JP2006213582A - Method and apparatus for manufacturing silicon crystal - Google Patents

Method and apparatus for manufacturing silicon crystal Download PDF

Info

Publication number
JP2006213582A
JP2006213582A JP2005030436A JP2005030436A JP2006213582A JP 2006213582 A JP2006213582 A JP 2006213582A JP 2005030436 A JP2005030436 A JP 2005030436A JP 2005030436 A JP2005030436 A JP 2005030436A JP 2006213582 A JP2006213582 A JP 2006213582A
Authority
JP
Japan
Prior art keywords
crystal
silicon crystal
pulling
silicon
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005030436A
Other languages
Japanese (ja)
Other versions
JP4867173B2 (en
Inventor
Takeshi Nakamura
中村  剛
Masahiko Okui
正彦 奥井
Fumio Kawahigashi
文雄 川東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005030436A priority Critical patent/JP4867173B2/en
Publication of JP2006213582A publication Critical patent/JP2006213582A/en
Application granted granted Critical
Publication of JP4867173B2 publication Critical patent/JP4867173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a silicon crystal being grown by the Czochralski method, wherein the crack of a silicon crystal having a large diameter can be effectively suppressed. <P>SOLUTION: The silicon crystal is manufactured by a method, wherein use is made of an apparatus for manufacturing a silicon crystal where a heat shielding body and a cooling body are provided around a crystal being pulled, and the thermal stress of a growing crystal at 1,100-900°C is less than 40 MPa in Mises's equivalent stress. When a silicon crystal is grown by using the apparatus and a dislocated and thus polycrystalline portion is formed, the silicon crystal portion is separated from a molten liquid as a portion having a length of (1/D)×3×10<SP>4</SP>(mm) or less, where D (mm) represents the diameter of the crystal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チョクラルスキー法(以下、「CZ法」と略称する)によりシリコン結晶を製造する方法およびその製造装置に関し、さらに詳しくは、CZ法により育成される大口径のシリコン結晶の割れ発生を有効に抑止することができる、シリコン結晶の製造方法およびその方法が適用できる製造装置に関するものである。   The present invention relates to a method and an apparatus for manufacturing a silicon crystal by the Czochralski method (hereinafter abbreviated as “CZ method”), and more particularly, generation of cracks in a large-diameter silicon crystal grown by the CZ method. The present invention relates to a silicon crystal manufacturing method and a manufacturing apparatus to which the method can be applied.

半導体材料のシリコンウェーハに用いるシリコン単結晶の製造に、最も広く採用されている方法がCZ法による単結晶の引き上げ育成方法である。   The most widely adopted method for manufacturing a silicon single crystal used for a semiconductor material silicon wafer is a method of pulling and growing a single crystal by the CZ method.

このCZ法では、石英るつぼ内の溶融したシリコンに種結晶を浸けて引き上げ、単結晶を成長させる。このシリコン単結晶に関し、半導体デバイスの高集積化に対応した欠陥の低減ばかりでなく、コスト低減、生産性の向上に対応して結晶径の増大化が要望され、従来の主流であった直径200mmのものから直径300mmのものに移行しつつあり、さらに直径400mmにまで拡大されようとしている。   In this CZ method, a seed crystal is dipped in a molten silicon in a quartz crucible and pulled up to grow a single crystal. With respect to this silicon single crystal, not only the reduction of defects corresponding to high integration of semiconductor devices but also the increase of crystal diameter in response to cost reduction and improvement of productivity is demanded. The product is shifting from a product having a diameter of 300 mm to a diameter of 400 mm.

育成する単結晶の直径が大きくなると、結晶の体積に対する表面積が減少するので融液の凝固による凝固潜熱の除去を十分に行うのが難しくなり、引き上げ速度の低下を余儀なくさせられる。このため、通常、単結晶の周囲に熱遮蔽体を設置して、引き上げられつつある単結晶の側面が融液表面、るつぼ内壁、または溶融加熱用発熱体からの輻射熱で加熱されるのを防止する対策が採用されることはよく知られている。   When the diameter of the single crystal to be grown increases, the surface area with respect to the volume of the crystal decreases, so that it becomes difficult to sufficiently remove the latent heat of solidification by solidification of the melt, and the pulling speed must be lowered. For this reason, a heat shield is usually installed around the single crystal to prevent the side surface of the single crystal being pulled up from being heated by the radiant heat from the melt surface, the inner wall of the crucible, or the heating element for melting and heating. It is well known that measures to do this are adopted.

さらに、例えば特許文献1、2、または3に開示されるように、熱遮蔽体の内側の単結晶表面に近い位置に水冷など強制的に冷却された環状の冷却体を置き、育成中単結晶の冷却をより一層強化して、引き上げ速度の向上を図ることも提案されている。   Furthermore, as disclosed in, for example, Patent Documents 1, 2, or 3, an annular cooling body that is forcibly cooled, such as water cooling, is placed near the surface of the single crystal inside the thermal shield, It has also been proposed to further increase the cooling speed by increasing the cooling speed.

また、特許文献4などには、この熱遮蔽体と冷却体との組み合わせにより表面の冷却条件を変え、凝固直後の単結晶内部の温度分布を制御し、酸素析出や原子空孔および格子間原子の分布を変えて、単結晶から育成されるウェーハのgrown−in欠陥などの発生を抑止しようとする製造方法も開示されている。   Further, in Patent Document 4, etc., the surface cooling conditions are changed by the combination of the heat shield and the cooling body, the temperature distribution inside the single crystal immediately after solidification is controlled, and oxygen precipitation, atomic vacancies and interstitial atoms are controlled. There is also disclosed a manufacturing method that attempts to suppress the occurrence of grown-in defects or the like of a wafer grown from a single crystal by changing the distribution of the above.

引き上げ速度を向上するために、冷却体を用いた強制冷却をおこなう場合、特に直径が300mm以上となる大径結晶においては、結晶育成中に割れが発生しやすく、有転位化し多結晶化しやすい傾向があることに対し、特許文献5にはその対策となる製造方法に関する発明が開示されている。   When forced cooling using a cooling body is performed in order to improve the pulling speed, especially in large-diameter crystals having a diameter of 300 mm or more, cracks are likely to occur during crystal growth, and tend to dislocation and polycrystallize. In contrast, Patent Document 5 discloses an invention relating to a manufacturing method as a countermeasure.

