JP2013043809A - Method for producing carbon-doped silicon single crystal - Google Patents
Method for producing carbon-doped silicon single crystal Download PDFInfo
- Publication number
- JP2013043809A JP2013043809A JP2011183445A JP2011183445A JP2013043809A JP 2013043809 A JP2013043809 A JP 2013043809A JP 2011183445 A JP2011183445 A JP 2011183445A JP 2011183445 A JP2011183445 A JP 2011183445A JP 2013043809 A JP2013043809 A JP 2013043809A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon single
- carbon
- pulling
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 164
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 127
- 239000010703 silicon Substances 0.000 title claims abstract description 127
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 230000012010 growth Effects 0.000 claims abstract description 30
- 238000002844 melting Methods 0.000 claims abstract description 13
- 230000008018 melting Effects 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 238000007711 solidification Methods 0.000 claims abstract description 10
- 230000008023 solidification Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 description 26
- 230000035882 stress Effects 0.000 description 18
- 238000001816 cooling Methods 0.000 description 17
- 235000012431 wafers Nutrition 0.000 description 15
- 239000007789 gas Substances 0.000 description 11
- 230000008646 thermal stress Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000021332 multicellular organism growth Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、メモリーやCPUなどの半導体デバイス基板として用いられるシリコンウェーハを切り出すシリコン単結晶の製造方法に関するものであり、特に最先端分野で用いられている炭素をドープして結晶欠陥及び不純物ゲッタリングのための酸素析出量やBMD密度を制御したシリコン単結晶の製造方法に関するものである。 The present invention relates to a method for producing a silicon single crystal for cutting a silicon wafer used as a semiconductor device substrate such as a memory or a CPU, and in particular, crystal defects and impurity gettering by doping carbon used in the most advanced field. The present invention relates to a method for producing a silicon single crystal with controlled oxygen precipitation amount and BMD density.
メモリーやCPUなど半導体デバイスの基板として用いられるシリコンウェーハを切り出すシリコン単結晶は、主にチョクラルスキー(CZ)法により製造されている。CZ法により作製されたシリコン単結晶中には酸素原子が含まれており、該シリコン単結晶から切り出されるシリコンウェーハを用いてデバイス製造する際、シリコン原子と酸素原子とが結合し、酸素析出物やBMDが形成される。これらは、ウェーハ内部の重金属などの汚染原子を捕獲することでデバイス特性を向上させるIG能力を有することが知られ、ウェーハのバルク部での酸素析出量やBMD密度が高くなるほど高性能かつ信頼性の高いデバイスを得ることができる。 Silicon single crystals that cut out silicon wafers used as substrates for semiconductor devices such as memories and CPUs are mainly manufactured by the Czochralski (CZ) method. The silicon single crystal produced by the CZ method contains oxygen atoms. When a device is manufactured using a silicon wafer cut out from the silicon single crystal, the silicon atoms and oxygen atoms are combined to form oxygen precipitates. And BMD are formed. These are known to have IG capability that improves device characteristics by capturing contaminating atoms such as heavy metals inside the wafer. The higher the oxygen precipitation amount and BMD density in the bulk part of the wafer, the higher the performance and reliability. High device can be obtained.
近年では、シリコンウェーハ中の結晶欠陥を制御しつつ十分なIG能力を付与するために、炭素や窒素を意図的にドープしてシリコン単結晶を製造することが行われている。シリコン単結晶に炭素をドープする方法に関しては、ガスドープ、高純度炭素粉末、炭素塊などが提案されている。
しかしながらこれらの方法は、ガスドープでは結晶が有転位化した場合の再溶融が不可能であり、高純度炭素粉末では原料溶融時に導入ガス等によって高純度粉末が飛散する、炭素塊の投入では炭素が溶けにくいうえに育成中の結晶が有転位化するという問題があった。
In recent years, in order to provide sufficient IG capability while controlling crystal defects in a silicon wafer, a silicon single crystal is manufactured by intentionally doping carbon or nitrogen. As a method for doping carbon into a silicon single crystal, gas doping, high-purity carbon powder, carbon lump, and the like have been proposed.
However, in these methods, re-melting is not possible when the crystal is dislocated with gas dope, and with high-purity carbon powder, high-purity powder is scattered by the introduced gas when the raw material is melted. In addition to being difficult to dissolve, there was a problem that the crystal being grown was dislocated.
これらの問題を解決できる手段として、炭素粉末を入れたシリコン多結晶製容器、炭素を気相成膜したシリコンウェーハ、炭素粒子を含む有機溶剤を塗布してベーキングしたシリコンウェーハ、あるいは炭素を所定量含有させた多結晶シリコンをルツボ内に投入する等により、シリコン単結晶に炭素をドープする方法が提案されている。これらの方法を用いれば前述のような問題を解決することが可能であるが、いずれも多結晶シリコンの加工やウェーハの熱処理などを伴い、炭素ドープ剤の準備が容易ではない上、ドープ剤を調整するための加工やウェーハ熱処理において不純物の汚染を受ける可能性もあった。 As means to solve these problems, a silicon polycrystalline container containing carbon powder, a silicon wafer formed by vapor deposition of carbon, a silicon wafer baked by applying an organic solvent containing carbon particles, or a predetermined amount of carbon There has been proposed a method of doping carbon into a silicon single crystal by, for example, putting the contained polycrystalline silicon into a crucible. Although these methods can be used to solve the above-mentioned problems, both of them involve processing of polycrystalline silicon and heat treatment of the wafer, and it is not easy to prepare a carbon dopant. There was also a possibility of contamination by impurities during processing for adjustment and wafer heat treatment.
そこで、これらの問題を解決すべく、特許文献1に記載されている炭素ドープ単結晶の製造方法が提案されている。
一方、特許文献2−7には、シリコン単結晶の引き上げ時の割れ、転位等の発生を抑制する方法が提案されている。
Therefore, in order to solve these problems, a method for producing a carbon-doped single crystal described in Patent Document 1 has been proposed.
On the other hand, Patent Documents 2-7 propose a method for suppressing the occurrence of cracks, dislocations, and the like when a silicon single crystal is pulled up.
