in other embodiment of this invention. 本発明の他の実施形態における配線基板の要部の拡大図である。It is an enlarged view of the principal part of the wiring board in other embodiment of this invention.

本発明のいくつかの例示的な実施形態について図面を参照して説明する。   Several exemplary embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1(a)、(b)、図1に示された電子装置に使用される配線基板(母配線基板)の一つの実施形態を示す平面図である図2(a)、(b)、(c)および図2(c)に示された配線基板5の要部の拡大断面図である図3を参照して本発明の第1の実施形態における電子装置について説明する。図1(a)、(b)に示されているように、本実施形態における電子装置は、配線基板5と、配線基板5に搭載された電子部品6とを含んでいる。
(First embodiment)
FIGS. 2A and 2B are plan views showing one embodiment of a wiring board (mother wiring board) used in the electronic device shown in FIGS. The electronic device according to the first embodiment of the present invention will be described with reference to FIG. 3 which is an enlarged cross-sectional view of the main part of the wiring board 5 shown in (c) and FIG. 2 (c). As shown in FIGS. 1A and 1B, the electronic device according to the present embodiment includes a wiring board 5 and an electronic component 6 mounted on the wiring board 5.

また、図1(a)、(b)、図2(a)、(b)、(c)および図3に示されているように、配線基板5は、貫通孔1aを有しており、窒化アルミニウムを主成分として含んでいる絶縁基板1と、貫通孔1aの内面の上端部から下端部にかけて設けられたアルミニウム層2と、アルミニウム層2の表面に設けられた薄膜層3と、薄膜層3の表面に設けられた金属層4とを含んでいる。   Also, as shown in FIGS. 1A, 1B, 2A, 2B, 3C and 3, the wiring board 5 has a through hole 1a. Insulating substrate 1 containing aluminum nitride as a main component, aluminum layer 2 provided from the upper end portion to the lower end portion of the inner surface of through-hole 1a, thin film layer 3 provided on the surface of aluminum layer 2, and thin film layer 3 and a metal layer 4 provided on the surface of 3.

また、配線基板5は、製品寸法が小さいことが多いため、図2(a)、(b)、(c)に示されているように、配線基板5が多数個形成された母配線基板5´を分割することによって作成される場合があるが、本発明においては母配線基板も配線基板に含まれる。   Further, since the wiring board 5 is often small in product size, as shown in FIGS. 2A, 2B, and 2C, the mother wiring board 5 in which a large number of wiring boards 5 are formed. In some cases, the mother wiring board is also included in the wiring board.