具体的には、特許文献5に開示される発明は、強制冷却して高速引き上げを行う場合に、単結晶中に発生する割れの原因が固液界面における熱応力の増加にあるとして、冷却体を用いての強制冷却を行うとともに、冷却部下方となる結晶下部を強制加熱しようとする方法である。   Specifically, in the invention disclosed in Patent Document 5, when the forced cooling is performed and the high-speed pulling is performed, it is assumed that the cause of cracks occurring in the single crystal is an increase in thermal stress at the solid-liquid interface. This is a method for forcibly cooling the crystal lower part and forcibly heating the lower part of the crystal below the cooling part.

特開昭63−256593号公報JP-A 63-256593 特開平8−239291号公報JP-A-8-239291 特開平11−292684号公報JP 11-292684 A 特開2001−220289号公報JP 2001-220289 A 特開2003−165791号公報JP 2003-165791 A

シリコン結晶をCZ法にて育成する際に、冷却体を引き上げ中の結晶の周囲に配置して冷却を速め、引き上げ速度の向上を図るとともに、結晶内部の欠陥発生を制御する方法が採用されている。この冷却体を配置して積極的に結晶から抜熱する手段は、引き上げる結晶の直径が大きくなるほど必須となり、かつ重要になってくる。しかし、それによる冷却が適切に行われなければ、引き上げ速度を向上できないばかりでなく、結晶の割れを発生させるおそれがある。   When a silicon crystal is grown by the CZ method, a cooling body is arranged around the crystal being pulled to speed up the cooling, thereby improving the pulling speed and controlling the generation of defects inside the crystal. Yes. The means for disposing the cooling body and actively removing heat from the crystal becomes essential and important as the diameter of the crystal to be pulled increases. However, if the cooling is not performed appropriately, not only the pulling speed can be improved, but also there is a risk of crystal cracking.

この結晶の割れは、育成中の結晶内部に生じる熱応力に起因すると推測されるが、結晶の育成終了後ブロックに切断するまでに発生することがしばしば確認される。そして、さらに結晶引き上げ中にも発生するおそれもあり、最悪の事態として、引き上げ中または装置からの取り出し中に発生し破損にまで至れば、重大な事故につながる危険性がある。   This crystal cracking is presumed to be caused by thermal stress generated inside the crystal being grown, but it is often confirmed that it occurs before the crystal is grown and cut into blocks. Further, it may occur during the pulling of the crystal, and in the worst case, if it occurs during the pulling or taking out from the apparatus and it is broken, there is a risk of leading to a serious accident.

本発明は、このような状況に鑑みて完成されたものであり、CZ法により製造される大直径のシリコン結晶の割れ発生を有効に抑止することができる、シリコン結晶の製造方法およびその製造装置を提供することを目的としている。   The present invention has been completed in view of such a situation, and a silicon crystal manufacturing method and a manufacturing apparatus thereof capable of effectively suppressing cracking of a large-diameter silicon crystal manufactured by the CZ method. The purpose is to provide.

本発明者らは、上記の課題を解決するため、直径が約300mm、またはそれ以上のシリコン結晶を育成する際に、引き上げ中の単結晶に近接して冷却体を設置することによる引き上げ速度の向上について、種々検討を実施した。   In order to solve the above-mentioned problems, the inventors of the present invention, when growing a silicon crystal having a diameter of about 300 mm or more, have a pulling speed by installing a cooling body close to the single crystal being pulled. Various studies were conducted on improvement.

冷却体を設置することにより、引き上げ速度は速くすることができる。ところが、大直径の結晶にて冷却体を設置し引き上げをおこなう場合、引き上げ終了後にブロックに切断してみると、結晶に割れが発生していることがしばしば認められた。   By installing the cooling body, the lifting speed can be increased. However, when a cooling body is installed with a large-diameter crystal and pulled up, it was often found that the crystal was cracked when it was cut into blocks after the completion of the pulling.

最悪の事態として、この割れが引き上げ中に発生すれば、引き上げが続行できなくなるだけでなく、事態によっては、冷却体が破損し炉内にその冷却水が流入して水蒸気爆発など重大な事故につながるおそれがある。また、引き上げ終了後に発生したとしても、作業者の安全確保や、割れ進展による良品歩留まりの低下など、生産性の低下を来すおそれがある。   In the worst case, if this crack occurs during the pulling, not only can the pulling not continue, but depending on the situation, the cooling body may be damaged and the cooling water will flow into the furnace, resulting in a serious accident such as a steam explosion. There is a risk of connection. Moreover, even if it occurs after the end of the pulling, there is a risk that productivity may be lowered, such as ensuring the safety of the worker and reducing the yield of non-defective products due to the progress of cracks.

特許文献5によれば、CZ法による単結晶育成において結晶径が300mm以上の場合、引き上げ速度を大きくしようとして、冷却体設置により強制冷却をおこなうと、結晶の固液界面の熱応力が増加し、これが有転位化あるいは結晶割れの原因になるとしている。そして、その対策として冷却体の設置とともにその冷却部の下方に加熱体を置き、結晶の下部を保温する製造方法を提案している。   According to Patent Document 5, when the crystal diameter is 300 mm or more in single crystal growth by the CZ method, the thermal stress at the solid-liquid interface of the crystal increases when forced cooling is performed by installing a cooling body to increase the pulling speed. This causes dislocation or crystal cracking. And as a countermeasure, a manufacturing method has been proposed in which a heating body is placed under the cooling section along with the installation of the cooling body to keep the lower part of the crystal warm.

この結晶割れの発生に関し、さらに原因を詳しく調査していくと、割れの発生した結晶はいずれも引き上げ途中または終期で有転位化し多結晶化しており、割れは単結晶から多結晶へと変わる遷移領域に起点を持っていることがわかってきた。特に、育成終了後、取り出し時に割れ発生が顕在化した。   When the cause of this crystal cracking is investigated further in detail, all the cracked crystals are dislocated and polycrystallized during or at the end of the pulling, and the crack changes from a single crystal to a polycrystal. It turns out that it has a starting point in the area. In particular, after the completion of the growth, the occurrence of cracks became apparent upon removal.