しかし、特許文献1−7の方法でも、育成中のシリコン単結晶の固液界面から炭素原子がシリコン単結晶のバルク中に取り込まれる際に起きる内部応力起因の有転位化の問題が解決されていなかった。特に近年のシリコン単結晶の大口径化に伴いそのような問題が顕在化し、炭素ドープのシリコン単結晶の無転位化を困難にしている背景がある。 However, the methods of Patent Documents 1-7 have also solved the problem of dislocations caused by internal stress that occurs when carbon atoms are taken into the bulk of the silicon single crystal from the solid-liquid interface of the growing silicon single crystal. There wasn't. In particular, with the recent increase in the diameter of silicon single crystals, such a problem has become apparent, making it difficult to eliminate dislocations in carbon-doped silicon single crystals.
本発明は、上記問題点に鑑みてなされたものであって、炭素ドープシリコン単結晶の引き上げ時の有転位化を効果的に抑制して、歩留まりを向上させることができる炭素ドープシリコン単結晶の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to effectively suppress dislocation at the time of pulling up a carbon-doped silicon single crystal, and to improve the yield of the carbon-doped silicon single crystal. An object is to provide a manufacturing method.
上記目的を達成するために、本発明は、炭素を添加したシリコン融液からシリコン単結晶を引き上げる炭素ドープシリコン単結晶の製造方法であって、前記シリコン単結晶の引き上げにおいて、シリコンの融点から1400℃の間の引き上げ軸方向の結晶温度勾配の平均値をG[℃/mm]で表した時、少なくとも固化率が20%までは、Gの値が1.0〜3.5[℃/mm]で、かつ、前記シリコン単結晶の成長中の固液界面の径方向面内中心部のSrcs値(von Mises相当応力[Pa]を、結晶温度1400℃におけるCRSS(Critical Resolved Shear Stress)[Pa]で割った値)が0.9以下になるようにシリコン単結晶を引き上げることを特徴とする炭素ドープシリコン単結晶の製造方法を提供する。 In order to achieve the above object, the present invention provides a method for producing a carbon-doped silicon single crystal that pulls up a silicon single crystal from a silicon-added silicon melt. When the average value of the crystal temperature gradient in the pulling axis direction during C is expressed in G [° C./mm], the value of G is 1.0 to 3.5 [° C./mm at least until the solidification rate is 20%. And the Srcs value (von Mises equivalent stress [Pa] at the center in the radial direction of the solid-liquid interface during the growth of the silicon single crystal is expressed as CRSS (Critical Resolved Shear Stress) [Pa The silicon single crystal is pulled up so that the value obtained by dividing] is 0.9 or less. The law provides.
このように炭素ドープシリコン単結晶を引き上げることで、転位の発生を防止しながら、効率的に引き上げることができる。このため、高品質の炭素ドープシリコン単結晶を歩留まり良く製造することができる。 By pulling up the carbon-doped silicon single crystal in this way, it can be pulled up efficiently while preventing the occurrence of dislocations. For this reason, a high quality carbon dope silicon single crystal can be manufactured with a sufficient yield.
このとき、前記シリコン単結晶の引き上げにおいて、引上機炉内におけるシリコン融点から1300℃までの温度帯での前記シリコン単結晶の通過時間を40分以上220分以下とすることが好ましい。
このように引き上げることで、本発明の条件での引き上げを容易にでき、さらに、極端な冷却を防いで安定的に無転位で結晶を引き上げることができる。
At this time, in the pulling of the silicon single crystal, it is preferable that the passing time of the silicon single crystal in a temperature range from the silicon melting point to 1300 ° C. in the pulling furnace is 40 minutes or more and 220 minutes or less.
By pulling up in this way, pulling up under the conditions of the present invention can be facilitated, and furthermore, extreme cooling can be prevented and crystals can be pulled up stably without dislocation.
このとき、前記引き上げるシリコン単結晶の炭素濃度を、1×1016〜5×1017atoms/cm3(NEW ASTM)とすることが好ましい。
このように1×1016atoms/cm3(NEW ASTM)、特には5×1016atoms/cm3(NEW ASTM)を超えるような高濃度の炭素濃度であっても容易に引き上げることができ、本発明であれば、有転位化を効果的に抑制しながら生産性良く製造できる。
At this time, the carbon concentration of the silicon single crystal to be pulled is preferably set to 1 × 10 16 to 5 × 10 17 atoms / cm 3 (NEW ASTM).
Thus, even a high carbon concentration exceeding 1 × 10 16 atoms / cm 3 (NEW ASTM), particularly 5 × 10 16 atoms / cm 3 (NEW ASTM), can be easily raised. If it is this invention, it can manufacture with sufficient productivity, suppressing a dislocation conversion effectively.
以上のように、本発明によれば、有転位化を効果的に抑制しながら炭素ドープシリコン単結晶を製造することができ、従って、十分なIG能力のウェーハを生産性良く作製することができる。 As described above, according to the present invention, it is possible to produce a carbon-doped silicon single crystal while effectively suppressing dislocations, and thus it is possible to produce a wafer with sufficient IG capability with high productivity. .
従来、炭素ドープシリコン単結晶の引き上げの際に転位が生じて、歩留まりが悪化する問題があった。
これに対して本発明者らは、特に炭素ドープシリコン単結晶の引き上げ特有の問題である内部応力起因の有転位化に着目して、鋭意検討し、以下のことを見出した。
Conventionally, there has been a problem that the yield is deteriorated due to the occurrence of dislocations when the carbon-doped silicon single crystal is pulled.
On the other hand, the present inventors have intensively studied focusing on the dislocation due to internal stress, which is a problem specific to the pulling of the carbon-doped silicon single crystal, and have found the following.
本発明者らは、炭素ドープシリコン単結晶成長の際の熱応力の大きさを示す指標として、成長方向の結晶温度変化による熱応力変化を数値的に表現できるSrcs値を用いることに想到した。ここで、Srcs値は、von Mises相当応力(以下、単に「相当応力」とも呼ぶ)をCRSS(Critical Resolved Shear Stress:臨界分解剪断応力)で割った値である。 The present inventors have come up with the idea of using an Srcs value that can numerically express a change in thermal stress due to a change in crystal temperature in the growth direction as an index indicating the magnitude of thermal stress during the growth of a carbon-doped silicon single crystal. Here, the Srcs value is a value obtained by dividing von Mises equivalent stress (hereinafter also simply referred to as “equivalent stress”) by CRSS (Critical Resolved Shear Stress).