図2に示された本実施形態における母配線基板5´および母配線基板5´を分割してできる配線基板5の作成方法について、以下に説明を行う。窒化アルミニウムを主成分として含んでいる母絶縁基板1´は、主原料としての窒化アルミニウムに焼結助剤としてのイットリア、カルシア及び適当な有機溶剤、溶媒を添加混合して泥漿状となすとともにこれを従来周知のドクターブレード法やカレンダーロール法を採用することによってグリーンシート(生シート)を形成し、しかる後、前記グリーンシートを高温(約1800℃)で焼成することによって製作される。なお、絶縁基板1は生産性を高めるために、通常は絶縁基板1を多数個集合した母絶縁基板の状態で作成し、母配線基板5´が完成した時点もしくは電子装置が完成した時点で分割されることが多いので、作成工程については主に母配線基板5´の作成工程とするが、母配線基板5´を分割すること無く、直接配線基板5を作成することも可能である。また、窒化アルミニウムを主成分として含むとは、絶縁基板1中に窒化アルミニウムが80質量%以上含むことを言う。絶縁基板1中に含まれる窒化アルミニウムが80質量%未満であると、貫通孔1a表面にアルミニウム層2を安定して形成し難い。好ましくは絶縁基板1中の窒化アルミニウムは95質量%以上含有されて
いることが好ましい。窒化アルミニウムが95質量%以上含まれていると、絶縁体の熱伝導率を170W/mK以上としやすいため、熱放散性に優れた配線基板5となるので好ましい。
A method of creating the wiring board 5 that is obtained by dividing the mother wiring board 5 ′ and the mother wiring board 5 ′ in the present embodiment shown in FIG. 2 will be described below. The mother insulating substrate 1 ′ containing aluminum nitride as a main component is made into a slurry by adding and mixing yttria, calcia, a suitable organic solvent, and a solvent as a sintering aid to aluminum nitride as a main raw material. A green sheet (raw sheet) is formed by adopting a conventionally known doctor blade method or calendar roll method, and then the green sheet is fired at a high temperature (about 1800 ° C.). In order to increase productivity, the insulating substrate 1 is usually formed in a state of a mother insulating substrate in which a large number of insulating substrates 1 are assembled, and is divided when the mother wiring substrate 5 'is completed or the electronic device is completed. In many cases, the production process is mainly the production process of the mother wiring board 5 ′. However, the wiring board 5 can also be produced directly without dividing the mother wiring board 5 ′. The phrase “containing aluminum nitride as a main component” means that the insulating substrate 1 contains 80% by mass or more of aluminum nitride. If the aluminum nitride contained in the insulating substrate 1 is less than 80% by mass, it is difficult to stably form the aluminum layer 2 on the surface of the through hole 1a. Preferably, the aluminum nitride in the insulating substrate 1 is contained at 95% by mass or more. It is preferable that 95% by mass or more of aluminum nitride is included because the thermal conductivity of the insulator is easily set to 170 W / mK or more, and the wiring board 5 is excellent in heat dissipation.

窒化アルミニウムからなる母絶縁基板1´の所定の部位にレーザー加工によって貫通孔1aを形成する。波長の短いYAGレーザーや、エキシマレーザーを使用すると、窒化アルミニウムが瞬時に蒸発してしまい、アルミニウム層2が貫通孔1aの内面に形成されにくく、COレーザーを使用すると、窒化アルミニウムの表面に安定してアルミニウム層2が形成され易いのでCOレーザーを使用するのが好ましい。例えば、窒化アルミニウムの含有率が95質量%で熱伝導率が170W/mK、板厚0.38mmの絶縁基板を用い、出力20Wで焦点の径がφ0.1mmのCOレーザー(波長10.6μm)を用いて貫通孔1aを形成すると、入射側の直径が0.13mmで、出射側の直径は0.06mmとなり、貫通孔1aの表面にアルミニウムが形成された貫通孔1aとすることができる。このときのアルミニウム層2の厚みは1〜16μmであった。 A through hole 1a is formed in a predetermined portion of the mother insulating substrate 1 'made of aluminum nitride by laser processing. If a YAG laser or excimer laser with a short wavelength is used, the aluminum nitride is instantly evaporated, and the aluminum layer 2 is not easily formed on the inner surface of the through hole 1a. If a CO 2 laser is used, the surface of the aluminum nitride is stable. Since the aluminum layer 2 is easily formed, it is preferable to use a CO 2 laser. For example, an insulating substrate having an aluminum nitride content of 95% by mass, a thermal conductivity of 170 W / mK, a plate thickness of 0.38 mm, an output of 20 W, and a focal point diameter of 0.1 mm CO 2 laser (wavelength 10.6 μm) ) Is used to form a through hole 1a having an incident side diameter of 0.13 mm and an exit side diameter of 0.06 mm, and aluminum is formed on the surface of the through hole 1a. . The thickness of the aluminum layer 2 at this time was 1 to 16 μm.

アルミニウム層2の形成方法は、窒化アルミニウムからなる母絶縁基板1´に貫通孔1aを形成するときの上述のレーザー加工により窒化アルミニウムが還元されることによるものであり、この形成方法により、アルミニウム層2が貫通孔1aの内面の上端部から下端部にかけて設けられるものとなる。   The aluminum layer 2 is formed by reducing the aluminum nitride by the laser processing described above when the through-hole 1a is formed in the mother insulating substrate 1 ′ made of aluminum nitride. 2 is provided from the upper end to the lower end of the inner surface of the through hole 1a.