特許文献5では結晶育成中に割れることを予防したものであり、固液界面での熱応力に着目するものであるが、上記の育成終了後の結晶割れの発生は、結晶内の熱応力によるものと推定し、冷却体の形状や設置位置の変更により、引き上げ中の結晶内部の温度分布を変えて熱応力の状態を変化させた場合に、引き上げ中の1100〜900℃の温度域における熱応力が高くなると、割れが発生する頻度が大となる傾向を見出した。特に、この温度域の熱応力が高かった結晶では、引き上げ直後に割れが見いだされなくても、運搬中のわずかな衝撃で割れが生じることになる。   In Patent Document 5, cracking is prevented during crystal growth, and attention is paid to thermal stress at the solid-liquid interface. However, the occurrence of crystal cracking after the completion of the growth is caused by thermal stress in the crystal. If the thermal stress state is changed by changing the temperature distribution inside the crystal being pulled by changing the shape or installation position of the cooling body, the heat in the temperature range of 1100 to 900 ° C. during the pulling It was found that the frequency of cracking tends to increase as the stress increases. In particular, in a crystal having a high thermal stress in this temperature range, even if no crack is found immediately after pulling, the crack is caused by a slight impact during transportation.

この1100〜900℃の温度域での熱応力が割れ発生に大きく影響する理由については、次のように推測することができる。熱応力は、冷却過程の熱収縮により生じ、その大きさは、育成中単結晶の温度分布または温度勾配により、その温度におけるシリコンの弾性率、熱膨張係数、結晶寸法、ポアソン比などから定まる。   The reason why the thermal stress in the temperature range of 1100 to 900 ° C. greatly affects the occurrence of cracking can be estimated as follows. Thermal stress is generated by thermal contraction during the cooling process, and its magnitude is determined from the elastic modulus, thermal expansion coefficient, crystal size, Poisson's ratio, etc. of silicon at that temperature due to the temperature distribution or temperature gradient of the growing single crystal.

一般に、金属材料は高温では降伏強度が低下し、割れ発生の前に塑性変形してしまうが、シリコン単結晶の場合、塑性変形を起こすと転位が増殖され転位密度が増大するので、冷却過程の熱収縮により生じる熱応力が、塑性変形の始まる降伏強度を超えないようにして冷却される。そして、高温では降伏強度が低いため、温度勾配が大きくても塑性変形を起こしてしまうので、割れを発生させるほどの熱応力は生じない。   In general, the yield strength of metal materials decreases at high temperatures and plastically deforms before cracking occurs.However, in the case of a silicon single crystal, dislocations increase and dislocation density increases when plastic deformation occurs. Cooling is performed so that the thermal stress caused by the heat shrinkage does not exceed the yield strength at which plastic deformation begins. Since the yield strength is low at high temperatures, plastic deformation occurs even if the temperature gradient is large, so that thermal stress that causes cracking does not occur.

しかしながら、シリコン単結晶では1000℃前後の温度を境に、それ以下の温度では降伏強度が上昇する。このため、単結晶部分は降伏強度が大きいので、塑性変形せず除加されると直ちに歪みは解消するが、多結晶部は1000℃より高温では容易に塑性変形し、応力を除加するとクリープ現象により時間の経過とともに歪みが減少する。   However, with silicon single crystals, the yield strength increases at temperatures below about 1000 ° C. For this reason, since the yield strength of the single crystal portion is large, the strain is resolved immediately when it is added without plastic deformation, but the polycrystalline portion is easily plastically deformed at a temperature higher than 1000 ° C., and creep is reduced when stress is added. Due to the phenomenon, distortion decreases with time.

ところが、1000℃より低温では容易に塑性変形できず歪みが残存するため、1000℃前後で生じた歪みは、冷却され低温になるにしたがい残存することから、この温度域の応力が大きいほど残留する歪みも増加する。さらに、歪みは高温部で釣り合うように形成されるが、歪みが元に戻らないと冷却後は釣り合いがとれない状態になり、残留応力として応力が発生する。   However, since the plastic deformation cannot be easily performed at a temperature lower than 1000 ° C. and the strain remains, the strain generated at around 1000 ° C. remains as the temperature is lowered. Distortion also increases. Further, although the strain is formed so as to be balanced at the high temperature portion, if the strain does not return to its original state, the balance cannot be balanced after cooling, and stress is generated as a residual stress.

このとき、有転位化近傍では残留している歪みが大きく異なる単結晶部と多結晶部が隣接していることから、歪みの違いにより応力が増大することになる。このような見地から、有転位化部分と単結晶部分との変形挙動が大きく異なり、しかも熱収縮による熱応力が増大する温度域である1000℃前後において、発生する熱応力が大きくならないようにすれば割れの発生が防止できるのではないかと考え、さらに、実験および検討を進めた。   At this time, since the single crystal part and the polycrystalline part in which the remaining strain greatly differs in the vicinity of the dislocation are adjacent to each other, the stress increases due to the difference in strain. From this point of view, the deformation behavior of the dislocation portion and the single crystal portion are greatly different, and the generated thermal stress is not increased in the temperature range around 1000 ° C. where the thermal stress due to thermal shrinkage increases. We thought that it would be possible to prevent the occurrence of cracks, and we proceeded with experiments and studies.

その結果、900〜1100℃において結晶に生じる熱応力を、ミーゼスの降伏条件式で示される相当応力にてある値以下に規制すれば、育成結晶の割れの発生を大きく低減させ得ることを見いだしたのである。   As a result, it has been found that if the thermal stress generated in the crystal at 900 to 1100 ° C. is regulated to a value equal to or less than the equivalent stress indicated by the Mises yield condition formula, the occurrence of cracks in the grown crystal can be greatly reduced. It is.

割れの発生した結晶は、いずれも引き上げ途中または終期で有転位化し、多結晶化しており、単結晶から多結晶へと変わる遷移領域に割れの起点のあることが分かった。遷移領域には、それより上側の単結晶部分と、下側の多結晶部分との熱収縮挙動の違いによる剪断応力が作用して、割れが発生することが推測される。   It was found that the cracked crystals were dislocated and polycrystallized in the middle or at the end of the pulling, and were polycrystallized, and there was a crack initiation point in the transition region from single crystal to polycrystal. In the transition region, it is presumed that the shear stress due to the difference in thermal shrinkage between the upper single crystal portion and the lower polycrystalline portion acts to cause cracks.