さらに、炭素ドープシリコン単結晶の有転位発生の抑制には、成長中の熱応力の緩和とともに、応力を更に助長する結晶冷却過程における体積収縮応力の緩和が重要である。本発明者らは、その制御パラメーターとして、シリコン融点から1400℃の間の引き上げ軸方向の結晶温度勾配の平均値G(℃/mm)に注目した。炭素ドープシリコン単結晶の場合、結晶冷却過程における収縮応力が炭素をドープしない結晶と比べて大きい。すなわち、直径300mm、特には450mm以上の大口径の炭素ドープシリコン単結晶の場合、結晶冷却過程において急冷し過ぎないことが重要であり、Gの大きさがその指標となる。 Furthermore, in order to suppress the occurrence of dislocations in the carbon-doped silicon single crystal, it is important to reduce the volume shrinkage stress in the crystal cooling process that further promotes the stress, as well as the thermal stress during growth. The inventors paid attention to the average value G (° C./mm) of the crystal temperature gradient in the pulling axis direction between the silicon melting point and 1400 ° C. as the control parameter. In the case of a carbon-doped silicon single crystal, the shrinkage stress in the crystal cooling process is larger than that of a crystal not doped with carbon. That is, in the case of a carbon-doped silicon single crystal having a diameter of 300 mm, particularly 450 mm or more, it is important that the crystal is not excessively cooled in the crystal cooling process, and the size of G is an index.
そして、本発明者らは、上記Srcs値は0.9以下、Gは1.0〜3.5という最適な条件を見出し、これらの条件を同時に満たすことで炭素ドープシリコン単結晶の引き上げ時の有転位化を効果的に抑制できることを見出した。さらに、成長初期の固化率20%までは有転位化が生じやすいため、少なくとも当該成長初期において、上記条件で引き上げを行うことで、効率的に無転位での引き上げを行うことができることを見出して、本発明を完成させた。 And the present inventors found out the optimal conditions that the Srcs value is 0.9 or less and G is 1.0 to 3.5, and satisfying these conditions at the same time when pulling up the carbon-doped silicon single crystal. It was found that dislocations can be effectively suppressed. Furthermore, since the formation of dislocations is likely to occur up to a solidification rate of 20% at the initial stage of growth, it has been found that pulling without dislocations can be efficiently performed by pulling up at the above conditions at least in the initial stage of growth. The present invention has been completed.
ここで、育成するシリコン単結晶の内部応力起因の転位の発生を誘起しているのは、1400℃付近の結晶温度帯に働く熱応力である。シリコン単結晶の固液界面近傍の熱応力の増加が大きい場合には、引き上げるシリコン単結晶の割れの発生起因となり、その解決方法として、特許文献2−6に開示されている方法がある。 Here, it is the thermal stress acting on the crystal temperature zone around 1400 ° C. that induces the generation of dislocation due to the internal stress of the silicon single crystal to be grown. If the increase in thermal stress in the vicinity of the solid-liquid interface of the silicon single crystal is large, it will cause cracking of the silicon single crystal to be pulled up, and there is a method disclosed in Patent Document 2-6 as a solution.
ただし、これらの方法、特に特許文献3、特許文献4に記載されているような引き上げ結晶の強制冷却のための冷却体は、本発明の方法では設備に付加しない。特に大口径の炭素ドープシリコン単結晶の場合、強制冷却体設備による冷却効果を排除する方が引き上げ時の有転位を助長せず、本発明の方法により直胴部全域にわたって無転位結晶を引上げることができるという良好な結果が得られる。
また、特許文献2には、育成するシリコン単結晶の内部応力と結晶成長界面形状の関係に関する記述がある。確かに結晶成長界面の凸形状の適正な制御は重要であるが、炭素ドープシリコン単結晶成長の場合、界面形状の制御だけでは根本的解決には至らず、やはり熱応力の緩和が重要である。
However, these methods, in particular, the cooling body for forced cooling of the pulling crystal as described in Patent Documents 3 and 4 are not added to the equipment in the method of the present invention. In particular, in the case of a large-diameter carbon-doped silicon single crystal, eliminating the cooling effect by forced cooling equipment does not promote dislocation during pulling, and pulls up dislocation-free crystals over the entire straight body by the method of the present invention. Good results are obtained.
Patent Document 2 describes a relationship between the internal stress of a silicon single crystal to be grown and the crystal growth interface shape. Certainly, proper control of the convex shape of the crystal growth interface is important, but in the case of carbon-doped silicon single crystal growth, control of the interface shape alone does not lead to a fundamental solution, and relaxation of thermal stress is also important. .
特許文献4−6には、引き上げ中の結晶割れに影響を及ぼす熱応力(von Mises相当応力)の大きさに関する具体的な記述がある。しかし、本発明で制御する、炭素ドープシリコン単結晶の引き上げ時の有転位を発生させる熱応力は、結晶割れの熱応力より小規模で、1400℃付近の結晶温度帯において2MPa以下の大きさの熱応力(von Mises相当応力)である。本発明者らは、炭素ドープシリコン単結晶成長の場合、特に直胴部成長工程の前半部分において、結晶割れに至らない極めて小規模な熱応力でさえ有転位化を高い確率で生じさせる現象を確認している。
有転位(スリップ)発生のメカニズムについては、特許文献7に具体的に記載されているが、炭素ドープシリコン単結晶の有転位化は、Vリッチ結晶、Iリッチ結晶、Nv結晶、Ni結晶の領域に係わらず発生する傾向があり、特許文献7に記載の発生メカニズムとは本質的に異なる。
Patent Documents 4-6 have a specific description regarding the magnitude of thermal stress (von Mises equivalent stress) that affects crystal cracking during pulling. However, the thermal stress that generates dislocations during the pulling of the carbon-doped silicon single crystal controlled by the present invention is smaller than the thermal stress of crystal cracking and is less than 2 MPa in the crystal temperature zone near 1400 ° C. Thermal stress (von Mises equivalent stress). In the case of carbon-doped silicon single crystal growth, the present inventors have developed a phenomenon in which dislocations are generated with a high probability even in a very small thermal stress that does not lead to crystal cracking, particularly in the first half of the straight body growth process. I have confirmed.
Although the mechanism of the occurrence of dislocation (slip) is specifically described in Patent Document 7, the dislocation of a carbon-doped silicon single crystal is a region of V-rich crystal, I-rich crystal, Nv crystal, or Ni crystal. However, the generation mechanism described in Patent Document 7 is essentially different.