薄膜層3を構成する密着金属層は、母絶縁基板1´の表裏面の貫通孔1aの周囲にレーザー加工で形成される凸部を必要に応じて研磨等で除去平坦化し、絶縁基板1の表裏面および貫通孔1aの上下面付近に形成される。密着金属層は例えば、窒化タンタルやニッケルークロム、ニッケルークロムーシリコン、タングステンーシリコン、モリブデンーシリコン、タングステン、モリブデン、チタン、クロム等から成り、蒸着法やイオンプレーティング法、スパッタリング法等の薄膜形成技術を採用することにより貫通孔1a内のアルミニウム層2および絶縁基板1上に被着される。例えば真空蒸着法を用いて形成する場合には、母絶縁基板1´を真空蒸着装置の成膜室内に設置して、成膜室内の蒸着源に密着金属層と成る金属片を配置し、その後、成膜室内を真空状態(10−2Pa以下の圧力)にするとともに、蒸着源に配置された金属片を加熱して蒸着させ、この蒸着した金属片の分子を絶縁基板1に被着させることにより、密着金属層と成る薄膜金属の層を形成する。そして、薄膜金属層が形成された絶縁基板1にフォトリソグラフィ法を用いてレジストパターンを形成した後、エッチングによって余分な薄膜金属層を除去することにより、密着金属層が形成される。密着金属層の上面には薄膜層3を構成するバリア層が被着され、バリア層は密着金属層と主導体層と接合性、濡れ性が良く、密着金属層と主導体層とを強固に接合させるとともに密着金属層と主導体層との相互拡散を防止する作用をなす。バリア層は、例えば、ニッケルークロムや白金、パラジウム、ニッケル、コバルト等から成り、蒸着法やイオンプレーティング法、スパッタリング法等の薄膜形成技術により密着金属層の上面に被着される。 The adhesion metal layer constituting the thin film layer 3 is planarized by removing the projections formed by laser processing around the through-holes 1a on the front and back surfaces of the mother insulating substrate 1 'by polishing or the like as necessary. It is formed near the front and back surfaces and the upper and lower surfaces of the through hole 1a. The adhesion metal layer is made of, for example, tantalum nitride, nickel-chromium, nickel-chromium-silicon, tungsten-silicon, molybdenum-silicon, tungsten, molybdenum, titanium, chromium, etc., and thin films such as vapor deposition, ion plating, and sputtering. By adopting the formation technique, it is deposited on the aluminum layer 2 and the insulating substrate 1 in the through hole 1a. For example, when forming using a vacuum evaporation method, the mother insulating substrate 1 'is installed in a film forming chamber of a vacuum evaporation apparatus, and a metal piece serving as an adhesion metal layer is disposed in a vapor deposition source in the film forming chamber, and then The inside of the film forming chamber is evacuated (pressure of 10 −2 Pa or less), the metal piece arranged in the vapor deposition source is heated and vapor-deposited, and the molecules of the vapor-deposited metal piece are deposited on the insulating substrate 1. As a result, a thin film metal layer to be an adhesion metal layer is formed. Then, after a resist pattern is formed on the insulating substrate 1 on which the thin film metal layer is formed by using a photolithography method, an extra thin film metal layer is removed by etching, thereby forming an adhesion metal layer. A barrier layer constituting the thin film layer 3 is deposited on the upper surface of the adhesion metal layer. The barrier layer has good adhesion and wettability with the adhesion metal layer and the main conductor layer, and the adhesion metal layer and the main conductor layer are firmly bonded. It serves to prevent the mutual diffusion between the adhesion metal layer and the main conductor layer as well as joining. The barrier layer is made of, for example, nickel-chromium, platinum, palladium, nickel, cobalt or the like, and is deposited on the upper surface of the adhesion metal layer by a thin film forming technique such as a vapor deposition method, an ion plating method, or a sputtering method.