したがって、有転位化が生じたとき、多結晶部を短くしてやれば、遷移領域に発生する剪断応力が緩和され、割れの発生が低減できるのではないかと考えられる。結晶割れの起点は遷移領域であっても、単結晶部分に割れが伝播し、健全部分の採取率を低下させる。   Therefore, when dislocations occur, if the polycrystalline part is shortened, it is considered that the shear stress generated in the transition region is relaxed and the occurrence of cracks can be reduced. Even if the starting point of the crystal crack is in the transition region, the crack propagates to the single crystal portion, and the sampling rate of the healthy portion is lowered.

そこで、有転位化が発生してから、しばらく多結晶成長させた後、融液から切り離すことにより、多結晶部分の長さを種々変えた結晶を育成し割れの発生を調べた結果、その長さをある程度以下にすれば、割れ発生の頻度を大きく低減できることが明らかになる。   Therefore, after the occurrence of dislocations, after growing the polycrystal for a while and then separating it from the melt, growing the crystals with various lengths of the polycrystal part and examining the occurrence of cracks, It becomes clear that the frequency of occurrence of cracks can be greatly reduced if the thickness is reduced to some extent.

本発明は、上記の検討結果に基づいて完成されたものであり、下記のシリコン結晶の製造方法、およびシリコン結晶の製造装置を要旨としている。
(1)CZ法によりシリコン結晶を引き上げる際に、育成されつつある結晶の1100〜900℃の温度域における熱応力の値を、ミーゼスの相当応力において40MPa未満として引き上げることを特徴とするシリコン結晶の製造方法である。
(2)CZ法によりシリコン結晶を引き上げる結晶製造装置であって、育成されつつある結晶の1100〜900℃の温度域における熱応力が、ミーゼスの相当応力において40MPa未満となるように、引き上げ中の結晶の周囲に熱遮蔽体および冷却体が配置されていることを特徴とするシリコン結晶の製造装置である。
(3)CZ法によりシリコン結晶を育成する際、引き上げ途中で有転位化した場合、その有転位化位置からの多結晶部分の長さを結晶直径D(mm)に対し(1/D)×3×104(mm)以下として、融液から切り離すことを特徴とすることを特徴とするシリコン結晶の製造方法である。
(4)上記(1)のシリコン結晶の製造方法において、引き上げ途中で有転位化した場合、その有転位化位置からの多結晶部分の長さを結晶直径D(mm)に対し(1/D)×3×104(mm)以下として、融液から切り離すことを特徴とすることを特徴とするシリコン結晶の製造方法である。
(5)育成する結晶の大直径であり、例えば、直径が300mm以上であることを特徴とする上記(1)、(3)または(4)のシリコン結晶の製造方法である。
The present invention has been completed based on the above examination results, and the gist thereof is the following silicon crystal manufacturing method and silicon crystal manufacturing apparatus.
(1) When pulling up a silicon crystal by the CZ method, the value of thermal stress in the temperature range of 1100 to 900 ° C. of the crystal being grown is raised to less than 40 MPa in Mises' equivalent stress, It is a manufacturing method.
(2) A crystal manufacturing apparatus for pulling up a silicon crystal by the CZ method, wherein the crystal being grown is being pulled so that the thermal stress in the temperature range of 1100 to 900 ° C. is less than 40 MPa at Mises equivalent stress. The silicon crystal manufacturing apparatus is characterized in that a heat shield and a cooling body are arranged around the crystal.
(3) When a silicon crystal is grown by the CZ method, when dislocations are formed during pulling, the length of the polycrystalline portion from the dislocation position is (1 / D) × with respect to the crystal diameter D (mm). The silicon crystal production method is characterized in that the silicon crystal is separated from the melt as 3 × 10 4 (mm) or less.
(4) In the silicon crystal manufacturing method of (1) above, when dislocations are formed during pulling, the length of the polycrystalline portion from the dislocation position is (1 / D) relative to the crystal diameter D (mm). ) × 3 × 10 4 (mm) or less, wherein the silicon crystal is separated from the melt.
(5) The method for producing a silicon crystal according to (1), (3) or (4) above, wherein the crystal to be grown has a large diameter, for example, a diameter of 300 mm or more.

本発明のシリコン結晶の製造方法およびその製造装置によれば、CZ法によるシリコン結晶の製造において、引き上げ中および引き上げ後の結晶の割れ発生の抑止に有効である。引き上げられるシリコン結晶の直径が増すほど、割れ発生の危険性が増してくるが、結晶の割れによる不良品の発生を低減できるばかりでなく、引き上げ途中の割れによる事故の発生も抑止でき、コスト低減と安全性向上に大きく寄与する。   According to the method and apparatus for manufacturing a silicon crystal of the present invention, it is effective in suppressing the occurrence of crystal cracking during and after pulling in the manufacture of silicon crystal by the CZ method. As the diameter of the silicon crystal that is pulled up increases, the risk of cracking increases, but not only can the occurrence of defective products due to crystal cracking be reduced, but also the occurrence of accidents due to cracking during the pulling can be suppressed, reducing costs. And greatly contribute to the improvement of safety.

本発明のシリコン結晶の製造方法および製造装置は、上述の検討結果に基づいて限界条件を明確にし、その完成に至ったものであり、以下にその内容を説明する。まず、本発明では、CZ法によるシリコン結晶を引き上げる際に、育成されつつある結晶の1100〜900℃の温度域における熱応力の値を、ミーゼスの相当応力において40MPa未満として引き上げる。   The silicon crystal manufacturing method and manufacturing apparatus of the present invention have been clarified by limiting conditions based on the above examination results, and have been completed. The contents thereof will be described below. First, in the present invention, when pulling up a silicon crystal by the CZ method, the value of the thermal stress in the temperature range of 1100 to 900 ° C. of the crystal being grown is pulled as less than 40 MPa in Mises equivalent stress.