以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
本発明は、炭素を添加したシリコン融液からシリコン単結晶を引き上げる炭素ドープシリコン単結晶の製造方法であって、シリコン単結晶の引き上げにおいて、シリコンの融点から1400℃の間の引き上げ軸方向の結晶温度勾配の平均値をG[℃/mm]で表した時、少なくとも固化率が20%までは、Gの値が1.0〜3.5[℃/mm]で、かつ、前記シリコン単結晶の成長中の固液界面の径方向面内中心部のSrcs値(von Mises相当応力[Pa]を、結晶温度1400℃におけるCRSS(Critical Resolved Shear Stress)[Pa]で割った値)が0.9以下になるようにシリコン単結晶を引き上げる。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
The present invention relates to a method for producing a carbon-doped silicon single crystal in which a silicon single crystal is pulled up from a silicon melt added with carbon, and in the pulling up of the silicon single crystal, a crystal in the pulling axis direction between the melting point of silicon and 1400 ° C. When the average value of the temperature gradient is expressed as G [° C./mm], the value of G is 1.0 to 3.5 [° C./mm] at least until the solidification rate is 20%, and the silicon single crystal The Srcs value (the value obtained by dividing the von Mises equivalent stress [Pa] by CRSS (Critical Resolved Shear Stress) [Pa] at a crystal temperature of 1400 ° C.) at the center in the radial direction of the solid-liquid interface during the growth of 0.1. The silicon single crystal is pulled up to 9 or less.
炭素ドープシリコン単結晶の製造において、上記Gの値が1.0℃/mmを下回るような制御は、結晶成長速度の高速化が困難であり、非効率な生産を強いられることになる。また、Gの値が3.5℃/mmを上回るような制御は、炭素ドープのシリコン単結晶が育成中に有転位化しやすく無転位での結晶引き上げが困難である。したがって、Gの値が1.0℃/mm以上3.5℃/mm以下の条件となるように引き上げ条件を制御することが必要であり、更に好ましくは、Gの値が2.0℃/mm以上3.5℃/mm以下の条件となるように制御することで、引き上げ速度を速くでき、より効率的に単結晶の引き上げを実施できる。 In the production of a carbon-doped silicon single crystal, the control such that the value of G is less than 1.0 ° C./mm makes it difficult to increase the crystal growth rate, forcing inefficient production. In addition, control such that the value of G exceeds 3.5 ° C./mm tends to cause dislocation during the growth of the carbon-doped silicon single crystal, and it is difficult to pull up the crystal without dislocation. Therefore, it is necessary to control the pulling conditions so that the G value is 1.0 ° C./mm or more and 3.5 ° C./mm or less, and more preferably, the G value is 2.0 ° C./mm. By controlling so as to satisfy the conditions of mm or more and 3.5 ° C./mm or less, the pulling speed can be increased and the single crystal can be pulled more efficiently.
また、これと同時に、シリコン単結晶成長中の固液界面の径方向面内中心部のSrcs値が0.9以下となるようにする必要があり、さらには0.7以下とすることが好ましい。このような固液界面の中心部の1400℃の結晶温度におけるSrcs値が、シリコン単結晶成長中に0.9を超えるような場合、固液界面の径方向面内中心部に働く内部応力集中が炭素ドープのシリコン単結晶の無転位化を阻害する。このため、無転位での結晶引き上げが困難である。
なお、CRSSは、以下の式で求めることができ、1400℃(1673.15K)をTに代入することで本発明で用いる結晶温度1400℃におけるCRSSを求めることができる。
CRSS[Pa]=0.1×10^(4406.08/T+4.58)
T:絶対温度
At the same time, it is necessary that the Srcs value at the central portion in the radial direction of the solid-liquid interface during the growth of the silicon single crystal be 0.9 or less, and more preferably 0.7 or less. . When the Srcs value at the crystal temperature of 1400 ° C. at the center of the solid-liquid interface exceeds 0.9 during the growth of the silicon single crystal, the concentration of internal stress acting on the center in the radial direction of the solid-liquid interface Inhibits the dislocation-free of the carbon-doped silicon single crystal. For this reason, it is difficult to pull up crystals without dislocations.
In addition, CRSS can be calculated | required with the following formula | equation, and by substituting 1400 degreeC (1673.15K) for T, CRSS in the crystal | crystallization temperature of 1400 degreeC used by this invention can be calculated | required.
CRSS [Pa] = 0.1 × 10 ^ (440.08 / T + 4.58)
T: Absolute temperature
このような本発明のGとSrcs値の制御を、炭素ドープしたシリコン単結晶の結晶成長固化率が、原料の全チャージ量に対し20%までの成長工程で少なくとも行う。
炭素をドープしたシリコン単結晶は、20%以下の低固化率(単結晶成長の初期段階)の成長工程の育成中に有転位化し易い特徴があるため、当該成長初期に上記本発明の制御を行う。
Such control of the G and Srcs values of the present invention is performed at least in a growth step in which the crystal growth solidification rate of the carbon-doped silicon single crystal is up to 20% with respect to the total charge amount of the raw material.
Since the silicon-doped silicon single crystal has a characteristic that it is likely to undergo dislocation during the growth of a growth process having a low solidification rate of 20% or less (the initial stage of single crystal growth), the above-described control of the present invention is performed at the initial stage of the growth. Do.
なお、上記本発明のGとSrcs値の制御は、固化率20%を超えてからも継続して行っても良いが、固化率20%を超えてからは、Gを3.5℃/mmより大きくなるように制御することで、結晶成長後半は成長速度の高速化を容易にでき、効率的である。この場合も、Srcs値は0.9以下になるように維持することが好ましい。 The control of the G and Srcs values of the present invention may be continued even after the solidification rate exceeds 20%. However, after the solidification rate exceeds 20%, G is set to 3.5 ° C./mm. By controlling it to be larger, the growth rate can be easily increased in the latter half of the crystal growth, which is efficient. Also in this case, it is preferable to maintain the Srcs value to be 0.9 or less.
また、引上機炉内におけるシリコン融点から1300℃までの温度帯でのシリコン単結晶の通過時間を40分以上220分以下とすることが好ましい。
このように、本発明において炭素ドープのシリコン単結晶の冷却速度の制御も重要であり、上記通過時間40分以上となるように引き上げ速度を制御することで、炭素ドープのシリコン単結晶にとっても急冷却とはならず、有転位化をより効果的に抑制できる。また単結晶通過時間が220分以下であれば、過剰な徐冷却とはならず、グローイン欠陥の成長を抑制し、結晶成長速度の高速化も達成可能である。従って、極端な熱の流出を防ぎ、さらに安定的に無転位化が達成できるため生産性が良い。
Moreover, it is preferable that the transit time of the silicon single crystal in the temperature range from the silicon melting point to 1300 ° C. in the pulling-up furnace is 40 minutes or more and 220 minutes or less.
