WO2014046205A1 - Method for culturing microalga and facility for culturing microalga - Google Patents

Method for culturing microalga and facility for culturing microalga Download PDF

Info

Publication number
WO2014046205A1
WO2014046205A1 PCT/JP2013/075350 JP2013075350W WO2014046205A1 WO 2014046205 A1 WO2014046205 A1 WO 2014046205A1 JP 2013075350 W JP2013075350 W JP 2013075350W WO 2014046205 A1 WO2014046205 A1 WO 2014046205A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
culture
water
membrane
liquid
Prior art date
Application number
PCT/JP2013/075350
Other languages
French (fr)
Japanese (ja)
Inventor
昭 赤司
潤 竹▲崎▼
武志 濱田
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Publication of WO2014046205A1 publication Critical patent/WO2014046205A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for culturing microalgae and a culture facility for microalgae.
  • Patent Document 1 a method for culturing microalgae in sewage containing domestic wastewater is known.
  • microalgae culture method since sewage contains nitrogen and phosphorus, these components are used as nutrients for the growth of microalgae. Therefore, in this type of method for culturing microalgae, microalgae can be grown. And the proliferated microalgae can be used as a living material or an industrial material. And since the nitrogen content and phosphorus content in the sewage used for culture
  • the present invention has been made in view of the above-mentioned problems and the like, and an object thereof is to provide a method for culturing microalgae that can sufficiently grow microalgae.
  • the method for culturing microalgae according to the present invention includes a membrane filtration step for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to membrane filtration, and a liquid containing the permeated water. And a culture process for culturing microalgae.
  • a water treatment step of water treatment of the wastewater by an activated sludge method or anaerobic treatment is further performed, and water is treated in the water treatment step.
  • drain at the said membrane filtration process is employable.
  • a sterilization step of sterilizing the permeate is further performed, and in the culturing step, the sterilization treatment is performed in the sterilization step.
  • a mode in which microalgae are cultured in a liquid containing permeated water can be employed.
  • the apparatus for culturing microalgae includes a membrane filtration device for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to membrane filtration, and a liquid containing the permeated water.
  • the apparatus further comprises a water treatment device for water treatment of the wastewater by an activated sludge method or anaerobic treatment, and the membrane-filtered wastewater treated with the water treatment device Embodiments configured to send to the device may be employed.
  • the microalgae further includes a sterilization apparatus that sterilizes the permeated water, and the cultivated permeated water that has been sterilized by the sterilization apparatus.
  • a sterilization apparatus that sterilizes the permeated water, and the cultivated permeated water that has been sterilized by the sterilization apparatus.
  • Embodiments configured to send to the device may be employed.
  • the microalgae cultivation facility 20 of the present embodiment obtains permeated water that has permeated through a filtration membrane by subjecting the wastewater containing at least one of nitrogen and phosphorus to membrane filtration through the filtration membrane.
  • a membrane filtration device 1 and a culture device 2 for culturing microalgae in the liquid A containing the permeated water are provided.
  • the wastewater is membrane-filtered by the membrane filtration device 1
  • at least a part of the microorganisms contained in the wastewater does not permeate the filtration membrane. Therefore, permeated water in which the microorganisms in the waste water are reduced can be obtained by the membrane filtration device 1.
  • the microalgae are cultured in a liquid containing permeated water in which microorganisms are reduced. Therefore, in the culture of the microalgae in the culturing apparatus 2, the microbe algae is inhibited from being inhibited from growing due to the reduction of the microbes.
  • the permeated water contains nitrogen and phosphorus contained in the waste water, and this nitrogen and phosphorus promotes the growth of microalgae. Therefore, the microalgae culture facility 20 can sufficiently grow the microalgae. Thus, the culture facility for microalgae of the present embodiment has an effect that microalgae can be sufficiently grown.
  • the microalgae culture facility 20 of the present embodiment further includes a water treatment device 3 that treats the wastewater by an activated sludge method, and the wastewater treated by the water treatment device 3 is supplied to the membrane filtration device 1. Configured to send. That is, as shown in FIG. 1, the microalgae culture facility 20 of the present embodiment includes a water treatment device 3 that treats wastewater containing at least one of nitrogen and phosphorus by an activated sludge method, and the water. A membrane filtration device 1 for obtaining permeated water that has permeated through a filtration membrane by subjecting the wastewater treated with water in the treatment device 3 to membrane filtration, and a culture device 2 for culturing microalgae in the liquid A containing the permeated water. I have.
  • the culture system 20 for microalgae of the present embodiment includes a culture component storage tank 10 that stores culture components that promote the growth of microalgae, and a culture component storage tank 10 that sends the culture components from the culture component storage tank 10.
  • the microalgae cultivation facility 20 of the present embodiment further includes a solid-liquid separation device 5 that separates the mixture of the microalgae and the liquid A cultured in the culture device 2 into the liquid A and the microalgae.
  • the waste water contains at least one of a nitrogen content (nitrogen-containing compound) and a phosphorus content (phosphorus-containing compound).
  • the waste water contains microorganisms such as bacteria and protozoa that inhibit the growth of microalgae.
  • waste water for example, sewage inflow water can be mentioned.
  • the waste water include industrial waste water discharged from factories such as a brewery factory, a food factory, a chemical factory, an electronic industry factory, and a pulp factory, or treated water of such industrial waste water.
  • the waste water may contain both nitrogen and phosphorus.
  • the nitrogen content includes organic nitrogen content and inorganic nitrogen content.
  • the waste water usually contains an organic nitrogen content as a nitrogen content, and may further contain an inorganic nitrogen content as a nitrogen content.
  • Examples of the organic nitrogen content include proteins and amino acids.
  • Examples of the inorganic nitrogen component include ammonia ions and nitrate ions.
  • Examples of the phosphorus content include organic phosphorus content and inorganic phosphorus content.
  • the waste water usually contains an organic phosphorus content as a phosphorus content, and may further contain an inorganic phosphorus content as a phosphorus content.
  • Examples of the organic phosphorus content include phospholipids and nucleic acids.
  • Examples of the inorganic phosphorus content include phosphate ions.
  • the water treatment apparatus 3 has an aeration tank 3a for agitating wastewater supplied from outside the culture facility 20 with activated sludge and an aeration pipe 3b for supplying a gas containing oxygen to the aeration tank 3a.
  • the water treatment device 3 is configured to accommodate wastewater in the aeration tank 3a and to treat the wastewater with activated sludge while aeration of the wastewater with the gas supplied from the aeration pipe 3b.
  • the water treatment device 3 is configured to send water-treated wastewater to the membrane filtration device 1.
  • the aeration tank 3a is configured to perform water treatment for decomposing a compound in waste water into a compound having a lower molecular weight under an aerobic condition by using activated sludge containing biological species such as bacteria, protozoa, and metazoans. ing.
  • the aeration pipe 3b is arranged at the bottom of the aeration tank 3a, and is configured to supply air or the like as a gas containing oxygen in the form of bubbles from the bottom side of the aeration tank 3a into the waste water.
  • the compound contained in the wastewater is decomposed into a compound having a lower molecular weight.
  • the compound contained in the waste water is decomposed into, for example, carbon dioxide.
  • the nitrogen content (nitrogen-containing compound) in the waste water is decomposed into nitrogen content such as ammonia ions and nitrate ions having smaller molecular weights.
  • the phosphorus content (phosphorus-containing compound) in the wastewater is decomposed into phosphorus content such as phosphate ions having a lower molecular weight.
  • the wastewater subjected to water treatment by the water treatment apparatus 3 contains nitrogen, phosphorus, and the like that have been reduced in molecular weight by water treatment. Nitrogen and phosphorus that have been reduced in molecular weight by water treatment are easier for microalgae to use as nutrients in growth than before they are reduced in molecular weight. Therefore, the wastewater treated by the water treatment device 3 contains nitrogen and phosphorus that are easy for microalgae to use as nutrients.
  • the membrane filtration device 1 includes a filtration tank 1 a that contains wastewater that is water-treated by the activated sludge method in the water treatment device 3 and that is supplied from the water treatment device 3, And a membrane unit 1b including a filtration membrane disposed in the filtration tank 1a.
  • the membrane filtration apparatus 1 is comprised so that the permeated water which permeate
  • the membrane filtration device 1 is configured to send the obtained permeated water to the mixing tank 4.
  • the membrane filtration device 1 includes a gas supply pipe 1c that supplies a bubble-like gas to the surface of the membrane unit 1b in order to suppress microorganisms from adhering to the surface of the membrane unit 1b.
  • the membrane unit 1b has a filtration membrane. And the membrane unit 1b is comprised so that the permeated water which permeate
  • the membrane unit 1b is configured, for example, to perform membrane filtration from the outside to the inside by setting the inside to a negative pressure, and to remove permeated water that has permeated the filtration membrane.
  • the filtration membrane is formed with pores having a size that reduces microorganisms such as bacteria and protozoa in the wastewater by filtration. That is, the filtration membrane has a large number of pores formed such that the number of microorganisms in the permeated water that has permeated the filtration membrane is smaller than the number of microorganisms in the waste water before filtration.
  • the filtration membrane is preferably an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane) in that microorganisms in the waste water can be more reliably reduced by filtration.
  • UF membrane ultrafiltration membrane
  • MF membrane microfiltration membrane
  • the pore size of the ultrafiltration membrane (UF membrane) is usually 0.001 to 0.01 ⁇ m. According to the ultrafiltration membrane (UF membrane) in which pores of such a size are formed, it is possible to prevent permeation of high-molecular substances and colloidal substances having a molecular weight of 1,000 to several hundred thousand. Moreover, permeation of microorganisms such as bacteria and protozoa can be prevented.
  • the pore size of the microfiltration membrane (MF membrane) is usually more than 0.01 ⁇ m and 10 ⁇ m or less.
  • the pore size of the microfiltration membrane (MF membrane) is preferably 0.45 ⁇ m or less from the viewpoint that the permeation of bacteria can be more reliably prevented.
  • a conventionally well-known thing is mentioned as a shape of the said filtration membrane.
  • examples of the shape include a so-called hollow fiber membrane formed in a hollow fiber shape, or a plate-like flat membrane shape.
  • examples of the material for the filtration membrane include PVDF (polyvinylidene fluoride), cellulose, polyamide, and ceramic.
  • the permeated water contains at least a nitrogen content and / or a phosphorus content contained in the waste water.
  • the nitrogen content and the phosphorus content contained in the permeated water become nutrient components of the microalgae. .
  • the permeated water can make the growth of microalgae sufficient.
  • the permeated water permeates the filtration membrane in the membrane filtration device 1, as described above, the number of microorganisms in the permeated water is smaller than the number of microorganisms in the waste water before filtration. Therefore, when the permeated water is used in the culture of microalgae in the culture apparatus 2 described later, the growth inhibition of microalgae by microorganisms can be suppressed by the amount of the microorganisms.
  • the nitrogen content and the phosphorus content contained in the permeated water have been reduced in molecular weight by the water treatment in the water treatment device 3, and thus are more easily utilized in the growth of microalgae. ing. Therefore, in the cultivation of microalgae in the culture apparatus 2 described later, by culturing the microalgae in the liquid A containing the permeated water, the low-molecular nitrogen content and phosphorus content that are easier to use are finely divided. Algae can be used. Therefore, the growth of microalgae is promoted.
  • the membrane filtration device 1 has the gas supply pipe 1c as described above. And the membrane filtration apparatus 1 is comprised so that the surface of the membrane unit 1b may be wash
  • the gas supplied by the gas supply pipe 1c air is usually employed, and preferably, a gas such as exhaust gas having a higher carbon dioxide concentration than air is employed.