この温度域でのミーゼスの相当応力の値を40MPa未満に限定するのは、40MPa以上の値になると割れの発生が増大するからである。この相当応力の値は小さくすればするほど、割れ発生を低減させることができる。しかしながら、相当応力の値を低くするには限度があり、そのためには、引き上げ中、結晶の冷却を緩和して引き上げ速度を大幅に遅くすることになって生産性の低下を来すので、25MPaまでにするのがよい。望ましいのは30〜36MPaとすることである。   The reason why the value of the equivalent stress of Mises in this temperature range is limited to less than 40 MPa is that the occurrence of cracks increases when the value is 40 MPa or more. The smaller the value of the equivalent stress is, the more cracking can be reduced. However, there is a limit to lowering the value of the equivalent stress, and for that purpose, during the pulling, the cooling of the crystal is relaxed and the pulling rate is greatly slowed, resulting in a decrease in productivity. It is good to do it. Desirable is 30 to 36 MPa.

熱応力は冷却過程の熱収縮により発生する。熱収縮の大きさは結晶内の温度分布から求まるが、結晶内の温度分布は総合伝熱解析ソフトなど、一般に用いられる計算機シミュレーションにより推測することができる。   Thermal stress is generated by thermal contraction during the cooling process. The magnitude of the heat shrinkage can be obtained from the temperature distribution in the crystal, and the temperature distribution in the crystal can be estimated by a commonly used computer simulation such as comprehensive heat transfer analysis software.

本発明で規定するミーゼスの相当応力は、例えば、有限要素法などによる汎用構造解析ソフトなど、一般に用いられる計算機シミュレーションにより各方向の応力を、温度分布と単結晶の寸法とから、シリコンの900〜1100℃の弾性率を190GPa、線膨張係数を4×10-6/K、密度を2.33kg/m3、ポアソン比を0.23とし、得られた応力を主応力に変換することによって求めることができる。具体的な有限要素法などによる汎用構造解析ソフトとしては、ABAQUS(ABAQUS社)、ANSYS(CYBERNET SYSTEM社)等が例示される。 The equivalent stress of Mises specified in the present invention is, for example, the stress in each direction by computer simulation generally used, such as general-purpose structural analysis software by a finite element method, etc. The elastic modulus at 1100 ° C. is 190 GPa, the coefficient of linear expansion is 4 × 10 −6 / K, the density is 2.33 kg / m 3 , the Poisson's ratio is 0.23, and the obtained stress is obtained by converting it into principal stress. be able to. Specific examples of general-purpose structural analysis software using the finite element method include ABAQUS (ABAQUS), ANSYS (CYBERNET SYSTEM), and the like.

引き上げ中に結晶の900〜1100℃である温度域でのみ、ミーゼスの相当応力を40MPa未満とするのは、前述の通り、900〜1100℃の高温領域では多結晶のみ塑性変形が生じること、低温側では単結晶部分、または多結晶部分にかかわらず塑性変形が起こらないことによる。   The reason why the equivalent stress of Mises is less than 40 MPa only in a temperature range of 900 to 1100 ° C. during pulling is that, as described above, only polycrystals are plastically deformed in a high temperature range of 900 to 1100 ° C. This is because plastic deformation does not occur on the side regardless of a single crystal portion or a polycrystalline portion.

図1は、本発明が適用できる、熱遮蔽体と冷却体とを備えたシリコン結晶の製造装置の模式的構造を示した図である。本発明の900〜1100℃の温度域にある単結晶内部のミーゼスの相当応力が40MPa未満となるようなシリコン結晶の製造装置としては、図1に示す構造であって、熱遮蔽体11の内側に引き上げ中結晶7を囲んで冷却体10が設置された構造のものであればよい。   FIG. 1 is a diagram showing a schematic structure of a silicon crystal manufacturing apparatus including a heat shield and a cooling body to which the present invention can be applied. The silicon crystal manufacturing apparatus in which the equivalent stress of Mises inside a single crystal in the temperature range of 900 to 1100 ° C. of the present invention is less than 40 MPa is the structure shown in FIG. As long as it has a structure in which the cooling body 10 is installed so as to surround the crystal 7 being pulled up.

上記の冷却体10は、単結晶表面から冷却体表面までの距離が30〜80mmの範囲にあり、引き上げ軸方向の長さが50〜180mm、その下端と融液面との距離が170〜300mmで、結晶に面する表面の温度が50〜220℃であればよい。この冷却体10の形状、位置および表面温度を調整し、引き上げ速度を制御して、結晶の900〜1100℃の部分における相当応力を40MPa未満になるようにする。   The cooling body 10 has a distance from the single crystal surface to the cooling body surface in the range of 30 to 80 mm, a length in the pulling axis direction of 50 to 180 mm, and a distance between its lower end and the melt surface of 170 to 300 mm. Thus, the temperature of the surface facing the crystal may be 50 to 220 ° C. The shape, position, and surface temperature of the cooling body 10 are adjusted, and the pulling rate is controlled so that the equivalent stress at the 900 to 1100 ° C. portion of the crystal is less than 40 MPa.

本発明では、熱応力をミーゼスの相当応力で規定したが、これに限定されるものではなく、例えば、トレスカの相当応力やすべり方向の応力で規定することができ、トレスカの相当応力等の手法により求められた熱応力値が、本発明で規定するミーゼス相当応力に該当する場合には本発明で規定する範囲となる。   In the present invention, the thermal stress is defined by the equivalent stress of Mises, but is not limited to this, and can be defined by, for example, the equivalent stress of Tresca or the stress in the slip direction. When the thermal stress value obtained by the above corresponds to the Mises equivalent stress defined in the present invention, the range is defined in the present invention.

また、本発明においては、CZ法にてシリコン結晶を育成する際に、引き上げ途中で有転位化しその育成を中断する場合、その有転位化位置からの多結晶部分の長さを結晶直径D(mm)に対し(1/D)×3×104(mm)以下として、融液から切り離すこととする。 In the present invention, when a silicon crystal is grown by the CZ method, when dislocation occurs during the pulling and the growth is interrupted, the length of the polycrystalline portion from the dislocation position is set to the crystal diameter D ( mm), it is assumed to be (1 / D) × 3 × 10 4 (mm) or less and separated from the melt.