Thus, in the present invention, it is also important to control the cooling rate of the carbon-doped silicon single crystal. By controlling the pulling rate so that the passing time is 40 minutes or more, the carbon-doped silicon single crystal is also rapidly controlled. It is not cooling, and the dislocation can be more effectively suppressed. If the single crystal passage time is 220 minutes or less, excessive slow cooling is not achieved, growth of glow-in defects can be suppressed, and a higher crystal growth rate can be achieved. Therefore, extreme heat outflow is prevented, and further, no dislocation can be achieved stably. Therefore, productivity is good.
次に、本発明の炭素ドープシリコン単結晶の製造方法を実施する際に用いることができる図1、2の単結晶引上機を以下説明する。 Next, the single crystal pulling machine shown in FIGS. 1 and 2 that can be used in carrying out the method for producing a carbon-doped silicon single crystal of the present invention will be described below.
図1の単結晶引上機10は、メインチャンバー11及びプルチャンバー29で炉を構成している。メインチャンバー11の内部には溶融されたシリコン融液13を収容するための石英ルツボ15と石英ルツボ15を支持する黒鉛ルツボ16が設けられている。
これらのルツボ15,16は、ペデスタルと呼ばれる支持軸14の上の受け皿30を介して支持されている。ルツボ15,16の周りにはメインヒーター12が設置され、さらにその外側に断熱材17がメインチャンバー11の内壁に沿って設置されている。ルツボ15,16の上方には、下端部に断熱カラー31を取り付けた円筒形状の黒鉛材からなるガス整流筒18が設置されている。また、種結晶19下端にシリコン単結晶22を成長させながら引き上げるための引き上げ軸20(ワイヤー等)が設けられている。
In the single
These
本発明において、G、Srcs及びシリコン融点〜1300℃の単結晶通過時間tを本発明の範囲内に制御するために好ましい装置とするために、以下のように炉内上部の断熱性(徐冷効果)を向上させることが好ましい。
例えば、図1に示すように、メインチャンバー11内壁の側方の冷却部や上部からの除熱量を抑えるため、シリコン融液13より上の位置、すなわちホットゾーン上部を断熱部材21で覆うことができる。
In the present invention, in order to make a preferable apparatus for controlling the single crystal transit time t of G, Srcs and silicon melting point to 1300 ° C. within the scope of the present invention, the heat insulation property of the furnace upper part (gradual cooling) is as follows. (Effect) is preferably improved.
For example, as shown in FIG. 1, in order to suppress the amount of heat removed from the cooling part and the upper side of the inner wall of the
また、図2(a)に示すように、メインチャンバーの上方からの除熱を抑えてさらに徐冷効果を高めるために、メインチャンバー上方のプルチャンバーの引き上げる単結晶の通路部の内壁を、断熱部材23で覆った引上機10’とすることができる。
また、図2(b)に示すように、単結晶の強制冷却のための水冷ジャケット(冷却筒)24が付帯設備である引上機10’’の場合は、水冷ジャケット24の内壁を断熱部材25で覆うことができる。
あるいは、シリコン融液より上方のガス整流筒の設置部分に加熱手段を設ける、ガス整流筒の下端からシリコン融液の融液面までの距離を広げる、メインヒーターの発熱部分(スリット)の延伸若しくは発熱中心の上方移動などの方法により、さらに徐冷効果を高めることができる。
Further, as shown in FIG. 2 (a), in order to suppress heat removal from above the main chamber and further increase the cooling effect, the inner wall of the passage portion of the single crystal pulled up by the pull chamber above the main chamber is insulated. The pulling
In addition, as shown in FIG. 2B, in the case of a pulling
Alternatively, a heating means is provided in the installation part of the gas rectifier cylinder above the silicon melt, the distance from the lower end of the gas rectifier cylinder to the melt surface of the silicon melt, the extension of the heat generating part (slit) of the main heater, or The slow cooling effect can be further enhanced by a method such as upward movement of the heat generation center.
上記のような引上機、例えば図1の引上機10を用いて、チョクラルスキー(CZ)法、特には磁場印加チョクラルスキー(MCZ)法により、本発明の方法で炭素ドープシリコン単結晶を以下のように製造することができる。
例えば、まず石英ルツボ15内に炭素ドープ剤及び多結晶シリコンを充填する。このとき、基板の抵抗率を決定するリンやホウ素等の抵抗率制御用のドーパントも添加する。本発明において用いる炭素ドープ剤、ドープ方法は、特許第4507690号、特開2008−297139号公報等に記載の方法で添加することができる。例えば図3に示すように、石英ルツボ15内に多結晶シリコン26とともに、ケミカルエッチドウェーハ27で挟んだ炭素粉末28を添加することができる。
By using the pulling machine as described above, for example, the pulling
For example, the
次に、真空ポンプを稼動させて、メインチャンバー11の不図示のガス流出口から排気しながらプルチャンバー29の不図示のガス導入口からArガスを流入させ、炉内をAr雰囲気に置換する。次に、黒鉛ルツボ16を囲繞するように配置されたメインヒーター12で加熱し、多結晶シリコン等の原料を溶融させてシリコン融液13を得る。原料溶融後、種結晶19をシリコン融液13に浸漬させ、引き上げ軸20により種結晶19を回転させながら引き上げて、棒状のシリコン単結晶22を育成する。こうして所望濃度の炭素がドープされたシリコン単結晶22を製造することができる。
Next, the vacuum pump is operated, Ar gas is introduced from a gas inlet (not shown) of the
このような本発明の製造において、図1,2に示すようなメインチャンバー内に装備するホットゾーンの最適構造や融液面、発熱中心の位置関係などの最適条件は熱数値解析シュミレーションソフトFEMAGの計算により算出して設定することができる。
さらに、FEMAGによる熱数値解析結果から、von Mises相当応力[Pa]及びCRSS値[Pa]を算出してSrcsの推定を行い、これを指標として引き上げ速度、ヒーターパワー等の引き上げ条件を設定して、シリコン単結晶の引き上げを行うことができる。すなわち、FEMAGによる熱数値解析結果により、Gの値が1.0〜3.5[℃/mm]の範囲内、かつ、シリコン単結晶成長中の固液界面の中心部のSrcs値が0.9以下となるような条件、さらに好ましくは、引上機炉内におけるシリコン融点から1300℃までの高温領域の温度帯の引き上げ単結晶通過時間が40〜220分の範囲内となるような条件を適用して、シリコン単結晶を引き上げることができる。
In the manufacture of the present invention, the optimum conditions such as the optimum structure of the hot zone, the melt surface, and the position of the heat generation center installed in the main chamber as shown in FIGS. 1 and 2 are determined by the thermal numerical analysis simulation software FEMAG. It can be calculated and set by calculation.
