WO2014208621A1 - Microalga culture method and drainage water treatment method - Google Patents

Microalga culture method and drainage water treatment method Download PDF

Info

Publication number
WO2014208621A1
WO2014208621A1 PCT/JP2014/066890 JP2014066890W WO2014208621A1 WO 2014208621 A1 WO2014208621 A1 WO 2014208621A1 JP 2014066890 W JP2014066890 W JP 2014066890W WO 2014208621 A1 WO2014208621 A1 WO 2014208621A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
microalgae
fermentation
liquid
biomass
Prior art date
Application number
PCT/JP2014/066890
Other languages
French (fr)
Japanese (ja)
Inventor
昭 赤司
潤 竹▲崎▼
円 ▲高▼橋
圭 寺澤
信 渡邉
幹英 出村
正伸 河地
夏岐 米澤
Original Assignee
株式会社神鋼環境ソリューション
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション, 国立大学法人筑波大学 filed Critical 株式会社神鋼環境ソリューション
Publication of WO2014208621A1 publication Critical patent/WO2014208621A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for culturing microalgae and a method for treating wastewater.
  • microalgae are proliferated, and lipids as raw materials for fuels, feeds, health foods, etc., or valuables such as proteins and vitamins are stored in the cells of microalgae. In addition, the stored valuables are used for fuel, food, and the like.
  • the growth of the microalgae is also used for wastewater treatment such as purification of sewage treated water (see Patent Document 1) and exhaust gas treatment for the purpose of carbon dioxide regeneration (see Patent Document 2).
  • microalgae Known culture methods for growing microalgae include autotrophic culture, heterotrophic culture under dark conditions, and photoheterotrophic culture.
  • a method for efficiently performing heterotrophic culture or light heterotrophic culture under dark conditions has not been well established. If microalgae do not proliferate efficiently, the amount of valuables stored in the cell will not necessarily be sufficient, and there is a risk that effective use of the valuables will be difficult.
  • the microalgae do not grow efficiently, the consumption of the substance to be treated by the microalgae may not be sufficient, and the wastewater treatment and exhaust gas treatment may not be performed efficiently.
  • the present inventor has intensively studied to solve the above-mentioned problems.
  • the organic carbon source is given to the microalgae together with the components of the fermentation broth obtained from the bioethanol production process, and the heterotrophic culture of the microalgae under dark conditions is performed.
  • the microalgae can be efficiently proliferated by carrying out the photoheterotrophic culture, and the components contained in the distillation residue can be efficiently removed when the distillation residue of the fermentation liquid is drained.
  • the present invention was completed by finding that the waste water treatment can be performed efficiently.
  • the method for culturing microalgae according to the present invention is a liquid containing at least a residual liquid after recovering ethanol from a fermentation broth obtained by alcohol fermentation of biomass in a bioethanol production process, in the presence of an organic carbon source.
  • the heterotrophic culture or the photoheterotrophic culture of dark algae under dark conditions is performed.
  • heterotrophic culture or photoheterotrophic culture under dark conditions is performed in a liquid further containing a solid content generated by solid-liquid separation of the fermentation broth.
  • the mode to implement is employ
  • an aspect in which the culture is performed in the liquid in which the residual liquid is contained in a volume of 1/40 or more and 1/2 or less is employed.
  • the wastewater treatment method according to the present invention is a wastewater treatment method for removing organic substances contained in wastewater
  • the drainage is A stock preparation process for obtaining a stock solution containing sugar from biomass; A fermentation step of subjecting the stock solution to alcohol fermentation to obtain a fermentation broth containing ethanol, and The distillation residue in a bioethanol production process comprising distilling the fermentation solution to obtain a condensate having a higher ethanol concentration than the fermentation solution and a distillation residue having a lower ethanol concentration than the fermentation solution.
  • the liquid containing the distillation residue by subjecting the microalgae to heterotrophic culture or photoheterotrophic culture under dark conditions in the presence of an organic carbon source, the organic matter contained in the distillation residue is converted to the microalgae. It is a wastewater treatment method to be consumed.
  • FIG. 1 Schematic showing the outline
  • the graph which shows the other culture experiment result (TOC density
  • FIG. The graph which shows the other culture experiment result (microalga content rate change) in the micro algae in Experimental example 1.
  • FIG. The graph which shows the other culture experiment result (TOC density
  • FIG. The graph which shows the culture experiment result (microalga content rate change) of the micro algae in Experimental example 2.
  • the method for culturing microalgae of this embodiment is a liquid containing at least a residual liquid after recovering ethanol from a fermentation broth obtained by alcohol fermentation of biomass in the bioethanol production process, in the presence of an organic carbon source.
  • the algae are subjected to heterotrophic culture or light heterotrophic culture under dark conditions. More specifically, the method for culturing microalgae of the present embodiment uses a liquid containing a distillation residue after distillation of a fermentation liquid obtained by subjecting biomass to alcohol fermentation in a bioethanol production facility, as a culture liquid. A sugar obtained from biomass is used as an organic carbon source to be contained in the culture solution.
  • the method for culturing microalgae of this embodiment since microalgae are cultured in a liquid containing the components of the fermentation broth, the microalgae can be efficiently propagated. That is, the method for culturing microalgae of the present embodiment has an effect that microalgae can be efficiently propagated.
  • microalgae are living organisms that live while floating in water. Further, unlike kelp and seaweed, the microalgae are usually unicellular and are microalgae having a size of several micrometers to several tens of micrometers.
  • microalgae examples include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Aurantiochytrium , organisms belonging to the genus Auxenochlorella, botuliococcus (Botryococcus) belonging to the genus organism, Nan'nokurorisu (Nannochloris) belonging to the genus organism, Nannochloropsis (Nannochloropsis) belonging to the genus organism, Neokurorisu (Neochloris) belonging to the genus organism, shoe DoCoMo lysis Chis (Pseudochoricystis) belonging to the genus organism, Scenedesmus (Scenedesmus) belonging to the genus organism Schizochytrium (Schizochytorium) at least one member selected from the group consisting of organism belonging to the genus are preferred.
  • Organisms belonging to the Euglena (Euglena) genus for example, Euglena gracilis, Euglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses, Euglena pisciformis, Euglena spirogyra, Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena rubra , or Euglena cyclopicola .
  • the Euglena as the gracilis for example, Euglena gracilis NIES-48, Euglena gracilis EOD-1, (original date of deposit independence in 2013 March 25 date National Institute of Technology and Evaluation, Patent Organism Depositary Center (NITE-IPOD (zip code 292-0818 Room No. 2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, Japan))) under the provisions of the Budapest Treaty, the international deposit has been made under the deposit number FERM BP-11530).
  • NITE-IPOD zip code 292-0818 Room No. 2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, Japan
  • Chlorella vulgaris examples include Chlorella vulgaris , Chlorella pyrenoidosa , or Chlorella sorociniana .
  • Chlorella sorociniana for example, and the like (storage strains in later to Independent Administrative Institution National Institute for Environmental Studies microorganism strain preservation facility) Chlorella sorociniana NIES-2169.
  • Organisms belonging to the Orgorgee Imperiale Seno Chlorella (Auxenochlorella) genus, for example, like Auxenochlorella protothecoides.
  • Botryococcus braunii examples of the organism belonging to the genus Botryococcus.
  • Organisms belonging to the Nan'nokurorisu (Nannochloris) genus, for example, Nannochloris Bacillaris, like Nannochloris normandinae.
  • Organisms belonging to the Nannochloropsis (Nannochloropsis) genus for example, like Nannochloropsis oculata.
  • Organisms belonging to the Neokurorisu e.g., Neochloris aquatica, Neochloris cohaerens, Neochloris conjuncta, Neochloris gelatinosa, Neochloris pseudostigmata, Neochloris pseudostigmatica, Neochloris pyrenoidosa, Neochloris terrestris, Neochloris texensis, Neochloris vigensis, Neochloris wimmeri, Neochloris oleoabundans etc. Is mentioned.
  • Examples of the organism belonging to the genus Pseudochoricystis include Pseudochoricystis ellipsoidea .
  • Organisms belonging to the Scenedesmus (Scenedesmus) genus for example, Scenedesmus ovaltermus, Scenedesmus disciformis, Scenedesmus acumunatus, like Scenedesmus dimorphus.
  • Organisms belonging to the O-lunch Oki thorium (Aurantiochytrium) genus for example, Aurantiochytrium limacinum, or the like Aurantiochytrium mangrovei.
  • Examples of the organism belonging to the genus Schizochytorium include Schizochytrium aggregatum .
  • the microalgae it is possible to produce a large amount of wax ester as a raw material of biodiesel, it contains a lot of valuable substances such as vitamins, carotenoids, highly nutritious proteins, paramylon, and it is easy to culture in large quantities. In this respect, organisms belonging to the genus Euglena are preferred.
  • the microalgae can produce a large amount of triglyceride as a raw material for biodiesel, contain a lot of valuable materials such as dietary fiber, vitamins, carotenoids, proteins, linoleic acid, linolenic acid, Organisms belonging to the genus Chlorella are preferred because they can be easily cultured.
  • biomass that is a starting material for the distillation residue and the sugar examples include plants, processed products thereof, and substances derived from plants.
  • Examples of the plant include land plants and underwater plants.
  • the biomass is classified into carbohydrate biomass, starch biomass, and cellulose biomass depending on the component, but the biomass to be used is not particularly limited in the present embodiment.
  • the biomass in this embodiment does not contain the micro algae and the thing derived from a micro algae substantially.
  • sugar-based biomass examples include sugarcane, sugar beet, molasses, and molasses.
  • starch-based biomass examples include corn, corn, potato, sweet potato, rice, wheat and cassava.
  • tip which consists of all or one part of trees, such as a thinned timber and the branch cut
  • the cellulosic biomass include wheat straw, rice straw, bagasse, kenaf, hemp, cotton, weed and the like.
  • the cellulosic biomass also includes so-called energy plants such as Eliansus and Napiergrass. Also, pulp products such as waste paper can be used as the cellulose biomass.
  • FIG. 1 is a schematic view showing an outline of devices used in the method for culturing microalgae and an outline of other devices.
  • FIG. 1 shows a main configuration of the bioethanol production facility and the microalgae culture facility.
  • a bioethanol production facility 10 is attached to the microalgae culture facility 20.
  • the microalgae culture facility 20 in which the culture method of the present embodiment is implemented is used for wastewater treatment of the bioethanol production facility 10.
  • symbol A of FIG. 1 represents the biomass supplied to the bioethanol manufacturing equipment 10.
  • the symbol B represents bioethanol obtained at the bioethanol production facility 10.
  • FIG. 1 represents the water supplied to the said micro algae culture equipment 20.
  • symbol D represents the valuables obtained by culture
  • symbol E of FIG. 1 represents the various components supplied to the micro algae culture equipment 20 as needed.
  • the symbol F represents treated water discharged from the microalgae culture facility 20.
  • the bioethanol production facility 10 has the following (11) to (14) as main components.
  • (11) A stock solution production apparatus in which the biomass A is supplied and a stock solution containing sugar is produced from the biomass.
  • a fermentation apparatus in which the stock solution is supplied from the stock solution production device 11, and the sugar contained in the stock solution is subjected to alcohol fermentation to produce a fermentation solution containing ethanol.
  • the fermentation broth is supplied from the fermentation apparatus 12, the fermentation broth is distilled and ethanol is collected, and a condensate having a higher ethanol concentration than the fermentation broth and a distillation residue having a lower ethanol concentration than the fermentation broth are obtained. Distillation equipment to be separated.
  • the condensate is supplied from the distillation apparatus 13, impurities such as water contained in the condensate are removed, and the condensate is separated into a separation liquid containing the impurities and high-purity ethanol. Purification equipment.
  • the bioethanol production facility 10 may further include a solid-liquid separation device that separates the fermentation broth into solid and liquid at the subsequent stage of the fermentation apparatus 12 and before the distillation apparatus 13.
  • the microalgae cultivation facility 20 has the following (21) to (25) as main components.
  • (21) The evaporation residual solution is supplied from the distillation device 13 and the stock solution containing sugar is supplied from the stock solution preparation device 11, and these are diluted to an appropriate concentration with water supplied from outside the system, and A preparation tank in which a culture solution of microalgae is prepared.
  • (22) A sterilization apparatus for sterilizing the prepared culture solution in the preparation tank 21.
  • the microalgae are stored in the heterotrophic culture or light heterotrophic condition in the presence of an organic carbon source in the presence of an organic carbon source by the culture solution that contains the microalgae and is supplied from the preparation tank 21 via the sterilizer 22.
  • An algae-containing liquid containing microalgae is supplied from the culturing device 23, the algae-containing liquid is separated into a solid content and a liquid content, and the microalgae are concentrated and cultured in the preparation tank 21.
  • the microalgae culture facility 20 may be configured to supply the culture device 23 with the solid content that has been solid-liquid separated by the solid-liquid separation device.
  • the microalgae culture facility 20 in the present embodiment is used for the wastewater treatment of the bioethanol production facility 10. And in the bioethanol manufacturing equipment 10, the following processes are implemented in the process in which bioethanol is manufactured.
  • a solid-liquid separation process for subjecting the fermentation liquid to a solid-liquid separation process may be performed after the fermentation process and before the distillation process.
  • the biomass A is a saccharide-based biomass
  • sugar cane and sugar beet are squeezed to obtain molasses, and the molasses is diluted appropriately with water.
  • the saccharide biomass is waste molasses
  • the waste molasses can be produced by diluting the waste molasses with water.
  • the stock solution preparation step includes, for example, pulverizing the biomass to an appropriate size, hydrolyzing the biomass using an enzyme, an acid or an alkali, and deriving from hemicellulose and cellulose
  • the saccharified solution containing the saccharide can be obtained, and the saccharified solution can be neutralized as necessary to obtain a stock solution.
  • a saccharified solution is obtained by hydrolyzing the glycoxide bond of starch contained in the biomass with an enzyme or an acid, and the saccharified solution is required. Accordingly, it can be carried out by adopting a method of neutralizing to make a stock solution.
  • stock solution contains solid substances, such as a fiber
  • the fermentation process in the fermentation apparatus 12 can be carried out, for example, by adopting a batch (batch) method in which yeast is added to the stock solution for a predetermined time in an anaerobic environment.
  • yeasts can be used, for example, those belonging to the genus Saccharomyces . More specifically, Saccaromyces cerebisiae etc. can be used as said yeast. Moreover, as said yeast, you may use what is called sake yeast, what is called wine yeast, or what is called beer yeast.
  • the fermented liquor produced in the said fermentation process is supplied to the said distillation apparatus 13 after collect
  • the recovered yeast can be reused, for example, in the fermentation process after the next batch.
  • the yeast contains components such as proteins, amino acids, vitamins, phosphorus and potassium. Therefore, the yeast recovered in the fermentation step can be supplied to the preparation tank 21 or the culture device 23 as needed, and can be used for culturing microalgae.
  • yeast is utilized as a yeast extract. Examples of the yeast extract that can be used include those extracted by contacting with hot water to destroy the cell walls of yeast, or those extracted by destroying the cell walls of yeast by enzymatic treatment.
  • the yeast extract may be produced by self-digestion of the yeast. That is, the yeast extract used in the fermentation process may be produced by decomposing components constituting yeast using an enzyme possessed by yeast.
  • the self-digestion of the yeast can be caused, for example, by placing the yeast under conditions where there are no organic nutrients such as sugars.
  • it is an apparatus for converting yeast into a yeast extract, and before supplying the yeast extract to the preparation tank 21 and the culture apparatus 23, the yeast is subjected to a hot water treatment, an enzyme treatment, and a self-digestion treatment. This device may be provided separately. You may make it use the microbe elimination apparatus etc. which are mentioned later.
  • the distillation step in the distillation apparatus 13 can be performed by a general method using a distillation still and a condenser, for example.
  • the distillation residual liquid which is the residual liquid after ethanol is recovered as the condensate from the fermentation liquid in this distillation step usually contains organic substances etc., so it can be used as effluent as it is, or any process It is difficult to reuse as water.
  • the distillation residual liquid discharged from the bioethanol production facility 10 is drained by the microalgae culture facility 20.
  • the purification step in the purification apparatus 14 can be performed by removing impurities such as moisture from the condensate by, for example, molecular sieve or membrane separation.
  • the separation liquid separated from the condensate during the regeneration of the molecular sieve and the membrane separation is discharged as a waste water from the purifier 14. If necessary, this waste water can also be treated by the microalgae cultivation facility 20.
  • the method for culturing microalgae according to the present embodiment which is implemented as wastewater treatment of the microalgae culture facility 20 together with the production of algal biomass D, will be described.
  • the following steps are performed in the process of producing the algal biomass D.
  • (2a) The sugar is introduced into the preparation tank 21 from the stock solution preparation device 11 together with the distillation residue, and water C for appropriately diluting the distillation residue is introduced into the preparation tank 21.
  • the solid content separated in the solid-liquid separation step can be supplied to the culture solution (a liquid containing a distillation residue).
  • the culture solution preparation step performed in the preparation tank 21 for example, if a culture solution with an excessively small content of the distillation residue is prepared, the effect of the present invention may not be sufficiently exhibited. On the other hand, a culture solution having an excessively high content of the distillation residue may not be suitable for efficient cultivation of microalgae. Therefore, in the point that the effect of the present invention can be made more remarkable, it is preferable that the culture solution prepared in the step contains the evaporation residual liquid in a volume of 1/40 or more and 1/2 or less. More preferably, the remaining solution is contained in the culture solution at a ratio of 1/20 to 1/5.
  • the sugar to be contained in the culture solution together with the distillation residue is a carbon source for microalgae. If the distillation residue contains a carbon source that can be used by the microalgae, it is cultivated. It is not necessary to include in the liquid. However, usually, the organic carbon source that can be used by microalgae is not sufficiently contained in the distillation residue. Therefore, it is usually necessary for the culture solution to contain a substance that becomes an organic carbon source that can be used by microalgae in some form. When an organic carbon source is contained in the culture solution, a substance other than sugar obtained from biomass may be used as the organic carbon source. On the other hand, in the bioethanol production process, sugars such as glucose and fructose are produced in large quantities at low cost.
  • the organic carbon source contained in the culture solution is preferably a sugar obtained from biomass.
  • the carbon source required for the growth of a micro algae cannot fully be obtained, but the efficiency of culture
  • the amount of sugar added is large, there is a possibility that the microalgae cannot use the sugar and the sugar may remain, and the added sugar may be wasted.
  • the amount of added sugar is large, when the microalgae are used for waste water treatment as in the present embodiment, the remaining sugar may result in deterioration of water quality and the purpose may not be sufficiently achieved.
  • sugar is contained in the said culture solution produced in the said process in the ratio of 5 g / L or more.
  • it is more preferably contained at a rate of 10 g / L or more.
  • it is preferable to contain the sugar at a rate of 25 g / L or less, more preferably at a rate of 20 g / L or less, and particularly at a rate of 15 g / L or less. preferable.
  • the culture solution preparation step it is preferable to adjust the culture solution so as to exhibit a pH value suitable for the growth of microalgae.
  • the pH of the culture solution is not particularly limited, but is preferably 3.0 to 5.5.
  • an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid is employed as the main component E, and these acids are introduced into the preparation tank 21. do it.
  • the acid introduced into the preparation tank 21 at this time is preferably an organic acid in that microalgae can be used as a nutrient source.
  • a substance containing inorganic nutrients and vitamins necessary for the growth of microalgae apart from the carbon source may be introduced into the preparation tank 21 as the various components E.
  • the inorganic nutrient include potassium ion, iron ion, manganese ion, cobalt ion, zinc ion, copper ion, molybdenum ion, nickel ion and the like.
  • the sterilization step of sterilizing the culture solution thus prepared with the sterilization apparatus 22 is preferably performed without using a drug that may adversely affect the growth of the bacterium, for example.
  • the sterilization step is preferably performed by heat sterilization using heat such as water vapor or removal of bacteria using a filtration membrane.
  • microalgae may be cultured under either light conditions (light heterotrophic culture) or dark conditions as long as heterotrophic culture is performed.
  • heterotrophic culture is preferably performed under dark conditions in which microalgae are not substantially irradiated with light.
  • microalgae grown is Euglena (Euglena) genus organism, wherein in the culturing step, the aeration was carried out on a mixture of the microalgae culture microalgae dark conditions and It is preferable to culture under aerobic conditions.
  • the “dark condition” means that when the light irradiation intensity is averaged throughout the culture period, the value is several ⁇ mol / m 2 ⁇ s or less (at most 10 ⁇ mol / m 2 ⁇ s).
  • a general aeration method can be used. Aeration is not limited to a method in which gas is simply aerated in a liquid, but also includes a method in which gas is taken in by stirring or shaking. As the gas to be aerated, air, pure oxygen, or a mixed gas thereof can be used.
  • the temperature of the culture solution in the culturing step is not particularly limited as long as it is a temperature at which microalgae can grow. Specifically, for example, 20 ° C. to 35 ° C. is employed as the culture temperature (culture solution temperature).
  • a batch type in which all of the microalgae are extracted from the culture device 23, a semi-batch culture method in which a part of the cultured microalgae is periodically extracted from the culture device 23, and the growth rate of the microalgae are adjusted.
  • Any of the continuous methods in which the algae-containing liquid is allowed to continuously flow down from the preparation tank 21 to the culture device 23 via the sterilization device 22 may be employed.
  • the culture solution in the preparation tank 21 has the distillation residue concentration, sugar concentration, pH, etc. And the prepared culture solution may be continuously supplied to the culture apparatus 23.
  • the concentration of the culture solution in the preparation tank 21 is adjusted by adjusting the concentration of the culture solution in the culturing device 23, the sugar concentration, the pH, etc. It is preferable to implement so that it may become a preferable range. That is, in the culture process by the semi-batch culture method, as a result of mixing the culture solution remaining without being removed from the culture apparatus 23 and the new culture solution prepared in the preparation tank 21, the sugar concentration in the mixed culture solution is obtained. Is preferably 5 g / L to 25 g / L (particularly 10 g / L to 20 g / L), and the pH in the culture solution after the mixing is preferably in the above-mentioned preferable range.
  • the culture solution prepared in the preparation tank 21 includes the above preferred range (1-40 or more and 1/2 or less in volume, More preferably, the evaporation residual liquid is contained at a concentration of 1/20 or more and 1/5 or less.
  • the algae-containing liquid introduced from the culturing device 23 to the concentration device 24 is concentrated by floating concentration, gravity concentration, membrane concentration, belt concentration, etc.
  • a method for obtaining concentrated microalgae can be employed.
  • further concentration is performed by, for example, a vacuum dehydrator, a pressure dehydrator (filter press), a belt press, a screw press, a centrifugal concentration dehydrator (screw decanter), or a multiple disk dehydrator.
  • a method of obtaining microalgae in a dehydrated cake state can be employed.
  • the microalgae thus obtained can be effectively used as a valuable resource.
  • the obtained microalgae are cultured under anaerobic conditions or submerged under anaerobic conditions to accumulate lipids such as wax esters in the individual.
  • the microalgae in which the wax ester is accumulated can be used as fuel as it is.
  • the accumulated lipid can also be used as a fuel containing the lipid as a main component by extraction from microalgae.
  • the extraction step can be performed, for example, by a solvent extraction method using a solvent such as hexane.
  • the lipid after extraction may be modified by a known method to make it easier to use.
  • Euglena Euglena
  • genus organisms usually contain in an individual as a valuable resource polysaccharides and vitamins such as paramylon. These polysaccharides and vitamins can also be extracted separately from the lipids for effective use. Further, Euglena may be effectively used as it is for the fuel, feed, etc. without solvent extraction.
  • the microalgae efficiently proliferate by incorporating various components contained in the distillation residue into the individual. That is, the increase amount per unit time of the microalgae in the culturing step is larger than that in the case where the microalgae are cultured in a culture solution that does not contain the distillation residue. Therefore, the yield of microalgae in the concentration step is larger than that in the past, and algal biomass D is also produced more efficiently than in the past.
  • the treated water F obtained by removing microalgae from the algae-containing liquid flowing down from the culture device 23 toward the concentration device 24 has a state in which the TOC concentration and the like are greatly reduced as compared with the culture solution and the evaporation residual solution. It becomes.
  • the treated water F is more easily reused as effluent water or some process water than the distillation residue discharged from the bioethanol production facility 10. Even if the treated water F requires further treatment to be discharged water or reused as process water, the treated water F can reduce the labor of the treatment compared to the evaporation residual liquid. It has become a thing. Further, the treated water F can be returned to the preparation tank 21 and effectively used to reduce the amount of the water C introduced from the outside. In addition, it does not specifically limit as the water C introduce
  • the use of the distillation residue makes it possible to efficiently cultivate microalgae in the microalgae culture facility 20 and to efficiently perform the wastewater treatment in the bioethanol production facility 10. ing. That is, the bioethanol production facility 10 and the microalgae culture facility 20 are in a state where they can obtain a profit due to the existence of each other.
  • the wastewater treatment method of the present embodiment is a wastewater treatment method for removing organic matter contained in wastewater
  • the wastewater includes a stock solution preparation step for obtaining a stock solution containing sugar from biomass, a fermentation step for obtaining a fermented solution containing ethanol by subjecting the stock solution to alcohol fermentation, and distilling the fermented solution.
  • a distillation step for obtaining a condensate having a high concentration and a distillation residue having a lower ethanol concentration than the fermentation solution, and the distillation residue in a bioethanol production process In the liquid containing the distillation residue, by subjecting the microalgae to heterotrophic culture or photoheterotrophic culture under dark conditions in the presence of an organic carbon source, the organic matter contained in the distillation residue is converted to the microalgae. It is a wastewater treatment method to be consumed. Since the wastewater treatment method of the present embodiment can efficiently consume the components contained in the wastewater by the microalgae, the wastewater treatment can be carried out efficiently.
  • the microalgae culture method is applied as a method for treating the wastewater discharged during the production process of bioethanol, in the point that it is possible to obtain profits as described above.
  • the purpose of the microalgae culture method of the present invention is not necessarily limited to the wastewater treatment.
  • the TOC concentration of the treated water F discharged from the concentrating device 24 is necessarily lower than that of the distillation residue by adding sugar and various components to the culture solution in addition to the distillation residue. Not exclusively.
  • the microalgae culture method of the present invention is intended even when the TOC concentration of the treated water F is higher than that of the distillation residue.
  • the specific illustration is performed about the algal biomass D.
  • FIG. Even when the grown microalgae are used for purposes other than the above examples, it is within the intended scope of the present invention. Furthermore, even matters that are not specifically described above can be employed as long as they are conventionally known technical matters in the microalgae cultivation method and wastewater treatment method as long as the effects of the present invention are not significantly impaired. That is, the present invention is not limited to the above-described embodiment, and can be appropriately modified within the intended scope of the present invention. Moreover, the effect of this invention is not limited to the said embodiment. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • Example 1 Seed algae
  • microalgae Esuglena genus ( Euglena gracilis EOD-1 strain)" (NITE-IPOD) (National Institute of Technology and Evaluation) Postal deposit 292-0818, Kazusa Kamashizu, Chiba, Chiba, Japan, room 2-5-8, 120), under the provisions of the Budapest Treaty, internationally deposited as receipt number FERM BP-11530) in heterotrophic culture for 4 days.
  • Medium A modified Hutner medium (hereinafter also referred to as “Modified Hutner”) supplemented with 25 g / L of glucose. Specifically, as shown in Table 1. Water other than the nutrients contained in the liquid.
  • composition of culture medium Four types of culture solutions were prepared by diluting the residue (distilled residue) after distilling ethanol from the fermentation solution obtained by alcohol fermentation of biomass with pure water 5 times, 10 times, 20 times, and 40 times. Among these, about 5 times dilution culture solution, glucose was contained in the ratio used as 0g / L and 15g / L, and two types of culture solutions were prepared.
  • Algae was cultured for 8 days under the above conditions using a 5-fold diluted culture solution.
  • the liquid in each flask was sampled every day.
  • the volume of the sampled liquid: V (mL) and the mass (dry mass) of microalgae contained in the liquid: M (mg) were determined.
  • Algae content: M / V (g / L) was calculated by dividing the mass (M) by the volume (V).
  • the TOC concentration was measured with respect to the culture solution alone from which microalgae were removed from the sampled solution at the start of the culture and the end of the 8-day culture. The results are shown in FIGS. 2A and 2B.
  • algae was cultured for 5 days under the above conditions using 10-fold diluted solution, 20-fold diluted solution, and 40-fold diluted culture solution.
  • the liquid in each flask was sampled every day.
  • the TOC concentration was measured with respect to the culture medium alone from which microalgae were removed from the sampled liquid at the start of culture, the second day of culture, and the end of culture for 5 days. The results are shown in FIGS.
  • the culture solution is effective for the growth of microalgae by containing the distillation residue together with the carbon source in the culture solution.
  • a great merit can be obtained by carrying out the microalgae culture method for the purpose of wastewater treatment including distillation residue.
  • the microalgae are in a state where there is a surplus in their ability to consume and grow sugar. That is, the above results show that microalgae can be more efficiently grown by using a culture solution containing 10 g / L or more of glucose.
  • the TOC concentration in the culture solution can be greatly reduced by using a culture solution containing glucose at a ratio of less than 20 g / L.
  • Example 2 (Culture method) As in Experimental Example 1, the following culture solution was prepared for culturing microalgae. However, the culture conditions were changed as follows, and algae were cultured. “Composition of culture medium”: Three types of culture solutions obtained by diluting the residue (distilled residue) after distilling ethanol from the fermentation solution obtained by alcohol fermentation of biomass with pure water 5 times, 10 times, and 20 times, and glucose to these Three types of culture solutions were prepared that contained at a rate of 15 g / L. Each culture solution was adjusted to pH 3.5 with hydrochloric acid and sterilized.
  • “Culture container” 300 mL Erlenmeyer flask
  • “Culture conditions” Preparation: 100 mL of culture solution and 5 mL of seed algae are stored in the Erlenmeyer flask.
  • Culture temperature 25 ° C.
  • Aerobic condition Set Erlenmeyer flask to shaker and supply air into culture medium by operating at 120 rpm.
  • Light / dark condition Light / dark condition (12 hours light irradiation environment and 12 hours dark environment)
  • the photosynthetic photon flux density (PPFD) in the light irradiation environment was about 100 ⁇ mol / m 2 ⁇ s)
  • the culture results are shown in FIG.
  • the method for culturing microalgae of the present invention uses microalgae in which organic compounds such as hydrocarbons and polysaccharides are stored in cells for uses such as health foods, pharmaceuticals, feeds, chemical products, and fuels. It can be suitably used.
  • the method for culturing microalgae of the present invention employs, for example, an organism belonging to the genus Euglena as a microalgae, and cultivates the microalgae so that oil is contained in the cells of the microalgae. It can be suitably used for storing and taking out the oil and using it as a raw material for fuel.