これは、有転位化の進展は固液界面の熱応力に依存するためであり、例えば直径300mmの結晶であれば、多結晶部分を100mm以内、直径400mmであれば、多結晶部分を75mm以内にすることを意味する。このように単結晶の育成途中に有転位化し多結晶した場合、その部分の長さを限定するのは、長ければ割れが発生しやすいが、短くなれば単結晶部分と多結晶部分の遷移領域における割れの起点の発生が抑止され、割れが発生しなくなるからである。   This is because the progress of dislocation formation depends on the thermal stress at the solid-liquid interface. For example, if the crystal has a diameter of 300 mm, the polycrystalline portion is within 100 mm, and if the diameter is 400 mm, the polycrystalline portion is within 75 mm. Means to. In this way, when dislocations and polycrystals occur during the growth of a single crystal, the length of the portion is limited, but if it is long, cracks are likely to occur, but if it is short, the transition region between the single crystal portion and the polycrystalline portion This is because the generation of crack starting points is suppressed and cracks do not occur.

この有転位化位置からの限定条件は、通常のCZ法における大直径の結晶育成の場合にも割れ発生防止に有効であるが、本発明の製造方法である900〜1100℃の温度域で相当応力を限定した、シリコン結晶の製造方法に適用すればさらに効果がある。   This limiting condition from the dislocation position is effective in preventing cracking even in the case of large-diameter crystal growth in the normal CZ method, but is equivalent in the temperature range of 900 to 1100 ° C. which is the production method of the present invention. It is more effective if applied to a silicon crystal manufacturing method in which stress is limited.

また、本発明の規定内容を直径300mmのシリコン結晶を対象に説明しているが、これらの限定条件は、さらに直径の大きい400mm、またはそれ以上の結晶に適用しても効果のあることはいうまでもない。   Moreover, although the specified contents of the present invention are described for a silicon crystal having a diameter of 300 mm, these limiting conditions are effective even when applied to a crystal having a larger diameter of 400 mm or more. Not too long.

(実施例1)
熱遮蔽体および冷却体を具備した、前記図1に模式的に示す構造のシリコン結晶製造装置を用い、420kgの融液から引き上げ速度を0.6mm/minとし、直径300mm、直胴の長さ550mmの結晶を、同一条件にて4本繰り返し育成する試験をおこなった。
Example 1
Using the silicon crystal manufacturing apparatus having the structure schematically shown in FIG. 1 provided with a heat shield and a cooling body, the pulling rate from the melt of 420 kg is 0.6 mm / min, the diameter is 300 mm, and the length of the straight body A test was conducted in which four 550 mm crystals were repeatedly grown under the same conditions.

育成条件としては、熱遮蔽体11下端の融液面からの距離を60mm一定とし、結晶7の周囲にその表面から120mmの距離に配置した冷却体10の、長さ、下端部の融液面からの位置、および冷却体の表面温度を変えることにより、結晶7内の温度分布を変えた。これらの冷却体条件を表1に示す。   As the growth conditions, the distance from the melt surface at the lower end of the heat shield 11 is fixed to 60 mm, the length of the cooling body 10 arranged around the crystal 7 at a distance of 120 mm from the surface, and the melt surface at the lower end. The temperature distribution in the crystal 7 was changed by changing the position from the surface and the surface temperature of the cooling body. These cooling body conditions are shown in Table 1.

結晶内の温度分布は総合伝熱解析ソフトを用いて推測し、それによって求まる900〜1100℃の範囲内での各方向における応力成分を数値解析し、その応力成分からミーゼスの相当応力に変換して求めた。この温度域における最大の相当応力が、結晶割れを発生させる。得られた応力の値を合わせて表1に示す。   The temperature distribution in the crystal is estimated using comprehensive heat transfer analysis software, and the stress component in each direction within the range of 900 to 1100 ° C. obtained by that is numerically analyzed, and the stress component is converted into Mises equivalent stress. Asked. The maximum equivalent stress in this temperature range causes crystal cracking. The obtained stress values are shown together in Table 1.

Figure 2006213582
Figure 2006213582

いずれの場合も、引き上げ中、胴の長さが400mmになったとき、微小な石英片を融液面に投下して有転位化させた。引き上げ終了後ブロックに切断し、それまでに割れが発生、または割れが検出されたものを割れが発生した結晶とした。この割れ発生の結晶個数を表1に示す。   In either case, during the pulling, when the length of the cylinder reached 400 mm, a minute quartz piece was dropped on the melt surface to cause dislocation. After the completion of the pulling, it was cut into blocks, and a crystal in which cracking occurred or a crack was detected was regarded as a crystal in which cracking occurred. Table 1 shows the number of cracked crystals.

表1の結果から明らかなように、900〜1100℃において結晶内に生じたミーゼスの相当応力が40MPa以上であった場合、4本中4本に割れが発生している。
(実施例2)
実施例1の試験番号2の冷却体条件の製造装置を使用し、引き上げ速度および熱遮蔽体11の下端と融液面との距離を変えて、直径300mm、長さ550mmの結晶を同一条件にて4本繰り返し育成する試験をおこなった。
As is apparent from the results in Table 1, when the equivalent stress of Mises generated in the crystal at 900 to 1100 ° C. is 40 MPa or more, four out of four cracks are generated.
(Example 2)
Using the manufacturing apparatus with the cooling body condition of test number 2 in Example 1, changing the pulling speed and the distance between the lower end of the heat shield 11 and the melt surface, crystals having a diameter of 300 mm and a length of 550 mm were set to the same conditions. The test which raises 4 pieces repeatedly was done.

引き上げ速度および熱遮蔽体下端と融液面間の距離を表2に示す。実施例1と同様にして、900〜1100℃におけるミーゼスの相当応力を求め、400mmにて有転位化させた後、割れ発生の本数を調べた結果を合わせて表2に示す。   Table 2 shows the pulling speed and the distance between the lower end of the heat shield and the melt surface. The equivalent stress of Mises at 900 to 1100 ° C. was obtained in the same manner as in Example 1, and after making the dislocation at 400 mm, the results of examining the number of occurrence of cracks are shown in Table 2.