Furthermore, von Mises equivalent stress [Pa] and CRSS value [Pa] are calculated from the thermal numerical analysis result by FEMAG, Srcs is estimated, and using this as an index, pulling conditions such as pulling speed and heater power are set. The silicon single crystal can be pulled up. That is, as a result of thermal numerical analysis by FEMAG, the Srcs value at the central portion of the solid-liquid interface during the growth of the silicon single crystal is 0, and the G value is in the range of 1.0 to 3.5 [° C./mm]. 9 or less, more preferably, a condition in which the pulling single crystal passage time in the high temperature range from the silicon melting point to 1300 ° C. in the pulling furnace is within the range of 40 to 220 minutes. The silicon single crystal can be pulled up by applying.
また、上記した固化率20%を超えてから単結晶育成中にGを大きくする制御方法としては、例えば、ルツボの上方駆動の変速制御によってガス整流筒の下端からシリコン融液の融液面までの距離を縮めたり、メインヒーターの駆動によって発熱中心を下方へ移動させるなどの方法によって実施できる。 Further, as a control method for increasing G during single crystal growth after exceeding the above solidification rate of 20%, for example, from the lower end of the gas flow straightening cylinder to the melt surface of the silicon melt by shift control of the upper drive of the crucible The distance can be reduced, or the heat generating center can be moved downward by driving the main heater.
以上のような本発明であれば、例えば5×1016atom/cc(New ASTM)以上の高濃度の炭素ドープのシリコン単結晶の製造に有効であり、有転位化を効果的に抑制しながら歩留まり良く炭素ドープシリコン単結晶を引き上げることができる。 The present invention as described above is effective for producing a carbon-doped silicon single crystal having a high concentration of, for example, 5 × 10 16 atoms / cc (New ASTM) or more, while effectively suppressing dislocations. The carbon-doped silicon single crystal can be pulled with good yield.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1、2)
実施例1では図2(a)の引上機、実施例2では図1の引上機のメインチャンバー内に設置された口径32インチ(800mm)の石英ルツボ内に、シリコン多結晶原料360kgと、ケミカルエッチドウェーハで挟んだ高純度炭素粉末を充填した(図3参照)。このとき、引き上げる単結晶の直胴140cmでシリコン中の炭素濃度が6×1016atoms/cm3(New ASTM)となるように計算して炭素粉末量を調整した。さらに、抵抗調整用のボロンドーパントも充填し、ヒーターを用いて加熱し原料を溶融した。
そして、MCZ(Magnetic field applied czochralski)法を用い、中心磁場強度3000Gの水平磁場を印加しながら、直径300mm、直胴長さ140cmのP型の炭素ドープシリコン単結晶を育成した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Examples 1 and 2)
In Example 1, the pulling machine of FIG. 2A, and in Example 2, 360 kg of silicon polycrystalline raw material is placed in a quartz crucible having a diameter of 32 inches (800 mm) installed in the main chamber of the pulling machine of FIG. Then, high purity carbon powder sandwiched between chemically etched wafers was filled (see FIG. 3). At this time, the amount of carbon powder was adjusted by calculating so that the carbon concentration in the silicon was 6 × 10 16 atoms / cm 3 (New ASTM) at 140 cm of the straight body of the single crystal to be pulled up. Furthermore, the boron dopant for resistance adjustment was filled, and it heated using the heater and fuse | melted the raw material.
Then, using a MCZ (Magnetic Field Applied Czochralski) method, a P-type carbon-doped silicon single crystal having a diameter of 300 mm and a straight body length of 140 cm was grown while applying a horizontal magnetic field having a central magnetic field strength of 3000 G.
上記条件により、シリコン単結晶を10本ずつ育成した。熱数値解析シュミレーションソフトFEMAGによる計算結果を基に、シリコンの融点から1400℃の間の引き上げ軸方向の結晶温度勾配の平均値G、シリコン単結晶の成長中の固液界面の径方向面内中心部の(結晶温度1400℃における)Srcs値、シリコン融点から1300℃までの温度帯での単結晶通過時間tを表1のように制御した。
実施例1,2において引き上げた無転位結晶の本数と無転位成功率を表1に示す。
また、引き上げた単結晶について、直胴140cmの位置でウェーハ状のサンプルを採取し炭素濃度を測定したところ、炭素濃度は6×1016atoms/cm3(New ASTM)となっていることを確認した。
Under the above conditions, 10 silicon single crystals were grown. Based on the calculation result by the thermal numerical simulation software FEMAG, the average value G of the crystal temperature gradient in the pulling axis direction between the melting point of silicon and 1400 ° C, the center in the radial direction of the solid-liquid interface during the growth of the silicon single crystal The Srcs value (at a crystal temperature of 1400 ° C.) and the single crystal passage time t in the temperature range from the melting point of silicon to 1300 ° C. were controlled as shown in Table 1.
Table 1 shows the number of dislocation-free crystals pulled up in Examples 1 and 2 and the dislocation-free success rate.
Moreover, about the single crystal pulled up, when the wafer-like sample was extract | collected in the position of the straight cylinder 140cm and the carbon concentration was measured, it confirmed that the carbon concentration was 6 * 10 < 16 > atoms / cm < 3 > (New ASTM). did.