Abstract

Provided is a microalga culture method which comprises carrying out heterotrophic culturing or photoheterotrophic culturing of a microalga under dark conditions for the microalga in the presence of an organic carbon source in a liquid that contains at least a residual liquid obtained after the collection of ethanol from a fermentation liquor produced by the alcoholic fermentation of a biomass in the process of producing bioethanol. Also provided is a drainage water treatment method for removing an organic substance contained in drainage water, which comprises carrying out heterotrophic culturing or photoheterotrophic culturing of a microalga under dark conditions for the microalga in the presence of an organic carbon source in a liquid that contains a distillation residual liquid produced in the process of producing bioethanol, thereby allowing an organic substance contained in the distillation residual liquid to be consumed by the microalga.

Description

微細藻類の培養方法及び排水処理方法Microalgae culture method and wastewater treatment method 関連出願の相互参照Cross-reference of related applications
  本願は、2013年6月28日出願の日本国特願2013-136559号の優先権を主張し、該出願が引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2013-136559 filed on June 28, 2013, which is incorporated herein by reference.
 本発明は、微細藻類の培養方法及び排水処理方法に関する。 The present invention relates to a method for culturing microalgae and a method for treating wastewater.
 従来、微細藻類を増殖させ、微細藻類の細胞内に燃料、飼料、健康食品などの原料となる脂質、又は、タンパク質やビタミン等の有価物を貯蔵させることが行われている。また、貯蔵した有価物を利用して燃料や食品等に利用することが行われている。
 この微細藻類の増殖は、下水処理水の浄化といった排水処理(特許文献1参照)や二酸化炭素の回生を目的とした排ガス処理(特許文献2参照)などにも利用されている。
2. Description of the Related Art Conventionally, microalgae are proliferated, and lipids as raw materials for fuels, feeds, health foods, etc., or valuables such as proteins and vitamins are stored in the cells of microalgae. In addition, the stored valuables are used for fuel, food, and the like.
The growth of the microalgae is also used for wastewater treatment such as purification of sewage treated water (see Patent Document 1) and exhaust gas treatment for the purpose of carbon dioxide regeneration (see Patent Document 2).
 この微細藻類を増殖させるための培養方法としては、独立栄養培養、暗条件下での従属栄養培養、及び、光従属栄養培養などが知られている。しかしながら、従来、暗条件下での従属栄養培養や光従属栄養培養などを効率的に実施する方法については、十分に確立されてはいない。
 微細藻類が効率的に増殖しないと、細胞内における有価物の貯蔵量が必ずしも十分なものとならないため、前記有価物の有効利用が困難になるおそれがある。
 また、微細藻類が効率的に増殖しないと、微細藻類による処理対象物質の消費量も十分なものとならないおそれがあり、排水処理や排ガス処理が効率的に行われないおそれがある。
Known culture methods for growing microalgae include autotrophic culture, heterotrophic culture under dark conditions, and photoheterotrophic culture. However, a method for efficiently performing heterotrophic culture or light heterotrophic culture under dark conditions has not been well established.
If microalgae do not proliferate efficiently, the amount of valuables stored in the cell will not necessarily be sufficient, and there is a risk that effective use of the valuables will be difficult.
Moreover, if the microalgae do not grow efficiently, the consumption of the substance to be treated by the microalgae may not be sufficient, and the wastewater treatment and exhaust gas treatment may not be performed efficiently.
日本国特開平05-301097号公報Japanese Unexamined Patent Publication No. 05-301097 日本国特開2010-022331号公報Japanese Unexamined Patent Publication No. 2010-022331
 本発明は、上記の点に鑑み、微細藻類を効率的に増殖させることができる微細藻類の培養方法を提供することを一の課題とする。
 また、本発明は、上記の点に鑑み、微細藻類を利用した効率的な排水処理を提供することを他の課題とする。
In view of the above points, an object of the present invention is to provide a method for culturing microalgae that can efficiently grow microalgae.
Another object of the present invention is to provide efficient wastewater treatment using microalgae in view of the above points.
 本発明者は、上記課題を解決すべく鋭意検討を行ったところ、バイオエタノール製造工程から得られる発酵液の成分とともに有機炭素源を微細藻類に与え、微細藻類の暗条件下での従属栄養培養又は光従属栄養培養を実施することで微細藻類が効率良く増殖されること、また、前記発酵液の蒸留残液を排水処理するのに際して該蒸留残液に含まれている成分が効率良く微細藻類に消費されて排水処理が効率良く行われ得ることを見出して本発明を完成させるにいたった。 The present inventor has intensively studied to solve the above-mentioned problems. As a result, the organic carbon source is given to the microalgae together with the components of the fermentation broth obtained from the bioethanol production process, and the heterotrophic culture of the microalgae under dark conditions is performed. Alternatively, the microalgae can be efficiently proliferated by carrying out the photoheterotrophic culture, and the components contained in the distillation residue can be efficiently removed when the distillation residue of the fermentation liquid is drained. The present invention was completed by finding that the waste water treatment can be performed efficiently.
 即ち、本発明に係る微細藻類の培養方法は、バイオエタノール製造過程でバイオマスをアルコール発酵させて得られる発酵液からエタノールを回収した後の残液を少なくとも含む液体中で、有機炭素源の存在下、微細藻類の暗条件下での従属栄養培養又は光従属栄養培養を実施するものである。 That is, the method for culturing microalgae according to the present invention is a liquid containing at least a residual liquid after recovering ethanol from a fermentation broth obtained by alcohol fermentation of biomass in a bioethanol production process, in the presence of an organic carbon source. The heterotrophic culture or the photoheterotrophic culture of dark algae under dark conditions is performed.
 本発明に係る微細藻類の培養方法の一態様としては、発酵液を固液分離することにより発生する固形分をさらに含有する液体中で、暗条件下での従属栄養培養又は光従属栄養培養を実施する態様が採用される。 As one aspect of the method for culturing microalgae according to the present invention, heterotrophic culture or photoheterotrophic culture under dark conditions is performed in a liquid further containing a solid content generated by solid-liquid separation of the fermentation broth. The mode to implement is employ | adopted.
 本発明に係る微細藻類の培養方法の他の態様としては、前記残液が容量で1/40以上1/2以下含有されている前記液体中で前記培養を実施する態様が採用される。 As another aspect of the method for culturing microalgae according to the present invention, an aspect in which the culture is performed in the liquid in which the residual liquid is contained in a volume of 1/40 or more and 1/2 or less is employed.
 本発明に係る微細藻類の培養方法の他の態様としては、前記培養が、暗条件下での従属栄養培養である態様が採用される。 As another aspect of the method for culturing microalgae according to the present invention, an aspect in which the culture is heterotrophic culture under dark conditions is employed.
 さらに、本発明に係る微細藻類の培養方法の他の態様としては、バイオマスから得られた糖を前記炭素源として使用する態様が採用される。 Furthermore, as another aspect of the method for cultivating microalgae according to the present invention, an aspect in which sugar obtained from biomass is used as the carbon source is employed.
 本発明に係る排水処理方法は、排水に含まれている有機物を除去する排水処理方法であって、
 前記排水は、
 バイオマスから糖を含んだ原液を得る原液作製工程、
 前記原液をアルコール発酵してエタノールを含有する発酵液を得る発酵工程、及び、
 前記発酵液を蒸留し、該発酵液よりもエタノール濃度の高い凝縮液と前記発酵液よりもエタノール濃度の低い蒸留残液とを得る蒸留工程、を含むバイオエタノール製造過程における前記蒸留残液であり、
 該蒸留残液を含む液体中で、有機炭素源の存在下、微細藻類を暗条件下で従属栄養培養又は光従属栄養培養することにより、前記蒸留残液に含有されている有機物を前記微細藻類に消費させる排水処理方法である。
The wastewater treatment method according to the present invention is a wastewater treatment method for removing organic substances contained in wastewater,
The drainage is
A stock preparation process for obtaining a stock solution containing sugar from biomass;
A fermentation step of subjecting the stock solution to alcohol fermentation to obtain a fermentation broth containing ethanol, and
The distillation residue in a bioethanol production process comprising distilling the fermentation solution to obtain a condensate having a higher ethanol concentration than the fermentation solution and a distillation residue having a lower ethanol concentration than the fermentation solution. ,
In the liquid containing the distillation residue, by subjecting the microalgae to heterotrophic culture or photoheterotrophic culture under dark conditions in the presence of an organic carbon source, the organic matter contained in the distillation residue is converted to the microalgae. It is a wastewater treatment method to be consumed.
 本発明に係る排水処理方法の一態様としては、前記発酵工程の後段であって前記蒸留工程の前段で、前記発酵液から固液分離して得られる固形分を前記液体中に供給する態様が採用される。 As one aspect of the wastewater treatment method according to the present invention, there is an aspect in which solids obtained by solid-liquid separation from the fermentation liquor are provided in the liquid after the fermentation process and before the distillation process. Adopted.
微細藻類の培養方法において用いる装置類の概要、及び、他の装置類の概要を表した概略図。Schematic showing the outline | summary of the apparatus used in the cultivation method of a micro algae, and the outline | summary of another apparatus. 実験例1における微細藻類の培養実験の一結果(微細藻類含有率変化)を示すグラフ。The graph which shows one result (microalga content rate change) of the culture experiment of the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の培養実験の一結果(培養液のTOC濃度変化)を示すグラフ。The graph which shows one result (TOC density | concentration change of a culture solution) of the culture experiment of the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(微細藻類含有率変化)を示すグラフ。The graph which shows the other culture experiment result (microalga content rate change) in the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(培養液のTOC濃度変化)を示すグラフ。The graph which shows the other culture experiment result (TOC density | concentration change of a culture solution) in the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(微細藻類含有率変化)を示すグラフ。The graph which shows the other culture experiment result (microalga content rate change) in the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(培養液のTOC濃度変化)を示すグラフ。The graph which shows the other culture experiment result (TOC density | concentration change of a culture solution) in the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(微細藻類含有率変化)を示すグラフ。The graph which shows the other culture experiment result (microalga content rate change) in the micro algae in Experimental example 1. FIG. 実験例1における微細藻類の他の培養実験結果(培養液のTOC濃度変化)を示すグラフ。The graph which shows the other culture experiment result (TOC density | concentration change of a culture solution) in the micro algae in Experimental example 1. FIG. 実験例2における微細藻類の培養実験結果(微細藻類含有率変化)を示すグラフ。The graph which shows the culture experiment result (microalga content rate change) of the micro algae in Experimental example 2. FIG.
 以下、本発明に係る微細藻類の培養方法の一実施形態について説明する。 Hereinafter, an embodiment of the method for culturing microalgae according to the present invention will be described.
 本実施形態の微細藻類の培養方法は、バイオエタノール製造過程でバイオマスをアルコール発酵させて得られる発酵液からエタノールを回収した後の残液を少なくとも含む液体中で、有機炭素源の存在下、微細藻類を暗条件下で従属栄養培養又は光従属栄養培養するものである。
 より具体的には、本実施形態の微細藻類の培養方法は、バイオエタノール製造設備においてバイオマスがアルコール発酵されてなる発酵液を蒸留した後の蒸留残液を含む液を培養液として用いるもので、該培養液に含有させる有機炭素源としてバイオマスから得られた糖を使用するものである。
The method for culturing microalgae of this embodiment is a liquid containing at least a residual liquid after recovering ethanol from a fermentation broth obtained by alcohol fermentation of biomass in the bioethanol production process, in the presence of an organic carbon source. The algae are subjected to heterotrophic culture or light heterotrophic culture under dark conditions.
More specifically, the method for culturing microalgae of the present embodiment uses a liquid containing a distillation residue after distillation of a fermentation liquid obtained by subjecting biomass to alcohol fermentation in a bioethanol production facility, as a culture liquid. A sugar obtained from biomass is used as an organic carbon source to be contained in the culture solution.
 本実施形態の微細藻類の培養方法においては、前記発酵液の成分を含む液体中で微細藻類を培養するため、微細藻類を効率的に増殖させることができる。
 即ち、本実施形態の微細藻類の培養方法は、微細藻類を効率的に増殖させることができるという効果を奏する。
In the method for culturing microalgae of this embodiment, since microalgae are cultured in a liquid containing the components of the fermentation broth, the microalgae can be efficiently propagated.
That is, the method for culturing microalgae of the present embodiment has an effect that microalgae can be efficiently propagated.
 前記微細藻類は、水中を浮遊しつつ生息する生物である。また、前記微細藻類は、昆布やワカメと異なり、通常、単細胞性であり、大きさが概ね数マイクロメートルから数十マイクロメートルの微小な藻類である。 The microalgae are living organisms that live while floating in water. Further, unlike kelp and seaweed, the microalgae are usually unicellular and are microalgae having a size of several micrometers to several tens of micrometers.
 前記微細藻類としては、ユーグレナ(Euglena)属に属する生物、クロレラ(Chlorella)属に属する生物、オーランチオキトリウム(Aurantiochytrium)属に属する生物、オーキセノクロレラ(Auxenochlorella)属に属する生物、ボツリオコッカス(Botryococcus)属に属する生物、ナンノクロリス(Nannochloris)属に属する生物、ナンノクロロプシス(Nannochloropsis)属に属する生物、ネオクロリス(Neochloris)属に属する生物、シュードコリシスチス(Pseudochoricystis)属に属する生物、セネデスムス(Scenedesmus)属に属する生物、シゾキトリウム(Schizochytorium)属に属する生物からなる群より選択された少なくとも1種が好ましい。 Examples of the microalgae include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Aurantiochytrium , organisms belonging to the genus Auxenochlorella, botuliococcus (Botryococcus) belonging to the genus organism, Nan'nokurorisu (Nannochloris) belonging to the genus organism, Nannochloropsis (Nannochloropsis) belonging to the genus organism, Neokurorisu (Neochloris) belonging to the genus organism, shoe DoCoMo lysis Chis (Pseudochoricystis) belonging to the genus organism, Scenedesmus (Scenedesmus) belonging to the genus organism Schizochytrium (Schizochytorium) at least one member selected from the group consisting of organism belonging to the genus are preferred.
 前記ユーグレナ(Euglena)属に属する生物としては、例えば、Euglena gracilisEuglena longaEuglena caudataEuglena oxyurisEuglena tripterisEuglena proximaEuglena viridisEuglena sociabilisEuglena ehrenbergiiEuglena desesEuglena pisciformisEuglena spirogyraEuglena acusEuglena geniculataEuglena intermediaEuglena mutabilisEuglena sanguineaEuglena stellataEuglena terricolaEuglena klebsiEuglena rubra、又は、Euglena cyclopicolaなどが挙げられる。
 前記Euglena gracilisとしては、例えば、Euglena gracilis NIES-48、Euglena gracilis EOD-1、(原寄託日2013年3月25日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD(郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 120号室))にブダペスト条約の規定下で、受託番号FERM BP-11530として国際寄託済み)などが挙げられる。
Organisms belonging to the Euglena (Euglena) genus, for example, Euglena gracilis, Euglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses, Euglena pisciformis, Euglena spirogyra, Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena rubra , or Euglena cyclopicola .
The Euglena as the gracilis, for example, Euglena gracilis NIES-48, Euglena gracilis EOD-1, ( original date of deposit independence in 2013 March 25 date National Institute of Technology and Evaluation, Patent Organism Depositary Center (NITE-IPOD (zip code 292-0818 Room No. 2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba Prefecture, Japan)))) under the provisions of the Budapest Treaty, the international deposit has been made under the deposit number FERM BP-11530).
 前記クロレラ(Chlorella)属に属する生物としては、例えば、Chlorella vulgarisChlorella pyrenoidosa、又は、Chlorella sorocinianaなどが挙げられる。
 前記Chlorella sorocinianaとしては、例えば、Chlorella sorociniana NIES-2169(後述する独立行政法人国立環境研究所微生物系統保存施設における保管株)などが挙げられる。
Examples of the organism belonging to the genus Chlorella include Chlorella vulgaris , Chlorella pyrenoidosa , or Chlorella sorociniana .
As the Chlorella sorociniana, for example, and the like (storage strains in later to Independent Administrative Institution National Institute for Environmental Studies microorganism strain preservation facility) Chlorella sorociniana NIES-2169.
 前記オーキセノクロレラ(Auxenochlorella)属に属する生物としては、例えば、Auxenochlorella protothecoidesなどが挙げられる。 Organisms belonging to the Orchidee Imperiale Seno Chlorella (Auxenochlorella) genus, for example, like Auxenochlorella protothecoides.
 前記ボツリオコッカス(Botryococcus)属に属する生物としては、例えば、Botryococcus brauniiなどが挙げられる。 Examples of the organism belonging to the genus Botryococcus include Botryococcus braunii .
 前記ナンノクロリス(Nannochloris)属に属する生物としては、例えば、Nannochloris bacillarisNannochloris normandinaeなどが挙げられる。 Organisms belonging to the Nan'nokurorisu (Nannochloris) genus, for example, Nannochloris Bacillaris, like Nannochloris normandinae.
 前記ナンノクロロプシス(Nannochloropsis)属に属する生物としては、例えば、Nannochloropsis oculataなどが挙げられる。 Organisms belonging to the Nannochloropsis (Nannochloropsis) genus, for example, like Nannochloropsis oculata.
 前記ネオクロリス(Neochloris)属に属する生物としては、例えば、Neochloris aquaticaNeochloris cohaerensNeochloris conjunctaNeochloris gelatinosaNeochloris pseudostigmataNeochloris pseudostigmaticaNeochloris pyrenoidosaNeochloris terrestrisNeochloris texensisNeochloris vigensisNeochloris wimmeriNeochloris oleoabundansなどが挙げられる。 Organisms belonging to the Neokurorisu (Neochloris) genus, e.g., Neochloris aquatica, Neochloris cohaerens, Neochloris conjuncta, Neochloris gelatinosa, Neochloris pseudostigmata, Neochloris pseudostigmatica, Neochloris pyrenoidosa, Neochloris terrestris, Neochloris texensis, Neochloris vigensis, Neochloris wimmeri, Neochloris oleoabundans etc. Is mentioned.
 前記シュードコリシスチス(Pseudochoricystis)属に属する生物としては、例えば、Pseudochoricystis ellipsoideaなどが挙げられる。 Examples of the organism belonging to the genus Pseudochoricystis include Pseudochoricystis ellipsoidea .
 前記セネデスムス(Scenedesmus)属に属する生物としては、例えば、Scenedesmus ovaltermusScenedesmus disciformisScenedesmus acumunatusScenedesmus dimorphusなどが挙げられる。 Organisms belonging to the Scenedesmus (Scenedesmus) genus, for example, Scenedesmus ovaltermus, Scenedesmus disciformis, Scenedesmus acumunatus, like Scenedesmus dimorphus.
 前記オーランチオキトリウム(Aurantiochytrium)属に属する生物としては、例えば、Aurantiochytrium limacinum、又は、Aurantiochytrium mangroveiなどが挙げられる。 Organisms belonging to the O-lunch Oki thorium (Aurantiochytrium) genus, for example, Aurantiochytrium limacinum, or the like Aurantiochytrium mangrovei.
 前記シゾキトリウム(Schizochytorium)属に属する生物としては、例えば、Schizochytrium aggregatumなどが挙げられる。 Examples of the organism belonging to the genus Schizochytorium include Schizochytrium aggregatum .
 上記の微細藻類は、独立行政法人製品評価技術基盤機構 特許生物寄託センター(郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)、独立行政法人国立環境研究所微生物系統保存施設(郵便番号305-8506 日本国茨城県つくば市小野川16-2)、又は、The Culture Collection of Algae at the University of Texas at Austin, USA(http://web.biosci.utexas.edu/utex/default.aspx)などから容易に入手される。 The above microalgae are preserved by the National Institute for Environmental Studies, National Institute for Environmental Studies, National Institute for Environmental Studies, National Institute for Environmental Studies, National Institute for Environmental Studies Facility (Postal Code 305-8506, 16-2 Onagawa, Tsukuba City, Ibaraki, Japan), or The Culture Collection of Algae at the University of Texas at Austin, USA (http://web.biosci.utexas.edu/utex/ default.aspx).
 前記微細藻類としては、バイオディーゼルの原料となるワックスエステルを大量に産生できるという点、ビタミン、カロテノイド、栄養価の高いタンパク質、パラミロンなどの有価物を多く含んでいるという点、大量に培養しやすいという点で、前記ユーグレナ(Euglena)属に属する生物が好ましい。
 また、前記微細藻類としては、バイオディーゼルの原料となるトリグリセリドを大量に産生できるという点、食物繊維、ビタミン、カロテノイド、タンパク質、リノール酸、リノレン酸などの有価物を多く含んでいるという点、大量に培養しやすいという点で、前記クロレラ(Chlorella)属に属する生物が好ましい。
As the microalgae, it is possible to produce a large amount of wax ester as a raw material of biodiesel, it contains a lot of valuable substances such as vitamins, carotenoids, highly nutritious proteins, paramylon, and it is easy to culture in large quantities. In this respect, organisms belonging to the genus Euglena are preferred.
In addition, the microalgae can produce a large amount of triglyceride as a raw material for biodiesel, contain a lot of valuable materials such as dietary fiber, vitamins, carotenoids, proteins, linoleic acid, linolenic acid, Organisms belonging to the genus Chlorella are preferred because they can be easily cultured.
 前記蒸留残液や前記糖の出発物質となるバイオマスとしては、例えば、植物やその加工品、および、植物に由来する物質を挙げることができる。前記植物としては、陸上植物や水中植物が挙げられる。
 なお、前記バイオマスとしては、その成分によって糖質系バイオマス、でんぷん系バイオマス、及び、セルロース系バイオマスに分けられるが、本実施形態においては用いるバイオマスを特に限定するものではない。
 なお、本実施形態におけるバイオマスは、微細藻類及び微細藻類由来のものを実質的に含有していない。
Examples of biomass that is a starting material for the distillation residue and the sugar include plants, processed products thereof, and substances derived from plants. Examples of the plant include land plants and underwater plants.
The biomass is classified into carbohydrate biomass, starch biomass, and cellulose biomass depending on the component, but the biomass to be used is not particularly limited in the present embodiment.
In addition, the biomass in this embodiment does not contain the micro algae and the thing derived from a micro algae substantially.
 なお、前記糖質系バイオマスとしては、例えば、さとうきび、甜菜、糖蜜、廃糖蜜などが挙げられる。 In addition, examples of the sugar-based biomass include sugarcane, sugar beet, molasses, and molasses.
 前記でんぷん系バイオマスとしては、例えば、トウモロコシ、こうりゃん、ジャガイモ、サツマイモ、米、麦、キャッサバなどが挙げられる。 Examples of the starch-based biomass include corn, corn, potato, sweet potato, rice, wheat and cassava.
 前記セルロース系バイオマスとしては、例えば、間伐材や幹の生育のために切断された枝などの樹木の全部又は一部からなるチップ、おが屑などが挙げられる。
 また、前記セルロース系バイオマスとしては、麦わら、稲わら、バガス、ケナフ、麻、綿、雑草などが挙げられる。
 また、前記セルロース系バイオマスには、エリアンサスやネピアグラスといったいわゆるエネルギー植物なども含まれる。
 また、古紙などのパルプ製品についても前記セルロース系バイオマスとして採用可能である。
As said cellulose biomass, the chip | tip which consists of all or one part of trees, such as a thinned timber and the branch cut | disconnected for growth of a trunk, sawdust, etc. are mentioned, for example.
Examples of the cellulosic biomass include wheat straw, rice straw, bagasse, kenaf, hemp, cotton, weed and the like.
The cellulosic biomass also includes so-called energy plants such as Eliansus and Napiergrass.
Also, pulp products such as waste paper can be used as the cellulose biomass.
 上記のようなバイオマスを使用した前記微細藻類の培養方法について図を参照しつつより詳しく説明する。
 なお、以下においては、微細藻類の培養設備をバイオエタノールの製造設備から排出される排水の処理設備として使用する態様を例示しつつ説明する。
The method for culturing the microalgae using the biomass as described above will be described in more detail with reference to the drawings.
In the following, description will be made while exemplifying an embodiment in which the microalgae cultivation facility is used as a wastewater treatment facility discharged from a bioethanol production facility.
 まず、本実施形態の藻類の培養方法に使用する装置類について説明する。
 図1は、微細藻類の培養方法において用いる装置類の概要、及び、他の装置類の概要を表した概略図である。図1は、前記バイオエタノール製造設備、及び、前記微細藻類培養設備の主たる構成を表す。
 本実施形態においては、図に示されているようにバイオエタノール製造設備10が微細藻類培養設備20に併設されている。本実施形態の培養方法が実施される前記微細藻類培養設備20は、前記バイオエタノール製造設備10の排水処理に利用されている。
 なお、図1の符号Aは、バイオエタノール製造設備10に供給されるバイオマスを表す。符合Bは、バイオエタノール製造設備10で得られるバイオエタノールを表す。
 また、図1の符号Cは、前記微細藻類培養設備20に供給される水を表す。符号Dは、微細藻類を培養することによって得られる有価物を表す。
 以下においては、当該有価物が藻バイオマスである場合を例に説明する。
 なお、図1の符号Eは、必要に応じて微細藻類培養設備20に供給される各種成分を表す。符合Fは微細藻類培養設備20から排出される処理水を表す。
First, the apparatus used for the algae culture method of this embodiment will be described.
FIG. 1 is a schematic view showing an outline of devices used in the method for culturing microalgae and an outline of other devices. FIG. 1 shows a main configuration of the bioethanol production facility and the microalgae culture facility.
In the present embodiment, as shown in the figure, a bioethanol production facility 10 is attached to the microalgae culture facility 20. The microalgae culture facility 20 in which the culture method of the present embodiment is implemented is used for wastewater treatment of the bioethanol production facility 10.
In addition, the code | symbol A of FIG. 1 represents the biomass supplied to the bioethanol manufacturing equipment 10. FIG. The symbol B represents bioethanol obtained at the bioethanol production facility 10.
Moreover, the code | symbol C of FIG. 1 represents the water supplied to the said micro algae culture equipment 20. FIG. The code | symbol D represents the valuables obtained by culture | cultivating a micro algae.
Below, the case where the said valuables are algae biomass is demonstrated to an example.
In addition, the code | symbol E of FIG. 1 represents the various components supplied to the micro algae culture equipment 20 as needed. The symbol F represents treated water discharged from the microalgae culture facility 20.
 前記バイオエタノール製造設備10は、主要構成として以下の(11)~(14)を有している。
(11)前記バイオマスAが供給され、該バイオマスから糖を含む原液が作製される原液作製装置。
(12)前記原液が原液作製装置11から供給され、該原液に含まれている糖がアルコール発酵されてエタノールを含有する発酵液が作製される発酵装置。
(13)前記発酵液が発酵装置12から供給され、該発酵液が蒸留されてエタノールが回収され、発酵液よりもエタノール濃度の高い凝縮液と発酵液よりもエタノール濃度の低い蒸留残液とに分離される蒸留装置。
(14)前記凝縮液が蒸留装置13から供給され、該凝縮液に含有されている水分などの不純物が除去されて前記不純物を含む分離液と高純度のエタノールとに前記凝縮液が分離される精製装置。
 前記バイオエタノール製造設備10は、発酵装置12の後段であって蒸留装置13の前段に、前記発酵液を固液分離する固液分離装置をさらに有していてもよい。
The bioethanol production facility 10 has the following (11) to (14) as main components.
(11) A stock solution production apparatus in which the biomass A is supplied and a stock solution containing sugar is produced from the biomass.
(12) A fermentation apparatus in which the stock solution is supplied from the stock solution production device 11, and the sugar contained in the stock solution is subjected to alcohol fermentation to produce a fermentation solution containing ethanol.
(13) The fermentation broth is supplied from the fermentation apparatus 12, the fermentation broth is distilled and ethanol is collected, and a condensate having a higher ethanol concentration than the fermentation broth and a distillation residue having a lower ethanol concentration than the fermentation broth are obtained. Distillation equipment to be separated.
(14) The condensate is supplied from the distillation apparatus 13, impurities such as water contained in the condensate are removed, and the condensate is separated into a separation liquid containing the impurities and high-purity ethanol. Purification equipment.
The bioethanol production facility 10 may further include a solid-liquid separation device that separates the fermentation broth into solid and liquid at the subsequent stage of the fermentation apparatus 12 and before the distillation apparatus 13.
 一方で、前記微細藻類培養設備20は、主要構成として以下の(21)~(25)を有している。
(21)前記蒸留装置13から前記蒸発残液が供給されるとともに前記原液作製装置11から糖を含む前記原液が供給され、これらが系外から供給される水によって適度な濃度に希釈されて前記微細藻類の培養液が調製される調製タンク。
(22)調製タンク21において調製後の培養液を除菌する除菌装置。
(23)前記微細藻類が収容され、前記調製タンク21から除菌装置22を経て供給される培養液によって、有機炭素源の存在下、前記微細藻類が暗条件下で従属栄養培養又は光従属栄養培養される培養装置。
(24)前記培養装置23から微細藻類を含む藻類含有液が供給され、該藻類含有液が固形分と液体分とに分離されて微細藻類が濃縮されるとともに前記調製タンク21で作製される培養液よりも全有機炭素(TOC)濃度が低い前記処理水Fが排出される濃縮装置。
(25)前記濃縮装置24で濃縮された濃縮物に含まれる微細藻類から有価物たる脂質が抽出されて該脂質を主成分とした有価物(液体燃料)が排出される抽出装置。
 なお、前記微細藻類培養設備20は、固液分離装置にて固液分離された固形分を培養装置23に供給するように構成され得る。
On the other hand, the microalgae cultivation facility 20 has the following (21) to (25) as main components.
(21) The evaporation residual solution is supplied from the distillation device 13 and the stock solution containing sugar is supplied from the stock solution preparation device 11, and these are diluted to an appropriate concentration with water supplied from outside the system, and A preparation tank in which a culture solution of microalgae is prepared.
(22) A sterilization apparatus for sterilizing the prepared culture solution in the preparation tank 21.
(23) The microalgae are stored in the heterotrophic culture or light heterotrophic condition in the presence of an organic carbon source in the presence of an organic carbon source by the culture solution that contains the microalgae and is supplied from the preparation tank 21 via the sterilizer 22. A culture device to be cultured.
(24) An algae-containing liquid containing microalgae is supplied from the culturing device 23, the algae-containing liquid is separated into a solid content and a liquid content, and the microalgae are concentrated and cultured in the preparation tank 21. A concentrator that discharges the treated water F having a lower total organic carbon (TOC) concentration than the liquid.
(25) An extraction device in which lipids, which are valuable resources, are extracted from microalgae contained in the concentrate concentrated by the concentration device 24, and valuable materials (liquid fuel) mainly composed of the lipids are discharged.
The microalgae culture facility 20 may be configured to supply the culture device 23 with the solid content that has been solid-liquid separated by the solid-liquid separation device.
 前記のように本実施形態における微細藻類培養設備20は、前記バイオエタノール製造設備10の排水処理に利用されている。
 そして、バイオエタノール製造設備10では、バイオエタノールが製造される過程において以下のような工程が実施される。
(1a)バイオマスから糖を含む原液を得る原液作製工程。
(1b)前記原液に含まれている糖をアルコール発酵してエタノールを含有する発酵液を得る発酵工程。
(1c)前記発酵液を蒸留することによりエタノールを回収し、該発酵液よりもエタノール濃度の高い凝縮液と前記発酵液よりもエタノール濃度の低い蒸留残液とを得る蒸留工程。
(1d)水分などの不純物を前記凝縮液から除去し、前記凝縮液よりもエタノール濃度の高いバイオエタノールBを得る精製工程。
 なお、バイオエタノールが製造される過程において、発酵工程の後で蒸留工程の前に、前記発酵液に固液分離処理を施す固液分離工程が実施されてもよい。
As described above, the microalgae culture facility 20 in the present embodiment is used for the wastewater treatment of the bioethanol production facility 10.
And in the bioethanol manufacturing equipment 10, the following processes are implemented in the process in which bioethanol is manufactured.
(1a) A stock solution production step for obtaining a stock solution containing sugar from biomass.
(1b) A fermentation process for obtaining a fermentation broth containing ethanol by subjecting the sugar contained in the stock solution to alcohol fermentation.
(1c) A distillation step of recovering ethanol by distilling the fermentation broth to obtain a condensate having a higher ethanol concentration than the fermentation broth and a distillation residue having a lower ethanol concentration than the fermentation broth.
(1d) A purification step in which impurities such as moisture are removed from the condensate to obtain bioethanol B having a higher ethanol concentration than the condensate.
In the process of producing bioethanol, a solid-liquid separation process for subjecting the fermentation liquid to a solid-liquid separation process may be performed after the fermentation process and before the distillation process.
 前記原液作製装置11での原液作製工程では、前記バイオマスAが糖質系バイオマスである場合は、例えば、さとうきびや甜菜を圧搾するなどして糖蜜を得て、該糖蜜を水で適度に希釈して原液を作製することができる。該糖質系バイオマスが廃糖蜜である場合には、原液作製工程では、例えば、該廃糖蜜を水で希釈するなどして原液を作製することができる。 In the stock solution preparation process in the stock solution preparation device 11, when the biomass A is a saccharide-based biomass, for example, sugar cane and sugar beet are squeezed to obtain molasses, and the molasses is diluted appropriately with water. To prepare a stock solution. When the saccharide biomass is waste molasses, in the stock solution production step, for example, the waste molasses can be produced by diluting the waste molasses with water.
 また、前記バイオマスAがセルロース系バイオマスである場合、原液作製工程は、例えば、該バイオマスを適当な大きさに粉砕した後、酵素、酸又はアルカリを用いてバイオマスを加水分解し、ヘミセルロース、セルロース由来の糖を含んだ糖化液を得、該糖化液を必要に応じて中和処理して原液とする方法を採用して行うことができる。 In addition, when the biomass A is a cellulosic biomass, the stock solution preparation step includes, for example, pulverizing the biomass to an appropriate size, hydrolyzing the biomass using an enzyme, an acid or an alkali, and deriving from hemicellulose and cellulose The saccharified solution containing the saccharide can be obtained, and the saccharified solution can be neutralized as necessary to obtain a stock solution.
 前記バイオマスAがでんぷん系バイオマスである場合には、原液作製工程は、例えば、バイオマスに含まれているでんぷんのグリコキシド結合を酵素や酸により加水分解して糖化液を得、該糖化液を必要に応じて中和処理して原液とする方法を採用して行うことができる。 In the case where the biomass A is starch-based biomass, for example, in the stock solution preparation step, a saccharified solution is obtained by hydrolyzing the glycoxide bond of starch contained in the biomass with an enzyme or an acid, and the saccharified solution is required. Accordingly, it can be carried out by adopting a method of neutralizing to make a stock solution.
 なお、原液は、繊維等の固形物を含有している場合、この固形物を除去した上で前記発酵装置12に供給されることが好ましい。 In addition, when the undiluted | stock solution contains solid substances, such as a fiber, it is preferable to supply the said fermentation apparatus 12 after removing this solid substance.
 前記発酵装置12における発酵工程は、例えば、前記原液に酵母を加えたものを嫌気環境下で所定時間保持するバッチ(回分)式の方法を採用して実施することができる。 The fermentation process in the fermentation apparatus 12 can be carried out, for example, by adopting a batch (batch) method in which yeast is added to the stock solution for a predetermined time in an anaerobic environment.
 前記酵母としては、酵母菌を用いることができ、例えば、サッカロマイセス(Saccharomyces)属に属するものを使用できる。
 より具体的には、前記酵母菌としては、Saccaromyces cerebisiae等を使用することができる。
 また、前記酵母としては、いわゆる清酒酵母、いわゆるワイン酵母、又は、いわゆるビール酵母などを用いても良い。
As the yeast, yeasts can be used, for example, those belonging to the genus Saccharomyces .
More specifically, Saccaromyces cerebisiae etc. can be used as said yeast.
Moreover, as said yeast, you may use what is called sake yeast, what is called wine yeast, or what is called beer yeast.
 なお、当該発酵工程において作製された発酵液は、前記酵母をろ別等によって回収した後に前記蒸留装置13に供給されることが好ましい。
 回収した酵母は、例えば、次バッチ以降の発酵工程に再利用することができる。
 前記酵母には、タンパク質、アミノ酸、ビタミン、リン、カリウムなどの成分が含まれている。
 従って、当該発酵工程において回収した酵母は、要すれば前記調製タンク21、又は、前記培養装置23に供給され、微細藻類の培養に活用されることも可能である。
 なお、微細藻類の培養に活用する場合、酵母は、酵母エキスとして活用されることが好ましい。
 前記酵母エキスとしては、例えば、熱水と接触させて酵母菌の細胞壁を破壊して抽出されたもの、又は、酵素処理によって酵母菌の細胞壁を破壊して抽出されたもの等を用いることができる。
 また、前記酵母エキスとしては、前記酵母が自己消化することにより生じたものであってもよい。
 即ち、前記発酵工程に用いる酵母エキスは、酵母が有する酵素を利用して、酵母を構成する成分を分解することにより生じたものであってもよい。
 前記酵母の自己消化は、例えば、糖類などの有機栄養素がない条件下に酵母をおくことによって、起こすことができる。
 このように酵母を酵母エキスにするための装置であって、前記調製タンク21や前記培養装置23に酵母エキスを供給する前に、酵母に熱水処理、酵素処理、自己消化させる処理を施すための装置を、別途設けても良い。後述する除菌装置などを用いるようにしても良い。
In addition, it is preferable that the fermented liquor produced in the said fermentation process is supplied to the said distillation apparatus 13 after collect | recovering the said yeast by filtration.
The recovered yeast can be reused, for example, in the fermentation process after the next batch.
The yeast contains components such as proteins, amino acids, vitamins, phosphorus and potassium.
Therefore, the yeast recovered in the fermentation step can be supplied to the preparation tank 21 or the culture device 23 as needed, and can be used for culturing microalgae.
In addition, when utilizing for culture | cultivation of a micro algae, it is preferable that yeast is utilized as a yeast extract.
Examples of the yeast extract that can be used include those extracted by contacting with hot water to destroy the cell walls of yeast, or those extracted by destroying the cell walls of yeast by enzymatic treatment. .
In addition, the yeast extract may be produced by self-digestion of the yeast.
That is, the yeast extract used in the fermentation process may be produced by decomposing components constituting yeast using an enzyme possessed by yeast.
The self-digestion of the yeast can be caused, for example, by placing the yeast under conditions where there are no organic nutrients such as sugars.
Thus, it is an apparatus for converting yeast into a yeast extract, and before supplying the yeast extract to the preparation tank 21 and the culture apparatus 23, the yeast is subjected to a hot water treatment, an enzyme treatment, and a self-digestion treatment. This device may be provided separately. You may make it use the microbe elimination apparatus etc. which are mentioned later.
 前記蒸留装置13での蒸留工程は、例えば、蒸留釜と凝縮器とを用いた一般的な方法によって実施することができる。
 そして、この蒸留工程で発酵液から凝縮液としてエタノールが回収された後の残液たる蒸留残液は、通常、有機物等を含んでいるためにそのままの状態で放流水としたり、何等かの工程水として再利用したりすることが難しい。
 本実施形態においては、バイオエタノール製造設備10から排出される排水たる前記蒸留残液が、前記微細藻類培養設備20によって排水処理されている。
The distillation step in the distillation apparatus 13 can be performed by a general method using a distillation still and a condenser, for example.
And the distillation residual liquid which is the residual liquid after ethanol is recovered as the condensate from the fermentation liquid in this distillation step usually contains organic substances etc., so it can be used as effluent as it is, or any process It is difficult to reuse as water.
In the present embodiment, the distillation residual liquid discharged from the bioethanol production facility 10 is drained by the microalgae culture facility 20.
 なお、前記精製装置14における精製工程は、例えば、モレキュラーシーブや膜分離によって前記凝縮液から水分などの不純物を除去することによって実施することができる。
 この工程においては、前記モレキュラーシーブの再生や前記膜分離に際して前記凝縮液から分離された分離液が排水となって精製装置14から排出されることになる。要すれば、この排水も前記微細藻類培養設備20によって処理させることができる。
Note that the purification step in the purification apparatus 14 can be performed by removing impurities such as moisture from the condensate by, for example, molecular sieve or membrane separation.
In this step, the separation liquid separated from the condensate during the regeneration of the molecular sieve and the membrane separation is discharged as a waste water from the purifier 14. If necessary, this waste water can also be treated by the microalgae cultivation facility 20.
 次いで、藻バイオマスDの製造とともに微細藻類培養設備20の排水処理として実施される本実施形態の微細藻類培養方法について説明する。
 本実施形態の微細藻類培養設備20では、藻バイオマスDが製造される過程において以下のような工程が実施される。
(2a)前記蒸留残液とともに前記原液作製装置11から糖を前記調製タンク21に導入し、当該調製タンク21に前記蒸留残液を適度に希釈するための水Cを導入し、該水Cで前記蒸留残液及び前記糖を適度な濃度に希釈して微細藻類を培養するための培養液を調製する培養液調製工程。
(2b)前記調製後の培養液から微細藻類の増殖を阻害するおそれのある菌を前記除菌装置22で取り除く除菌工程。
(2c)前記調製タンク21から培養液を除菌装置22を経由して培養装置23に導入し、該培養装置内にて微細藻類を増殖させる培養工程。
(2d)前記培養装置23から藻類含有液を濃縮装置24に導入し、該濃縮装置24で藻類含有液の固形分と液体分とを分離することにより、微細藻類を濃縮する濃縮工程。
(2e)前記濃縮工程で藻類含有液が濃縮された濃縮物から有価物(藻バイオマス)Dを得る抽出工程。
 なお、藻バイオマスDが製造される過程において、固液分離工程にて固液分離された固形分を、培養液(蒸留残液を含む液体)に供給することができる。
Next, the method for culturing microalgae according to the present embodiment, which is implemented as wastewater treatment of the microalgae culture facility 20 together with the production of algal biomass D, will be described.
In the microalgae culture facility 20 of the present embodiment, the following steps are performed in the process of producing the algal biomass D.
(2a) The sugar is introduced into the preparation tank 21 from the stock solution preparation device 11 together with the distillation residue, and water C for appropriately diluting the distillation residue is introduced into the preparation tank 21. A culture solution preparation step of preparing a culture solution for culturing microalgae by diluting the distillation residue and the sugar to an appropriate concentration.
(2b) A sterilization step of removing bacteria that may inhibit the growth of microalgae from the prepared culture solution using the sterilization apparatus 22.
(2c) A culturing step for introducing a culture solution from the preparation tank 21 to the culturing apparatus 23 via the sterilization apparatus 22 and growing microalgae in the culturing apparatus.
(2d) A concentration step of concentrating microalgae by introducing an algae-containing liquid from the culture device 23 into the concentration device 24 and separating the solid content and the liquid content of the algae-containing liquid with the concentration device 24.
(2e) An extraction step of obtaining valuable material (algae biomass) D from the concentrate obtained by concentrating the algae-containing liquid in the concentration step.
In addition, in the process in which the algal biomass D is manufactured, the solid content separated in the solid-liquid separation step can be supplied to the culture solution (a liquid containing a distillation residue).
 前記調製タンク21において実施される培養液調製工程においては、例えば、前記蒸留残液の含有量が過度に少ない培養液を調製すると、当然ながら本発明の効果が十分に発揮されなくなるおそれがある。
 その一方で、前記蒸留残液の含有量が過度に多い培養液も、微細藻類の効率的な培養には適さないおそれがある。
 従って、本発明の効果をより顕著なものとし得る点において、当該工程において作製する前記培養液には、前記蒸発残液を容量で1/40以上1/2以下含有させることが好ましく、前記蒸発残液を培養液に1/20以上1/5以下となる割合で含有させることがさらに好ましい。
In the culture solution preparation step performed in the preparation tank 21, for example, if a culture solution with an excessively small content of the distillation residue is prepared, the effect of the present invention may not be sufficiently exhibited.
On the other hand, a culture solution having an excessively high content of the distillation residue may not be suitable for efficient cultivation of microalgae.
Therefore, in the point that the effect of the present invention can be made more remarkable, it is preferable that the culture solution prepared in the step contains the evaporation residual liquid in a volume of 1/40 or more and 1/2 or less. More preferably, the remaining solution is contained in the culture solution at a ratio of 1/20 to 1/5.
 該蒸留残液とともに培養液に含有させる前記糖は、微細藻類の炭素源となるもので、前記蒸留残液に微細藻類が利用可能な炭素源が十分に含有されているようであれば敢えて培養液に含有させる必要はない。しかしながら、通常、微細藻類が利用可能な有機炭素源が、蒸留残液に十分に含有されていることはない。
 従って、通常は、何等かの形で微細藻類が利用可能な有機炭素源となる物質を培養液に含有させることが必要となる。
 前記培養液に有機炭素源を含有させる際には、バイオマスから得られた糖以外のものを有機炭素源として使用しても良い。一方、バイオエタノール製造過程においては、ブドウ糖や果糖などの糖が安価で大量に製造される。本実施形態の微細藻類培養方法を経済的観点からも多くの利点を有するものとする上において、前記培養液に含有させる有機炭素源は、バイオマスから得られた糖であることが好ましい。
 また、糖の添加量が少ない場合、微細藻類の増殖に必要な炭素源を十分に得ることができずに微細藻類の培養の効率が低下するおそれがある。
 一方で、糖の添加量が多い場合、微細藻類が糖を利用しきれずに糖が残存する可能性があり、添加した糖類が無駄になるおそれがある。
 更に糖の添加量が多いと、本実施形態のごとく微細藻類を排水処理に利用する場合、残存した糖類が結果的に水質を悪化させてその目的が十分に果たせなくなるおそれがある。
 なお、本発明の効果をより顕著なものとし得る点において、微細藻類としてユーグレナを利用する場合、当該工程において作製する前記培養液には、前記糖を5g/L以上の割合で含有させることが好ましく、10g/L以上の割合で含有させることがより好ましい。
 また、前記培養液には、前記糖を25g/L以下の割合で含有させることが好ましく、20g/L以下の割合で含有させることがより好ましく、15g/L以下の割合で含有させることが特に好ましい。
The sugar to be contained in the culture solution together with the distillation residue is a carbon source for microalgae. If the distillation residue contains a carbon source that can be used by the microalgae, it is cultivated. It is not necessary to include in the liquid. However, usually, the organic carbon source that can be used by microalgae is not sufficiently contained in the distillation residue.
Therefore, it is usually necessary for the culture solution to contain a substance that becomes an organic carbon source that can be used by microalgae in some form.
When an organic carbon source is contained in the culture solution, a substance other than sugar obtained from biomass may be used as the organic carbon source. On the other hand, in the bioethanol production process, sugars such as glucose and fructose are produced in large quantities at low cost. When the microalgae cultivation method of the present embodiment has many advantages from an economical viewpoint, the organic carbon source contained in the culture solution is preferably a sugar obtained from biomass.
Moreover, when there is little addition amount of saccharide | sugar, there exists a possibility that the carbon source required for the growth of a micro algae cannot fully be obtained, but the efficiency of culture | cultivation of a micro algae may fall.
On the other hand, when the amount of sugar added is large, there is a possibility that the microalgae cannot use the sugar and the sugar may remain, and the added sugar may be wasted.
Further, when the amount of added sugar is large, when the microalgae are used for waste water treatment as in the present embodiment, the remaining sugar may result in deterioration of water quality and the purpose may not be sufficiently achieved.
In addition, in the point which can make the effect of this invention more remarkable, when using Euglena as a micro algae, the said saccharide | sugar is contained in the said culture solution produced in the said process in the ratio of 5 g / L or more. Preferably, it is more preferably contained at a rate of 10 g / L or more.
Moreover, it is preferable to contain the sugar at a rate of 25 g / L or less, more preferably at a rate of 20 g / L or less, and particularly at a rate of 15 g / L or less. preferable.
 また、培養液調製工程においては、培養液が微細藻類の増殖に適したpH値を示すように調節することが好ましい。
 増殖させる微細藻類が、例えば、ユーグレナ(Euglena)属生物である場合には、前記培養液のpHは、特に限定されないが、3.0~5.5とすることが好ましい。
 なお、培養液のpHを調整するためには、前記各主成分Eとして塩酸のような無機酸や酢酸のような有機酸を採用して、これらの酸を前記調製タンク21に導入させるようにすればよい。
 なお、このとき調製タンク21に導入させる酸としては、微細藻類が栄養源として利用可能である点において、有機酸が好ましい。
Further, in the culture solution preparation step, it is preferable to adjust the culture solution so as to exhibit a pH value suitable for the growth of microalgae.
When the microalgae to be grown is, for example, an organism belonging to the genus Euglena , the pH of the culture solution is not particularly limited, but is preferably 3.0 to 5.5.
In order to adjust the pH of the culture solution, an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid is employed as the main component E, and these acids are introduced into the preparation tank 21. do it.
The acid introduced into the preparation tank 21 at this time is preferably an organic acid in that microalgae can be used as a nutrient source.
 本実施形態においては、前記炭素源とは別に微細藻類の増殖に必要な無機栄養素やビタミンを含む物質を前記各種成分Eとして前記調製タンク21に導入させるようにしても良い。
 なお、該無機栄養素としては、例えば、カリウムイオン、鉄イオン、マンガンイオン、コバルトイオン、亜鉛イオン、銅イオン、モリブテンイオン、ニッケルイオンなどが挙げられる。
In the present embodiment, a substance containing inorganic nutrients and vitamins necessary for the growth of microalgae apart from the carbon source may be introduced into the preparation tank 21 as the various components E.
Examples of the inorganic nutrient include potassium ion, iron ion, manganese ion, cobalt ion, zinc ion, copper ion, molybdenum ion, nickel ion and the like.
 このようにして調製された培養液を前記除菌装置22で除菌する前記除菌工程は、例えば、菌の増殖に悪影響を与えるおそれのある薬剤を用いることなく実施することが好ましい。前記除菌工程は、水蒸気などの熱を利用した加熱殺菌、濾過膜を利用した菌の除去などにより行うことが好ましい。 The sterilization step of sterilizing the culture solution thus prepared with the sterilization apparatus 22 is preferably performed without using a drug that may adversely affect the growth of the bacterium, for example. The sterilization step is preferably performed by heat sterilization using heat such as water vapor or removal of bacteria using a filtration membrane.
 本実施形態においては、前記培養液を利用することにより、前記培養装置23での微細藻類の培養をより効率的なものとすることができる。 In the present embodiment, by using the culture solution, it is possible to more efficiently culture microalgae in the culture device 23.
 前記培養装置23での培養工程は、従属栄養培養がなされる条件下であれば、明条件下(光従属栄養培養)、暗条件下の何れで微細藻類を培養させても良い。本実施形態においては、実質的に微細藻類に光を照射しない暗条件下で従属栄養培養することが好ましい。
 特に、増殖させる微細藻類がユーグレナ(Euglena)属生物である場合には、前記培養工程においては、微細藻類と前記培養液との混合液に対して曝気を実施し、微細藻類を暗条件下且つ好気条件下で培養することが好ましい。
In the culturing process in the culturing apparatus 23, microalgae may be cultured under either light conditions (light heterotrophic culture) or dark conditions as long as heterotrophic culture is performed. In this embodiment, heterotrophic culture is preferably performed under dark conditions in which microalgae are not substantially irradiated with light.
In particular, when microalgae grown is Euglena (Euglena) genus organism, wherein in the culturing step, the aeration was carried out on a mixture of the microalgae culture microalgae dark conditions and It is preferable to culture under aerobic conditions.
 なお、本明細書中における「暗条件」とは、培養期間を通じて光の照射強度を平均した場合にその値が数μmol/m・s以下(多くとも10μmol/m・sを超えない)となることを意味する。
 前記曝気としては、一般的な曝気方法を利用することができる。曝気は、単に液体中に気体を曝気する方法に限定されず、撹拌や振とうによって気体を取り込む方法も含むものである。
 曝気する気体としては、空気や純酸素及びこれらの混合気体を利用することができる。
In the present specification, the “dark condition” means that when the light irradiation intensity is averaged throughout the culture period, the value is several μmol / m 2 · s or less (at most 10 μmol / m 2 · s). Means that
As the aeration, a general aeration method can be used. Aeration is not limited to a method in which gas is simply aerated in a liquid, but also includes a method in which gas is taken in by stirring or shaking.
As the gas to be aerated, air, pure oxygen, or a mixed gas thereof can be used.
 該培養工程における培養液の温度は、微細藻類が増殖できる温度であれば、特に限定されない。該培養温度(培養液の温度)としては、具体的には例えば、20℃~35℃が採用される。 The temperature of the culture solution in the culturing step is not particularly limited as long as it is a temperature at which microalgae can grow. Specifically, for example, 20 ° C. to 35 ° C. is employed as the culture temperature (culture solution temperature).
 なお、前記培養工程では、前記培養装置23から微細藻類の全てを取り出す回分式、培養した微細藻類の一部を培養装置23から定期的に取り出す半回分式培養方法、微細藻類の増殖速度に合わせて藻類含有液を調製タンク21から除菌装置22を経由して培養装置23に向けて連続的に流下させる連続式、のいずれを採用しても良い。
 なお、培養工程を連続式培養方法や半回分式培養方法によって実施する場合、前記連続式培養方法であれば、前記調製タンク21における培養液を、蒸留残液濃度、糖濃度、pHなどが前記の好ましい範囲となるように調製し、該調製された培養液を培養装置23に向けて連続的に供給させるようにすればよい。
 一方で、半回分式培養方法によって培養工程を実施する場合、前記調製タンク21における培養液の蒸留残液濃度、糖濃度、pHなどの調整は、培養装置23での培養液の濃度が前記の好ましい範囲となるように実施されることが好ましい。
 即ち、半回分式培養方法による培養工程は、培養装置23から取り出されずに残った培養液と調製タンク21で調製された新たな培養液とを混合した結果、該混合後の培養液における糖濃度が5g/L~25g/L(特には10g/L~20g/L)となり、前記混合後の培養液におけるpHが前記の好ましい範囲となるようにして実施することが好ましい。
 また、蒸発残液についても同様である。例えば、半回分式培養方法における培養液の入れ替えが全体量の半分であるとした場合、調製タンク21で調製する培養液には、前記の好ましい範囲(容量で1/40以上1/2以下、より好ましくは、1/20以上1/5以下)の倍の濃度で蒸発残液を含有させることが好ましい。
In the culturing step, a batch type in which all of the microalgae are extracted from the culture device 23, a semi-batch culture method in which a part of the cultured microalgae is periodically extracted from the culture device 23, and the growth rate of the microalgae are adjusted. Any of the continuous methods in which the algae-containing liquid is allowed to continuously flow down from the preparation tank 21 to the culture device 23 via the sterilization device 22 may be employed.
In the case where the culturing step is carried out by a continuous culture method or a semi-batch culture method, the culture solution in the preparation tank 21 has the distillation residue concentration, sugar concentration, pH, etc. And the prepared culture solution may be continuously supplied to the culture apparatus 23.
On the other hand, when the culture process is carried out by the semi-batch culture method, the concentration of the culture solution in the preparation tank 21 is adjusted by adjusting the concentration of the culture solution in the culturing device 23, the sugar concentration, the pH, etc. It is preferable to implement so that it may become a preferable range.
That is, in the culture process by the semi-batch culture method, as a result of mixing the culture solution remaining without being removed from the culture apparatus 23 and the new culture solution prepared in the preparation tank 21, the sugar concentration in the mixed culture solution is obtained. Is preferably 5 g / L to 25 g / L (particularly 10 g / L to 20 g / L), and the pH in the culture solution after the mixing is preferably in the above-mentioned preferable range.
The same applies to the evaporation residual liquid. For example, assuming that the replacement of the culture solution in the semi-batch culture method is half of the total amount, the culture solution prepared in the preparation tank 21 includes the above preferred range (1-40 or more and 1/2 or less in volume, More preferably, the evaporation residual liquid is contained at a concentration of 1/20 or more and 1/5 or less.
 この培養工程に次いで実施される前記濃縮工程においては、例えば、培養装置23から濃縮装置24に導入された藻類含有液に対し、浮上濃縮、重力濃縮、膜濃縮、ベルト濃縮等によって微細藻類を濃縮して濃縮された微細藻類を得る方法を採用することができる。また、前記濃縮した後、例えば、真空脱水機、加圧脱水機(フィルタープレス)、ベルトプレス、スクリュープレス、遠心濃縮脱水機(スクリューデカンタ)、又は、多重円盤脱水機などによってさらなる濃縮を実施し、最終的に脱水ケーキのような状態で微細藻類を得る方法を採用することができる。 In the concentration step performed after this culturing step, for example, the algae-containing liquid introduced from the culturing device 23 to the concentration device 24 is concentrated by floating concentration, gravity concentration, membrane concentration, belt concentration, etc. Thus, a method for obtaining concentrated microalgae can be employed. Further, after the concentration, further concentration is performed by, for example, a vacuum dehydrator, a pressure dehydrator (filter press), a belt press, a screw press, a centrifugal concentration dehydrator (screw decanter), or a multiple disk dehydrator. Finally, a method of obtaining microalgae in a dehydrated cake state can be employed.
 このようにして得られる微細藻類は有価物として有効利用することができる。
 例えば、得られた微細藻類は、嫌気条件で培養、又は嫌気条件に伏すことで、ワックスエステルなどの脂質を個体内に蓄積する。
 ワックスエステルを蓄積した微細藻類は、そのまま燃料として利用することができる。
 また、蓄積された該脂質は、微細藻類から抽出することによって、該脂質を主成分とした燃料に利用することもできる。
 前記抽出工程は、例えば、ヘキサンなどの溶媒を利用した溶媒抽出法により実施することができる。なお、公知の方法によって抽出後の脂質を改質して更に利用しやすい燃料としても良い。
 また、微細藻類がユーグレナ(Euglena)属生物である場合は、通常、パラミロンなどの多糖類やビタミン類を有価物として個体内に含有している。
 この多糖類やビタミン類についても、脂質とは別に抽出してその有効利用を図ることができる。
 また、溶媒抽出などをせずにユーグレナを上記燃料や飼料等にそのまま有効利用しても良い。
The microalgae thus obtained can be effectively used as a valuable resource.
For example, the obtained microalgae are cultured under anaerobic conditions or submerged under anaerobic conditions to accumulate lipids such as wax esters in the individual.
The microalgae in which the wax ester is accumulated can be used as fuel as it is.
The accumulated lipid can also be used as a fuel containing the lipid as a main component by extraction from microalgae.
The extraction step can be performed, for example, by a solvent extraction method using a solvent such as hexane. In addition, the lipid after extraction may be modified by a known method to make it easier to use.
Moreover, microalgae If a Euglena (Euglena) genus organisms usually contain in an individual as a valuable resource polysaccharides and vitamins such as paramylon.
These polysaccharides and vitamins can also be extracted separately from the lipids for effective use.
Further, Euglena may be effectively used as it is for the fuel, feed, etc. without solvent extraction.
 なお、本実施形態においては、前記微細藻類が前記蒸留残液に含まれている各種成分を個体内に取り込むことにより効率的な増殖が行われる。
 即ち、前記培養工程における微細藻類の単位時間当たりの増加量は、蒸留残液を含まない培養液で微細藻類を培養する場合に比べて大きなものとなっている。
 従って、前記濃縮工程での微細藻類の収量も従来に比べて大きなものとなり、藻バイオマスDも従来に比べて効率的に作製されることになる。
In the present embodiment, the microalgae efficiently proliferate by incorporating various components contained in the distillation residue into the individual.
That is, the increase amount per unit time of the microalgae in the culturing step is larger than that in the case where the microalgae are cultured in a culture solution that does not contain the distillation residue.
Therefore, the yield of microalgae in the concentration step is larger than that in the past, and algal biomass D is also produced more efficiently than in the past.
 それとともに前記培養装置23から濃縮装置24に向けて流下される藻類含有液から微細藻類を除いた処理水Fは、前記培養液や前記蒸発残液に比べてTOC濃度などを大きく低下させた状態となる。 At the same time, the treated water F obtained by removing microalgae from the algae-containing liquid flowing down from the culture device 23 toward the concentration device 24 has a state in which the TOC concentration and the like are greatly reduced as compared with the culture solution and the evaporation residual solution. It becomes.
 即ち、前記処理水Fは、バイオエタノール製造設備10から排出される蒸留残液に比べると、放流水や何等かの工程水として再利用しやすい状態になっている。仮に、処理水Fが、放流水とすることや工程水として再利用することに対してさらなる処理を要する場合でも、処理水Fは、前記蒸発残液に比べて前記処理の手間を軽減させ得るものとなっている。
 また、前記処理水Fは、前記調製タンク21に返送して、外部から導入する前記水Cの量を削減するのに有効利用されることも可能である。
 なお、外部から導入される水Cとしては、特に限定されず、水道水や地下水、工場用水など通常の水を利用することができる。
That is, the treated water F is more easily reused as effluent water or some process water than the distillation residue discharged from the bioethanol production facility 10. Even if the treated water F requires further treatment to be discharged water or reused as process water, the treated water F can reduce the labor of the treatment compared to the evaporation residual liquid. It has become a thing.
Further, the treated water F can be returned to the preparation tank 21 and effectively used to reduce the amount of the water C introduced from the outside.
In addition, it does not specifically limit as the water C introduce | transduced from the outside, Ordinary waters, such as a tap water, ground water, and factory water, can be utilized.