Figure 2006213582
Figure 2006213582

表2の結果から明らかなように、引き上げ速度および熱遮蔽体位置を変えて相当応力を変えた場合も、相当応力が40MPa以上になると4本中3本まで、割れが発生しており、相当応力が40MPa未満であれば割れが発生していないことが分かる。
(実施例3)
実施例1の試験番号7の冷却体条件の製造装置を使用し、引き上げ速度0.6mm/minで、直径300mmの単結晶を胴の長さ800mmまで育成し、その時点で融液表面に微小石英片を融液面に投下して有転位化させ、その位置からの多結晶化部分の長さを種々変えた後、るつぼを下降させて融液から切り離す育成をおこなった。この場合も先の実施例と同様、同意条件で4本繰り返して育成をおこない、割れ発生本数を調査した。
As is clear from the results in Table 2, even when the equivalent stress was changed by changing the pulling speed and the position of the heat shield, cracks occurred up to three out of four when the equivalent stress was 40 MPa or more. If the stress is less than 40 MPa, it can be seen that no cracks have occurred.
(Example 3)
Using the manufacturing apparatus of the cooling condition of test number 7 of Example 1, a single crystal having a diameter of 300 mm was grown up to a length of 800 mm at a pulling rate of 0.6 mm / min, and at that time, a minute crystal was formed on the melt surface. The quartz piece was dropped on the melt surface to cause dislocation, and after changing the length of the polycrystallized portion from the position, the crucible was lowered and separated from the melt. In this case as well, as in the previous example, the growth was repeated 4 times under the agreed conditions, and the number of cracks was investigated.

結果を表4に合わせて示すが、多結晶部分があれば割れ発生が生じる、900〜1100℃における相当応力が40MPaの育成条件であっても、多結晶部分の長さが結晶径のD(mm)に対し(1/D)×3×104(mm)以下、すなわち100mm以下であれば割れの発生はなく、100mmを超えると割れが発生しやすくなることが明らかになる。 The results are shown in Table 4, and cracking occurs if there is a polycrystalline portion. Even under the growth conditions where the equivalent stress at 900 to 1100 ° C. is 40 MPa, the length of the polycrystalline portion is the crystal diameter D ( It is clear that cracks do not occur if (1 / D) × 3 × 10 4 (mm) or less, that is, 100 mm or less, and cracks tend to occur if the thickness exceeds 100 mm.

Figure 2006213582
Figure 2006213582

本発明のシリコン結晶の製造方法およびその製造装置によれば、CZ法によるシリコン結晶の製造において、引き上げ中および引き上げ後の結晶の割れ発生の抑止に有効である。引き上げられるシリコン結晶の直径が増すほど、割れ発生の危険性が増してくるが、結晶の割れによる不良品の発生を低減できるばかりでなく、引き上げ途中の割れによる事故の発生も抑止でき、コスト低減と安全性向上に大きく寄与することができるので、半導体用ウェーハの製造分野において広く利用することができる。   According to the method and apparatus for manufacturing a silicon crystal of the present invention, it is effective in suppressing the occurrence of crystal cracking during and after pulling in the manufacture of silicon crystal by the CZ method. As the diameter of the silicon crystal that is pulled up increases, the risk of cracking increases, but not only can the occurrence of defective products due to crystal cracking be reduced, but also the occurrence of accidents due to cracking during the pulling can be suppressed, reducing costs. It can greatly contribute to the improvement of safety and can be widely used in the field of manufacturing semiconductor wafers.

本発明が適用できる、熱遮蔽体と冷却体とを備えたシリコン結晶の製造装置の模式的構造を示した図である。It is the figure which showed the typical structure of the manufacturing apparatus of the silicon crystal provided with the heat shielding body and cooling body which can apply this invention.

符号の説明Explanation of symbols

1:断熱材、 2:支持軸
3:加熱ヒーター、 4:るつぼ受け皿
5:石英るつぼ、 6:シリコン融液
7:シリコン育成結晶、 8:引き上げ軸
9:種結晶チャック、10:冷却体
11:熱遮蔽体
DESCRIPTION OF SYMBOLS 1: Heat insulating material 2: Support shaft 3: Heating heater 4: Crucible tray 5: Quartz crucible 6: Silicon melt 7: Silicon growth crystal 8: Pulling shaft 9: Seed crystal chuck 10: Cooling body 11: Heat shield

Claims (5)

チョクラルスキー法によるシリコン結晶を引き上げる際に、育成されつつある結晶の1100〜900℃の温度域における熱応力の値を、ミーゼスの相当応力において40MPa未満として引き上げることを特徴とするシリコン結晶の製造方法。   Production of silicon crystal characterized by raising the value of thermal stress in the temperature range of 1100 to 900 ° C. of the crystal being grown to less than 40 MPa at Mises equivalent stress when pulling up the silicon crystal by the Czochralski method Method. チョクラルスキー法によりシリコン結晶を引き上げる結晶製造装置であって、育成されつつある結晶の1100〜900℃の温度域における熱応力が、ミーゼスの相当応力において40MPa未満となるように、引き上げ中の結晶の周囲に熱遮蔽体および冷却体が配置されていることを特徴とするシリコン結晶の製造装置。   A crystal manufacturing apparatus for pulling up a silicon crystal by the Czochralski method, wherein the crystal being pulled is such that the thermal stress in the temperature range of 1100-900 ° C. of the crystal being grown is less than 40 MPa at Mises equivalent stress. An apparatus for producing a silicon crystal, characterized in that a heat shield and a cooling body are arranged around the substrate. チョクラルスキー法によりシリコン結晶を育成する際、引き上げ途中で有転位化した場合、その有転位化位置からの多結晶部分の長さを結晶直径D(mm)に対し(1/D)×3×104(mm)以下として、融液から切り離すことを特徴とするシリコン結晶の製造方法。 When growing a silicon crystal by the Czochralski method, when dislocations are formed during pulling, the length of the polycrystalline portion from the dislocation position is (1 / D) × 3 with respect to the crystal diameter D (mm). The manufacturing method of the silicon crystal characterized by cut | disconnecting from a melt as x10 < 4 > (mm) or less. 請求項1に記載のシリコン結晶の製造方法において、引き上げ途中で有転位化した場合、その有転位化位置からの多結晶部分の長さを結晶直径D(mm)に対し(1/D)×3×104(mm)以下として、融液から切り離すことを特徴とすることを特徴とするシリコン結晶の製造方法。 In the method for producing a silicon crystal according to claim 1, when dislocations are formed during the pulling, the length of the polycrystalline portion from the dislocation position is (1 / D) × with respect to the crystal diameter D (mm) × The method for producing a silicon crystal, wherein the silicon crystal is separated from the melt as 3 × 10 4 (mm) or less. 育成する結晶の直径が300mm以上であることを特徴とする請求項1、3または4に記載のシリコン結晶の製造方法。
The diameter of the crystal to grow is 300 mm or more, The manufacturing method of the silicon crystal of Claim 1, 3 or 4 characterized by the above-mentioned.
JP2005030436A 2005-02-07 2005-02-07 Method for manufacturing silicon crystal and apparatus for manufacturing the same Active JP4867173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030436A JP4867173B2 (en) 2005-02-07 2005-02-07 Method for manufacturing silicon crystal and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030436A JP4867173B2 (en) 2005-02-07 2005-02-07 Method for manufacturing silicon crystal and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006213582A true JP2006213582A (en) 2006-08-17
JP4867173B2 JP4867173B2 (en) 2012-02-01