(比較例1−4)
比較例1では図4(c)の引上機、比較例2では図4(d)の引上機、比較例3では図4(b)の引上機、比較例4では図4(a)の引上機を用いた。この引上機のメインチャンバー内に設置された口径32インチ(800mm)の石英ルツボ内に、シリコン多結晶原料360kgと、ケミカルエッチドウェーハで挟んだ高純度炭素粉末を充填した(図3参照)。このとき、引き上げる単結晶の直胴140cmでシリコン中の炭素濃度が6×1016atoms/cm3(New ASTM)となるように計算して炭素粉末量を調整した。さらに、抵抗調整用のボロンドーパントも充填し、ヒーターを用いて加熱し原料を溶融した。
そして、MCZ(Magnetic field applied czochralski)法を用い、中心磁場強度3000Gの水平磁場を印加しながら、直径300mm、直胴長さ140cmのP型の炭素ドープシリコン単結晶を上記条件で10本ずつ育成した。引き上げ速度、ルツボ回転、結晶回転等の引き上げ条件は実施例1と同様に設定した。
(Comparative Example 1-4)
In Comparative Example 1, the pulling machine shown in FIG. 4C, in Comparative Example 2, the pulling machine shown in FIG. 4D, in Comparative Example 3, the pulling machine shown in FIG. 4B, and in Comparative Example 4, the pulling machine shown in FIG. ) Pulling machine. A quartz crucible having a diameter of 32 inches (800 mm) installed in the main chamber of this puller was filled with 360 kg of silicon polycrystalline material and high-purity carbon powder sandwiched between chemically etched wafers (see FIG. 3). . At this time, the amount of carbon powder was adjusted by calculating so that the carbon concentration in the silicon was 6 × 10 16 atoms / cm 3 (New ASTM) at 140 cm of the straight body of the single crystal to be pulled up. Furthermore, the boron dopant for resistance adjustment was filled, and it heated using the heater and fuse | melted the raw material.
Then, using a MCZ (Magnetic Field Applied Czochralski) method, 10 P-type carbon-doped silicon single crystals having a diameter of 300 mm and a straight body length of 140 cm are grown under the above conditions while applying a horizontal magnetic field with a central magnetic field strength of 3000 G. did. The pulling conditions such as pulling speed, crucible rotation and crystal rotation were set in the same manner as in Example 1.
熱数値解析シュミレーションソフトFEMAGによる各製造条件での計算結果を確認したところ、表1に示す結果となった。また、無転位で引き上げることのできた単結晶について、直胴140cmの位置でウェーハ状のサンプルを採取し炭素濃度を測定したところ、炭素濃度は6×1016atoms/cc(New ASTM)となっていることを確認した。
比較例1−4において引き上げた無転位結晶の本数と無転位成功率を表1に示す。
When the calculation result in each manufacturing condition by the thermal numerical analysis simulation software FEMAG was confirmed, the result shown in Table 1 was obtained. Further, for a single crystal that could be pulled up without dislocation, a wafer-like sample was taken at a position of a straight cylinder of 140 cm and the carbon concentration was measured. The carbon concentration was 6 × 10 16 atoms / cc (New ASTM). I confirmed.
Table 1 shows the number of dislocation-free crystals pulled up in Comparative Example 1-4 and the dislocation-free success rate.
表1から分かるように、実施例1,2では無転位の結晶を100%の成功率で引上げることができた。一方比較例1−4では、有転位が生じた場合に再溶融を繰り返したが結局無転位で引き上げることができない場合があり、成功率は20〜80%と100%にはならなかった。
また、比較例1、3では、Gは3.5以下であったがSrcsは0.9を超えており、無転位結晶引上げの成功率は80%以下となった。
As can be seen from Table 1, in Examples 1 and 2, dislocation-free crystals could be pulled at a success rate of 100%. On the other hand, in Comparative Example 1-4, remelting was repeated when dislocations occurred, but in some cases it could not be pulled up without dislocations, and the success rate did not reach 100%, 20-80%.
In Comparative Examples 1 and 3, G was 3.5 or less, but Srcs exceeded 0.9, and the success rate of dislocation-free crystal pulling was 80% or less.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
10、10’、10’’…単結晶引上機、 11…メインチャンバー、
12…メインヒーター、 13…シリコン融液、 14…支持軸、
15…石英ルツボ、 16…黒鉛ルツボ、 17…断熱材、 18…ガス整流筒、
19…種結晶、 20…引き上げ軸、 21、23、25…断熱部材、
22…シリコン単結晶、 24…水冷ジャケット、 26…多結晶シリコン、
27…ケミカルエッチドウェーハ、 28…炭素粉末、 29…プルチャンバー、
30…受け皿、 31…断熱カラー。
10, 10 ', 10''... single crystal puller, 11 ... main chamber,
12 ... Main heater, 13 ... Silicon melt, 14 ... Support shaft,
15 ... quartz crucible, 16 ... graphite crucible, 17 ... heat insulating material, 18 ... gas rectifier,
19 ... Seed crystal, 20 ... Lifting shaft, 21, 23, 25 ... Thermal insulation member,
22 ... Silicon single crystal, 24 ... Water-cooled jacket, 26 ... Polycrystalline silicon,
27 ... Chemically etched wafer, 28 ... Carbon powder, 29 ... Pull chamber,
30 ... saucer, 31 ... heat insulation collar.
Claims (3)
前記シリコン単結晶の引き上げにおいて、シリコンの融点から1400℃の間の引き上げ軸方向の結晶温度勾配の平均値をG[℃/mm]で表した時、少なくとも固化率が20%までは、Gの値が1.0〜3.5[℃/mm]で、かつ、前記シリコン単結晶の成長中の固液界面の径方向面内中心部のSrcs値(von Mises相当応力[Pa]を、結晶温度1400℃におけるCRSS(Critical Resolved Shear Stress)[Pa]で割った値)が0.9以下になるようにシリコン単結晶を引き上げることを特徴とする炭素ドープシリコン単結晶の製造方法。 A method for producing a carbon-doped silicon single crystal in which the silicon single crystal is pulled up from a silicon melt added with carbon,
In the pulling of the silicon single crystal, when the average value of the crystal temperature gradient in the pulling axis direction between the melting point of silicon and 1400 ° C. is expressed by G [° C./mm], at least the solidification rate is 20%, The Srcs value (von Mises equivalent stress [Pa] of the central portion in the radial direction of the solid-liquid interface during the growth of the silicon single crystal is a crystal having a value of 1.0 to 3.5 [° C./mm]. A method for producing a carbon-doped silicon single crystal, wherein the silicon single crystal is pulled up so that CRSS (Critical Resolved Shear Stress [Pa] at a temperature of 1400 ° C.) is 0.9 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011183445A JP5500138B2 (en) | 2011-08-25 | 2011-08-25 | Method for producing carbon-doped silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011183445A JP5500138B2 (en) | 2011-08-25 | 2011-08-25 | Method for producing carbon-doped silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013043809A true JP2013043809A (en) | 2013-03-04 |
JP5500138B2 JP5500138B2 (en) | 2014-05-21 |
Family
ID=48007991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011183445A Active JP5500138B2 (en) | 2011-08-25 | 2011-08-25 | Method for producing carbon-doped silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5500138B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114737247A (en) * | 2022-05-18 | 2022-07-12 | 西安奕斯伟材料科技有限公司 | Water-cooling jacket device and single crystal furnace |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10229093A (en) * | 1997-02-17 | 1998-08-25 | Sumitomo Sitix Corp | Production of silicon epitaxial wafer |