 上記のように本実施形態においては、蒸留残液の利用によって微細藻類培養設備20における微細藻類の培養が効率的なものになるとともに、バイオエタノール製造設備10における排水処理が効率的なものとなっている。即ち、バイオエタノール製造設備10及び微細藻類培養設備20が互いに相手の存在によって利益を獲得できる状態となっている。 As described above, in the present embodiment, the use of the distillation residue makes it possible to efficiently cultivate microalgae in the microalgae culture facility 20 and to efficiently perform the wastewater treatment in the bioethanol production facility 10. ing. That is, the bioethanol production facility 10 and the microalgae culture facility 20 are in a state where they can obtain a profit due to the existence of each other.
 なお、上記のように、本実施形態の排水処理方法は、排水に含まれている有機物を除去する排水処理方法であって、
 前記排水は、バイオマスから糖を含んだ原液を得る原液作製工程と、前記原液をアルコール発酵してエタノールを含有する発酵液を得る発酵工程と、前記発酵液を蒸留し、該発酵液よりもエタノール濃度の高い凝縮液と前記発酵液よりもエタノール濃度の低い蒸留残液とを得る蒸留工程、とを含むバイオエタノール製造過程における前記蒸留残液であり、
 該蒸留残液を含む液体中で、有機炭素源の存在下、暗条件下で微細藻類を従属栄養培養又は光従属栄養培養することにより、前記蒸留残液に含有されている有機物を前記微細藻類に消費させる排水処理方法である。
 本実施形態の排水処理方法は、排水に含まれている成分を微細藻類によって効率良く消費させることができるため、排水処理を効率良く実施させ得る。
As described above, the wastewater treatment method of the present embodiment is a wastewater treatment method for removing organic matter contained in wastewater,
The wastewater includes a stock solution preparation step for obtaining a stock solution containing sugar from biomass, a fermentation step for obtaining a fermented solution containing ethanol by subjecting the stock solution to alcohol fermentation, and distilling the fermented solution. A distillation step for obtaining a condensate having a high concentration and a distillation residue having a lower ethanol concentration than the fermentation solution, and the distillation residue in a bioethanol production process,
In the liquid containing the distillation residue, by subjecting the microalgae to heterotrophic culture or photoheterotrophic culture under dark conditions in the presence of an organic carbon source, the organic matter contained in the distillation residue is converted to the microalgae. It is a wastewater treatment method to be consumed.
Since the wastewater treatment method of the present embodiment can efficiently consume the components contained in the wastewater by the microalgae, the wastewater treatment can be carried out efficiently.
 本実施形態においては、上記のように互いに利益を獲得させ得る点において、バイオエタノールの製造過程において排出される排水の処理方法として微細藻類培養方法を適用している。本発明の微細藻類培養方法の目的は、必ずしも前記排水処理に限定されるものではない。
 例えば、本実施形態においては、蒸留残液以外に糖や各種成分を培養液に含有させることにより、前記濃縮装置24から排出される処理水FのTOC濃度が必ずしも蒸留残液よりも低下するとは限らない。本発明の微細藻類培養方法は、処理水FのTOC濃度が蒸留残液よりも高くなってしまう場合も、意図するものである。
In the present embodiment, the microalgae culture method is applied as a method for treating the wastewater discharged during the production process of bioethanol, in the point that it is possible to obtain profits as described above. The purpose of the microalgae culture method of the present invention is not necessarily limited to the wastewater treatment.
For example, in the present embodiment, the TOC concentration of the treated water F discharged from the concentrating device 24 is necessarily lower than that of the distillation residue by adding sugar and various components to the culture solution in addition to the distillation residue. Not exclusively. The microalgae culture method of the present invention is intended even when the TOC concentration of the treated water F is higher than that of the distillation residue.
 また、本実施形態においては、藻バイオマスDについて特定の例示を行っている。増殖させた微細藻類を上記例示以外に利用する場合も、本発明の意図する範囲である。
 さらに、上記に具体的な記載のない事項であっても、微細藻類の培養方法及び排水処理方法において従来公知の技術事項については、本発明の効果を著しく損ねない範囲において採用することができる。
 即ち、本発明は、上記実施形態に限定されず、本発明の意図する範囲内において適宜設計変更されることが可能である。また、本発明の作用効果も、上記実施形態に限定されるものではない。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記の説明ではなく、特許請求の範囲によって示される。また、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Moreover, in this embodiment, the specific illustration is performed about the algal biomass D. FIG. Even when the grown microalgae are used for purposes other than the above examples, it is within the intended scope of the present invention.
Furthermore, even matters that are not specifically described above can be employed as long as they are conventionally known technical matters in the microalgae cultivation method and wastewater treatment method as long as the effects of the present invention are not significantly impaired.
That is, the present invention is not limited to the above-described embodiment, and can be appropriately modified within the intended scope of the present invention. Moreover, the effect of this invention is not limited to the said embodiment.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(実験例1)
(種藻)
 下記培地にて、微細藻類(「ユーグレナ属に属する生物(Euglena gracilis EOD-1株)(2013年3月25日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(現所在地 郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 120号室)にブダペスト条約の規定の下で受領番号FERM BP-11530として国際寄託)を従属栄養培養にて4日間培養し、種藻とした。
 培地:Hutnerの培地を改変したもの(以下「Modified Hutner」ともいう)にグルコース25g/L添加したもの。具体的には表1の通り。液体に含まれる栄養素以外は、水である。
(Experimental example 1)
(Seed algae)
In the following medium, microalgae ("Euglena genus ( Euglena gracilis EOD-1 strain)" (NITE-IPOD) (National Institute of Technology and Evaluation) Postal deposit 292-0818, Kazusa Kamashizu, Chiba, Chiba, Japan, room 2-5-8, 120), under the provisions of the Budapest Treaty, internationally deposited as receipt number FERM BP-11530) in heterotrophic culture for 4 days. And seed algae.
Medium: A modified Hutner medium (hereinafter also referred to as “Modified Hutner”) supplemented with 25 g / L of glucose. Specifically, as shown in Table 1. Water other than the nutrients contained in the liquid.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1における微量金属含有溶液としては、下記表2の組成を有する微量金属含有溶液を用いた。
 微量金属成分以外は、水である。
As the trace metal-containing solution in Table 1, a trace metal-containing solution having the composition shown in Table 2 below was used.
Water other than the trace metal component is water.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(培養方法)
 前記種藻を培養するために、下記の培養液を用意し、下記の条件下にて培養した。
「培養液の組成」:
 バイオマスをアルコール発酵させた発酵液からエタノールを留去した後の残滓(蒸留残液)を純水で5倍、10倍、20倍、40倍にそれぞれ希釈した4種類の培養液を用意した。
 このうち5倍希釈の培養液については、グルコースを0g/L、15g/Lとなる割合で含有させて、2種類の培養液を用意した。
 また、10倍希釈、20倍希釈、40倍希釈の培養液については、これらにグルコースを0g/L、10g/L、15g/L、20g/L、25g/Lとなる割合で含有させて、それぞれ5種類の培養液を用意した。
 なお、各培養液は、塩酸によってpHを3.5に調製し、滅菌処理を行った。
「培養容器」:500mL坂口フラスコ
「培養条件」:
  仕込み:培養液200mLと種藻20mLとを前記の坂口フラスコに収容
  培養温度:28℃
  明暗条件:暗条件(外光の差し込まない恒温槽内)
  好気条件:振とう機に坂口フラスコをセットし、130rpmの往復振とうで運転することにより培養液中に空気を供給
(Culture method)
In order to culture the seed algae, the following culture solution was prepared and cultured under the following conditions.
“Composition of culture medium”:
Four types of culture solutions were prepared by diluting the residue (distilled residue) after distilling ethanol from the fermentation solution obtained by alcohol fermentation of biomass with pure water 5 times, 10 times, 20 times, and 40 times.
Among these, about 5 times dilution culture solution, glucose was contained in the ratio used as 0g / L and 15g / L, and two types of culture solutions were prepared.
Moreover, about 10 times dilution, 20 times dilution, and 40 times dilution culture solution, these are made to contain glucose in the ratio used as 0g / L, 10g / L, 15g / L, 20g / L, 25g / L, Five types of culture solutions were prepared for each.
Each culture solution was adjusted to pH 3.5 with hydrochloric acid and sterilized.
“Culture container”: 500 mL Sakaguchi flask “Culture conditions”:
Preparation: 200 mL of culture solution and 20 mL of seed algae are stored in the Sakaguchi flask. Culture temperature: 28 ° C.
Light / dark conditions: Dark conditions (in a constant temperature bath where no external light is inserted)
Aerobic conditions: Set the Sakaguchi flask on the shaker and supply air into the culture medium by operating with reciprocal shaking at 130 rpm.
(結果の確認)
 5倍希釈の培養液を用いて前記条件による藻類の培養を8日間実施した。1日ごとに各フラスコ中の液をサンプリングした。
 そして、サンプリングした液の容積:V(mL)と、該液に含有されている微細藻類の質量(乾燥質量):M(mg)とを求めた。前記質量(M)を前記容積(V)で除して藻類含有率:M/V(g/L)を算出した。
 さらに、培養開始時点と8日間の培養終了時点とにおいて、サンプリングした液から微細藻類を取り除いた培養液単体について、TOC濃度を測定した。
 結果を、図2A、図2Bに示す。
 同様に10倍希釈、20倍希釈、40倍希釈の培養液を用いて、前記条件による藻類の培養を5日間実施した。1日ごとに各フラスコ中の液をサンプリングした。
 さらに、培養開始時点、培養2日目、及び5日間の培養終了時点とにおいて、サンプリングした液から微細藻類を取り除いた培養液単体について、TOC濃度を測定した。
 結果を図3~5に示す。
(Confirmation of results)
Algae was cultured for 8 days under the above conditions using a 5-fold diluted culture solution. The liquid in each flask was sampled every day.
And the volume of the sampled liquid: V (mL) and the mass (dry mass) of microalgae contained in the liquid: M (mg) were determined. Algae content: M / V (g / L) was calculated by dividing the mass (M) by the volume (V).
Furthermore, the TOC concentration was measured with respect to the culture solution alone from which microalgae were removed from the sampled solution at the start of the culture and the end of the 8-day culture.
The results are shown in FIGS. 2A and 2B.
Similarly, algae was cultured for 5 days under the above conditions using 10-fold diluted solution, 20-fold diluted solution, and 40-fold diluted culture solution. The liquid in each flask was sampled every day.
Furthermore, the TOC concentration was measured with respect to the culture medium alone from which microalgae were removed from the sampled liquid at the start of culture, the second day of culture, and the end of culture for 5 days.
The results are shown in FIGS.
 上記結果からは、蒸留残液を炭素源とともに培養液に含有させることにより、当該培養液が微細藻類の増殖に有効であることがわかる。
 また、上記結果からは、微細藻類培養方法を、蒸留残液を含む排水処理目的に実施することで大きなメリットが得られることもわかる。
 また、上記結果からは、10g/Lのグルコース含有量では、微細藻類が糖を消費して増殖する能力に余力を残した状態となっていることが分かる。
 即ち、上記結果からは、10g/L以上のグルコースを含有する培養液を用いることで、微細藻類がより効率良く増殖され得ることがわかる。
 一方で、TOCの濃度に着目した場合、グルコースを20g/L未満の割合で含有する培養液を用いることで、培養液中のTOC濃度を大きく低下させ得ることが分かる。
From the above results, it is understood that the culture solution is effective for the growth of microalgae by containing the distillation residue together with the carbon source in the culture solution.
In addition, it can be seen from the above results that a great merit can be obtained by carrying out the microalgae culture method for the purpose of wastewater treatment including distillation residue.
In addition, it can be seen from the above results that at a glucose content of 10 g / L, the microalgae are in a state where there is a surplus in their ability to consume and grow sugar.
That is, the above results show that microalgae can be more efficiently grown by using a culture solution containing 10 g / L or more of glucose.
On the other hand, when paying attention to the TOC concentration, it can be seen that the TOC concentration in the culture solution can be greatly reduced by using a culture solution containing glucose at a ratio of less than 20 g / L.
(実験例2)
(培養方法)
 実験例1と同様に、微細藻類を培養するために、下記の培養液を用意した。
 ただし、培養条件は下記のように変更して藻類の培養を実施した。
「培養液の組成」:
 バイオマスをアルコール発酵させた発酵液からエタノールを留去した後の残滓(蒸留残液)を純水で5倍、10倍、20倍にそれぞれ希釈した3種類の培養液、及び、これらにグルコースを15g/Lとなる割合で含有させた3種類の培養液を用意した。
 なお、各培養液は、塩酸によってpHを3.5に調製し、滅菌処理を行った。
「培養容器」:300mL三角フラスコ
「培養条件」:
  仕込み:培養液100mLと種藻5mLとを前記の三角フラスコに収容
  培養温度:25℃
  好気条件:振とう機に三角フラスコをセットし、120rpmの回転数で運転することにより培養液中に空気を供給
 明暗条件:明/暗条件(12時間の光照射環境と12時間の暗環境とを繰り返して培養した。なお、光照射環境における光合成光量子束密度(PPFD)は、約100μmol/m・sとした)
 この培養結果を図6に示す。
(Experimental example 2)
(Culture method)
As in Experimental Example 1, the following culture solution was prepared for culturing microalgae.
However, the culture conditions were changed as follows, and algae were cultured.
“Composition of culture medium”:
Three types of culture solutions obtained by diluting the residue (distilled residue) after distilling ethanol from the fermentation solution obtained by alcohol fermentation of biomass with pure water 5 times, 10 times, and 20 times, and glucose to these Three types of culture solutions were prepared that contained at a rate of 15 g / L.
Each culture solution was adjusted to pH 3.5 with hydrochloric acid and sterilized.
“Culture container”: 300 mL Erlenmeyer flask “Culture conditions”:
Preparation: 100 mL of culture solution and 5 mL of seed algae are stored in the Erlenmeyer flask. Culture temperature: 25 ° C.
Aerobic condition: Set Erlenmeyer flask to shaker and supply air into culture medium by operating at 120 rpm. Light / dark condition: Light / dark condition (12 hours light irradiation environment and 12 hours dark environment) The photosynthetic photon flux density (PPFD) in the light irradiation environment was about 100 μmol / m 2 · s)
The culture results are shown in FIG.
 上記結果において、例えば、図6と図2~4との対比から、本実施形態の藻類培養方法は、暗条件下で実施される方が藻類をより効率良く培養する上において有利であることがわかる。 In the above results, for example, from the comparison between FIG. 6 and FIGS. 2 to 4, it is advantageous that the algae culture method of the present embodiment is more advantageous for culturing algae more efficiently under dark conditions. Recognize.
 本発明の微細藻類の培養方法は、細胞内に炭化水素や多糖類などの有機化合物を貯蔵した微細藻類を、健康食品、医薬品、飼料、化成品、又は燃料等の用途で利用するために、好適に使用できる。
 具体的には、本発明の微細藻類の培養方法は、例えば、微細藻類としてユーグレナ(Euglena)属に属する生物を採用して、該微細藻類を培養することにより、微細藻類の細胞内に油分を貯蔵させ、油分を取り出して燃料の原料として利用するために好適に使用できる。
The method for culturing microalgae of the present invention uses microalgae in which organic compounds such as hydrocarbons and polysaccharides are stored in cells for uses such as health foods, pharmaceuticals, feeds, chemical products, and fuels. It can be suitably used.
Specifically, the method for culturing microalgae of the present invention employs, for example, an organism belonging to the genus Euglena as a microalgae, and cultivates the microalgae so that oil is contained in the cells of the microalgae. It can be suitably used for storing and taking out the oil and using it as a raw material for fuel.
 10:バイオエタノール製造設備
 13:蒸留装置
 20:微細藻類培養設備
 23:培養装置
 A:バイオマス
 B:バイオエタノール
 C:水
 D:有価物(藻バイオマス、液体燃料)
 F:処理水 
10: Bioethanol production equipment 13: Distillation equipment 20: Microalgae culture equipment 23: Culture equipment A: Biomass B: Bioethanol C: Water D: Valuables (algae biomass, liquid fuel)
F: treated water

Claims (7)

  1.  バイオエタノール製造過程でバイオマスをアルコール発酵させて得られる発酵液からエタノールを回収した後の残液を少なくとも含む液体中で、有機炭素源の存在下、微細藻類の暗条件下での従属栄養培養又は光従属栄養培養を実施する微細藻類の培養方法。 Heterotrophic culture under dark conditions of microalgae in the presence of an organic carbon source in a liquid containing at least the residual liquid after recovering ethanol from the fermentation liquid obtained by alcohol fermentation of biomass in the bioethanol production process or A method for culturing microalgae that performs light heterotrophic culture.
  2.  前記発酵液を固液分離することにより発生する固形分をさらに含有する前記液体中で、前記暗条件下での従属栄養培養又は前記光従属栄養培養を実施する請求項1記載の微細藻類の培養方法。 The culture of microalgae according to claim 1, wherein the heterotrophic culture or the photoheterotrophic culture under the dark condition is performed in the liquid further containing a solid content generated by solid-liquid separation of the fermentation broth. Method.
  3.  前記残液が容量で1/40以上1/2以下含有されている前記液体中で、前記暗条件下での従属栄養培養又は前記光従属栄養培養を実施する請求項1又は2記載の微細藻類の培養方法。 The microalgae according to claim 1 or 2, wherein the heterotrophic culture or the photoheterotrophic culture under the dark condition is performed in the liquid containing the residual liquid in a volume of 1/40 to 1/2. Culture method.
  4.  前記培養が、暗条件下での従属栄養培養である請求項1乃至3のいずれか1項に記載の微細藻類の培養方法。 The method for culturing microalgae according to any one of claims 1 to 3, wherein the culture is heterotrophic culture under dark conditions.
  5.  バイオマスから得られた糖を前記有機炭素源として使用する請求項1乃至4のいずれか1項に記載の微細藻類の培養方法。 The method for culturing microalgae according to any one of claims 1 to 4, wherein sugar obtained from biomass is used as the organic carbon source.
  6.  排水に含まれている有機物を除去する排水処理方法であって、
     前記排水が、
     バイオマスから糖を含んだ原液を得る原液作製工程、
     前記原液をアルコール発酵してエタノールを含有する発酵液を得る発酵工程、及び、
     前記発酵液を蒸留し、該発酵液よりもエタノール濃度の高い凝縮液と前記発酵液よりもエタノール濃度の低い蒸留残液とを得る蒸留工程、を含むバイオエタノール製造過程における前記蒸留残液であり、
     該蒸留残液を含む液体中で、有機炭素源の存在下、微細藻類を暗条件下で従属栄養培養又は光従属栄養培養することにより、前記蒸留残液に含有されている有機物を前記微細藻類に消費させる排水処理方法。
    A wastewater treatment method for removing organic substances contained in wastewater,
    The drainage
    A stock preparation process for obtaining a stock solution containing sugar from biomass;
    A fermentation step of subjecting the stock solution to alcohol fermentation to obtain a fermentation broth containing ethanol, and
    The distillation residue in a bioethanol production process comprising distilling the fermentation solution to obtain a condensate having a higher ethanol concentration than the fermentation solution and a distillation residue having a lower ethanol concentration than the fermentation solution. ,
    In the liquid containing the distillation residue, by subjecting the microalgae to heterotrophic culture or photoheterotrophic culture under dark conditions in the presence of an organic carbon source, the organic matter contained in the distillation residue is converted to the microalgae. Wastewater treatment method to be consumed.
  7.  前記発酵工程の後段であって前記蒸留工程の前段で、前記発酵液から固液分離して得られる固形分を前記液体中に供給する請求項6に記載の排水処理方法。
     
     
     
     
     
    The wastewater treatment method according to claim 6, wherein a solid content obtained by solid-liquid separation from the fermentation broth is supplied into the liquid after the fermentation process and before the distillation process.




PCT/JP2014/066890 2013-06-28 2014-06-25 Microalga culture method and drainage water treatment method WO2014208621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136559 2013-06-28
JP2013136559A JP2015008676A (en) 2013-06-28 2013-06-28 Microalga culture method and water drainage method

Publications (1)

Publication Number Publication Date
WO2014208621A1 true WO2014208621A1 (en) 2014-12-31

Family

ID=52141950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066890 WO2014208621A1 (en) 2013-06-28 2014-06-25 Microalga culture method and drainage water treatment method

Country Status (2)

Country Link
JP (1) JP2015008676A (en)
WO (1) WO2014208621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158460A (en) * 2019-03-27 2020-10-01 株式会社神鋼環境ソリューション Macrophage activator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193087B2 (en) * 2019-02-15 2022-12-20 国立研究開発法人国立環境研究所 Photosynthesis inhibitor contamination detection device and photosynthesis inhibitor contamination detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039085A (en) * 2011-08-18 2013-02-28 Ihi Corp Method for producing ethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039085A (en) * 2011-08-18 2013-02-28 Ihi Corp Method for producing ethanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG C.F. ET AL.: "Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation.", WORLD J. MICROBIOL. BIOTECHNOL., vol. 24, no. 12, 2008, pages 2919 - 2925, XP019650403, DOI: doi:10.1007/s11274-008-9833-0 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158460A (en) * 2019-03-27 2020-10-01 株式会社神鋼環境ソリューション Macrophage activator
JP7229829B2 (en) 2019-03-27 2023-02-28 株式会社神鋼環境ソリューション macrophage activator

Also Published As

Publication number Publication date
JP2015008676A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
Yu et al. Microalgae from wastewater treatment to biochar–feedstock preparation and conversion technologies
Rajkumar et al. Potential of micro and macro algae for biofuel production: a brief review
John et al. Micro and macroalgal biomass: a renewable source for bioethanol
JP6329940B2 (en) Euglena microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
EP2668259B1 (en) Process for production of microalgae, cyanobacteria and metabolites thereof
US20130309757A1 (en) Method and apparatus for producing cells and fat soluble materials by cell culture
Maurya et al. Advances in microalgal research for valorization of industrial wastewater
Sidana et al. Sugarcane bagasse: a potential medium for fungal cultures
CA2994234A1 (en) Symbiotic algae system with looped reactor
US20150210976A1 (en) Device for Culturing Microalgae and Method for Culturing Microalgae
CN103003413A (en) Process for production of euglena containing wax ester at high content, and process for production of wax ester
Arutselvan et al. Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production
Kumar et al. Cultivation of microalgae on food waste: Recent advances and way forward
Acebu et al. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater
Dhandayuthapani et al. Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy
CN106635809A (en) Method for culturing microalgae by utilizing straw fiber hydrolysate and application thereof
WO2014046205A1 (en) Method for culturing microalga and facility for culturing microalga
Min et al. Pilot-scale cultivation of water-net in secondary effluent using an open pond raceway for nutrient removal and bioethanol production
JP6677810B2 (en) New microalgae with aggregation ability
Rajendran et al. Deposition of manure nutrients in a novel mycoalgae biofilm for nutrient management
WO2014208621A1 (en) Microalga culture method and drainage water treatment method
CN108456700A (en) A method of improving grease in microalgae using give up mash and magnesium ion of molasses
KR101769875B1 (en) Method of preparing triacylglycerol or biodiesel in microalgae
JP3837589B2 (en) Seawater microalgae producing ethanol
Arun et al. Microalgae: the future fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816886

Country of ref document: EP

Kind code of ref document: A1