Family

ID=36977116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030436A Active JP4867173B2 (en) 2005-02-07 2005-02-07 Method for manufacturing silicon crystal and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4867173B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266090A (en) * 2007-04-24 2008-11-06 Sumco Techxiv株式会社 Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material
JP2009256156A (en) * 2008-04-21 2009-11-05 Sumco Corp Method for growing silicon single crystal
JP2010024129A (en) * 2008-06-16 2010-02-04 Sumco Corp Method of growing silicon single crystal
JP2010037114A (en) * 2008-07-31 2010-02-18 Sumco Corp Method for growing silicon single crystal and method for estimating temperature
JP2011148691A (en) * 2010-01-20 2011-08-04 Siltronic Ag Method for producing semiconductor wafer composed of silicon, which has diameter of at least 450 mm, and semiconductor wafer composed of silicon, which has diameter of 450 mm
JP2013043809A (en) * 2011-08-25 2013-03-04 Shin Etsu Handotai Co Ltd Method for producing carbon-doped silicon single crystal
JP2013519617A (en) * 2010-02-12 2013-05-30 エルジー シルトロン インコーポレイテッド Single crystal cooling apparatus and single crystal growth apparatus including the same
KR20150046055A (en) 2012-08-28 2015-04-29 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137988A (en) * 2000-10-31 2002-05-14 Super Silicon Kenkyusho:Kk Method of pull up single crystal
JP2004010465A (en) * 2002-06-11 2004-01-15 Sumitomo Mitsubishi Silicon Corp Apparatus for growing single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137988A (en) * 2000-10-31 2002-05-14 Super Silicon Kenkyusho:Kk Method of pull up single crystal
JP2004010465A (en) * 2002-06-11 2004-01-15 Sumitomo Mitsubishi Silicon Corp Apparatus for growing single crystal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266090A (en) * 2007-04-24 2008-11-06 Sumco Techxiv株式会社 Silicon crystal material and method for manufacturing fz (floating-zone) silicon single crystal using the material
JP2009256156A (en) * 2008-04-21 2009-11-05 Sumco Corp Method for growing silicon single crystal
JP2010024129A (en) * 2008-06-16 2010-02-04 Sumco Corp Method of growing silicon single crystal
JP2010037114A (en) * 2008-07-31 2010-02-18 Sumco Corp Method for growing silicon single crystal and method for estimating temperature
JP2011148691A (en) * 2010-01-20 2011-08-04 Siltronic Ag Method for producing semiconductor wafer composed of silicon, which has diameter of at least 450 mm, and semiconductor wafer composed of silicon, which has diameter of 450 mm
DE102010005100B4 (en) * 2010-01-20 2016-07-14 Siltronic Ag Process for the production of semiconductor wafers of silicon with a diameter of at least 450 mm
JP2013519617A (en) * 2010-02-12 2013-05-30 エルジー シルトロン インコーポレイテッド Single crystal cooling apparatus and single crystal growth apparatus including the same
JP2013043809A (en) * 2011-08-25 2013-03-04 Shin Etsu Handotai Co Ltd Method for producing carbon-doped silicon single crystal
KR20150046055A (en) 2012-08-28 2015-04-29 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
US10100430B2 (en) 2012-08-28 2018-10-16 Shin-Etsu Handotai Co., Ltd. Method for growing silicon single crystal
DE112013003894B4 (en) 2012-08-28 2021-07-08 Shin-Etsu Handotai Co., Ltd. Method for growing silicon single crystal

Also Published As

Publication number Publication date
JP4867173B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867173B2 (en) Method for manufacturing silicon crystal and apparatus for manufacturing the same
JP5904079B2 (en) Silicon single crystal growing apparatus and silicon single crystal growing method
JP3969766B2 (en) Method for removing dislocations at the neck of a silicon single crystal
TW565897B (en) Production method for anneal wafer
US10100430B2 (en) Method for growing silicon single crystal
JP4821179B2 (en) Method for growing silicon single crystal
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
JP4806974B2 (en) Silicon single crystal growth method
JP5318365B2 (en) Silicon crystal material and method for producing FZ silicon single crystal using the same
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
EP1614774A1 (en) Process for producing single crystal
JP4253841B2 (en) Silicon single crystal growth equipment
JP2010248013A (en) Production method of silicon single crystal
JP2011219300A (en) Method of manufacturing silicon single crystal, and apparatus for pulling silicon single crystal for use for the method
JP2011057460A (en) Method for growing silicon single crystal
JP5500138B2 (en) Method for producing carbon-doped silicon single crystal
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP6737406B2 (en) Indium phosphide single crystal and indium phosphide single crystal substrate
JP6737405B2 (en) Gallium arsenide single crystal and gallium arsenide single crystal substrate
JP5070916B2 (en) Silicon single crystal and silicon wafer
JP4946590B2 (en) Silicon single crystal growth method, evaluation method and production method
JP6354643B2 (en) Method for producing silicon single crystal
JP6052151B2 (en) Method for producing silicon single crystal
KR20110095599A (en) The apparatus against deforming the quartz crucible in the single crystal growth
JP2006069874A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250