密着金属層の厚さは0.01〜0.5μm程度が良い。0.01μm未満では、絶縁基板
1およびアルミニウム層2上に密着金属層を強固に密着させることが困難となる傾向がある。0.5μmを超える場合は、密着金属層の成膜時の内部応力によって密着金属層の剥
離が生じ易くなる。
The thickness of the adhesion metal layer is preferably about 0.01 to 0.5 μm. If it is less than 0.01 μm, it tends to be difficult to firmly adhere the adhesion metal layer on the insulating substrate 1 and the aluminum layer 2. When the thickness exceeds 0.5 μm, peeling of the adhesion metal layer is likely to occur due to internal stress during the formation of the adhesion metal layer.

また、バリア層の厚さは0.05〜1μm程度が良い。0.05μm未満では、ピンホール等の欠陥が発生してバリア層としての機能を果たしにくくなる傾向がある。1μmを超える場合は、成膜時の内部応力によりバリア層の剥離が生じ易くなる。   The thickness of the barrier layer is preferably about 0.05 to 1 μm. If the thickness is less than 0.05 μm, defects such as pinholes tend to occur, and the function as a barrier layer tends not to be achieved. When the thickness exceeds 1 μm, the barrier layer is easily peeled off due to internal stress during film formation.

金属層4の形成方法は、絶縁基板1の表裏面共に、表面配線7を形成しない部分にレジ
スト膜(不図示)を形成し、薄膜層3およびアルミニウム層2の表面に銅を電解めっきで形成することによるものであり、この形成方法により、金属層4が貫通孔1a内に充填されると共に表面配線7となる部分に厚い導体層が形成される。
The metal layer 4 is formed by forming a resist film (not shown) on the front and back surfaces of the insulating substrate 1 on portions where the surface wiring 7 is not formed, and forming copper on the surfaces of the thin film layer 3 and the aluminum layer 2 by electrolytic plating. By this formation method, the metal layer 4 is filled in the through hole 1a and a thick conductor layer is formed in a portion to be the surface wiring 7.

なお、密着金属層として、チタン(Ti)を用い、その上に銅(Cu)をこの順でスパッタを行うと、チタンと銅の接合部にはチタン/銅のバリア層が形成され、表面には銅の導体層が形成されるので、その表面に電解めっきで銅を形成すると、金属層4が全て銅で形成されることになるので、電気抵抗や熱抵抗が低くなると共に大電流を流しやすくなるので好ましい。   When titanium (Ti) is used as the adhesion metal layer and copper (Cu) is sputtered in this order, a titanium / copper barrier layer is formed at the junction between titanium and copper, and is formed on the surface. Since a copper conductor layer is formed, if copper is formed on the surface by electrolytic plating, the metal layer 4 is entirely formed of copper, so that the electrical resistance and thermal resistance are lowered and a large current is passed. Since it becomes easy, it is preferable.

表面配線層7の厚さは2〜200μm程度が良い。2μm未満では、十分に電流を流すことができない傾向があり、200μmを超えると、温度サイクル信頼性が低下する傾向がある。なお、表面配線層7の厚みが50μm以上となると絶縁基板1との熱膨張差が無視できなくなるが、上下の表面配線層7の厚みの差が5μm以下であると配線基板5に反りが発生し難くなるので好ましい。   The thickness of the surface wiring layer 7 is preferably about 2 to 200 μm. If the thickness is less than 2 μm, there is a tendency that current cannot sufficiently flow. If the thickness exceeds 200 μm, the temperature cycle reliability tends to be lowered. If the thickness of the surface wiring layer 7 is 50 μm or more, the difference in thermal expansion from the insulating substrate 1 cannot be ignored, but if the thickness difference between the upper and lower surface wiring layers 7 is 5 μm or less, the wiring substrate 5 is warped. Since it becomes difficult to do, it is preferable.

なお、金属層4および表面配線層7が銅の場合は、表面にニッケル層、金層をこの順に形成すると表面の腐食防止のために好ましい。   When the metal layer 4 and the surface wiring layer 7 are copper, it is preferable to form a nickel layer and a gold layer on the surface in this order for preventing corrosion of the surface.

次にレジストを剥離し、露出した薄膜層3をフッ酸でエッチングし除去することで、母配線基板5´となる。   Next, the resist is peeled off, and the exposed thin film layer 3 is removed by etching with hydrofluoric acid, whereby the mother wiring board 5 'is obtained.

焼成済みの母絶縁基板1´にレーザー加工によって貫通孔1aを形成し表面配線7を形成することにより、寸法精度の高い母配線基板5´とすることができるので、母配線基板上に自動機等で発光素子等の電子部品6を容易に配置したり、ボンディングワイヤ8による電気的な接続を行うことができるようになるので、生産性が高まり好ましい。   Since the through-hole 1a is formed in the fired mother insulating substrate 1 'by laser processing and the surface wiring 7 is formed, the mother wiring substrate 5' having high dimensional accuracy can be obtained. Thus, the electronic component 6 such as a light emitting element can be easily arranged and the electrical connection by the bonding wire 8 can be performed.

母配線基板5´で電子装置まで組み立てた場合は、多数の電子装置を組み立てた状態から、ダイシングやレーザー割断等の方法で、個別の電子装置に分割する。もしくは、母配線基板5´を同様の方法で個別の配線基板5に分割してから同様に電子部品6を配置接続することで電子装置となる。   When the electronic device is assembled on the mother wiring board 5 ', the electronic device is divided into individual electronic devices by a method such as dicing or laser cleaving from the assembled state. Alternatively, after dividing the mother wiring board 5 ′ into individual wiring boards 5 by the same method, the electronic components 6 are arranged and connected in the same manner to obtain an electronic device.

本実施形態の配線基板5において、貫通孔1aを有しており、窒化アルミニウムを主成分として含んでいる絶縁基板1と、貫通孔1aの内面の上端部から下端部にかけて設けられたアルミニウム層2と、アルミニウム層2の表面に設けられた薄膜層3と、薄膜層3の表面に設けられた金属層4とを備えていることによって、貫通孔1aの高アスペクト比化が進んで仮に貫通孔1aの中央部分において薄膜層3が設けられなかったとしても、アルミニウム層2によって貫通孔1aの上端部から下端部にかけて十分な電気的経路を設けることができ、アスペクト比の高い小径の貫通孔1aの導通性に関して向上されるものとなる。   In the wiring substrate 5 of the present embodiment, the insulating substrate 1 having the through hole 1a and containing aluminum nitride as a main component, and the aluminum layer 2 provided from the upper end portion to the lower end portion of the inner surface of the through hole 1a. And the thin film layer 3 provided on the surface of the aluminum layer 2 and the metal layer 4 provided on the surface of the thin film layer 3, the aspect ratio of the through hole 1 a is increased and the through hole is temporarily provided. Even if the thin film layer 3 is not provided in the central portion of the la, the aluminum layer 2 can provide a sufficient electrical path from the upper end to the lower end of the through hole 1a, and the small diameter through hole 1a having a high aspect ratio. This improves the electrical conductivity.

また、本実施形態の電子装置において、上記構成の配線基板5を備えていることによって、アスペクト比の高い小径の貫通孔1aの導通性に関して向上されるものとなる。   Moreover, in the electronic device of this embodiment, by providing the wiring substrate 5 having the above-described configuration, the electrical conductivity of the small-diameter through hole 1a having a high aspect ratio is improved.

(第2の実施形態)
図4を参照して本発明の第2の実施形態における電子装置について説明する。本実施形態の電子装置において、第1の実施形態と異なる点は、貫通孔1a内の金属層4の構造である。第1の実施形態において貫通孔1a内が金属層4で充填される構造であったが、本実施形態においては貫通孔1aの内面に層状に形成されており、貫通孔の一方は表面配線層7で塞がれているが、他方は開放している構造である。この第2の実施形態の構造にす
ることによって、絶縁基板1と金属層4の熱膨張差による応力が加わり難くなっていることで、貫通孔1aの配置密度が高くなったとしても、絶縁基板1に応力による割れが発生し難くなるので好ましい。
(Second Embodiment)
An electronic device according to the second embodiment of the present invention will be described with reference to FIG. In the electronic device of the present embodiment, the difference from the first embodiment is the structure of the metal layer 4 in the through hole 1a. In the first embodiment, the inside of the through hole 1a is filled with the metal layer 4. However, in this embodiment, the through hole 1a is formed in layers on the inner surface, and one of the through holes is a surface wiring layer. 7 is closed, but the other is open. By adopting the structure of the second embodiment, it is difficult to apply stress due to the difference in thermal expansion between the insulating substrate 1 and the metal layer 4, so that even if the arrangement density of the through holes 1 a is increased, the insulating substrate 1 is preferable because cracks due to stress are less likely to occur.

(第3の実施形態)
図5を参照して本発明の第3の実施形態における電子装置について説明する。本実施形態の電子装置において、貫通孔1aを金属層4で充填した後に表裏面を研磨し、その後表面配線層7を形成した物であるが、この様に、貫通孔1a内の金属層4と表面配線層7を別に形成した場合は表面配線層7を金属層4と異なる金属とする事ができるので、表面配線層7として薄膜形成技術を用いた層以外に厚膜層を形成することも容易となり、また、薄膜形成技術を用いて形成する場合でも貫通導体まで形成した絶縁基板1を準備しておき、必要に応じて絶縁基板1の表裏面に様々な表面配線層7を形成することができるようになり、納期を短縮できるので好ましい。
(Third embodiment)
An electronic device according to a third embodiment of the present invention will be described with reference to FIG. In the electronic device of the present embodiment, the through hole 1a is filled with the metal layer 4 and then the front and back surfaces are polished, and then the surface wiring layer 7 is formed. In this way, the metal layer 4 in the through hole 1a is formed. When the surface wiring layer 7 is formed separately, the surface wiring layer 7 can be made of a metal different from the metal layer 4, so that a thick film layer is formed as the surface wiring layer 7 in addition to the layer using the thin film forming technique. In addition, even when the thin film forming technique is used, the insulating substrate 1 formed up to the through conductor is prepared, and various surface wiring layers 7 are formed on the front and back surfaces of the insulating substrate 1 as necessary. This is preferable because the delivery time can be shortened.

1・・・・・絶縁基板
1a・・・・貫通孔
2・・・・・アルミニウム層
3・・・・・薄膜層
4・・・・・金属層
5・・・・・配線基板
6・・・・・電子部品
7・・・・・表面配線層
8・・・・・ボンディングワイヤ
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 1a ... Through-hole 2 ... Aluminum layer 3 ... Thin film layer 4 ... Metal layer 5 ... Wiring board 6 .... ... Electronic components 7 ... Surface wiring layer 8 ... Bonding wire

Claims (2)

貫通孔を有しており、窒化アルミニウムを主成分として含んでいる絶縁基板と、前記貫通孔の内面の上端部から下端部にかけて設けられたアルミニウム層と、該アルミニウム層の表面に設けられた薄膜層と、該薄膜層の表面に設けられた金属層とを備えていることを特徴とする配線基板。   An insulating substrate having a through hole and containing aluminum nitride as a main component, an aluminum layer provided from the upper end to the lower end of the inner surface of the through hole, and a thin film provided on the surface of the aluminum layer A wiring board comprising: a layer; and a metal layer provided on a surface of the thin film layer. 請求項1に記載された配線基板と、該配線基板に搭載された電子部品を備えていることを特徴とする電子装置。   An electronic device comprising: the wiring board according to claim 1; and an electronic component mounted on the wiring board.
JP2011183810A 2011-08-25 2011-08-25 Wiring board and electronic device Pending JP2013045957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183810A JP2013045957A (en) 2011-08-25 2011-08-25 Wiring board and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183810A JP2013045957A (en) 2011-08-25 2011-08-25 Wiring board and electronic device

Publications (1)

Publication Number Publication Date
JP2013045957A true JP2013045957A (en) 2013-03-04

Family

ID=48009614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183810A Pending JP2013045957A (en) 2011-08-25 2011-08-25 Wiring board and electronic device

Country Status (1)

Country Link
JP (1) JP2013045957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034030A (en) * 2015-09-29 2016-03-10 大日本印刷株式会社 Through-electrode substrate and method for manufacturing through-electrode substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196094A (en) * 1987-02-10 1988-08-15 株式会社東芝 Method of forming conducting hole in ceramic substrate
JPH0346298A (en) * 1989-07-13 1991-02-27 Fujitsu Ltd Manufacture of printed circuit board
JPH04154192A (en) * 1990-10-17 1992-05-27 Fujitsu Ltd Plating of printed wiring board
JP2006165137A (en) * 2004-12-06 2006-06-22 Hitachi Metals Ltd Substrate with through electrode and its manufacturing method
JP2011071153A (en) * 2009-09-24 2011-04-07 Tanaka Kikinzoku Kogyo Kk Method of forming through electrode of circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196094A (en) * 1987-02-10 1988-08-15 株式会社東芝 Method of forming conducting hole in ceramic substrate
JPH0346298A (en) * 1989-07-13 1991-02-27 Fujitsu Ltd Manufacture of printed circuit board
JPH04154192A (en) * 1990-10-17 1992-05-27 Fujitsu Ltd Plating of printed wiring board
JP2006165137A (en) * 2004-12-06 2006-06-22 Hitachi Metals Ltd Substrate with through electrode and its manufacturing method
JP2011071153A (en) * 2009-09-24 2011-04-07 Tanaka Kikinzoku Kogyo Kk Method of forming through electrode of circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034030A (en) * 2015-09-29 2016-03-10 大日本印刷株式会社 Through-electrode substrate and method for manufacturing through-electrode substrate

Similar Documents

Publication Publication Date Title
JP6400928B2 (en) Wiring board and electronic device
US10319610B2 (en) Package carrier
TW201543979A (en) Method for manufacturing multilayer ceramic cooling circuit substrate and products thereof
US20140041906A1 (en) Metal heat radiation substrate and manufacturing method thereof
JP2022169595A (en) Substrate for mounting electronic element and electronic device
JPWO2018043184A1 (en) Through electrode substrate, method of manufacturing through electrode substrate, and mounting substrate
US20130089982A1 (en) Method of Fabricating a Substrate Having Conductive Through Holes
JP2014093406A (en) Wiring board with through electrode and manufacturing method of the same
CN103517577A (en) Method for manufacturing conductive post of ceramic packaging substrate
JP2013045957A (en) Wiring board and electronic device
JP6622940B1 (en) Double-sided mounting substrate, method for manufacturing double-sided mounting substrate, and semiconductor laser
JP2010109044A (en) Wiring substrate, and probe card using the same
JP7100707B2 (en) Wiring boards and electronic devices
JP2008159969A (en) Circuit board, electronic apparatus, and method of manufacturing circuit board
KR20150095382A (en) Electrical device and methods of manufacturing the same and a vertically-conductive structure for the electrical device
CN110062955B (en) Electronic component mounting substrate, electronic device, and electronic module
CN103515487A (en) Method for manufacturing ceramic package substrate used in light-emitting wafers
TWI444117B (en) Manufacturing a ceramic package substrate for use in a light emitting wafer
TWI459486B (en) Manufacturing method of conductive column for ceramic package substrate
JP2006066658A (en) Manufacturing method of circuit substrate
KR101768330B1 (en) Ceramic circuit board and method of manufacturing the same
JP2015225963A (en) Wiring board, electronic device, and electronic module
KR20140071614A (en) Manufacturing method of LED and solar cell circuit board
US9468091B2 (en) Stress-reduced circuit board and method for forming the same
JP7189128B2 (en) Substrates for mounting electronic elements, electronic devices and electronic modules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630