JPH11106282A (en) * | 1997-10-01 | 1999-04-20 | Nippon Steel Corp | Silicone single crystal, its production and its evaluation |
JPH11302098A (en) * | 1998-04-21 | 1999-11-02 | Sumitomo Metal Ind Ltd | Silicon wafer and silicon epitaxial wafer, and their production |
JP2000086393A (en) * | 1998-09-14 | 2000-03-28 | Sumitomo Metal Ind Ltd | Silicon epitaxial wafer and its production |
JP2002137988A (en) * | 2000-10-31 | 2002-05-14 | Super Silicon Kenkyusho:Kk | Method of pull up single crystal |
JP2005320203A (en) * | 2004-05-10 | 2005-11-17 | Shin Etsu Handotai Co Ltd | Method for manufacturing silicon single crystal, and silicon single crystal |
WO2006003812A1 (en) * | 2004-06-30 | 2006-01-12 | Sumitomo Mitsubishi Silicon Corporation | Process for producing silicon wafer and silicon wafer produced by the process |
JP2006213582A (en) * | 2005-02-07 | 2006-08-17 | Sumco Corp | Method and apparatus for manufacturing silicon crystal |
JP2007045662A (en) * | 2005-08-10 | 2007-02-22 | Sumco Corp | Semiconductor silicon wafer and method for manufacturing the same |
JP2009221062A (en) * | 2008-03-18 | 2009-10-01 | Sumco Corp | Method for producing carbon-doped single crystal |
JP2009292702A (en) * | 2008-06-09 | 2009-12-17 | Sumco Corp | Method for growing silicon single crystal |
JP2010024129A (en) * | 2008-06-16 | 2010-02-04 | Sumco Corp | Method of growing silicon single crystal |
JP2010248013A (en) * | 2009-04-13 | 2010-11-04 | Sumco Corp | Production method of silicon single crystal |
JP2010265151A (en) * | 2009-05-18 | 2010-11-25 | Sumco Corp | Method for growing silicon single crystal |
-
2011
- 2011-08-25 JP JP2011183445A patent/JP5500138B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10229093A (en) * | 1997-02-17 | 1998-08-25 | Sumitomo Sitix Corp | Production of silicon epitaxial wafer |
JPH11106282A (en) * | 1997-10-01 | 1999-04-20 | Nippon Steel Corp | Silicone single crystal, its production and its evaluation |
JPH11302098A (en) * | 1998-04-21 | 1999-11-02 | Sumitomo Metal Ind Ltd | Silicon wafer and silicon epitaxial wafer, and their production |
JP2000086393A (en) * | 1998-09-14 | 2000-03-28 | Sumitomo Metal Ind Ltd | Silicon epitaxial wafer and its production |
JP2002137988A (en) * | 2000-10-31 | 2002-05-14 | Super Silicon Kenkyusho:Kk | Method of pull up single crystal |
JP2005320203A (en) * | 2004-05-10 | 2005-11-17 | Shin Etsu Handotai Co Ltd | Method for manufacturing silicon single crystal, and silicon single crystal |
WO2006003812A1 (en) * | 2004-06-30 | 2006-01-12 | Sumitomo Mitsubishi Silicon Corporation | Process for producing silicon wafer and silicon wafer produced by the process |
JP2006213582A (en) * | 2005-02-07 | 2006-08-17 | Sumco Corp | Method and apparatus for manufacturing silicon crystal |
JP2007045662A (en) * | 2005-08-10 | 2007-02-22 | Sumco Corp | Semiconductor silicon wafer and method for manufacturing the same |
JP2009221062A (en) * | 2008-03-18 | 2009-10-01 | Sumco Corp | Method for producing carbon-doped single crystal |
JP2009292702A (en) * | 2008-06-09 | 2009-12-17 | Sumco Corp | Method for growing silicon single crystal |
JP2010024129A (en) * | 2008-06-16 | 2010-02-04 | Sumco Corp | Method of growing silicon single crystal |
JP2010248013A (en) * | 2009-04-13 | 2010-11-04 | Sumco Corp | Production method of silicon single crystal |
JP2010265151A (en) * | 2009-05-18 | 2010-11-25 | Sumco Corp | Method for growing silicon single crystal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114737247A (en) * | 2022-05-18 | 2022-07-12 | 西安奕斯伟材料科技有限公司 | Water-cooling jacket device and single crystal furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5500138B2 (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5904079B2 (en) | Silicon single crystal growing apparatus and silicon single crystal growing method | |
JP6202119B2 (en) | Method for producing silicon single crystal | |
JP6881571B2 (en) | Method for manufacturing n-type silicon single crystal | |
WO2006117939A1 (en) | Method for producing silicon wafer | |
JP7036116B2 (en) | Method for manufacturing silicon single crystal | |
JP2017031004A (en) | Method of manufacturing silicon single crystal | |
JP5283543B2 (en) | Method for growing silicon single crystal | |
JP6631460B2 (en) | Method for producing silicon single crystal and silicon single crystal | |
JP7080017B2 (en) | n-type silicon single crystal ingots, silicon wafers, and epitaxial silicon wafers | |
JP6579046B2 (en) | Method for producing silicon single crystal | |
JP5163386B2 (en) | Silicon melt forming equipment | |
JP2008266090A (en) | Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material | |
EP1614774A1 (en) | Process for producing single crystal | |
JP5500138B2 (en) | Method for producing carbon-doped silicon single crystal | |
JP5375636B2 (en) | Method for producing silicon single crystal | |
JP2009274888A (en) | Production method of silicon single crystal, and silicon single crystal wafer | |
JP5262257B2 (en) | Method for producing nitrogen-doped silicon single crystal | |
JP5617812B2 (en) | Silicon single crystal wafer, epitaxial wafer, and manufacturing method thereof | |
JP2012001408A (en) | Method for growing silicon single crystal | |
JP2009292684A (en) | Silicon single crystal production method and production apparatus therefore | |
JP2004269335A (en) | Production method for single crystal | |
JP7272343B2 (en) | Method for producing n-type silicon single crystal | |
JP6354643B2 (en) | Method for producing silicon single crystal | |
JP4501507B2 (en) | Silicon single crystal growth method | |
JP6699620B2 (en) | Method for producing silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5500138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |