JP2013039085A - Method for producing ethanol - Google Patents

Method for producing ethanol Download PDF

Info

Publication number
JP2013039085A
JP2013039085A JP2011178985A JP2011178985A JP2013039085A JP 2013039085 A JP2013039085 A JP 2013039085A JP 2011178985 A JP2011178985 A JP 2011178985A JP 2011178985 A JP2011178985 A JP 2011178985A JP 2013039085 A JP2013039085 A JP 2013039085A
Authority
JP
Japan
Prior art keywords
microalgae
product
ethanol
fermentation
producing ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011178985A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
浩 田中
Kentaro Narai
健太郎 成相
Norimitsu Kaneko
典充 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011178985A priority Critical patent/JP2013039085A/en
Publication of JP2013039085A publication Critical patent/JP2013039085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ethanol in which a supply cost of essential nutrients and required trace elements of fermentation microorganisms is low by using vegetable wastes as a raw material of biomass ethanol.SOLUTION: A saccharified product of a vegetable polysaccharide and a microalgae collapsed product in which protoplasm is released to the outside of a cell are prepared to produce ethanol by ethanol-fermenting the saccharified product using a microorganism in the presence of the microalgae collapsed product. As a supply resource of the essential nutrients and required trace elements of the microorganism, the protoplasm released from the microalgae collapsed product is used.

Description

本発明は、エタノールの製造方法に関し、詳細には、木質や麦藁等の植物質廃材を用いて微生物による発酵によってバイオマスエタノールを生成するエタノールの製造方法に関する。   The present invention relates to a method for producing ethanol, and in particular, relates to a method for producing ethanol by producing biomass ethanol by fermentation using microorganisms using plant waste such as wood or wheat straw.

近年、石油資源の枯渇に対する解決策として、植物質を用いて微生物の発酵によってエタノールを製造するバイオマスエタノールが注目され、実際に製造が始められている。しかし、現在製造されているバイオマスエタノールの原料は、トウモロコシ等の澱粉・糖質を含む穀類であり、これは食料として有用な素材であるため、却って穀類の価格高騰を招くなど、実施を拡大する上で問題がある。   In recent years, biomass ethanol, which produces ethanol by fermentation of microorganisms using plant matter, has attracted attention as a solution to the depletion of petroleum resources, and production has actually started. However, the raw material of biomass ethanol currently produced is cereals containing starch and saccharides such as corn, and this is a useful material for food. There is a problem above.

このようなことから、植物性廃棄物を利用したバイオマスエタノールの生成が検討され、建材などの木質廃材や、麦藁、稲藁、コーンストーバー(トウモロコシの実を除いた茎や葉)などの植物質廃棄物を原料としてセルロースをエタノール発酵する技術の開発が進められている。   For this reason, the production of biomass ethanol using plant waste has been studied, and woody waste materials such as building materials, plant matter such as wheat straw, rice straw, and corn stover (stems and leaves excluding corn) Development of technology for ethanol fermentation of cellulose using waste as a raw material is underway.

バイオマスエタノールの生成には、エタノール発酵を行う酵母が活動・増殖するためにグルコースなどの単糖が必要であるので、酵素を添加して植物質のセルロースを分解して単糖を供給するが、その他にも酵母の活動を正常に維持するために必要な栄養源があり、通常の発酵食品の製造等においては酵母エキスやポリペプトンが使用される。   In order to produce biomass ethanol, monosaccharides such as glucose are required for the yeast that performs ethanol fermentation to be active and proliferate, so enzymes are added to break down cellulose in plants and supply monosaccharides. There are other nutrient sources necessary to maintain normal yeast activity, and yeast extract and polypeptone are used in the production of ordinary fermented foods.

しかし、酵母エキスやポリペプトンを酵母の栄養源として使用すると、生産コストが上昇するため、バイオマスエタノールの商用生産には適さない。このようなことから、代用物として様々な植物性廃棄物の利用が検討されている。例えば、下記特許文献1には、おから、茶粕、コーヒー粕等を添加することが提案されている。   However, when yeast extract or polypeptone is used as a nutrient source for yeast, the production cost increases, so that it is not suitable for commercial production of biomass ethanol. For these reasons, the use of various plant wastes as substitutes has been studied. For example, the following Patent Document 1 proposes adding okara, tea bowl, coffee bowl and the like.

特許第4401735号公報Japanese Patent No. 4401735

特許文献1に提案されるおから等の食品廃棄物は、何れも水分を多く含み、腐敗し易いため、これらを利用するには、腐敗を防止するために、冷蔵等の保管環境や乾燥等の処理設備が必要となり、多量の水分による重量のために輸送コストも嵩む。又、上記の食品廃棄物が生じる食品加工工場は、大都市圏など消費地に近い場所に立地していることが多く、腐敗を防止するためには長距離輸送は好ましくないので、バイオマスエタノールの製造施設を都市近郊に設置する必要が生じる。しかし、バイオマスエタノールの製造施設は、その製造原料である植物質廃棄物が生じる森林や大規模農場等の近辺に設置することが好ましく、食品廃棄物を利用するための輸送や保管に関するコスト等の問題を解決することは困難である。更に、食品廃棄物は、食品に対する嗜好度合によって排出量が変動するので、季節や国民性の違いに左右され、時期によって安定した原料は難しく、海外においては入手が不可能な場合もある。   The food waste such as okara proposed in Patent Document 1 contains a lot of water and is easily rotted. Therefore, in order to use these, the storage environment such as refrigeration or the like is used to prevent rot. And the transportation cost increases due to the weight due to the large amount of water. In addition, food processing factories that produce the above food waste are often located close to consumption areas such as metropolitan areas, and long-distance transportation is not preferable to prevent corruption. Manufacturing facilities need to be installed near the city. However, it is preferable to install biomass ethanol production facilities in the vicinity of forests or large-scale farms where vegetable waste, which is the raw material for production, is produced, and costs related to transportation and storage for using food waste, etc. It is difficult to solve the problem. Furthermore, since the amount of food waste varies depending on the degree of preference for food, depending on the season and national character, stable raw materials are difficult depending on the season and may not be available overseas.

本発明の課題は、上述の問題を解決し、発酵微生物の活動を正常に維持するために必要な栄養等の供給に要するコストが低く、植物質廃棄物のセルロースからバイオマスエタノールを安定して生産可能なエタノールの製造方法を提供することである。   The object of the present invention is to solve the above-mentioned problems and to produce biomass ethanol stably from cellulose as a vegetable waste with low cost required for supplying nutrients and the like necessary for maintaining the activity of fermentation microorganisms normally. It is to provide a method for producing ethanol.

また、本発明の他の課題は、季節や国柄に制限されず、バイオマスエタノールの製造施設の立地条件に適した供給ルートで、発酵微生物の活動を正常に維持するために必要な栄養等を供給可能なエタノールの製造方法を提供することである。   In addition, other problems of the present invention are not limited to seasons and national patterns, and supply nutrients and the like necessary for maintaining normal activity of fermenting microorganisms through a supply route suitable for the location conditions of the biomass ethanol production facility. It is to provide a method for producing ethanol.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、発酵微生物の活動を正常に維持するために必要な栄養等を、藻類を利用して供給可能であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research and found that nutrition and the like necessary for maintaining the activity of fermentation microorganisms normally can be supplied using algae. The present invention has been completed.

本発明の一態様によれば、エタノールの製造方法は、植物質多糖の糖化物と、細胞外へ原形質が解放される微細藻崩壊物とを用意し、前記微細藻崩壊物の存在下で前記糖化物を微生物を用いてエタノール発酵することによって、前記微生物の必須栄養素又は要求微量元素の供給源として前記微細藻崩壊物から開放された原形質を利用可能であることを要旨とする。   According to one aspect of the present invention, a method for producing ethanol comprises preparing a saccharified product of a plant polysaccharide and a microalgae disintegrated material whose cytoplasm is released to the outside of the cell, and in the presence of the microalgae disintegrating material. The gist is that, by subjecting the saccharified product to ethanol fermentation using a microorganism, the protoplasm released from the microalgae collapse can be used as a source of essential nutrients or required trace elements of the microorganism.

本発明によれば、発酵微生物の活動を正常に維持するために必要な栄養源を、季節や国柄、立地条件に制限されずに供給可能なエタノールの製造方法が提供され、バイオマスエタノールの製造施設の立地条件に応じて簡便に実施できるので、経済的に有利である。又、バイオマスとしての植物質廃棄物の利用が促進され、廃棄物処理問題の解消に有用である。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of ethanol which can supply the nutrient source required in order to maintain the activity of fermentation microorganisms normally without being restrict | limited to a season, a national pattern, and location conditions is provided, and the manufacturing facility of biomass ethanol Since it can be carried out easily according to the location conditions, it is economically advantageous. In addition, utilization of plant waste as biomass is promoted, which is useful for solving the waste disposal problem.

植物質廃棄物を利用するバイオマスエタノールの生産においては、植物セルロースの加水分解による糖化物をエタノール発酵する。エタノール発酵の過程では、酵母が活動・増殖するために、グルコースなどの単糖だけでなく、リン、窒素、ビタミン類等の必須栄養素や、Co,Ni,Zn等の要求微量元素が必要であり、酵母はこれらを利用してタンパク質や核酸等の生合成を行う。また、酵母は、その種類によって、ビタミンや一部のアミノ酸を自力で合成できないため、それらを外部から加える必要がある。バイオマスエタノールを生産するために使用される酵母は、ビタミン又はアミノ酸等の合成能力が低いか、或いは、欠如しており、グルコース及び無機塩類(リン、窒素、カルシウム、マグネシウム等)のみの培地ではエタノール生産速度が著しく低下し、酵母の活動を正常に維持するためには、コストのかかる酵母エキスやポリペプトン等を添加して有機成分を供給する必要がある。特に、植物質廃棄物のセルロースをバイオマスとして利用する場合には、上述の有機成分やビタミン類及び無機塩類の供給が重要である。   In the production of biomass ethanol using plant waste, ethanol fermentation is carried out on a saccharified product obtained by hydrolysis of plant cellulose. In the process of ethanol fermentation, not only simple sugars such as glucose but also essential nutrients such as phosphorus, nitrogen and vitamins, and required trace elements such as Co, Ni, and Zn are necessary for yeast to be active and proliferate. Yeast uses these to biosynthesize proteins and nucleic acids. In addition, depending on the type of yeast, vitamins and some amino acids cannot be synthesized by themselves, so it is necessary to add them from the outside. Yeast used to produce biomass ethanol has a low or lack of ability to synthesize vitamins or amino acids, etc., and ethanol in a medium containing only glucose and inorganic salts (phosphorus, nitrogen, calcium, magnesium, etc.) In order to significantly reduce the production rate and maintain the yeast activity normally, it is necessary to add an expensive yeast extract, polypeptone, or the like to supply organic components. In particular, when plant waste cellulose is used as biomass, it is important to supply the above-mentioned organic components, vitamins and inorganic salts.

本発明では、発酵微生物の必須栄養素や要求微量元素となる上述の有機成分や無機塩類等の供給源として、微細藻類の細胞内容物である原形質(特に細胞質)を利用し、微細藻の原形質に含まれる各種有機成分、ミネラル等を微生物が取り込み易い状態で発酵系に供給する。つまり、本発明におけるエタノールの製造方法は、植物質廃棄物を利用して調製される植物多糖類の糖化物と、原形質が細胞外へ容易に解放される微細藻崩壊物とを用意し、微細藻崩壊物の存在下で微生物によって糖化物をエタノール発酵する。以下に、本発明のエタノールの製造方法について詳細に説明する。   In the present invention, a protoplasm (particularly cytoplasm) that is a cell content of microalgae is used as a source of the above-mentioned organic components and inorganic salts that are essential nutrients and required trace elements of fermentation microorganisms. Various organic components and minerals contained in the traits are supplied to the fermentation system in a state where microorganisms can easily be taken up. That is, the method for producing ethanol in the present invention provides a saccharide saccharification product prepared using plant waste, and a microalgae disintegration product whose protoplasm is easily released outside the cell, The saccharified product is ethanol-fermented by microorganisms in the presence of microalgae collapse. Below, the manufacturing method of ethanol of this invention is demonstrated in detail.

藻類において、一部の海藻は食材として利用されるが、微細藻類の利用は比較的限られている。例えば、クロレラ、ナンノクロロプシス、ドナリエラ、ボツリオコッカス、スピルリナ、シゾキトリウム、オーランチオキトリウム、キートセロス・カルシトランス、キートセロス・グラシリス、パブロバ・ルテリ、イソクリシス・ガルバナ等の微細藻類は、現状では、栄養補助食品原料、水生生物の食餌等に利用されるのみであるが、原形質中に生物の成育に有用な成分が豊富に含まれ、発酵微生物の必須栄養素や要求微量元素の供給源として有望であるので、バイオマスとして有用であり、且つ、微細藻類の利用を進めるに当たって食品原料等の価格高騰を招くことがない。また、微細藻類には、海水で生育する種類と淡水で生育する種類とがあり、バイオマスエタノールの生産設備の立地環境に応じて適宜種類を選択して海水又は淡水を利用して微細藻を得ることができるので、沿岸域、平野部及び山間の何れの立地においても利用可能であり、バイオマスエタノールの製造設備の立地を制限しない。   In algae, some seaweed is used as food, but the use of microalgae is relatively limited. For example, microalgae such as Chlorella, Nannochloropsis, Donariella, Botriococcus, Spirulina, Schizochytrium, Aurantiochytrium, Keitoseros calcitrans, Keitoseros gracilis, Pavlova luteri, Isocrisis galvana, etc. It is only used as a raw material for food, aquatic organisms, etc., but it is promising as a source of essential nutrients and required trace elements for fermenting microorganisms because the protoplasm contains abundant ingredients useful for the growth of organisms. Therefore, it is useful as biomass and does not cause an increase in the price of food raw materials and the like when promoting the use of microalgae. In addition, there are two types of microalgae: one that grows in seawater and the other that grows in freshwater. Select the appropriate type according to the location environment of the biomass ethanol production facility and obtain microalgae using seawater or freshwater. Therefore, it can be used at any location in the coastal area, plains, and mountains, and does not limit the location of biomass ethanol production facilities.

本発明においては、上記において例示したような微細藻類に限定されず、微生物の成育に有用な成分を含む微細藻類から適宜選択して利用でき、公知の培養方法に従って増殖させて使用することができる。例えば、クロレラの場合、有機物を含む水を培養液として、暗条件下で曝気しながら無菌的に培養し、必要に応じて塩化アンモニウム、リン酸カリウムなどの無機塩類を添加すると、好適に増殖する(参照:例えば特開平5−284962号公報等)。淡水で生育するクロレラは、光合成によらず、グルコースや酢酸などの有機物で増殖することから、このような微細藻の培養において、発酵液からエタノールを分離回収した後の蒸留残液を培養液として使用すると、残液に残留するグルコース等を有効利用できるので効率が良く、蒸留時の加熱によって滅菌状態にある点も好都合である。ナンノクロロプシスなどの海産性微細藻類は、海水を必要に応じてフィルターで濾過したり紫外線照射によって他の微生物を殺して、培養液として使用する。培養した微細藻は、藻類の細胞の寸法(概して約4μm以上)より小さい孔径のフィルターを用いて適宜濃縮して利用するとよい。或いは、湖沼、河川や港湾、ダム、発電施設近辺の水域等において自然繁殖した微細藻類を収集して利用しても良く、海水、河川水等を取り込んで微細藻をフィルター濾過により分離し、加熱、紫外線照射等の滅菌処理を施して利用することができる。   In the present invention, the present invention is not limited to the microalgae exemplified above, but can be appropriately selected from microalgae containing components useful for the growth of microorganisms and can be used after being grown according to a known culture method. . For example, in the case of Chlorella, water containing organic matter is used as a culture solution and cultured aseptically while aerated under dark conditions. If necessary, inorganic salts such as ammonium chloride and potassium phosphate are added, so that it grows properly. (Reference: For example, Japanese Patent Laid-Open No. 5-284962). Chlorella grown in fresh water grows on organic matter such as glucose and acetic acid, regardless of photosynthesis. In such microalgae culture, the distillation residue after separation and recovery of ethanol from the fermentation broth is used as the culture solution. When used, the glucose remaining in the residual liquid can be effectively used, so that the efficiency is high, and it is advantageous that it is in a sterilized state by heating during distillation. Marine microalgae such as Nannochloropsis are used as a culture solution by filtering seawater with a filter as necessary and killing other microorganisms by ultraviolet irradiation. The cultured microalgae may be appropriately concentrated and used using a filter having a pore size smaller than the size of algal cells (generally about 4 μm or more). Alternatively, microalgae that naturally propagated in lakes, rivers, harbors, dams, water areas in the vicinity of power generation facilities, etc. may be collected and used. It can be used after being subjected to sterilization such as ultraviolet irradiation.

培養又は収集によって得られる微細藻類の原形質中成分を発酵微生物が取り込むには、原形質を細胞外へ解放する必要があるので、微細藻の細胞破砕、つまり、細胞膜や細胞壁の物理的又は化学的な断裂、分解又は溶解を行って細胞の囲みを解き、原形質が細胞外へ流出し易い崩壊状態に加工した後に、この微細藻崩壊物を発酵系に投入する。これにより、発酵微生物である酵母等は、微細藻の原形質に含まれる必須栄養素等を取り込んで増殖・生育に利用しながら、植物多糖類の糖化物をエタノール発酵することができる。微細藻崩壊物は、原形質を開放可能な状態、つまり、原形質の細胞外への流出が容易な状態であれば良く、原形質が細胞外に完全に放出された状態に調製する必要はない。又、細胞膜等を細かく分断したり完全に分解する必要はなく、細胞膜等が少なくとも局所的に開裂又は開口を生じて、細胞外と細胞内とが連通すればよい。従って、微細藻崩壊物の調製は、例えば木質セルロースの糖化のような過酷な反応条件(例えば、180〜300℃程度での加熱)は必要とせず、アミノ酸や有機脂質等の有機物質の分解・変質を避けることができる。   In order for fermenting microorganisms to incorporate the components in the protoplasts of microalgae obtained by culture or collection, the protoplasm must be released to the outside of the cell, so the cells of microalgae are disrupted, that is, the physical or chemical nature of the cell membrane or cell wall. After the cell is unwrapped by performing general tearing, decomposition, or lysis and processed into a collapsed state in which the protoplasm is likely to flow out of the cell, this microalgae disintegration product is put into the fermentation system. Thereby, yeast etc. which are fermentation microorganisms can carry out ethanol fermentation of the saccharide | sugar saccharified plant polysaccharide, taking in the essential nutrients etc. which are contained in the protoplast of a micro algae, and utilizing them for proliferation and growth. The microalgae disintegrates need only be in a state in which the protoplasm can be released, that is, in a state in which the protoplasm can be easily released out of the cell, and it is necessary to prepare the protoplasm in a state in which the protoplasm is completely released outside the cell. Absent. Further, it is not necessary to divide the cell membrane or the like finely or completely decompose it, and the cell membrane or the like may be at least locally cleaved or opened so that the outside and inside of the cell communicate with each other. Therefore, the preparation of a microalgae disintegration product does not require severe reaction conditions such as saccharification of wood cellulose (for example, heating at about 180 to 300 ° C.), and does not require decomposition / decomposition of organic substances such as amino acids and organic lipids. Alteration can be avoided.

微細藻類の細胞膜及び細胞壁を構成する多糖は多様性に富み、セルロース及びヘミセルロースのみならず、マンナン、キシラン、寒天、アルギン酸等の様々な成分が含まれ、藻の種類によって構成が異なるので、藻細胞の強度も異なるが、公知の細胞破砕方法から適宜選択して細胞破砕を行うことができる。物理的破砕方法には、超音波法、凍結融解法、浸透圧ショック法、ビーズや固体粉末等を用いる磨砕法、ホモジナイザーを用いる方法、小孔からの強制押出による剪断力を利用するフレンチプレス法、ガス圧を加える方法などがあり、押圧力・応力歪み、振動、瞬間的な圧力変動、急激な細胞膨張等の物理エネルギーによって細胞壁及び細胞膜を破断する。乾燥状態で磨砕機等による応力歪みを加えると効率的に細胞壁等を破断することができる。細胞壁が薄い又は有さない微細藻は比較的壊れ易く、微細藻の分散液に常法に従って曝気攪拌を行うことによって容易に破砕できる。比較的強度を有する細胞の破砕には、超音波法、フレンチプレス法、ホモジナイザーによる方法、磨砕法などが適している。このような破砕は、例えば、超音波汚泥減量化装置として市販される超音波振動体で細胞破砕を行う装置(株式会社西島製作所性製超音波汚泥減量化装置など)や、高速回転するディスク間の隙間に細胞分散液を供給してディスクに与えられる剪断力及び擦り潰しによって細胞壁を物理的に損傷させる装置(例えば、土木学会論文集、Vol.33、 No.4、351-359頁(2007)参照)、ビーズを充填したミル室に導入した細胞分散液をディスクやピンを備えた攪拌機を用いて高速攪拌することでビーズ間に生じる剪断摩擦力により細胞を破砕する装置(例えば、月刊地球環境、Vol.31、 No.11、134-135頁(2000)参照)、などを利用して好適に実施できる。化学的破砕方法には、酵素消化法、界面活性剤用いる方法、強酸又は強塩基を接触させて多糖を加水分解する方法などがある。あるいは、熱的に細胞壁を溶解又は分解することによって原形質を細胞外へ解放することが可能であり、具体的には、水性液中で100〜120℃程度の加熱、好ましくはオートクレーブを用いた加圧下での100〜120℃程度の加熱を5〜15分程度施して細胞膜等を構成する多糖の結合を開裂させて細胞膜等を軟弱化させることにより容易に破断して細胞が崩壊する。上記のような温度範囲での熱的な細胞破砕においては、原形質に含まれる酵素類の失活や、タンパク質等の高分子量有機化合物の加水分解による低分子量化は生じるが、アミノ酸等の低分子量化合物の分解は進行し難い。これは、酵母などの微生物が自己の酵素を用いて分解する必要がなく利用し易い成分の増加であるので、利点となる。加熱温度が200℃近辺になると、アミノ酸等の低分子量化合物もアンモニア、二酸化炭素等への分解が容易に進行するようになるので、過剰な熱を与えないことが肝要である。   The polysaccharides that make up the cell membrane and cell wall of microalgae are rich in diversity, and contain various components such as mannan, xylan, agar, and alginic acid as well as cellulose and hemicellulose. Although the strength of each cell is different, cell disruption can be performed by appropriately selecting from known cell disruption methods. For physical crushing methods, ultrasonic method, freeze-thaw method, osmotic shock method, grinding method using beads or solid powder, method using homogenizer, French press method using shear force by forced extrusion from small holes There is a method of applying gas pressure, and the cell wall and the cell membrane are broken by physical energy such as pressing force / stress distortion, vibration, instantaneous pressure fluctuation, and rapid cell expansion. When stress strain is applied by a grinder or the like in a dry state, the cell wall or the like can be efficiently broken. Microalgae with thin or no cell walls are relatively fragile and can be easily crushed by aeration and stirring of a dispersion of microalgae according to a conventional method. An ultrasonic method, a French press method, a homogenizer method, a grinding method, and the like are suitable for disrupting cells having relatively high strength. Such crushing is performed by, for example, a device for crushing cells with an ultrasonic vibrator commercially available as an ultrasonic sludge reduction device (such as an ultrasonic sludge reduction device manufactured by Nishijima Seisakusho Co., Ltd.) or between disks rotating at high speed. A device for physically damaging the cell wall by supplying a cell dispersion liquid to the gap between the cells and shearing force applied to the disk and crushing (for example, JSCE, Vol.33, No.4, pages 351-359 (2007 )), A device that crushes cells by shear friction generated between beads by high-speed stirring of the cell dispersion introduced into the mill chamber filled with beads using a stirrer equipped with a disk or pin (for example, monthly Earth Environment, Vol.31, No.11, see pages 134-135 (2000)). Chemical crushing methods include enzyme digestion, a method using a surfactant, and a method in which a polysaccharide is hydrolyzed by contacting with a strong acid or a strong base. Alternatively, the protoplasm can be released to the outside of the cell by thermally lysing or decomposing the cell wall, specifically, heating at about 100 to 120 ° C. in an aqueous solution, preferably using an autoclave. By heating at about 100 to 120 ° C. under pressure for about 5 to 15 minutes to cleave the bonds of polysaccharides constituting the cell membrane and so on to soften the cell membrane and the like, the cell membrane and the like are easily broken and the cells collapse. In the thermal cell disruption in the temperature range as described above, inactivation of enzymes contained in the protoplasm and reduction of molecular weight due to hydrolysis of high molecular weight organic compounds such as proteins occur. Decomposition of molecular weight compounds is difficult to proceed. This is an advantage because microorganisms such as yeast do not need to be decomposed using their own enzymes and are easy to use. When the heating temperature is around 200 ° C., low molecular weight compounds such as amino acids are easily decomposed into ammonia, carbon dioxide and the like, so it is important not to give excessive heat.

機械的に微細藻崩壊物を調製し易いものとしては、例えば、クロレラ・ブルガリス、ナンノクロロプシス、ドナリエラ、パブロバ・ルテリ等が挙げられ、クロレラ・ブルガリス、ナンノクロロプシス及びパブロバ・ルテリは細胞壁が壊れ易く、ドナリエラは細胞壁をもたない。通常、上述のような物理的又は化学的な破砕処理を微細藻に施すと、少なくとも一部の原形質は細胞外に溶出した懸濁状の微細藻崩壊物が得られる。原形質の流出は、例えば窒素分析やリン分析等によって確認できる。   Examples of materials that can easily prepare a microalgae disintegration include Chlorella vulgaris, Nannochloropsis, Donariella, Pavlova luteri, etc., and Chlorella vulgaris, Nannochloropsis and Pavlova luteri are cell walls. Is fragile and Donariella does not have a cell wall. Usually, when a physical or chemical disruption treatment as described above is applied to a microalgae, a suspended microalgae collapsed product in which at least a part of the protoplasm is eluted out of the cell is obtained. The outflow of protoplasm can be confirmed by, for example, nitrogen analysis or phosphorus analysis.

上記のような方法によって破砕処理すると、効率的に微細藻崩壊物を得ることができる。上述の破砕処理は、培養した微細藻が懸濁状態で含まれる水性液を、予め2質量%〜20質量%程度(乾燥質量換算)に濃縮した後に行うと効率的である。微細藻の濃縮は、例えば、遠心分離、凝集沈殿、ろ過、浮上分離等を利用して行うことができる。海水は、遠心分離を行ってもさほど濃縮されないので、海水で培養される微細藻も、遠心分離器等を用いて良好に濃縮できる。また、発酵系に対する海水塩分の影響に関し、1重量%程度の塩分濃度では発酵に悪影響は生じないが、この点を考慮して、発酵系の塩分濃度を過度に増加させないように微細藻培養液を濃縮して利用することが好ましい。   When the crushing process is performed by the method as described above, a microalgae collapse product can be obtained efficiently. The above-mentioned crushing treatment is efficient when the aqueous liquid containing the cultured microalgae in a suspended state is preliminarily concentrated to about 2% by mass to 20% by mass (in terms of dry mass). Concentration of microalgae can be performed using, for example, centrifugation, coagulation sedimentation, filtration, flotation separation and the like. Since seawater is not so concentrated even if it is centrifuged, microalgae cultured in seawater can be well concentrated using a centrifuge or the like. In addition, regarding the influence of seawater salinity on the fermentation system, a salt concentration of about 1% by weight does not adversely affect the fermentation, but in consideration of this point, the microalga culture solution is used so as not to excessively increase the salt concentration of the fermentation system. It is preferable to concentrate and use.

微細藻類の原形質は、カルシウム、鉄、マグネシウム、亜鉛、銅、カリウム等の各種ミネラル分や、リジン、ロイシン、イソロイシン、フェニルアラニン、スレオニン、バリン、アルギニン、アラニン、アスパラギン酸、グルタミン酸、グリシン等のアミノ酸類を含むだけでなく、種類によって、カロテン、ビタミンB1,B2,B6,B12,D,E,K1、ナイアシン、葉酸等のビタミン類、タンパク質、脂質、脂肪酸などを含む。また、クロレラやナンノクロロプシスからは、パルミチン酸、リノール酸、エイコサペンタエン酸等の飽和又は不飽和脂肪酸が得られ、スピルリナからはタンパク質が得られ、ドナリエラはビタミンAに富んでいる。従って、微細藻崩壊物を発酵系に供給すると、発酵微生物の必須栄養素や要求微量元素等の供給源となり、木質廃材や稲藁等の植物性廃棄物をバイオマス原料として調製されるセルロース及びセミヘルロースの加水分解糖化物を糖資源とする場合に不足する栄養素や元素が供給され、エタノール発酵を好適に進めることができる。微細藻崩壊物は、そのまま発酵液に投入して使用することができ、微細藻崩壊物の細胞壁や細胞膜は、発酵の障害とはならない。あるいは、微細藻崩壊物の懸濁液を圧搾又は攪拌して原形質の放出を促進したり、濾別、抽出等によって原形質成分を崩壊物から分離して使用しても良い。例えば、微細藻崩壊物を含む水性液を、藻類細胞の寸法(概して約4μm以上)より小さい孔径のフィルターを通過させることによって、原形質成分を含む水性液が得られる。作業効率の点からは、微細藻崩壊物はそのまま発酵液に投入して使用し、発酵時に酵母が過増殖して余剰酵母が発生した際に、余剰酵母と共に微細藻崩壊物の細胞壁や細胞膜の分離除去を行うとよい。分離除去は、遠心分離、凝集沈殿などによる固液分離を利用することができる。   The protoplasm of microalgae consists of various minerals such as calcium, iron, magnesium, zinc, copper and potassium, and amino acids such as lysine, leucine, isoleucine, phenylalanine, threonine, valine, arginine, alanine, aspartic acid, glutamic acid and glycine. Depending on the type, vitamins such as carotene, vitamins B1, B2, B6, B12, D, E, K1, niacin, folic acid, proteins, lipids, fatty acids, and the like are included. Chlorella and Nannochloropsis provide saturated or unsaturated fatty acids such as palmitic acid, linoleic acid, eicosapentaenoic acid, spirulina provides protein, and Donariella is rich in vitamin A. Therefore, if microalgae disintegration material is supplied to the fermentation system, it becomes a source of essential nutrients and required trace elements of fermentation microorganisms, and cellulose and semi-herulose prepared from biomass waste such as wood waste and rice straw are used as biomass raw materials. Nutrients and elements that are insufficient when the hydrolyzed saccharified product is used as a sugar resource are supplied, and ethanol fermentation can be suitably carried out. The microalgae disintegration product can be used as it is in the fermentation broth, and the cell wall and cell membrane of the microalgae disintegration product do not hinder fermentation. Alternatively, the suspension of the microalgae collapsed product may be pressed or stirred to promote the release of the protoplasm, or the protoplasmic component may be separated from the collapsed product by filtration, extraction or the like. For example, an aqueous liquid containing a protoplasmic component can be obtained by passing an aqueous liquid containing a microalgae disintegrant through a filter having a pore size smaller than the size of algal cells (generally about 4 μm or more). From the viewpoint of work efficiency, the microalgae disintegration product is used as it is by adding it to the fermentation broth, and when the yeast overgrowth during the fermentation and surplus yeast is generated, together with the surplus yeast, the cell wall and cell membrane of the microalgae disintegration product Separation and removal may be performed. Separation and removal can use solid-liquid separation by centrifugation, coagulation sedimentation, or the like.

エタノール発酵の糖資源は、植物性廃棄物からセルロース及びセミヘルロースの加水分解糖化物を調製する周知の技術によって得られる。一般に行われているバイオマスの糖化技術には、水の存在下で高温及び高圧(例えば、温度200℃程度、圧力8MPa)に曝す方法、酵素を用いて加水分解する方法、酸又はアルカリを用いて加水分解する方法などがあり、何れを利用したものでもよく、木質の場合は適宜リグニンの除去を行って糖化すればよい。工業的には、硫酸、塩酸、硝酸等を用いた酸加水分解法が有用であり、硫酸を用いる方法が実用的である。例えば、硫酸を用いて加水分解する場合、1〜10質量%濃度の硫酸水溶液中で、バイオマス原料を100〜250℃に10〜100分間程度加熱することによって加水分解し、水酸化カルシウム、水酸化ナトリウム等を用いて中和処理した後に、この糖化物を含んだ液を発酵原料として使用することができる。   The sugar resource for ethanol fermentation is obtained by well-known techniques for preparing hydrolyzed saccharified cellulose and semi-herulose from plant waste. Generally used biomass saccharification techniques include exposure to high temperature and high pressure (for example, temperature of about 200 ° C., pressure of 8 MPa) in the presence of water, hydrolysis using an enzyme, and acid or alkali. There are methods for hydrolysis, and any of them may be used. In the case of wood, lignin may be appropriately removed for saccharification. Industrially, an acid hydrolysis method using sulfuric acid, hydrochloric acid, nitric acid or the like is useful, and a method using sulfuric acid is practical. For example, when hydrolyzing with sulfuric acid, it is hydrolyzed by heating the biomass raw material to 100 to 250 ° C. for about 10 to 100 minutes in an aqueous sulfuric acid solution having a concentration of 1 to 10% by mass to obtain calcium hydroxide and hydroxide. After neutralizing with sodium or the like, the liquid containing the saccharified product can be used as a fermentation raw material.

エタノール発酵に利用する発酵微生物としては、公知の酵母を用いることができ、例えば、サッカロミセス・セルビシエ、シゾサッカロミセス・ポンベ、ブレタノミセス・クステルシィ、サルシナ・ベントリクリ、クリュイベロミセス・フラジリス、ザイモモナス・モビリス、クルイベロミセス・マルキシアヌス等が挙げられる。また、エタノールへの変換能を有する酵素遺伝子を遺伝子組換えにより導入した細菌を利用してもよい。尚、クロストリジウム・アセトブチリカム、クロストリジウム・ベイジェリンキ、クロストリジウム・オーランチブチリカム、クロストリジウム・テタノモーファム等の微生物を用いると、発酵によってブタノール等のアルコールやアセトンの製造が可能である。   Known yeasts can be used as fermenting microorganisms used for ethanol fermentation, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Brettanomyces coustersii, Sarsina ventricli, Kluyveromyces fragilis, Zymomonas mobilis, Kuru. Examples include Iberomyces marxianus. Moreover, you may utilize the bacterium which introduce | transduced the enzyme gene which has the conversion ability to ethanol by gene recombination. When microorganisms such as Clostridium acetobutylicum, Clostridium beigerinki, Clostridium auran butyricum, Clostridium tetanomorphum are used, alcohol such as butanol and acetone can be produced by fermentation.

物理的細胞破砕によって調製した微細藻崩壊物を用いる場合、発酵系における微生物の栄養利用を促進可能な形態として、凝集性酵母(例えば、田中浩等、「高効率バイオエタノール生産リアクタの開発」、IHI技法、Vol.50、No.1(2010)、11-17頁参照)の利用がある。凝集性酵母は、細胞同士が付着しながら増殖して酵母及び微生物群の凝集体を形成するので、微生物間の距離が短く、近辺の微生物群の加水分解酵素による分解生成物を酵母が栄養源として利用し易い。物理的細胞破砕によって崩壊した微細藻の原形質に含まれるタンパク質等の水に難溶性の高分子化合物は、発酵微生物又は他の微生物が有する加水分解酵素によって分解・低分子化して利用可能となるので、凝集性酵母を用いると、近辺の微生物群の加水分解酵素によって分解されたアミノ酸等を酵母が栄養源として容易に利用できるので、発酵効率の向上に有利である。また、沈降性がよいので、発酵後の固液分離においても好都合である。   When using a microalgae disruption prepared by physical cell disruption, as a form that can promote nutrient utilization of microorganisms in the fermentation system, aggregating yeast (for example, Hiroshi Tanaka et al., “Development of a highly efficient bioethanol production reactor”, IHI technique, Vol.50, No.1 (2010), see pages 11-17). Aggregating yeast grows with cells adhering to form aggregates of yeast and microbial groups, so the distance between the microorganisms is short, and the yeast is the source of nutrients for the degradation products of the nearby microbial groups. Easy to use as. Highly water-insoluble polymer compounds such as proteins contained in the protoplasts of microalgae that have been disrupted by physical cell disruption can be used after being degraded and reduced in molecular weight by hydrolytic enzymes possessed by fermentation microorganisms or other microorganisms. Therefore, the use of flocculent yeast is advantageous in improving fermentation efficiency because the yeast can easily use amino acids and the like decomposed by hydrolyzing enzymes of nearby microorganisms as nutrient sources. Moreover, since sedimentation is good, it is convenient also in solid-liquid separation after fermentation.

発酵用原液として、バイオマス原料から得られる糖化物、及び、前述の微細藻崩壊物を水に添加した水性液を調製し、上記発酵微生物を接種して発酵することにより、バイオマスエタノールが生成する。原液は、糖化物(グルコース)濃度が1〜20質量%程度、好ましくは10質量%程度となるように調製し、微細藻崩壊物の添加量(乾燥物換算)は、発酵微生物の種類等に応じて適宜調節することが好ましいが、概して0.1〜1質量%程度、好ましくは0.2〜0.5質量%程度の濃度になるように原液を調整するとよい。微細藻崩壊物から原形質を分離・抽出して使用する場合には、上記割合に相当する量の微細藻崩壊物から細胞壁等を除去して得られる原形質を含む液を使用すればよい。   As a fermentation stock solution, a saccharified product obtained from a biomass raw material and an aqueous solution obtained by adding the aforementioned microalgae collapsed product to water are prepared, and biomass ethanol is produced by inoculating and fermenting the fermenting microorganism. The stock solution is prepared so that the saccharified product (glucose) concentration is about 1 to 20% by mass, preferably about 10% by mass, and the amount of microalgae disintegration added (in terms of dry matter) depends on the type of fermenting microorganism. It is preferable to adjust accordingly, but the stock solution may be adjusted so that the concentration is generally about 0.1 to 1% by mass, preferably about 0.2 to 0.5% by mass. When separating and extracting the protoplasm from the microalgae disintegration product, a liquid containing the protoplasm obtained by removing the cell wall or the like from the microalgae disintegration in an amount corresponding to the above ratio may be used.

原液の初期pHを2.5〜5.5程度、好ましくは3.0〜5.5程度に調整し、発酵微生物を1〜30g/L程度の割合で接種して、温度30〜37℃程度に2〜48時間程度保持することによって発酵が進行する。微細藻崩壊物を配合した原液は、栄養素等を追加補充する必要がなく、酵母エキスやポリペプトンを使用せずに良好に発酵を進めることができる。例えば、グルコース濃度が10質量%程度の原液を用いて、20〜25g-エタノール/(L・h)程度の速度でエタノールを生産することができる。   The initial pH of the stock solution is adjusted to about 2.5 to 5.5, preferably about 3.0 to 5.5, inoculated with fermenting microorganisms at a rate of about 1 to 30 g / L, and the temperature is about 30 to 37 ° C. The fermentation proceeds by holding for about 2 to 48 hours. The stock solution in which the microalgae disintegrated material is blended does not need to be supplemented with nutrients and the like, and the fermentation can proceed well without using yeast extract or polypeptone. For example, ethanol can be produced at a rate of about 20 to 25 g-ethanol / (L · h) using a stock solution having a glucose concentration of about 10% by mass.

得られた発酵液は、常法に従って、固形分散物を濾過等によって除去した後に濾液を蒸留することによってエタノールが回収される。エタノール回収後の蒸留残液には、グルコース等の残留糖分や有機物、無機塩類等が含まれ、また、蒸留時の加熱によって無菌的状態となっているので、微細藻の培養液として好適に利用できる。従って、淡水で生育するクロレラ等の微細藻を蒸留残液に接種して培養し、増殖した微細藻を新たな発酵用原液の栄養供給源として使用すればよい。或いは、蒸留残液を濃縮して、海産性微細藻の培養液又は発酵液に添加してもよい。また、発酵後に発酵液から固形分散物を除去せずにそのまま蒸留しても良く、この場合、蒸留残液には発酵微生物及び微細藻の細胞膜等が含まれるが、これらをフィルター濾過等によって分離して、糖化物原料である植物性バイオマスと共に糖化処理を行うと、容易に加水分解するので糖資源として使用可能である。微細藻崩壊物から原形質を分離・抽出して使用する場合や、発酵液から固形分産物を分離する場合においても、除去された微細藻の細胞壁等の固形物は、植物性バイオマスの糖化工程に導入すれば良い。   In the obtained fermentation broth, ethanol is recovered by distilling the filtrate after removing the solid dispersion by filtration or the like according to a conventional method. Distilled residue after ethanol recovery contains residual sugars such as glucose, organic matter, inorganic salts, etc., and since it is in a sterile state by heating during distillation, it is suitably used as a culture solution for microalgae. it can. Therefore, microalgae such as chlorella grown in fresh water may be inoculated into the distillation residue and cultured, and the proliferated microalgae may be used as a nutrient source for a new fermentation stock solution. Alternatively, the distillation residue may be concentrated and added to a marine microalga culture or fermentation broth. Further, after fermentation, the solid dispersion may be distilled as it is without removing the solid dispersion from the fermentation liquid. In this case, the distillation residual liquid contains fermentation microorganisms and cell membranes of microalgae, but these are separated by filtration or the like. Then, when saccharification treatment is performed together with plant biomass which is a saccharified raw material, it is easily hydrolyzed and can be used as a sugar resource. When separating and extracting protoplasms from microalgae breakdown products or when separating solid products from fermentation broth, the solid matter such as cell walls of microalgae removed is a saccharification process for plant biomass. Should be introduced.

<クロレラを用いたエタノール発酵>
(木質廃材の糖化)
建築廃材の木質1kgを細かく裁断し、2質量%水酸化ナトリウム水溶液1000mlを加えて100℃に30分間保持し、リグニンを分解溶出させることによって除去し、クラフトパルプを調製した。細孔径0.1μmのガラス繊維濾紙と5Lの蒸留水を用いてパルプを洗浄した後、105℃で乾燥させた。このパルプに硫酸濃度1.5質量%の希硫酸1000mlを加えて、8MPaの加圧下で200℃に加熱して糖化した後、添加した硫酸よりやや多いモル量の炭酸カルシウムを添加して硫酸分を沈殿として除去して、以下のエタノール発酵の原料糖化物として用いた。
<Ethanol fermentation using chlorella>
(Saccharification of wood waste)
A 1 kg piece of wood from building waste was cut into fine pieces, 1000 ml of a 2% by weight aqueous sodium hydroxide solution was added, and the mixture was kept at 100 ° C. for 30 minutes, and removed by decomposing and eluting lignin to prepare kraft pulp. The pulp was washed with glass fiber filter paper having a pore size of 0.1 μm and 5 L of distilled water, and then dried at 105 ° C. To this pulp, 1000 ml of dilute sulfuric acid having a sulfuric acid concentration of 1.5% by mass was added and heated to 200 ° C. under a pressure of 8 MPa to saccharify, and then a slightly larger molar amount of calcium carbonate than the added sulfuric acid was added. Was removed as a precipitate and used as a raw material saccharified product for the following ethanol fermentation.

(クロレラの培養及び崩壊物の調製1)
前記糖化物の一部を水道水に溶解して、グルコース濃度が1質量%の水溶液1Lとなるように調製し、0.2gのKNO、0.2gのCaCl、0.3gのMgSO、0.4gのクエン酸及び0.1gのクエン酸鉄を加えて培養液とし、クロレラ(クロレラ工業製、生クロレラ−V12)4g(乾燥質量換算)を接種して20℃で暗条件下で1日間培養した。この培養液を遠心分離器で10質量%程度(乾燥質量換算)に濃縮した後に、オートクレーブ中で120℃に10分間加熱した。得られた水性懸濁液を細孔径0.1μmのガラスフィルタでろ過してリン及び窒素の濃度を測定したところ、ろ液は、リン濃度が100mg-P/L以上、窒素濃度が500mg-N/L以上であり、加熱後の水性懸濁液は、原形質の溶出が明らかなクロレラ崩壊物の分散水性液であった。
(Chlorella culture and disintegration preparation 1)
A part of the saccharified product is dissolved in tap water to prepare 1 L of an aqueous solution having a glucose concentration of 1% by mass, 0.2 g of KNO 3 , 0.2 g of CaCl 2 , 0.3 g of MgSO 4. , 0.4 g of citric acid and 0.1 g of iron citrate were added to prepare a culture solution, and 4 g of chlorella (manufactured by Chlorella Kogyo Co., Ltd., raw chlorella V12) (in terms of dry mass) was inoculated under dark conditions at 20 ° C. Cultured for 1 day. This culture solution was concentrated to about 10% by mass (in terms of dry mass) with a centrifuge, and then heated to 120 ° C. for 10 minutes in an autoclave. The obtained aqueous suspension was filtered through a glass filter having a pore size of 0.1 μm and the concentrations of phosphorus and nitrogen were measured. The filtrate had a phosphorus concentration of 100 mg-P / L or more and a nitrogen concentration of 500 mg-N. / L or more, and the aqueous suspension after heating was a dispersion aqueous solution of a chlorella disintegrant in which elution of protoplasm was evident.

(エタノール発酵及びエタノールの回収)
糖化物(グルコース)濃度が10質量%、クロレラ崩壊物の濃度が0.5質量%程度になるように、前記糖化物及びクロレラ崩壊物分散液を秤量して蒸留水1Lに添加し、塩酸及び水酸化ナトリウムを用いてpHを5.0〜5.5程度に調整した。これを発酵用原液として、酵母(凝集性酵母Saccharomyces cerevisiae NCYC1119)を乾燥質量で5g接種して、約25℃で約48時間嫌気発酵した。
(Ethanol fermentation and ethanol recovery)
The saccharified product and chlorella disintegrant dispersion are weighed and added to 1 L of distilled water so that the concentration of saccharified product (glucose) is about 10% by mass and the concentration of chlorella disintegrated product is about 0.5% by mass. The pH was adjusted to about 5.0 to 5.5 using sodium hydroxide. Using this as a fermentation stock solution, 5 g of yeast (aggregating yeast Saccharomyces cerevisiae NCYC1119) was inoculated at a dry mass, and subjected to anaerobic fermentation at about 25 ° C. for about 48 hours.

得られた発酵液に含まれるエタノールを蒸留器を用いて精留・凝縮してエタノール35gを得た。   Ethanol contained in the obtained fermentation broth was rectified and condensed using a distiller to obtain 35 g of ethanol.

(クロレラの培養及び崩壊物の調製2)
蒸留器から蒸留残液10gを回収し、蒸留水0.99Lを加えて培養液とし、クロレラ(クロレラ工業製、生クロレラ−V12)4g(乾燥質量換算)を接種して20℃で室内照明下、10日間培養した。この培養液を遠心分離器で20倍程度に濃縮し、約10質量%(乾燥質量換算)となったクロレラ分散液を、オートクレーブ中で120℃に10分間加熱してクロレラ崩壊物を得た。このクロレラ崩壊物を用いて、前述と同様にエタノール発酵及び蒸留を行ったところ、エタノール38gが得られた。
(Chlorella culture and disintegration preparation 2)
10g of distillation residue was recovered from the distiller, and 0.99L of distilled water was added to make a culture solution. 4g of chlorella (Chlorella Kogyo Co., Ltd., raw chlorella-V12) was inoculated and converted to room temperature at 20 ° C. Cultured for 10 days. This culture solution was concentrated about 20 times with a centrifuge, and the chlorella dispersion, which was about 10% by mass (in terms of dry mass), was heated to 120 ° C. for 10 minutes in an autoclave to obtain a chlorella disintegrated product. Using this chlorella decay product, ethanol fermentation and distillation were performed in the same manner as described above, and 38 g of ethanol was obtained.

<ナンノクロロプシスを用いたエタノール発酵>
(ナンノクロロプシスの培養及び崩壊物の調製)
海水を採取し、孔径0.1μmのフィルターによる濾過及び紫外線照射によって海水中の生物除去・滅菌処理を行った。
<Ethanol fermentation using Nannochloropsis>
(Nannochloropsis culture and preparation of disintegration)
Seawater was collected, and biological removal and sterilization treatment in seawater was performed by filtration through a filter having a pore diameter of 0.1 μm and irradiation with ultraviolet rays.

この海水1Lに、1gのKNO、0.2gのKHPO、0.2gのCaCl、0.3gのMgSO、0.4gのクエン酸及び0.1gのクエン酸鉄を加えて培養液とし、ナンノクロロプシス(クロレラ工業製、冷蔵ナンノ・ヤンマリンK−1)1g(乾燥質量換算)を接種して、室内照明下において約20℃で20日間培養した。この培養液を遠心分離器で10倍程度に濃縮し、約10質量%(乾燥質量換算)となったナンノクロロプシス分散液を、オートクレーブ中で120℃に10分間加熱した。この水性懸濁液を、細孔径0.1μmのガラスフィルタでろ過してリン及び窒素の濃度を測定したところ、ろ液は、リン濃度が100mg-P/L以上、窒素濃度が500mg-N/L以上であり、加熱による原形質の溶出が明らかであった。 To 1 L of this seawater, add 1 g KNO 3 , 0.2 g K 2 HPO 4 , 0.2 g CaCl 2 , 0.3 g MgSO 4 , 0.4 g citric acid and 0.1 g iron citrate. As a culture solution, 1 g of Nannochloropsis (Chlorella Kogyo, refrigerated Nanno Yanmarine K-1) (in terms of dry mass) was inoculated and cultured at about 20 ° C. for 20 days under room lighting. The culture broth was concentrated about 10 times with a centrifuge, and the Nannochloropsis dispersion, which was about 10% by mass (in terms of dry mass), was heated to 120 ° C. for 10 minutes in an autoclave. When this aqueous suspension was filtered through a glass filter having a pore size of 0.1 μm and the concentrations of phosphorus and nitrogen were measured, the filtrate had a phosphorus concentration of 100 mg-P / L or more and a nitrogen concentration of 500 mg-N / L. L was greater than or equal to L, and elution of the protoplasm upon heating was apparent.

(エタノール発酵及びエタノールの回収)
糖化物(グルコース)濃度が10質量%、ナンノクロロプシス崩壊物(乾燥質量換算)の濃度が0.5質量%程度となるように、実施例1で調製した糖化物及び上述に従って調製したナンノクロロプシス崩壊物分散液を秤量して蒸留水1Lに添加し、塩酸及び水酸化ナトリウムを用いてpHを5.0〜5.5程度に調整した。これを発酵原液として、酵母(凝集性酵母Saccharomyces cerevisiae NCYC1119)を乾燥質量で5g接種して、約25℃で約48時間嫌気発酵した。
(Ethanol fermentation and ethanol recovery)
The saccharified product prepared in Example 1 and the nannochloro prepared according to the above so that the saccharified product (glucose) concentration was 10% by mass and the concentration of the nannochloropsis disintegrated product (in terms of dry mass) was about 0.5% by mass. The psis disintegrant dispersion was weighed and added to 1 L of distilled water, and the pH was adjusted to about 5.0 to 5.5 using hydrochloric acid and sodium hydroxide. Using this as a fermentation stock solution, 5 g of yeast (aggregating yeast Saccharomyces cerevisiae NCYC1119) was inoculated at a dry mass and subjected to anaerobic fermentation at about 25 ° C. for about 48 hours.

得られた発酵液に含まれるエタノールを蒸留器を用いて精留・凝縮してエタノール35gを得た。   Ethanol contained in the obtained fermentation broth was rectified and condensed using a distiller to obtain 35 g of ethanol.

(ナンノクロロプシスの培養及び崩壊物の調製2)
蒸留器から蒸留残液1000gを回収し、孔径0.1μmのフィルターで濾過し、フィルター上の残分50g(乾燥質量)と、濾液950gとに分離した。フィルター上の残渣分50gは、木質廃材に加えて、新たな糖化物の調製に使用した。
(Nannochloropsis culture and preparation of disintegration 2)
1000 g of distillation residue was recovered from the distiller, filtered through a filter having a pore size of 0.1 μm, and separated into 50 g (dry mass) of the residue on the filter and 950 g of filtrate. The residue on the filter, 50 g, was used to prepare a new saccharified product in addition to the wood waste.

濾液の水分を留去して濃縮し、生物除去・滅菌処理後の海水1Lを加えて培養液とし、ナンノクロロプシス(クロレラ工業製、冷蔵ナンノ・ヤンマリンK−1)1gを接種して室内照明下において40時間培養したところ、ナンノクロロプシスは約2g(乾燥質量換算)に増殖が可能であった。この培養液を遠心分離器で同様に濃縮して、オートクレーブ中で120℃に10分間加熱することによって、ナンノクロロプシス崩壊物を得た。このナンノクロロプシス崩壊物を用いて、前述と同様にエタノール発酵及びエタノール回収が可能であり、エタノール34gを得た。   Water from the filtrate was distilled off and concentrated, and 1 L of seawater after biological removal and sterilization was added to make a culture solution, inoculated with 1 g of Nannochloropsis (Chlorella Kogyo, refrigerated Nanno Yanmarine K-1), and indoor lighting When cultured for 40 hours under the condition, Nannochloropsis was able to grow to about 2 g (in terms of dry mass). The culture broth was similarly concentrated in a centrifuge and heated to 120 ° C. for 10 minutes in an autoclave to obtain a nonnochloropsis disintegrant. Using this Nannochloropsis decay product, ethanol fermentation and ethanol recovery were possible as described above, and 34 g of ethanol was obtained.

<稲ワラのエタノール発酵>
粉砕した稲ワラを過熱水蒸気とともに200℃で3分間加熱して、ヘミセルロースを糖化した後、残渣を水洗してクラフトパルプを得た。このクラフトパルプが乾燥質量で10%となるように蒸留水を加え、セルラーゼを5質量%となるように添加して50℃に48時間保持して糖化物を得た。この糖化物を用いて、実施例1と同様に、クロレラ崩壊物を添加した発酵用原液を調製して酵母を接種し、発酵を行った。得られた発酵液の蒸留によってエタノールを39g得た。
<Ethanol fermentation of rice straw>
The ground rice straw was heated with superheated steam at 200 ° C. for 3 minutes to saccharify hemicellulose, and the residue was washed with water to obtain kraft pulp. Distilled water was added so that the kraft pulp was 10% by dry weight, and cellulase was added so as to be 5% by weight and kept at 50 ° C. for 48 hours to obtain a saccharified product. Using this saccharified product, as in Example 1, a fermentation stock solution to which a chlorella disintegrated product was added was prepared, inoculated with yeast, and fermented. 39 g of ethanol was obtained by distillation of the obtained fermentation broth.

(比較例1)
ナンノクロロプシス崩壊物を使用しないこと以外は実施例2と同様にして発酵用原液を調製し、発酵及び蒸留を行ったところ、得られたエタノールは、20gであった。
(Comparative Example 1)
A fermentation stock solution was prepared in the same manner as in Example 2 except that the Nannochloropsis disintegrated product was not used. When fermentation and distillation were carried out, the obtained ethanol was 20 g.

(比較例2)
クロレラ崩壊物を使用しないこと以外は実施例3と同様にして発酵用原液を調製し、発酵及び蒸留を行ったところ、得られたエタノールは、16gであった。
(Comparative Example 2)
A fermentation stock solution was prepared in the same manner as in Example 3 except that the chlorella disintegrated material was not used. After fermentation and distillation, the obtained ethanol was 16 g.

本発明は、植物性廃棄物をバイオマスとしてバイオマスエタノールを生産する際に、食物価格の高騰の虞がない資源を利用して、発酵微生物に必要な栄養素や微量元素の供給を経済的且つ合理的に行うことができ、廃棄物処理及び資源の生産に寄与するので、有用性が高く、リサイクルの促進及び環境保護にも貢献可能である。   The present invention provides an economical and rational supply of nutrients and trace elements necessary for fermenting microorganisms by utilizing resources that do not have a risk of a rise in food prices when producing biomass ethanol using plant waste as biomass. Since it contributes to waste disposal and resource production, it is highly useful and can contribute to promotion of recycling and environmental protection.

Claims (10)

植物質多糖の糖化物と、細胞外へ原形質が解放される微細藻崩壊物とを用意し、前記微細藻崩壊物の存在下で前記糖化物を微生物を用いてエタノール発酵することによって、前記微生物の必須栄養素又は要求微量元素の供給源として前記微細藻崩壊物から開放された原形質を利用可能であることを特徴とするエタノールの製造方法。   By preparing a saccharified product of a plant polysaccharide and a microalgae disintegrated product whose protoplasm is released to the outside of the cell, and subjecting the saccharified product to ethanol fermentation using a microorganism in the presence of the microalgae disintegrated product, A method for producing ethanol, characterized in that a protoplasm released from the microalgae collapsed material can be used as a source of essential nutrients of microorganisms or required trace elements. 前記微細藻崩壊物は、クロレラ、ナンノクロロプシス、ボツリオコッカス及びドナリエラからなる群より選択される少なくとも1種の微細藻の崩壊物である請求項1記載のエタノールの製造方法。   2. The method for producing ethanol according to claim 1, wherein the microalgae collapse product is a collapsed product of at least one microalgae selected from the group consisting of chlorella, Nannochloropsis, Botriococcus and Donariella. 前記微細藻崩壊物は、水性液中で微細藻を加熱したものである請求項1又は2に記載のエタノールの製造方法。   The method for producing ethanol according to claim 1 or 2, wherein the microalgae collapsed product is obtained by heating microalgae in an aqueous liquid. 前記微細藻崩壊物は、微細藻の細胞膜を破砕したものである請求項1又は2に記載のエタノールの製造方法。   The method for producing ethanol according to claim 1 or 2, wherein the microalgae collapsed product is obtained by crushing a cell membrane of microalgae. 前記植物質多糖は、セルロース又はヘミセルロースを含み、前記糖化物は、グルコースを含む単糖である請求項1〜4の何れかに記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 1 to 4, wherein the vegetable polysaccharide contains cellulose or hemicellulose, and the saccharified product is a monosaccharide containing glucose. 前記糖化物は、植物質多糖のアルカリ又は酸による加水分解物、あるいは、セルラーゼによる酵素分解物である請求項1〜5の何れかに記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 1 to 5, wherein the saccharified product is a hydrolyzate of plant polysaccharides with an alkali or acid, or an enzyme-decomposed product with cellulase. 前記微生物は、細菌及び酵母からなる群より選択される少なくとも1種の発酵微生物を含み、前記微細藻崩壊物から開放される原形質は、前記発酵微生物の必須栄養素及び要求微量元素を含有する請求項1〜6の何れかに記載のエタノールの製造方法。   The microorganism comprises at least one fermenting microorganism selected from the group consisting of bacteria and yeast, and the protoplasm released from the microalgae collapse contains essential nutrients and required trace elements of the fermenting microorganism. Item 7. The method for producing ethanol according to any one of Items 1 to 6. 前記微生物は、凝集性酵母を含む請求項1〜7の何れかに記載のエタノールの製造方法。   The method for producing ethanol according to any one of claims 1 to 7, wherein the microorganism comprises an aggregating yeast. 前記エタノール発酵は、糖化物濃度が1〜20質量%、微細藻崩壊物の含有量(乾燥物換算)が0.1〜1質量%の水性液を調製する工程と、前記水性液のpHを2.5〜5.5に調整する工程と、前記水性液に前記微生物を接種する工程と、前記接種後の水性液を温度30〜37℃程度に2〜48時間保持する工程とを有する請求項1〜8の何れかに記載のエタノールの製造方法。   The ethanol fermentation is a step of preparing an aqueous liquid having a saccharified concentration of 1 to 20% by mass and a content of microalgae disintegrant (in terms of dry matter) of 0.1 to 1% by mass, and adjusting the pH of the aqueous liquid. A step of adjusting to 2.5 to 5.5, a step of inoculating the aqueous microorganism with the microorganism, and a step of maintaining the aqueous liquid after the inoculation at a temperature of about 30 to 37 ° C. for 2 to 48 hours. Item 9. A method for producing ethanol according to any one of Items 1 to 8. 前記エタノール発酵の生成物からエタノールを分離した後の残留物を利用して微細藻を培養する請求項1〜9の何れかに記載のエタノールの製造方法。   The manufacturing method of ethanol in any one of Claims 1-9 which culture | cultivate a micro algae using the residue after isolate | separating ethanol from the product of the said ethanol fermentation.
JP2011178985A 2011-08-18 2011-08-18 Method for producing ethanol Pending JP2013039085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178985A JP2013039085A (en) 2011-08-18 2011-08-18 Method for producing ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178985A JP2013039085A (en) 2011-08-18 2011-08-18 Method for producing ethanol

Publications (1)

Publication Number Publication Date
JP2013039085A true JP2013039085A (en) 2013-02-28

Family

ID=47888122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178985A Pending JP2013039085A (en) 2011-08-18 2011-08-18 Method for producing ethanol

Country Status (1)

Country Link
JP (1) JP2013039085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199220A1 (en) 2013-06-12 2014-12-18 Solarvest BioEnergy Inc. Methods of producing algal cell cultures and biomass, lipid compounds and compositions, and related products
WO2014208621A1 (en) * 2013-06-28 2014-12-31 株式会社神鋼環境ソリューション Microalga culture method and drainage water treatment method
CN112680359A (en) * 2020-12-25 2021-04-20 暨南大学 Microalgae culture medium and application thereof
WO2022202069A1 (en) * 2021-03-23 2022-09-29 本田技研工業株式会社 Method for culturing microalgae

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE838665A (en) * 1976-02-18 1976-06-16 METHOD FOR MANUFACTURING ETHYL ALCOHOL FROM SINGLE-CELL GREEN ALGAE
JPS5282785A (en) * 1975-12-01 1977-07-11 Chiyuuji Tatsumi Production of alcohol by fine algae
JPS55159792A (en) * 1979-05-29 1980-12-12 Sankyo Co Ltd Preparation of yeast
JPS58152475A (en) * 1982-03-08 1983-09-10 Kurorera Kogyo Kk Control of occurrence of variant of respiratory insufficiency
JPH03172190A (en) * 1989-07-06 1991-07-25 Osaka Seiken:Kk Harvesting of organic metabolite
JPH0731485A (en) * 1993-07-23 1995-02-03 Mitsubishi Heavy Ind Ltd Production of alcohol from fine alga as raw material
JP2006325577A (en) * 2005-04-28 2006-12-07 Kumamoto Univ System for producing alcohol, method for producing alcohol, and method for producing sugar
JP2006333749A (en) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology Method for producing ethanol, production apparatus and ethanol adsorbent used therefor
WO2009093703A1 (en) * 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2010092924A1 (en) * 2009-02-10 2010-08-19 国立大学法人宮崎大学 Pentose-assimilating recombinant escherichia coli that produce ethanol and method for manufacturing ethanol using same
WO2010104922A1 (en) * 2009-03-10 2010-09-16 Srs Energy Algae biomass fractionation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282785A (en) * 1975-12-01 1977-07-11 Chiyuuji Tatsumi Production of alcohol by fine algae
JPS5511316B2 (en) * 1975-12-01 1980-03-24
BE838665A (en) * 1976-02-18 1976-06-16 METHOD FOR MANUFACTURING ETHYL ALCOHOL FROM SINGLE-CELL GREEN ALGAE
JPS55159792A (en) * 1979-05-29 1980-12-12 Sankyo Co Ltd Preparation of yeast
JPS58152475A (en) * 1982-03-08 1983-09-10 Kurorera Kogyo Kk Control of occurrence of variant of respiratory insufficiency
JPH03172190A (en) * 1989-07-06 1991-07-25 Osaka Seiken:Kk Harvesting of organic metabolite
JPH0731485A (en) * 1993-07-23 1995-02-03 Mitsubishi Heavy Ind Ltd Production of alcohol from fine alga as raw material
JP2006325577A (en) * 2005-04-28 2006-12-07 Kumamoto Univ System for producing alcohol, method for producing alcohol, and method for producing sugar
JP2006333749A (en) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology Method for producing ethanol, production apparatus and ethanol adsorbent used therefor
WO2009093703A1 (en) * 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2010092924A1 (en) * 2009-02-10 2010-08-19 国立大学法人宮崎大学 Pentose-assimilating recombinant escherichia coli that produce ethanol and method for manufacturing ethanol using same
WO2010104922A1 (en) * 2009-03-10 2010-09-16 Srs Energy Algae biomass fractionation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WORLD J. MICROBIOL. BIOTECHNOL., 1998, 14(6), PP.839-842, JPN6015012943, ISSN: 0003041711 *
日本醸造協会誌、2009年、104巻、9号、630〜639頁, JPN6015012941, ISSN: 0003041710 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199220A1 (en) 2013-06-12 2014-12-18 Solarvest BioEnergy Inc. Methods of producing algal cell cultures and biomass, lipid compounds and compositions, and related products
EP3030647A1 (en) * 2013-06-12 2016-06-15 Solarvest Bioenergy Inc. Methods of producing algal cell cultures and biomass, lipid compounds and compositions, and related products
EP3030647A4 (en) * 2013-06-12 2017-05-03 Solarvest Bioenergy Inc. Methods of producing algal cell cultures and biomass, lipid compounds and compositions, and related products
WO2014208621A1 (en) * 2013-06-28 2014-12-31 株式会社神鋼環境ソリューション Microalga culture method and drainage water treatment method
JP2015008676A (en) * 2013-06-28 2015-01-19 株式会社神鋼環境ソリューション Microalga culture method and water drainage method
CN112680359A (en) * 2020-12-25 2021-04-20 暨南大学 Microalgae culture medium and application thereof
CN112680359B (en) * 2020-12-25 2023-03-31 暨南大学 Microalgae culture medium and application thereof
WO2022202069A1 (en) * 2021-03-23 2022-09-29 本田技研工業株式会社 Method for culturing microalgae

Similar Documents

Publication Publication Date Title
Cheah et al. Cultivation in wastewaters for energy: a microalgae platform
Liu et al. Fermentative hydrogen production from macro-algae Laminaria japonica using anaerobic mixed bacteria
US20130309757A1 (en) Method and apparatus for producing cells and fat soluble materials by cell culture
Marzo et al. Status and perspectives in bioethanol production from sugar beet
CN101589151A (en) Method for production of ethanol or lactic acid
Song et al. Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755
US11104920B2 (en) Enzymatic digestion of microalgal biomass for lipid, sugar, and protein recovery
Gottumukkala et al. Biobutanol production: microbes, feedstock, and strategies
Manmai et al. Alkali pretreatment method of dairy wastewater based grown Arthrospira platensis for enzymatic degradation and bioethanol production
CN101608192A (en) A kind of method of utilizing corn cob to produce Succinic Acid
Tong et al. Whole maize flour and isolated maize starch for production of citric acid by Aspergillus niger: A review
JP2013039085A (en) Method for producing ethanol
WO2007083746A1 (en) Fermentation method for producing ethanol
Koutinas et al. Production of fermentation feedstock from Jerusalem artichoke tubers and its potential for Polyhydroxybutyrate synthesis
Jang et al. Production of L (+)-lactic acid from mixed acid and alkali hydrolysate of brown seaweed
Pradechboon et al. Alkali pretreatment and enzymatic saccharification of blue-green alga Nostochopsis lobatus for bioethanol production
Jang et al. Potential use of Gelidium amansii acid hydrolysate for lactic acid production by Lactobacillus rhamnosus
Ylitervo Production of ethanol and biomass from orange peel waste by Mucor indicus
JP5589391B2 (en) Continuous production method of ethanol by parallel saccharification and fermentation reaction
CN101497902A (en) Process for preparing microbe oil
CN112143770B (en) Marine rhodotorula and application thereof in producing beta-carotene by taking straw as raw material
Bujang Sago: A food and fuel alternative
Luna-García et al. Production of unicellular biomass as a food ingredient from agro-industrial waste
JPWO2009096215A1 (en) Ethanol production method
Bujang Production and processing of sago: a food and fuel alternative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818