  • a carbon dioxide-containing gas such as air as the gas supplied to the outer surface of the membrane unit 1b, carbon dioxide is dissolved in the liquid A in the subsequent culture apparatus 2, and the dissolved carbon dioxide is photosynthesis of microalgae. Used for
  • the membrane filtration device 1 may not be configured to membrane-filter the wastewater that has been water-treated in the water treatment device 3. That is, the microalgae culture facility 20 of the present embodiment does not include the water treatment device 3, and the membrane filtration device 1 uses the membrane unit 1 b to treat the wastewater supplied without passing through the water treatment device 3. It may be configured to obtain permeated water by filtration.
  • the microalgae culturing facility 20 of the present embodiment is configured so that the membrane unit 1b of the membrane filtration device 1 is immersed in the wastewater stored in the aeration tank 3a of the water treatment device 3, as shown in FIG.
  • the processing apparatus 3 and the membrane filtration apparatus 1 may be arranged. That is, in the microalgae cultivation facility 20 of the present embodiment, the membrane filtration device 1 does not have the filtration tank 1a and the gas supply pipe 1c, and the membrane unit 1b of the membrane filtration device 1 is aerated in the water treatment device 3. You may distribute
  • the culture component storage tank 10 stores culture components that promote the growth of microalgae and supplies the culture components to the mixing tank 4.
  • Examples of the culture components include organic culture components and inorganic culture components.
  • Examples of the organic culture component include sugars such as glucose, amino acids, alcohols such as ethanol, vitamins, and the like.
  • Examples of the inorganic culture component include nitrogen-containing inorganic compounds containing nitrogen, phosphorus-containing inorganic compounds containing phosphorus, and the like.
  • Examples of the inorganic culture component include potassium ions, iron ions, manganese ions, cobalt ions, zinc ions, copper ions, molybdenum ions, nickel ions, and the like.
  • the culture component storage tank 10 may be configured to store each of the culture components. That is, the microalgae cultivation facility 20 may include a plurality of culture component storage tanks 10 in order to store a plurality of types of culture components in the culture component storage tanks 10 respectively.
  • the mixing tank 4 has a stirrer 4a, and is configured to mix the permeate sent from the membrane filtration device 1 and the culture components supplied from the culture component storage tank 10 by the stirrer 4a. Further, the mixing tank 4 is configured to send an aqueous solution containing microalgae culture components obtained by mixing to the culture apparatus 2.
  • a predetermined amount of permeate and culture components are supplied into the culture tank 2a so that the liquid A contained in the culture tank 2a of the culture apparatus 2 contains appropriate amounts of permeate and culture components. can do.
  • the microalgae cultivation facility 20 may include a detection sensor 11 for detecting at least a nitrogen content and / or a phosphorus content.
  • the detection sensor 11 may be arranged such that the detection unit is immersed in the wastewater stored in the filtration tank 1a in order to detect components in the wastewater stored in the filtration tank 1a of the membrane filtration device 1. Good. Further, for example, as shown in FIG. 1, the detection sensor 11 may be arranged so that the detection unit is immersed in the aqueous solution in the mixing tank 4 in order to detect components in the aqueous solution prepared in the mixing tank 4. Good.
  • the microalgae culture facility 20 includes two detection sensors 11, and the detection unit of one of the detection sensors 11 is immersed in the wastewater stored in the filtration tank 1 a, and the other detection is performed in the aqueous solution in the mixing tank 4. The detection part of the sensor 11 may be immersed.
  • the microalgae culture facility 20 is configured to detect the concentration of nitrogen or phosphorus by the detection sensor 11. Then, when the detected concentration is less than the predetermined value, the microalgae culture facility 20 supplies the culture components from the culture component storage tank 10 to the mixing tank 4 by sending an electrical signal to the culture component storage tank 10. It is configured as follows.
  • the culture apparatus 2 has a culture tank 2a for accommodating microalgae and liquid A for culturing the microalgae.
  • the culture apparatus 2 is configured to take the permeated water sent through the mixing tank 4 into the culture tank 2a and to culture microalgae in the liquid A containing the permeated water in the culture tank 2a.
  • examples of the culture apparatus 2 include an open pond and a photobioreactor.
  • microalgae are cultured in the liquid A containing the permeated water obtained in the membrane filtration device 1. Moreover, the permeated water contains at least one of nitrogen and phosphorus, which are nutrients in the growth of microalgae. Therefore, in the culture apparatus 2, the permeated water contains at least one of the nitrogen content and the phosphorus content, so that the growth of microalgae can be promoted.
  • the permeated water permeates the filtration membrane in the membrane filtration apparatus 1. Therefore, as described above, the permeation that has permeated the filtration membrane from the number of microorganisms in the wastewater before filtration.
  • the number of microorganisms in the water is low. Therefore, in the culture device 2, inhibition of the growth of microalgae by microorganisms can be suppressed by the amount of microorganisms in the permeated water being reduced. Thereby, the growth of microalgae can be promoted.
  • the microbes use nutrient components necessary for the microalgae to grow.
  • microalgae the amount of nutrients used by microalgae can be reduced by the amount of nutrients used by microorganisms.
  • microorganisms such as protozoa and metazoans use microalgae as nutrient components (predation), and the growth of microorganisms can be superior to the growth of microalgae. Therefore, the growth of microalgae can be suppressed.
  • the nutrient components contained in the permeate can be used for the growth of microalgae as much as the microorganisms are reduced. Therefore, the growth of microalgae can be promoted.
  • the nitrogen content and the phosphorus content contained in the permeated water are reduced in molecular weight by the water treatment of the waste water in the water treatment device 3. Therefore, the nitrogen content and the phosphorus content contained in the permeated water are in an aspect that microalgae can more easily use in the growth.
  • the microalgae can use the nitrogen component having a low molecular weight that is easier to use. Therefore, the growth of microalgae can be promoted.
  • the polymer material is reduced in molecular weight to be relatively easily decomposable by treating the waste water with the water treatment device 3. It becomes a substance. Therefore, microalgae can easily utilize a relatively easily degradable substance having a low molecular weight as a nutrient component. Thereby, the growth of microalgae can be promoted.
  • the liquid A accommodated in the culture tank 2a is usually water.
  • the liquid A may further contain a nitrogen content and a phosphorus content contained in the waste water, and the above-described organic culture components and inorganic culture components.
  • the microalgae are usually unicellular.
  • the microalgae are microalgae having a size of approximately several micrometers to several tens of micrometers.
  • Examples of the microalgae include photoautotrophic microalgae that grow by photosynthesis, heterotrophic microalgae that grow using organic carbon such as glucose as a nutrient source, and the like.
  • microalgae examples include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Aurantiochytrium , organisms belonging to the genus Auxenochlorella, botuliococcus Organisms belonging to the genus ( Botryococcus ), organisms belonging to the genus Nannochloris , organisms belonging to the genus Nannochloropsis , organisms belonging to the genus Neochloris , organisms belonging to the genus Pseudochoricystis , Scenedesmus (Scenedesmus) belonging to the genus organism, and, Schizochytrium (Schizochytorium) at least one member selected from the group consisting of organism belonging to the genus are preferred.
  • Botryococcus Botryococcus
  • Organisms belonging to the genus Nannochloris organisms belonging to the genus Nannochloropsis
  • Examples of the photoautotrophic microalgae include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Auxenochlorella , organisms belonging to the genus Botryococcus , Kurorisu (Nannochloris) belonging to the genus organism, Nannochloropsis (Nannochloropsis) belonging to the genus organism, Neokurorisu (Neochloris) belonging to the genus organism, shoe DoCoMo lysis Chis (Pseudochoricystis) belonging to the genus organism, and belong to Scenedesmus (Scenedesmus) genus At least one selected from the group consisting of organisms is preferred.
  • O lunch Oki thorium (Aurantiochytrium) belonging to the genus organism, or Schizochytrium (Schizochytorium) belonging to the genus organisms, are preferred.
  • Organisms belonging to the Euglena (Euglena) genus for example, Euglena gracilis, E uglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses, Euglena pisciformis, Euglena spirogyra Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena rubra , or Euglena cyclopicola .
  • Euglena gracilis for example, and the like (storage strains in later
  • Chlorella vulgaris examples include Chlorella vulgaris , Chlorella pyrenoidosa , or Chlorella sorociniana .
  • Chlorella sorociniana for example, and the like (storage strains in later to Independent Administrative Institution National Institute for Environmental Studies microorganism strain preservation facility) Chlorella sorociniana NIES-2169.
  • Organisms belonging to the Orgorgee Imperiale Seno Chlorella (Auxenochlorella) genus, for example, like Auxenochlorella protothecoides.
  • Botryococcus braunii examples of the organism belonging to the genus Botryococcus.
  • Organisms belonging to the Nan'nokurorisu (Nannochloris) genus, for example, Nannochloris Bacillaris, like Nannochloris normandinae.
  • Organisms belonging to the Nannochloropsis (Nannochloropsis) genus for example, like Nannochloropsis oculata.
  • Organisms belonging to the Neokurorisu e.g., Neochloris aquatica, Neochloris cohaerens, Neochloris conjuncta, Neochloris gelatinosa, Neochloris pseudostigmata, Neochloris pseudostigmatica, Neochloris pyrenoidosa, Neochloris terrestris, Neochloris texensis, Neochloris vigensis, Neochloris wimmeri, Neochloris oleoabundans etc. Is mentioned.
  • Examples of the organism belonging to the genus Pseudochoricystis include Pseudochoricystis ellipsoidea .
  • Organisms belonging to the Scenedesmus (Scenedesmus) genus for example, Scenedesmus ovaltermus, Scenedesmus disciformis, Scenedesmus acumunatus, like Scenedesmus dimorphus.
  • Organisms belonging to the O-lunch Oki thorium (Aurantiochytrium) genus for example, Aurantiochytrium limacinum, or the like Aurantiochytrium mangrovei.
  • Examples of the organism belonging to the genus Schizochytorium include Schizochytrium aggregatum .
  • the above microalgae can be obtained from the National Institute for Environmental Studies, the National Institute for Environmental Studies, the National Institute for Environmental Studies, the National Institute for Environmental Studies (NIES), the Patent Microorganism Depositary Center (Postal Code 292-0818, Kisarazu-shi, Chiba Prefecture) Postal code 305-8506 (16-2 Onagawa, Tsukuba City, Ibaraki Prefecture), or The Culture Collection of Algae at the University of Texas at Austin, USA (http://web.biosci.utexas.edu/utex/default.aspx) It is easily obtained from the National Institute for Environmental Studies, the National Institute for Environmental Studies, the National Institute for Environmental Studies (NIES), the Patent Microorganism Depositary Center (Postal Code 292-0818, Kisarazu-shi, Chiba Prefecture) Postal code 305-8506 (16-2 Onagawa, Tsukuba City, Ibaraki Prefecture), or The Culture Collection of Algae at the University of Texas at Austin, USA (http://
  • microalgae it is possible to accumulate a large amount of triglyceride as a raw material for biodiesel, to contain a lot of valuable materials such as dietary fiber, vitamins, carotenoids, proteins, linoleic acid, linolenic acid, and to culture in large quantities From the viewpoint that it is easy to do, organisms belonging to the genus Chlorella are preferred.
  • the microalgae can accumulate a large amount of wax ester as a raw material for biodiesel, contain a large amount of valuable substances such as vitamins, carotenoids, nutritious proteins, paramylon, and culture in large quantities. Organisms belonging to the genus Euglena are preferred in that they are easy to do.
  • the culture device 2 has a stirring device that stirs the microalgae and the liquid A in the tank.
  • the culture apparatus 2 includes a lighting device 2b that irradiates light B from above the culture tank 2a toward the culture tank 2a in order to cause the microalgae to perform photosynthesis.
  • the culture tank 2a is relatively shallow so that the light B irradiated from above passes through the liquid A and reaches the bottom in order to promote the photosynthesis of the microalgae contained in the culture tank 2a. Is formed.
  • the culture tank 2a is configured such that light B from the lighting device 2b is irradiated to the microalgae in the liquid A to be stored.
  • the culture device 2 may be configured to grow the microalgae by photoautotrophic culture while irradiating the microalgae with the light B. That is, the culture apparatus 2 may be configured to grow microalgae under bright conditions.
  • the photoautotrophic microalgae can grow while taking carbon dioxide into the cells by photosynthesis and synthesizing hydrocarbons, sugars, etc. It proliferates using the components in A (for example, the above-mentioned organic nitrogen content etc.) as nutrient components.
  • the said culture apparatus 2 may be comprised so that a micro algae may be propagated by light heterotrophic culture, irradiating light B to a micro algae. That is, the culture apparatus 2 may be configured to grow the microalgae while photosynthesis of the microalgae by light irradiation in a liquid containing oxygen, carbon dioxide, and a carbon source.
  • the culture apparatus 2 may be configured to grow the microalgae while photosynthesis of the microalgae by light irradiation in a liquid containing oxygen, carbon dioxide, and a carbon source.
  • oxygen and carbon dioxide that is, aeration of liquid A with a gas containing oxygen and carbon dioxide
  • photosynthesisable microalgae are photosynthesized.
  • microalgae can be grown by heterotrophic culture in liquid A containing a carbon source.
  • the culture apparatus 2 may be configured to grow microalgae by heterotrophic culture without irradiating light B. That is, the culture apparatus 2 may be configured to grow microalgae under dark conditions.
  • the microalgae By placing the microalgae in a dark condition without irradiating the light B in the culture apparatus 2 and performing aeration with an aeration tube to be described later, the microalgae can be obtained from a carbon source in the liquid A (for example, the sugars described above, or It grows using alcohol or the organic nitrogen content mentioned above.
  • the culture tank 2a is compared in that oxygen is easily dissolved in the liquid A for culture. It may be formed deeply.
  • the culture apparatus 2 may be configured to irradiate the microalgae with natural light from the sun, for example, instead of irradiating the microalgae with the light B by the lighting device 2b.
  • the intensity of light B or natural light irradiated by the lighting device 2b is not particularly limited, but when cultivating an organism belonging to the genus Euglena as a microalgae, 50 ⁇ mol / m 2 / s to 200 ⁇ mol / m 2 / It is preferable that it is s.
  • the light intensity is 50 ⁇ mol / m 2 / s or more, there is an advantage that photosynthesis can be further promoted.
  • the growth inhibition by light can be suppressed more reliably because the intensity
  • the culture apparatus 2 is configured to alternately provide a period in which the microalgae are irradiated with the light B and a period in which the light B is not irradiated while the microalgae are grown in the liquid A in the culture tank 2a. It is preferable. That is, the culture apparatus 2 repeatedly and alternately provides a period for growing microalgae while irradiating microalgae with light B to perform photosynthesis and a period for growing microalgae under dark conditions. It is preferable to be configured.
  • the period during which the microalgae are irradiated with the light B in the culture apparatus 2 is preferably 8 hours to 15 hours. Further, the period of dark conditions in which microalgae are not subjected to photosynthesis is preferably 9 to 16 hours.
  • the culture apparatus 2 is configured such that the culture temperature in the culture tank 2a is controlled to 20 ° C. to 35 ° C., for example.
  • the pH of the liquid A in the culture apparatus 2 is not particularly limited as long as it is a pH at which microalgae can grow.
  • the pH is, for example, 3.0 to 5.5 when culturing organisms of the genus Euglena .
  • an inorganic acid such as hydrochloric acid may be added to the liquid A, or an organic acid such as acetic acid may be added to the liquid A.
  • microalgae can grow using the organic acid as a carbon source.
  • the culture apparatus 2 has an air diffuser for aeration of the liquid A in the culture tank 2a. Specifically, the culture apparatus 2 supplies the liquid A by supplying air or the like into the liquid A via an air diffuser in order to supply oxygen for respiration to the microalgae in the culture tank 2a. It is configured to diffuse.
  • the culture device 2 for example, photosynthesizes microalgae while aerating the liquid A by supplying a gas containing a relatively large amount of carbon dioxide to the liquid A in the culture tank 2 a via an air diffuser. It is comprised so that it may perform.
  • the culture apparatus 2 is also configured to place the liquid A under anaerobic conditions by stopping the diffusion from the diffusion tube.
  • the culture apparatus 2 may be configured to always diffuse the liquid A in the culture tank 2a. Moreover, the said culture apparatus 2 may be comprised so that the liquid A in the culture tank 2a may be diffused only when culture
  • the culture apparatus 2 is configured to supply carbon dioxide used for photosynthesis or oxygen used for respiration into the liquid A through an air diffuser during the cultivation of microalgae.
  • the oxygen supply means is not limited to the air diffuser.
  • the supply means for example, means for stirring the liquid A using a stirring blade in order to dissolve the supplied carbon dioxide and oxygen in the liquid A in the culture tank 2a, or supplied A means for supplying pressurized liquid in which carbon dioxide or oxygen is pressurized and dissolved to the liquid A may be employed.
  • the culture apparatus 2 employs, for example, an organism belonging to the genus Euglena as a microalgae. Under conditions where light B is irradiated, an organic substance is produced from carbon dioxide by photosynthesis while growing the Euglena genus organism. It is configured to synthesize (polysaccharides, lipids, etc.) and store the organic matter in cells. On the other hand, the culture apparatus 2 synthesizes organic substances (polysaccharides, lipids, etc.) from organic carbon in the liquid A under the dark condition where the light B is not irradiated while growing Euglena genus organisms. It is configured to store organic matter in cells.
  • the Euglena genus organism in which the organic substance is stored in cells can be recovered, for example, and used directly as a valuable resource. Furthermore, the culture apparatus 2 by placing the polysaccharide and Euglena was stored organic matter such as lipids (Euglena) genus organism into the cell under anaerobic conditions in the dark, Euglena (Euglena) genus organisms wax into cells It is configured to store esters and the like. The stored wax ester can be used as a raw material for fuels, chemical products and the like by being taken out from the cells of Euglena genus organisms.
  • the solid-liquid separation device 5 is configured such that a mixture of the microalgae cultured in the culture device 2 and the liquid A is supplied from the culture device 2, and the mixture is separated into the liquid and the microalgae. It is configured.
  • the solid-liquid separation device 5 includes a concentration processor that performs a concentration process such as flotation concentration, gravity concentration, and membrane concentration on a mixture of microalgae and liquid A, for example. Further, the solid-liquid separation device 5 is, for example, a vacuum dehydrator, a pressure dehydrator (filter press), a belt press, a screw press, or a centrifugal concentration dehydrator in order to dehydrate the microalgae after the concentration process. (Screw decanter), or a multiple disk dehydrator.
  • a concentration processor that performs a concentration process such as flotation concentration, gravity concentration, and membrane concentration on a mixture of microalgae and liquid A, for example.
  • the solid-liquid separation device 5 is, for example, a vacuum dehydrator, a pressure dehydrator (filter press), a belt press, a screw press, or a centrifugal concentration dehydrator in order to dehydrate the microalgae after the concentration process. (Screw decanter), or a
  • the microalgae culture facility 20 includes a microalgae extraction pipe 6 that extracts microalgae obtained by separation in the solid-liquid separator 5 to the outside of the facility.
  • the microalgae culture facility 20 is configured to send the separated microalgae out of the culture facility 20 by the microalgae extraction pipe 6.
  • the microalgae sent to the outside of the culture facility 20 are collected as they are and used according to the purpose.
  • the microalgae cultivation facility 20 includes a liquid extraction pipe 7 that takes out the liquid obtained by the separation in the solid-liquid separation device 5 to the outside of the facility.
  • the microalgae culture facility 20 is configured to send the separated liquid to the outside of the culture facility 20 through the liquid extraction pipe 7.
  • the separated liquid sent to the outside of the culture facility 20 is discharged, for example, as it is or after being further treated with water.
  • the microalgae cultivation facility 20 includes a permeate extraction pipe 12 that takes out permeate that has permeated through the filtration membrane of the membrane unit 1 b in the membrane separation apparatus 1 to the outside of the facility.
  • the part may be configured to be sent out of the culture facility 20 by the permeated water extraction pipe 12.
  • the water quality of the liquid obtained by the separation in the solid-liquid separator 5 is not always better than the quality of the permeated water because it is affected by the type of drainage and the type of microalgae.
  • the concentration of suspended matter can be higher than in permeate.
  • the permeated water can be discharged out of the culture facility 20 and the permeated water can be directly discharged. Further, when the separated liquid or permeate discharged to the outside of the culture facility 20 is further purified by the purification facility, a part of the permeate having better water quality is discharged outside the culture facility 20 and after the separation. Can be added to the liquid. Thereby, the purification degree of the liquid after the separation can be increased, and the load on the purification equipment can be reduced.
  • the microalgae cultivation facility 20 includes a liquid recovery pipe 8 that sends the liquid after the microalgae culture in the culture apparatus 2 to the aeration tank 3a and / or the filtration tank 1a of the water treatment apparatus 3.
  • the microalgae culture facility 20 uses a liquid (liquid after microalgae culture) obtained by separation in the solid-liquid separator 5 as a water treatment device.
  • 3 aeration tank 3a and / or a liquid recovery pipe 8 to be sent to the filtration tank 1a of the membrane filtration device 1.
  • one end of the liquid recovery pipe 8 is attached in the middle of the liquid extraction pipe 7.
  • the other end of the liquid recovery pipe 8 is divided into two, and the other ends are arranged so as to supply the liquid to the aeration tank 3a and / or the filtration tank 1a of the water treatment device 3.
  • a valve is attached to one end of the liquid recovery pipe 8. Then, by controlling this valve, the liquid recovery pipe 8 sends the liquid that has passed through the liquid extraction pipe 7 to the other end side, and sends the liquid from each of the other ends to the aeration tank 3a and / or the filtration tank 1a. It is configured to supply.
  • the microalgae culture facility 20 is configured to send the liquid after the culture of the microalgae in the culture apparatus 2 to the aeration tank 3a of the water treatment apparatus 3 and / or the filtration tank 1a of the membrane filtration apparatus 1.
  • the amount of water newly added in the culture facility 20 can be reduced by the amount of the liquid after culturing the microalgae being used again in the culture facility 20. That is, the microalgae culture equipment is obtained by water-treating the liquid after cultivation of microalgae in the aeration tank 3a by the activated sludge method and / or adding the liquid after culture of microalgae to the filtration tank 1a.
  • the amount of water newly added at 20 can be reduced.
  • the liquid after the microalgae are cultured contains a growth inhibitory component generated from the microalgae along with the growth of the microalgae.
  • the liquid containing the component is sent to the aeration tank 3a and water-treated by the activated sludge method, at least part of the growth inhibiting component is decomposed by the activated sludge method, so that the growth inhibiting component is May decrease. Therefore, when the liquid after culturing the microalgae is water-treated in the aeration tank 3a by the activated sludge method, adverse effects due to the microalgae growth inhibitory component can be suppressed in the culture of the microalgae in the culture apparatus 2.
  • the microalgae cultivation facility 20 may include a sterilization apparatus 9 for sterilizing the aqueous solution obtained in the mixing tank 4 and containing the above-described culture components, as shown in FIG. That is, the culture facility 20 for microalgae includes a sterilization apparatus 9 that performs sterilization treatment on the permeated water, and sends the permeated water that has been sterilized by the sterilization apparatus 9 to the culture apparatus 2. It may be configured.
  • the sterilization apparatus 9 is configured to be supplied with the aqueous solution obtained in the mixing tank 4.
  • the sterilization apparatus 9 is configured to sterilize permeated water and culture components contained in the aqueous solution, and supply the sterilized aqueous solution containing the permeated water and culture components to the culture apparatus 2. Yes.
  • the sterilization apparatus 9 is configured to perform sterilization processing by, for example, heating using heat such as water vapor, filtration removal of bacteria using a filtration membrane, or the like.
  • the microorganisms contained in the permeated water that has passed through the filtration membrane can be further reduced.
  • bacteria and the like that can be included in the culture components can be reduced by sterilization treatment.
  • the sterilization apparatus 9 by using the sterilization apparatus 9, the permeated water and the culture components that have passed through the mixing tank 4 are sterilized and sent to the culture apparatus 2.
  • the adverse effect of microorganisms on growth can be more reliably suppressed. Thereby, microalgae can be more fully proliferated.
  • the microalgae culturing facility 20 of the present embodiment since at least drainage is used as a liquid for culturing microalgae, industrial water and tap water used as liquids for cultivating microalgae by the amount of wastewater used. The amount can be reduced. Therefore, in the microalgae culture facility 20 of the present embodiment, the cost for operation can be relatively small. In addition, the microalgae culturing equipment 20 of the present embodiment can cultivate microalgae using wastewater that is normally discarded, and can obtain valuable resources from the cultured microalgae. Thus, there is an advantage that the profit obtained for the cost spent for operation is relatively high.
  • the microalgae culture facility 20 of the present embodiment includes a water treatment device that treats the wastewater by anaerobic treatment, and is configured to send the wastewater treated by the water treatment device to the membrane filtration device 1. May be.
  • the water treatment apparatus (which treats the wastewater by anaerobic treatment) has an anaerobic treatment tank that accommodates the wastewater supplied from outside the culture facility 20, and treats the wastewater by anaerobic treatment in the anaerobic treatment tank. It is configured.
  • the anaerobic treatment tank is configured to perform water treatment by anaerobic microorganisms to decompose a compound in waste water into a compound having a lower molecular weight under anaerobic conditions.
  • the anaerobic treatment tank is configured to send wastewater such as digested liquid and digested and desorbed liquid subjected to anaerobic treatment to the membrane filtration device 1.
  • a digestion apparatus configured to perform an upflow anaerobic process (UASB method) using granules, or a digestion configured to process sewage sludge.
  • UASB method upflow anaerobic process
  • a tank or the like may be employed.
  • anaerobic treatment for example, an anaerobic digestion treatment or the like may be employed.
  • waste water containing a relatively large amount of ammonia, phosphoric acid and the like, which are reduced in molecular weight due to decomposition of the nitrogen content and phosphorus content in the waste water, is generated.
  • Such drainage is subjected to membrane filtration in a membrane filtration device, so that permeated water containing a relatively large amount of ammonia, phosphoric acid and the like is generated, and the permeated water is used for culturing microalgae in the culture device. It becomes.
  • ammonia and the like produced by the anaerobic treatment can be used for culturing the microalgae, so that ammonia can be used without chemical decomposition treatment such as ammonia.
  • Etc. can be decomposed by microalgae.
  • the anaerobic treatment tank contains wastewater to be contained in order to remove sludge and the like attached to the membrane unit. It may be configured to supply a bubble-like gas.
  • a gas not containing oxygen such as an inert gas or carbon dioxide
  • the membrane unit can be cleaned and the inside of the anaerobic treatment tank can be kept in an anaerobic state.
  • the following steps can be performed by using the above-described devices. Further, in the method for culturing microalgae of the present embodiment, the above-described operations and the like are appropriately employed.
  • the method for culturing microalgae of the present embodiment includes a membrane filtration step for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to a membrane through a filtration membrane, and the permeated water.
  • permeated water in which microorganisms in the wastewater are reduced is obtained in the membrane filtration step.
  • microalgae are cultured in a liquid containing the permeated water in which microorganisms are reduced. Therefore, the inhibition of the growth of microalgae due to the microorganisms is suppressed in the culture of the microalgae in the culture process as much as the number of microorganisms is reduced.
  • the method for culturing microalgae of the present embodiment since the permeated water permeates the filtration membrane, the number of microorganisms in the permeated water is smaller than that in the drainage before filtration. Therefore, it is possible to suppress the inhibition of the growth of microalgae by the amount of the microorganisms. Therefore, the method for culturing microalgae of the present embodiment has an effect that microalgae can be sufficiently grown.
  • a water treatment step of treating the wastewater with an activated sludge method or anaerobic treatment is further performed, and the wastewater treated with water in the water treatment step is subjected to membrane filtration. It is preferable to obtain permeated water by membrane filtration in the process. That is, in the method for culturing microalgae, a water treatment step in which wastewater containing at least one of nitrogen and phosphorus is treated with an activated sludge method or anaerobic treatment, and a water treatment step in the water treatment step with a filtration membrane.
  • the nitrogen content (nitrogen-containing compound) in the wastewater can be decomposed into nitrogen content such as ammonia and nitrate ions having a lower molecular weight.
  • the phosphorus content (phosphorus-containing compound) in the wastewater can be decomposed into phosphorus content such as phosphate ions having a lower molecular weight. That is, the wastewater that has been subjected to water treatment in the water treatment step contains nitrogen, phosphorus, and the like that have been reduced in molecular weight by water treatment. These components are easier for microalgae to use as nutritional components in growth than before the molecular weight is reduced.
  • Wastewater that has been water-treated in the water treatment process contains nitrogen and phosphorus that are easily utilized by microalgae as nutrients. Therefore, permeated water is obtained from the wastewater in the membrane filtration step, and the permeated water is contained in the liquid A in the culturing step, whereby the growth of microalgae can be further promoted. That is, in the method for culturing microalgae, by further carrying out a water treatment step, the drainage water treated in the water treatment step is subjected to membrane filtration in the membrane filtration step to obtain permeated water. Then, microalgae are cultured in the liquid A containing the permeated water in the culturing step. Thereby, microalgae can utilize a low molecular weight nitrogen component that can be more easily used as a nutrient component. Therefore, the growth of microalgae is further promoted.
  • a culture component mixing step of mixing the permeated water obtained by the membrane filtration step and the culture components of microalgae can be further performed.
  • a solid-liquid separation step of separating a mixture of microalgae and liquid cultured in the culture step into liquid and microalgae can be further performed.
  • a sterilization step of sterilizing the permeated water is further performed, and in the culturing step, in the liquid containing the permeated water that has been sterilized in the sterilization step. It is preferable to culture microalgae.
  • the sterilization step is preferably performed after the culture component mixing step. That is, in the sterilization step, it is preferable to perform sterilization treatment on an aqueous solution obtained by mixing permeate and microalgae culture components in the culture component mixing step.
  • microalgae are cultured in the liquid A containing the permeated water after sterilization in the culture step, there is an advantage that the adverse effect of the microorganisms on the growth of the microalgae can be more reliably suppressed. is there. Therefore, there is an advantage that microalgae can be propagated more sufficiently.
  • the liquid after culturing the microalgae in the culturing process is recovered, and a liquid recovery process is further performed in which the recovered liquid is mixed with wastewater that is water-treated in the water treatment process,
  • the liquid after culturing the microalgae in the culturing step is also preferably treated with water.
  • the liquid after culturing the microalgae in the culturing step contains a growth inhibitory component generated from the microalgae along with the growth of the microalgae.
  • the liquid containing the component is water-treated by the activated sludge method or the anaerobic treatment in the water treatment step, at least a part of the growth inhibiting component is decomposed by the activated sludge method or the anaerobic treatment, and the growth inhibiting component can be reduced. Therefore, in the liquid recovery process, the liquid after culturing the microalgae in the culturing process is recovered, and in the water treatment process, the recovered liquid is treated with water, thereby adversely affecting the growth inhibition components of the microalgae in the culturing process. Can be suppressed.
  • the present invention is not limited to the microalgae culture facility and microalgae culture method illustrated above. .
  • cultivation method of a general microalga can be employ
  • the scope of the present invention is shown not by the above description but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
  • a culture component such as ethanol, amino acid, or saccharide such as glucose (glucose) is added to the mixing tank 4, but the method for culturing microalgae of the present invention is such It is not limited to embodiment, For example, you may add a culture component to the culture tank 2a.
  • the method for culturing microalgae of the present invention may add brewed liquor, wort, sake lees, molasses, yeast extract, protein, etc. to the mixing tank 4 or the culture tank 2a.
  • microalgae By culturing microalgae in the presence of these substances, microalgae can be more efficiently grown.
  • the yeast extract is obtained by destroying the cell wall of yeast with heat, or obtained by destroying the cell wall of yeast with an enzyme.
  • the microalgae culture facility of the above embodiment is configured to send the cultured liquid to the water treatment device by the liquid recovery pipe 8, but the microalgae culture facility of the present invention is such a It is not limited to the embodiment.
  • the microalgae culture facility of the present invention further comprises a culture device and a solid-liquid separation device, and another type of microalgae is cultured in the culture device provided separately and cultured. You may comprise so that a mixture with a liquid may be isolate
  • the liquid after culturing microalgae in the above embodiment may be configured to be sent to a culture apparatus separately provided by the liquid recovery pipe 8.
  • the cultured liquid sent to the culture device separately provided by the liquid recovery pipe 8 is a nutrient component that is not required for culture of microalgae in the culture device 2, or It contains nutrients that could not be used in the cultivation of microalgae in the culture device 2. Therefore, different types of microalgae that grow using these as nutrient components can be cultured in a separately provided culture apparatus.
  • the nutrient components contained in the wastewater can be efficiently decomposed by using the liquid after the culture.
  • microalgae cultivation facility and the microalgae cultivation method of the present invention can be used in applications such as health foods, pharmaceuticals, feeds, chemicals, and fuels for microalgae that store organic substances such as hydrocarbons and polysaccharides in cells. In order to utilize, it can use suitably.
  • 1 membrane filtration device, 1a: filtration tank, 1b: membrane unit, 2: culture apparatus, 2a: culture tank, 2b: lighting equipment, 3: water treatment device, 3a: aeration tank, 3b: aeration tube, 4: Mixing tank, 4a: Stirrer, 5: Solid-liquid separator, 6: Piping for extracting microalgae, 7: Liquid extraction piping, 8: Pipe for liquid recovery, 9: disinfection device, 10: culture component storage tank, 11: detection sensor, 12: permeate extraction pipe, 20: culture equipment, A: Liquid, B: Light.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Provided is a method that is for culturing a microalga and that is characterized by carrying out: a membrane filtration step for obtaining a permeate that has permeated through a filtration membrane by means of membrane filtration of discharged water containing at least nitrogen content or phosphorus content; and a culturing step for culturing a microalga within a liquid containing the permeate. Also provided is a facility that is for culturing a microalga and that is provided with: a membrane filtration device that obtains a permeate that has permeated through a filtration membrane by means of membrane filtration of discharged water containing at least nitrogen content or phosphorus content; and a culturing device for culturing a microalga within a liquid containing the permeate.

Description

微細藻類の培養方法及び微細藻類の培養設備Microalgae culture method and microalgae culture equipment 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2012-208718号の優先権を主張し、該出願が引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2012-208718, which is incorporated herein by reference.
 本発明は、微細藻類の培養方法、及び、微細藻類の培養設備に関する。 The present invention relates to a method for culturing microalgae and a culture facility for microalgae.
 従来、微細藻類の培養方法としては、様々なものが知られている。例えば、微細藻類の培養方法としては、家庭排水を含む下水中で微細藻類を培養する方法が知られている(特許文献1)。 Conventionally, various methods for culturing microalgae are known. For example, as a method for culturing microalgae, a method for culturing microalgae in sewage containing domestic wastewater is known (Patent Document 1).
 この種の微細藻類の培養方法においては、下水が窒素分やリン分を含むことから、これら成分が栄養成分として微細藻類の生育に利用される。従って、この種の微細藻類の培養方法においては、微細藻類を増殖させることができる。そして、増殖した微細藻類を生活資材や産業資材として利用することができる。しかも、培養のために用いた下水中の窒素分やリン分を減らすことができることから、下水の水質を改良することができる。 In this type of microalgae culture method, since sewage contains nitrogen and phosphorus, these components are used as nutrients for the growth of microalgae. Therefore, in this type of method for culturing microalgae, microalgae can be grown. And the proliferated microalgae can be used as a living material or an industrial material. And since the nitrogen content and phosphorus content in the sewage used for culture | cultivation can be reduced, the quality of the sewage can be improved.
日本国特開平08-107782号公報Japanese Unexamined Patent Publication No. 08-107782
 しかしながら、この種の微細藻類の培養方法においては、微細藻類の培養のための液体として下水をそのまま用いるため、下水中に含まれる様々な細菌類、原生動物、又は後生動物等の微生物によって微細藻類の増殖が阻害されるという問題がある。微生物によって微細藻類の増殖が抑制されると、培養後に得られる微細藻類の量が必ずしも十分なものとならないことから、利用できる微細藻類の量が比較的少なくなる。 However, in this type of method for culturing microalgae, sewage is used as it is as a liquid for culturing microalgae. There is a problem that the growth of is inhibited. If the growth of microalgae is suppressed by microorganisms, the amount of microalgae obtained after culturing is not necessarily sufficient, and therefore the amount of microalgae that can be used is relatively small.
 本発明は、上記の問題点等に鑑み、微細藻類を十分に増殖させることができる微細藻類の培養方法を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems and the like, and an object thereof is to provide a method for culturing microalgae that can sufficiently grow microalgae.
 本発明に係る微細藻類の培養方法は、少なくとも窒素分及びリン分のいずれか一方を含む排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過工程と、前記透過水を含む液体中で微細藻類を培養する培養工程とを実施するものである。 The method for culturing microalgae according to the present invention includes a membrane filtration step for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to membrane filtration, and a liquid containing the permeated water. And a culture process for culturing microalgae.
 本発明に係る微細藻類の培養方法の一態様として、前記膜濾過工程の前に、前記排水を活性汚泥法又は嫌気処理によって水処理する水処理工程をさらに実施し、該水処理工程にて水処理した排水を前記膜濾過工程にて膜濾過する態様を採用することができる。 As one aspect of the method for culturing microalgae according to the present invention, prior to the membrane filtration step, a water treatment step of water treatment of the wastewater by an activated sludge method or anaerobic treatment is further performed, and water is treated in the water treatment step. The aspect which membrane-filters the processed waste_water | drain at the said membrane filtration process is employable.
 本発明に係る微細藻類の培養方法の他態様として、前記透過水に除菌処理を施す除菌工程をさらに実施し、前記培養工程では、前記除菌工程にて除菌処理が施された前記透過水を含む液体中で、微細藻類を培養する態様を採用することができる。 As another aspect of the method for culturing microalgae according to the present invention, a sterilization step of sterilizing the permeate is further performed, and in the culturing step, the sterilization treatment is performed in the sterilization step. A mode in which microalgae are cultured in a liquid containing permeated water can be employed.
 本発明に係る微細藻類の培養設備は、少なくとも窒素分及びリン分のいずれか一方を含む排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過装置と、前記透過水を含む液体中で微細藻類を培養する培養装置とを備える。
 本発明に係る微細藻類の培養設備の一態様として、さらに、前記排水を活性汚泥法又は嫌気処理によって水処理する水処理装置を備え、該水処理装置にて水処理された排水を前記膜濾過装置に送るように構成されている態様を採用することができる。
 本発明に係る微細藻類の培養設備の他態様として、さらに、前記透過水に除菌処理を施す除菌装置を備え、該除菌装置にて除菌処理が施された前記透過水を前記培養装置に送るように構成されている態様を採用することができる。
The apparatus for culturing microalgae according to the present invention includes a membrane filtration device for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to membrane filtration, and a liquid containing the permeated water. A culture apparatus for culturing microalgae therein.
As one aspect of the microalgae culture facility according to the present invention, the apparatus further comprises a water treatment device for water treatment of the wastewater by an activated sludge method or anaerobic treatment, and the membrane-filtered wastewater treated with the water treatment device Embodiments configured to send to the device may be employed.
As another aspect of the microalgae culturing facility according to the present invention, the microalgae further includes a sterilization apparatus that sterilizes the permeated water, and the cultivated permeated water that has been sterilized by the sterilization apparatus. Embodiments configured to send to the device may be employed.
微細藻類の培養設備の概要を表した概略図。Schematic showing the outline of the culture facility for microalgae. 微細藻類の培養設備の変形例を表した概略図。Schematic showing the modification of the culture equipment of microalgae.
 以下、本発明に係る微細藻類の培養設備の一実施形態について、図面を参照しつつ詳しく説明する。 Hereinafter, an embodiment of a microalgae culture facility according to the present invention will be described in detail with reference to the drawings.
 本実施形態の微細藻類の培養設備20は、図1に示すように、少なくとも窒素分及びリン分のいずれか一方を含む排水を濾過膜によって膜濾過することにより濾過膜を透過した透過水を得る膜濾過装置1と、前記透過水を含む液体A中で微細藻類を培養する培養装置2とを備えたものである。 As shown in FIG. 1, the microalgae cultivation facility 20 of the present embodiment obtains permeated water that has permeated through a filtration membrane by subjecting the wastewater containing at least one of nitrogen and phosphorus to membrane filtration through the filtration membrane. A membrane filtration device 1 and a culture device 2 for culturing microalgae in the liquid A containing the permeated water are provided.
 本実施形態の微細藻類の培養設備20においては、膜濾過装置1にて排水を膜濾過するため、排水に含まれている微生物の少なくとも一部が濾過膜を透過しない。従って、膜濾過装置1にて排水中の微生物を減少させた透過水を得ることができる。そして、培養装置2において、微生物が減少した透過水を含む液体中で微細藻類を培養する。従って、微生物が減った分、培養装置2における微細藻類の培養にて、微生物によって微細藻類の増殖が阻害されることが抑制される。また、透過水には、排水に含まれていた窒素分やリン分が含まれており、この窒素分やリン分が微細藻類の増殖を促す。従って、前記微細藻類の培養設備20は、微細藻類を十分に増殖させることができる。
 このように、本実施形態の微細藻類の培養設備は、微細藻類を十分に増殖させることができるという効果を奏する。
In the microalgae culture facility 20 of the present embodiment, since the wastewater is membrane-filtered by the membrane filtration device 1, at least a part of the microorganisms contained in the wastewater does not permeate the filtration membrane. Therefore, permeated water in which the microorganisms in the waste water are reduced can be obtained by the membrane filtration device 1. Then, in the culture apparatus 2, the microalgae are cultured in a liquid containing permeated water in which microorganisms are reduced. Therefore, in the culture of the microalgae in the culturing apparatus 2, the microbe algae is inhibited from being inhibited from growing due to the reduction of the microbes. In addition, the permeated water contains nitrogen and phosphorus contained in the waste water, and this nitrogen and phosphorus promotes the growth of microalgae. Therefore, the microalgae culture facility 20 can sufficiently grow the microalgae.
Thus, the culture facility for microalgae of the present embodiment has an effect that microalgae can be sufficiently grown.
 本実施形態の微細藻類の培養設備20は、さらに、前記排水を活性汚泥法によって水処理する水処理装置3を備え、該水処理装置3にて水処理された排水を前記膜濾過装置1に送るように構成されている。
 即ち、本実施形態の微細藻類の培養設備20は、図1に示すように、少なくとも窒素分及びリン分のいずれか一方を含む排水を活性汚泥法によって水処理する水処理装置3と、該水処理装置3にて水処理された排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過装置1と、前記透過水を含む液体A中で微細藻類を培養する培養装置2とを備えている。
The microalgae culture facility 20 of the present embodiment further includes a water treatment device 3 that treats the wastewater by an activated sludge method, and the wastewater treated by the water treatment device 3 is supplied to the membrane filtration device 1. Configured to send.
That is, as shown in FIG. 1, the microalgae culture facility 20 of the present embodiment includes a water treatment device 3 that treats wastewater containing at least one of nitrogen and phosphorus by an activated sludge method, and the water. A membrane filtration device 1 for obtaining permeated water that has permeated through a filtration membrane by subjecting the wastewater treated with water in the treatment device 3 to membrane filtration, and a culture device 2 for culturing microalgae in the liquid A containing the permeated water. I have.
 より具体的には、本実施形態の微細藻類の培養設備20は、図1に示すように、微細藻類の増殖を促す培養成分を貯める培養成分貯留タンク10と、該培養成分貯留タンク10から送られる培養成分と膜濾過装置1から送られる透過水とを混合して水溶液を調製し該水溶液を培養装置2の液体Aへ加えることにより液体Aをより培養に適したものに調整する混合タンク4とをさらに備えている。また、本実施形態の微細藻類の培養設備20は、培養装置2において培養した微細藻類と液体Aとの混合物を液体Aと微細藻類とに分離する固液分離装置5をもさらに備えている。 More specifically, as shown in FIG. 1, the culture system 20 for microalgae of the present embodiment includes a culture component storage tank 10 that stores culture components that promote the growth of microalgae, and a culture component storage tank 10 that sends the culture components from the culture component storage tank 10. A mixing tank 4 for adjusting the liquid A to be more suitable for culture by preparing an aqueous solution by mixing the culture components to be transmitted and the permeated water sent from the membrane filtration device 1 and adding the aqueous solution to the liquid A of the culture device 2 And further. Further, the microalgae cultivation facility 20 of the present embodiment further includes a solid-liquid separation device 5 that separates the mixture of the microalgae and the liquid A cultured in the culture device 2 into the liquid A and the microalgae.
 前記排水は、少なくとも窒素分(窒素含有化合物)及びリン分(リン含有化合物)のうちのいずれか一方を含むものである。また、前記排水は、微細藻類の増殖を阻害する細菌類や原生動物等の微生物を含んでいる。 The waste water contains at least one of a nitrogen content (nitrogen-containing compound) and a phosphorus content (phosphorus-containing compound). The waste water contains microorganisms such as bacteria and protozoa that inhibit the growth of microalgae.
 前記排水としては、例えば、下水流入水が挙げられる。また、前記排水としては、醸造工場、食品工場、化学工場、電子産業工場、パルプ工場等の工場から排出される産業排水、又はそれら産業排水の処理水などが挙げられる。前記排水が下水流入水の場合は、前記排水は、窒素分及びリン分の両方を含み得る。 As the waste water, for example, sewage inflow water can be mentioned. Examples of the waste water include industrial waste water discharged from factories such as a brewery factory, a food factory, a chemical factory, an electronic industry factory, and a pulp factory, or treated water of such industrial waste water. When the waste water is sewage inflow water, the waste water may contain both nitrogen and phosphorus.
 前記窒素分としては、有機窒素分又は無機窒素分が挙げられる。前記排水は、通常、窒素分としての有機窒素分を含み、さらに、窒素分としての無機窒素分を含み得る。 The nitrogen content includes organic nitrogen content and inorganic nitrogen content. The waste water usually contains an organic nitrogen content as a nitrogen content, and may further contain an inorganic nitrogen content as a nitrogen content.
 前記有機窒素分としては、例えば、タンパク質、アミノ酸等が挙げられる。
 前記無機窒素分としては、例えば、アンモニアイオン、硝酸イオン等が挙げられる。
Examples of the organic nitrogen content include proteins and amino acids.
Examples of the inorganic nitrogen component include ammonia ions and nitrate ions.
 前記リン分としては、有機リン分、無機リン分等が挙げられる。前記排水は、通常、リン分としての有機リン分を含み、さらに、リン分としての無機リン分を含み得る。
 前記有機リン分としては、例えば、リン脂質、核酸等が挙げられる。
 前記無機リン分としては、例えば、リン酸イオン等が挙げられる。
Examples of the phosphorus content include organic phosphorus content and inorganic phosphorus content. The waste water usually contains an organic phosphorus content as a phosphorus content, and may further contain an inorganic phosphorus content as a phosphorus content.
Examples of the organic phosphorus content include phospholipids and nucleic acids.
Examples of the inorganic phosphorus content include phosphate ions.
 前記水処理装置3は、培養設備20外から供給された排水を曝気しつつ活性汚泥によって水処理する曝気槽3aと、該曝気槽3aに酸素を含む気体を供給する曝気管3bとを有する。 The water treatment apparatus 3 has an aeration tank 3a for agitating wastewater supplied from outside the culture facility 20 with activated sludge and an aeration pipe 3b for supplying a gas containing oxygen to the aeration tank 3a.
 前記水処理装置3は、曝気槽3a内部に排水を収容し、曝気管3bから供給される気体により排水を曝気しつつ活性汚泥によって排水を水処理するように構成されている。また、前記水処理装置3は、水処理された排水を膜濾過装置1へ送るように構成されている。 The water treatment device 3 is configured to accommodate wastewater in the aeration tank 3a and to treat the wastewater with activated sludge while aeration of the wastewater with the gas supplied from the aeration pipe 3b. The water treatment device 3 is configured to send water-treated wastewater to the membrane filtration device 1.
 前記曝気槽3aは、細菌、原生動物、後生動物等の生物種を含む活性汚泥によって、好気的条件下において排水中の化合物をより分子量の小さい化合物へ分解する水処理を行うように構成されている。 The aeration tank 3a is configured to perform water treatment for decomposing a compound in waste water into a compound having a lower molecular weight under an aerobic condition by using activated sludge containing biological species such as bacteria, protozoa, and metazoans. ing.
 前記曝気管3bは、曝気槽3aの底部に配されており、酸素を含む気体としての空気等を曝気槽3aの底部側から排水中へ気泡状に供給するように構成されている。 The aeration pipe 3b is arranged at the bottom of the aeration tank 3a, and is configured to supply air or the like as a gas containing oxygen in the form of bubbles from the bottom side of the aeration tank 3a into the waste water.
 前記水処理装置3によって排水が水処理されることにより、排水に含まれていた化合物がより分子量の小さい化合物に分解される。具体的には、排水に含まれていた化合物は、例えば、二酸化炭素へと分解される。
 また、前記水処理装置3によって排水が水処理されることにより、例えば、排水における前記窒素分(窒素含有化合物)が、より分子量の小さいアンモニアイオン、硝酸イオンなどの窒素分へ分解される。同様に、排水におけるリン分(リン含有化合物)が、より分子量の小さいリン酸イオンなどのリン分へ分解される。
 前記水処理装置3によって水処理された排水中には、上記のように、水処理によって低分子化された窒素分、リン分などが含まれている。水処理によって低分子化された窒素分やリン分は、低分子化される前よりも、微細藻類が増殖における栄養成分として利用しやすいものとなっている。
 従って、水処理装置3によって水処理された排水は、栄養成分として微細藻類が利用しやすい窒素分やリン分を含んでいる。
By treating the wastewater with the water treatment device 3, the compound contained in the wastewater is decomposed into a compound having a lower molecular weight. Specifically, the compound contained in the waste water is decomposed into, for example, carbon dioxide.
Moreover, when the waste water is water-treated by the water treatment device 3, for example, the nitrogen content (nitrogen-containing compound) in the waste water is decomposed into nitrogen content such as ammonia ions and nitrate ions having smaller molecular weights. Similarly, the phosphorus content (phosphorus-containing compound) in the wastewater is decomposed into phosphorus content such as phosphate ions having a lower molecular weight.
As described above, the wastewater subjected to water treatment by the water treatment apparatus 3 contains nitrogen, phosphorus, and the like that have been reduced in molecular weight by water treatment. Nitrogen and phosphorus that have been reduced in molecular weight by water treatment are easier for microalgae to use as nutrients in growth than before they are reduced in molecular weight.
Therefore, the wastewater treated by the water treatment device 3 contains nitrogen and phosphorus that are easy for microalgae to use as nutrients.
 前記膜濾過装置1は、図1に示すように、水処理装置3にて活性汚泥法によって水処理された排水であって水処理装置3から供給される排水を収容する濾過槽1aと、該濾過槽1a内に配され濾過膜を含む膜ユニット1bとを有する。そして、膜濾過装置1は、水処理された排水を膜ユニット1bによって膜濾過することにより、濾過膜を透過した透過水を得るように構成されている。また、前記膜濾過装置1は、得られた透過水を前記混合タンク4へ送るように構成されている。また、前記膜濾過装置1は、前記膜ユニット1bの表面に微生物が付着することを抑制すべく、膜ユニット1bの表面に気泡状の気体を供給する気体供給管1cを備えている。 As shown in FIG. 1, the membrane filtration device 1 includes a filtration tank 1 a that contains wastewater that is water-treated by the activated sludge method in the water treatment device 3 and that is supplied from the water treatment device 3, And a membrane unit 1b including a filtration membrane disposed in the filtration tank 1a. And the membrane filtration apparatus 1 is comprised so that the permeated water which permeate | transmitted the filtration membrane may be obtained by carrying out the membrane filtration of the waste_water | drain after water treatment with the membrane unit 1b. The membrane filtration device 1 is configured to send the obtained permeated water to the mixing tank 4. In addition, the membrane filtration device 1 includes a gas supply pipe 1c that supplies a bubble-like gas to the surface of the membrane unit 1b in order to suppress microorganisms from adhering to the surface of the membrane unit 1b.
 前記膜ユニット1bは、濾過膜を有する。そして、膜ユニット1bは、水処理された排水を膜濾過することによって、濾過膜を透過した透過水を少なくとも得るように構成されている。また、前記膜ユニット1bは、水処理された排水に浸かるように濾過槽1a内に配されている。
 具体的には、前記膜ユニット1bは、図1に示すように、通常、外表面において排水と接するように、濾過槽1aに収容された排水に浸漬されている。また、前記膜ユニット1bは、例えば、内側を陰圧にすることにより外側から内側へ向けて膜濾過を行い、濾過膜を透過した透過水を取り出すように構成されている。
The membrane unit 1b has a filtration membrane. And the membrane unit 1b is comprised so that the permeated water which permeate | transmitted the filtration membrane may be obtained at least by carrying out the membrane filtration of the waste_water | drain after the water treatment. Further, the membrane unit 1b is arranged in the filtration tank 1a so as to be immersed in the wastewater subjected to water treatment.
Specifically, as shown in FIG. 1, the membrane unit 1b is usually immersed in the wastewater stored in the filtration tank 1a so as to be in contact with the wastewater on the outer surface. The membrane unit 1b is configured, for example, to perform membrane filtration from the outside to the inside by setting the inside to a negative pressure, and to remove permeated water that has permeated the filtration membrane.
 前記濾過膜は、濾過によって排水中の細菌類や原生動物等の微生物を減少させる大きさの孔が形成されたものである。即ち、前記濾過膜は、濾過前の排水における微生物の数より、濾過膜を透過した透過水における微生物の数が少なくなるように、多数の孔が形成されたものである。 The filtration membrane is formed with pores having a size that reduces microorganisms such as bacteria and protozoa in the wastewater by filtration. That is, the filtration membrane has a large number of pores formed such that the number of microorganisms in the permeated water that has permeated the filtration membrane is smaller than the number of microorganisms in the waste water before filtration.
 前記濾過膜としては、濾過によって排水中の微生物をより確実に減少させることができるという点で、限外濾過膜(UF膜)又は精密濾過膜(MF膜)が好ましい。 The filtration membrane is preferably an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane) in that microorganisms in the waste water can be more reliably reduced by filtration.
 前記限外濾過膜(UF膜)の孔径は、通常、0.001~0.01μmである。このような大きさの孔が形成された限外濾過膜(UF膜)によれば、1,000~数10万の分子量の高分子物質やコロイド状物質の透過を阻止できる。また、細菌類や原生動物等の微生物の透過を阻止できる。
 前記精密濾過膜(MF膜)の孔径は、通常、0.01μmを超え10μm以下である。精密濾過膜(MF膜)の孔径は、細菌類の透過をより確実に阻止できるという点で、0.45μm以下であることが好ましい。
 前記濾過膜として限外濾過膜(UF膜)又は精密濾過膜(MF膜)を採用することにより、濾過において排水中の微生物が濾過膜を透過することを完全に阻止することも可能であり、微生物が含まれない透過水を得ることをも可能である。このような透過水を用いて後述する培養装置2において微細藻類を培養することにより、微生物による微細藻類の増殖阻害をより確実に抑えることができる。
The pore size of the ultrafiltration membrane (UF membrane) is usually 0.001 to 0.01 μm. According to the ultrafiltration membrane (UF membrane) in which pores of such a size are formed, it is possible to prevent permeation of high-molecular substances and colloidal substances having a molecular weight of 1,000 to several hundred thousand. Moreover, permeation of microorganisms such as bacteria and protozoa can be prevented.
The pore size of the microfiltration membrane (MF membrane) is usually more than 0.01 μm and 10 μm or less. The pore size of the microfiltration membrane (MF membrane) is preferably 0.45 μm or less from the viewpoint that the permeation of bacteria can be more reliably prevented.
By adopting an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane) as the filtration membrane, it is possible to completely prevent microorganisms in the waste water from passing through the filtration membrane in filtration, It is also possible to obtain permeated water that does not contain microorganisms. By culturing microalgae in the culture apparatus 2 described later using such permeated water, it is possible to more reliably suppress the inhibition of microalgae growth due to microorganisms.
 前記濾過膜の形状としては、従来公知のものが挙げられる。例えば、該形状としては、中空糸状に形成されたいわゆる中空糸膜状、又は、板状の平膜状などが挙げられる。
 前記濾過膜の材質としては、例えば、PVDF(ポリフッ化ビニリデン)、セルロース、ポリアミド、セラミック等が挙げられる。
A conventionally well-known thing is mentioned as a shape of the said filtration membrane. For example, examples of the shape include a so-called hollow fiber membrane formed in a hollow fiber shape, or a plate-like flat membrane shape.
Examples of the material for the filtration membrane include PVDF (polyvinylidene fluoride), cellulose, polyamide, and ceramic.
 前記透過水は、前記排水に含まれていた窒素分及び/又はリン分を少なくとも含む。前記透過水が、後述する培養装置2における微細藻類の培養において、培養に用いる液体Aに含まれることにより、前記透過水に含有されている窒素分やリン分は、微細藻類の栄養成分となる。これにより、前記透過水は、微細藻類の増殖を十分なものにすることができる。
 しかも、前記透過水は、膜濾過装置1において濾過膜を透過しているため、上述したように、濾過前の排水における微生物の数より、透過水における微生物の数は、少なくなっている。従って、前記透過水は、微生物の数が少なくなった分、後述する培養装置2における微細藻類の培養において用いられたときに、微生物による微細藻類の増殖阻害を抑えることができる。
The permeated water contains at least a nitrogen content and / or a phosphorus content contained in the waste water. When the permeated water is contained in the liquid A used for culturing in the culture of the microalgae in the culture apparatus 2 described later, the nitrogen content and the phosphorus content contained in the permeated water become nutrient components of the microalgae. . Thereby, the permeated water can make the growth of microalgae sufficient.
Moreover, since the permeated water permeates the filtration membrane in the membrane filtration device 1, as described above, the number of microorganisms in the permeated water is smaller than the number of microorganisms in the waste water before filtration. Therefore, when the permeated water is used in the culture of microalgae in the culture apparatus 2 described later, the growth inhibition of microalgae by microorganisms can be suppressed by the amount of the microorganisms.
 また、前記透過水に含まれている窒素分やリン分は、上述したように、前記水処理装置3における水処理によって低分子化されており、微細藻類の増殖においてより利用しやすい態様となっている。
 従って、後述する培養装置2における微細藻類の培養においては、前記透過水を含む液体A中で微細藻類が培養されることにより、より利用しやすい低分子化された窒素分やリン分等を微細藻類が利用できる。従って、微細藻類の増殖が促される。
Further, as described above, the nitrogen content and the phosphorus content contained in the permeated water have been reduced in molecular weight by the water treatment in the water treatment device 3, and thus are more easily utilized in the growth of microalgae. ing.
Therefore, in the cultivation of microalgae in the culture apparatus 2 described later, by culturing the microalgae in the liquid A containing the permeated water, the low-molecular nitrogen content and phosphorus content that are easier to use are finely divided. Algae can be used. Therefore, the growth of microalgae is promoted.
 前記膜濾過装置1は、上述したように気体供給管1cを有する。そして、膜濾過装置1は、気体供給管1cから供給された気泡状の気体によって膜ユニット1bの表面を洗浄するように構成されている。
 前記気体供給管1cによって供給される気体としては、通常、空気が採用され、好ましくは、空気よりも二酸化炭素濃度が高い排気ガスなどの気体が採用される。
 前記膜ユニット1bの外表面に供給する気体として、空気などの二酸化炭素含有気体を採用することにより、後段の培養装置2における液体A中に二酸化炭素が溶け込み、溶け込んだ二酸化炭素が微細藻類の光合成に利用される。
The membrane filtration device 1 has the gas supply pipe 1c as described above. And the membrane filtration apparatus 1 is comprised so that the surface of the membrane unit 1b may be wash | cleaned with the bubble-like gas supplied from the gas supply pipe | tube 1c.
As the gas supplied by the gas supply pipe 1c, air is usually employed, and preferably, a gas such as exhaust gas having a higher carbon dioxide concentration than air is employed.
By adopting a carbon dioxide-containing gas such as air as the gas supplied to the outer surface of the membrane unit 1b, carbon dioxide is dissolved in the liquid A in the subsequent culture apparatus 2, and the dissolved carbon dioxide is photosynthesis of microalgae. Used for
 なお、前記膜濾過装置1は、前記水処理装置3において水処理された排水を膜濾過するように構成されていなくてもよい。
 即ち、本実施形態の微細藻類の培養設備20は、前記水処理装置3を備えておらず、該水処理装置3を経ずに供給された排水を前記膜濾過装置1が膜ユニット1bによって膜濾過して透過水を得るように構成されていてもよい。
The membrane filtration device 1 may not be configured to membrane-filter the wastewater that has been water-treated in the water treatment device 3.
That is, the microalgae culture facility 20 of the present embodiment does not include the water treatment device 3, and the membrane filtration device 1 uses the membrane unit 1 b to treat the wastewater supplied without passing through the water treatment device 3. It may be configured to obtain permeated water by filtration.
 また、本実施形態の微細藻類の培養設備20は、例えば図2に示すように、水処理装置3の曝気槽3aに収容された排水に膜濾過装置1の膜ユニット1bが浸かるように、水処理装置3及び膜濾過装置1が配されていてもよい。即ち、本実施形態の微細藻類の培養設備20においては、前記膜濾過装置1が濾過槽1aと気体供給管1cとを有さず、膜濾過装置1の膜ユニット1bが水処理装置3における曝気槽3a内の排水に浸かるように配されていてもよい。 Also, the microalgae culturing facility 20 of the present embodiment is configured so that the membrane unit 1b of the membrane filtration device 1 is immersed in the wastewater stored in the aeration tank 3a of the water treatment device 3, as shown in FIG. The processing apparatus 3 and the membrane filtration apparatus 1 may be arranged. That is, in the microalgae cultivation facility 20 of the present embodiment, the membrane filtration device 1 does not have the filtration tank 1a and the gas supply pipe 1c, and the membrane unit 1b of the membrane filtration device 1 is aerated in the water treatment device 3. You may distribute | arrange so that the waste_water | drain in the tank 3a may be immersed.
 前記培養成分貯留タンク10は、微細藻類の増殖を促進する培養成分を貯留し、該培養成分を混合タンク4に供給するように構成されている。 The culture component storage tank 10 stores culture components that promote the growth of microalgae and supplies the culture components to the mixing tank 4.
 前記培養成分としては、例えば、有機培養成分、又は、無機培養成分が挙げられる。 Examples of the culture components include organic culture components and inorganic culture components.
 前記有機培養成分としては、例えば、ブドウ糖などの糖類、アミノ酸、エタノールなどのアルコール類、ビタミンなどが挙げられる。
 前記無機培養成分としては、例えば、窒素を含む窒素含有無機化合物、リンを含むリン含有無機化合物などが挙げられる。また、前記無機培養成分としては、例えば、カリウムイオン、鉄イオン、マンガンイオン、コバルトイオン、亜鉛イオン、銅イオン、モリブテンイオン、ニッケルイオンなどが挙げられる。
Examples of the organic culture component include sugars such as glucose, amino acids, alcohols such as ethanol, vitamins, and the like.
Examples of the inorganic culture component include nitrogen-containing inorganic compounds containing nitrogen, phosphorus-containing inorganic compounds containing phosphorus, and the like. Examples of the inorganic culture component include potassium ions, iron ions, manganese ions, cobalt ions, zinc ions, copper ions, molybdenum ions, nickel ions, and the like.
 なお、前記培養成分貯留タンク10は、上記の培養成分のそれぞれを貯留するように構成されていてもよい。即ち、前記微細藻類の培養設備20は、複数種の培養成分をそれぞれ培養成分貯留タンク10にて貯留すべく、複数の培養成分貯留タンク10を備えていてもよい。 The culture component storage tank 10 may be configured to store each of the culture components. That is, the microalgae cultivation facility 20 may include a plurality of culture component storage tanks 10 in order to store a plurality of types of culture components in the culture component storage tanks 10 respectively.
 前記混合タンク4は、撹拌機4aを有し、膜濾過装置1から送られる透過水と、培養成分貯留タンク10から供給される培養成分とを撹拌機4aによって混合するように構成されている。また、前記混合タンク4は、混合することにより得られた微細藻類の培養成分を含んだ水溶液を、培養装置2へ送るように構成されている。 The mixing tank 4 has a stirrer 4a, and is configured to mix the permeate sent from the membrane filtration device 1 and the culture components supplied from the culture component storage tank 10 by the stirrer 4a. Further, the mixing tank 4 is configured to send an aqueous solution containing microalgae culture components obtained by mixing to the culture apparatus 2.
 前記混合タンク4によれば、培養装置2の培養槽2aに収容された液体Aが適当量の透過水及び培養成分を含むように、所定量の透過水及び培養成分を培養槽2a内へ供給することができる。 According to the mixing tank 4, a predetermined amount of permeate and culture components are supplied into the culture tank 2a so that the liquid A contained in the culture tank 2a of the culture apparatus 2 contains appropriate amounts of permeate and culture components. can do.
 前記微細藻類の培養設備20は、窒素分及び/又はリン分を少なくとも検出する検出センサ11を備えていてもよい。 The microalgae cultivation facility 20 may include a detection sensor 11 for detecting at least a nitrogen content and / or a phosphorus content.
 前記検出センサ11は、例えば、前記膜濾過装置1の濾過槽1aに収容される排水中の成分を検出すべく、濾過槽1aに収容される排水に検出部が浸かるように配されていてもよい。また、検出センサ11は、例えば図1に示すように、混合タンク4にて調製された水溶液中の成分を検出すべく、混合タンク4中の水溶液に検出部が浸かるように配されていてもよい。また、前記微細藻類の培養設備20は、2つの検出センサ11を備え、濾過槽1aに収容される排水に一方の前記検出センサ11の検出部が浸かり、混合タンク4中の水溶液に他方の検出センサ11の検出部が浸かっていてもよい。
 前記微細藻類の培養設備20は、検出センサ11により窒素分やリン分の濃度を検出するように構成されている。そして、微細藻類の培養設備20は、検出した濃度が所定値未満である場合に、培養成分貯留タンク10へ電気信号を送ることにより、培養成分貯留タンク10から混合タンク4へ培養成分を供給するように構成されている。
For example, the detection sensor 11 may be arranged such that the detection unit is immersed in the wastewater stored in the filtration tank 1a in order to detect components in the wastewater stored in the filtration tank 1a of the membrane filtration device 1. Good. Further, for example, as shown in FIG. 1, the detection sensor 11 may be arranged so that the detection unit is immersed in the aqueous solution in the mixing tank 4 in order to detect components in the aqueous solution prepared in the mixing tank 4. Good. The microalgae culture facility 20 includes two detection sensors 11, and the detection unit of one of the detection sensors 11 is immersed in the wastewater stored in the filtration tank 1 a, and the other detection is performed in the aqueous solution in the mixing tank 4. The detection part of the sensor 11 may be immersed.
The microalgae culture facility 20 is configured to detect the concentration of nitrogen or phosphorus by the detection sensor 11. Then, when the detected concentration is less than the predetermined value, the microalgae culture facility 20 supplies the culture components from the culture component storage tank 10 to the mixing tank 4 by sending an electrical signal to the culture component storage tank 10. It is configured as follows.
 前記培養装置2は、微細藻類と該微細藻類を培養するための液体Aとを収容する培養槽2aを有する。そして、前記培養装置2は、混合タンク4を経て送られてきた透過水を培養槽2a内に取り入れ、培養槽2aにおいて、前記透過水を含む液体A中で微細藻類を培養するように構成されている。具体的には、前記培養装置2としては、例えば、オープンポンド、フォトバイオリアクターなどが挙げられる。 The culture apparatus 2 has a culture tank 2a for accommodating microalgae and liquid A for culturing the microalgae. The culture apparatus 2 is configured to take the permeated water sent through the mixing tank 4 into the culture tank 2a and to culture microalgae in the liquid A containing the permeated water in the culture tank 2a. ing. Specifically, examples of the culture apparatus 2 include an open pond and a photobioreactor.
 前記培養装置2おいては、前記膜濾過装置1において得られた透過水を含む液体A中で微細藻類を培養する。しかも、透過水が、微細藻類の増殖において栄養成分となる少なくとも窒素分及びリン分のいずれか一方を含んでいる。従って、前記培養装置2においては、透過水が少なくとも窒素分及びリン分のいずれか一方を含んでいる分、微細藻類の増殖を促すことができる。 In the culture device 2, microalgae are cultured in the liquid A containing the permeated water obtained in the membrane filtration device 1. Moreover, the permeated water contains at least one of nitrogen and phosphorus, which are nutrients in the growth of microalgae. Therefore, in the culture apparatus 2, the permeated water contains at least one of the nitrogen content and the phosphorus content, so that the growth of microalgae can be promoted.
 また、前記培養装置2おいては、透過水が、膜濾過装置1において濾過膜を透過したものであるため、上述したように、濾過前の排水における微生物の数より、濾過膜を透過した透過水における微生物の数が少なくなっている。従って、前記培養装置2においては、前記透過水における微生物の数が少なくなった分、微生物による微細藻類の増殖阻害を抑えることができる。これにより、微細藻類の増殖を促すことができる。
 詳しくは、原生動物や後生動物等の微生物が微細藻類と共存していると、微細藻類が増殖するために必要な栄養成分を微生物が利用する。従って、微生物が栄養成分を利用した分、微細藻類が利用する栄養成分が減少し得る。また、原生動物や後生動物等の微生物が微細藻類を栄養成分として利用(捕食)し、微生物の増殖が微細藻類の増殖より優位になり得る。従って、微細藻類の増殖が抑制され得る。
 細菌類や原生動物等の微生物を濾過膜によって減らすことにより、微生物を減らした分、透過水に含まれる栄養成分をより多く微細藻類の増殖に利用できる。従って、微細藻類の増殖を促すことができる。
Further, in the culture apparatus 2, the permeated water permeates the filtration membrane in the membrane filtration apparatus 1. Therefore, as described above, the permeation that has permeated the filtration membrane from the number of microorganisms in the wastewater before filtration. The number of microorganisms in the water is low. Therefore, in the culture device 2, inhibition of the growth of microalgae by microorganisms can be suppressed by the amount of microorganisms in the permeated water being reduced. Thereby, the growth of microalgae can be promoted.
Specifically, when microorganisms such as protozoa and metazoans coexist with microalgae, the microbes use nutrient components necessary for the microalgae to grow. Therefore, the amount of nutrients used by microalgae can be reduced by the amount of nutrients used by microorganisms. In addition, microorganisms such as protozoa and metazoans use microalgae as nutrient components (predation), and the growth of microorganisms can be superior to the growth of microalgae. Therefore, the growth of microalgae can be suppressed.
By reducing microorganisms such as bacteria and protozoa with a filtration membrane, the nutrient components contained in the permeate can be used for the growth of microalgae as much as the microorganisms are reduced. Therefore, the growth of microalgae can be promoted.
 前記培養装置2においては、透過水に含まれている窒素分やリン分が、前記水処理装置3における排水の水処理によって低分子化される。従って、透過水に含まれている窒素分やリン分は、微細藻類が増殖においてより利用しやすい態様となっている。このように、前記培養装置2おいては、斯かる透過水を含む液体A中で微細藻類を培養することにより、より利用しやすい低分子化された窒素分等を微細藻類が利用できる。従って、微細藻類の増殖を促すことができる。
 例えば、排水に難分解性の高分子物質が含有されていても、前記水処理装置3によって排水が水処理されることにより、斯かる高分子物質は、低分子化されて比較的易分解性の物質となる。従って、微細藻類は、低分子化された比較的易分解性の物質を栄養成分として容易に利用できる。これにより、微細藻類の増殖は、促され得る。
In the culture device 2, the nitrogen content and the phosphorus content contained in the permeated water are reduced in molecular weight by the water treatment of the waste water in the water treatment device 3. Therefore, the nitrogen content and the phosphorus content contained in the permeated water are in an aspect that microalgae can more easily use in the growth. As described above, in the culture apparatus 2, by culturing the microalgae in the liquid A containing such permeated water, the microalgae can use the nitrogen component having a low molecular weight that is easier to use. Therefore, the growth of microalgae can be promoted.
For example, even if the waste water contains a hardly decomposable polymer substance, the polymer material is reduced in molecular weight to be relatively easily decomposable by treating the waste water with the water treatment device 3. It becomes a substance. Therefore, microalgae can easily utilize a relatively easily degradable substance having a low molecular weight as a nutrient component. Thereby, the growth of microalgae can be promoted.
 なお、前記培養槽2aに収容される前記液体Aの大部分は、通常、水である。該液体Aは、水以外に、さらに、排水に含まれていた窒素分、リン分、また、上述した有機培養成分や無機培養成分等を含み得る。 Note that most of the liquid A accommodated in the culture tank 2a is usually water. In addition to water, the liquid A may further contain a nitrogen content and a phosphorus content contained in the waste water, and the above-described organic culture components and inorganic culture components.
 前記微細藻類は、昆布やワカメと異なり、通常、単細胞性である。また、前記微細藻類は、大きさが概ね数マイクロメートルから数十マイクロメートルの微小な藻類である。
 前記微細藻類としては、光合成によって増殖する光独立栄養微細藻類、ブドウ糖などの有機性炭素を栄養源として利用して増殖する従属栄養微細藻類等が挙げられる。なお、前記光独立栄養微細藻類のなかには、後述するユーグレナ(Euglena)属に属する生物やクロレラ(Chlorella)属に属する生物のように、光合成することができ且つ有機性炭素を栄養源として利用できるものもある。
Unlike the kelp and wakame, the microalgae are usually unicellular. The microalgae are microalgae having a size of approximately several micrometers to several tens of micrometers.
Examples of the microalgae include photoautotrophic microalgae that grow by photosynthesis, heterotrophic microalgae that grow using organic carbon such as glucose as a nutrient source, and the like. Incidentally, those Some of the photoautotrophic microalgae, available as described below Euglena (Euglena) belonging to the genus organisms and Chlorella (Chlorella) belonging to the genus organism, a and organic carbon can be photosynthesis as a nutrient source There is also.
 前記微細藻類としては、ユーグレナ(Euglena)属に属する生物、クロレラ(Chlorella)属に属する生物、オーランチオキトリウム(Aurantiochytrium)属に属する生物、オーキセノクロレラ(Auxenochlorella)属に属する生物、ボツリオコッカス(Botryococcus)属に属する生物、ナンノクロリス(Nannochloris)属に属する生物、ナンノクロロプシス(Nannochloropsis)属に属する生物、ネオクロリス(Neochloris)属に属する生物、シュードコリシスチス(Pseudochoricystis)属に属する生物、セネデスムス(Scenedesmus)属に属する生物、及び、シゾキトリウム(Schizochytorium)属に属する生物からなる群より選択された少なくとも1種が好ましい。 Examples of the microalgae include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Aurantiochytrium , organisms belonging to the genus Auxenochlorella, botuliococcus Organisms belonging to the genus ( Botryococcus ), organisms belonging to the genus Nannochloris , organisms belonging to the genus Nannochloropsis , organisms belonging to the genus Neochloris , organisms belonging to the genus Pseudochoricystis , Scenedesmus (Scenedesmus) belonging to the genus organism, and, Schizochytrium (Schizochytorium) at least one member selected from the group consisting of organism belonging to the genus are preferred.
 前記光独立栄養微細藻類としては、ユーグレナ(Euglena)属に属する生物、クロレラ(Chlorella)属に属する生物、オーキセノクロレラ(Auxenochlorella)属に属する生物、ボツリオコッカス(Botryococcus)属に属する生物、ナンノクロリス(Nannochloris)属に属する生物、ナンノクロロプシス(Nannochloropsis)属に属する生物、ネオクロリス(Neochloris)属に属する生物、シュードコリシスチス(Pseudochoricystis)属に属する生物、及び、セネデスムス(Scenedesmus)属に属する生物からなる群より選択された少なくとも1種が好ましい。 Examples of the photoautotrophic microalgae include organisms belonging to the genus Euglena , organisms belonging to the genus Chlorella , organisms belonging to the genus Auxenochlorella , organisms belonging to the genus Botryococcus , Kurorisu (Nannochloris) belonging to the genus organism, Nannochloropsis (Nannochloropsis) belonging to the genus organism, Neokurorisu (Neochloris) belonging to the genus organism, shoe DoCoMo lysis Chis (Pseudochoricystis) belonging to the genus organism, and belong to Scenedesmus (Scenedesmus) genus At least one selected from the group consisting of organisms is preferred.
 前記従属栄養微細藻類としては、オーランチオキトリウム(Aurantiochytrium)属に属する生物、又は、シゾキトリウム(Schizochytorium)属に属する生物が好ましい。 As the heterotrophic microalgae, O lunch Oki thorium (Aurantiochytrium) belonging to the genus organism, or Schizochytrium (Schizochytorium) belonging to the genus organisms, are preferred.
 前記ユーグレナ(Euglena)属に属する生物としては、例えば、Euglena gracilis、Euglena longaEuglena caudataEuglena oxyurisEuglena tripterisEuglena proximaEuglena viridisEuglena sociabilisEuglena ehrenbergiiEuglena desesEuglena pisciformisEuglena spirogyraEuglena acus、Euglena geniculataEuglena intermediaEuglena mutabilisEuglena sanguineaEuglena stellataEuglena terricolaEuglena klebsiEuglena rubra、又は、Euglena cyclopicolaなどが挙げられる。
 前記Euglena gracilisとしては、例えば、Euglena gracilis NIES-48(後述する独立行政法人国立環境研究所微生物系統保存施設における保管株)などが挙げられる。
Organisms belonging to the Euglena (Euglena) genus, for example, Euglena gracilis, E uglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses, Euglena pisciformis, Euglena spirogyra Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena rubra , or Euglena cyclopicola .
As the Euglena gracilis, for example, and the like (storage strains in later to Independent Administrative Institution National Institute for Environmental Studies microorganism strain preservation facility) Euglena gracilis NIES-48.
 前記クロレラ(Chlorella)属に属する生物としては、例えば、Chlorella vulgarisChlorella pyrenoidosa、又は、Chlorella sorocinianaなどが挙げられる。
 前記Chlorella sorocinianaとしては、例えば、Chlorella sorociniana NIES-2169(後述する独立行政法人国立環境研究所微生物系統保存施設における保管株)などが挙げられる。
Examples of the organism belonging to the genus Chlorella include Chlorella vulgaris , Chlorella pyrenoidosa , or Chlorella sorociniana .
As the Chlorella sorociniana, for example, and the like (storage strains in later to Independent Administrative Institution National Institute for Environmental Studies microorganism strain preservation facility) Chlorella sorociniana NIES-2169.
 前記オーキセノクロレラ(Auxenochlorella)属に属する生物としては、例えば、Auxenochlorella protothecoidesなどが挙げられる。 Organisms belonging to the Orchidee Imperiale Seno Chlorella (Auxenochlorella) genus, for example, like Auxenochlorella protothecoides.
 前記ボツリオコッカス(Botryococcus)属に属する生物としては、例えば、Botryococcus brauniiなどが挙げられる。 Examples of the organism belonging to the genus Botryococcus include Botryococcus braunii .
 前記ナンノクロリス(Nannochloris)属に属する生物としては、例えば、Nannochloris bacillarisNannochloris normandinaeなどが挙げられる。 Organisms belonging to the Nan'nokurorisu (Nannochloris) genus, for example, Nannochloris Bacillaris, like Nannochloris normandinae.
 前記ナンノクロロプシス(Nannochloropsis)属に属する生物としては、例えば、Nannochloropsis oculataなどが挙げられる。 Organisms belonging to the Nannochloropsis (Nannochloropsis) genus, for example, like Nannochloropsis oculata.
 前記ネオクロリス(Neochloris)属に属する生物としては、例えば、Neochloris aquaticaNeochloris cohaerensNeochloris conjunctaNeochloris gelatinosaNeochloris pseudostigmataNeochloris pseudostigmaticaNeochloris pyrenoidosaNeochloris terrestrisNeochloris texensisNeochloris vigensisNeochloris wimmeriNeochloris oleoabundansなどが挙げられる。 Organisms belonging to the Neokurorisu (Neochloris) genus, e.g., Neochloris aquatica, Neochloris cohaerens, Neochloris conjuncta, Neochloris gelatinosa, Neochloris pseudostigmata, Neochloris pseudostigmatica, Neochloris pyrenoidosa, Neochloris terrestris, Neochloris texensis, Neochloris vigensis, Neochloris wimmeri, Neochloris oleoabundans etc. Is mentioned.
 前記シュードコリシスチス(Pseudochoricystis)属に属する生物としては、例えば、Pseudochoricystis ellipsoideaなどが挙げられる。 Examples of the organism belonging to the genus Pseudochoricystis include Pseudochoricystis ellipsoidea .
 前記セネデスムス(Scenedesmus)属に属する生物としては、例えば、Scenedesmus ovaltermusScenedesmus disciformisScenedesmus acumunatusScenedesmus dimorphusなどが挙げられる。 Organisms belonging to the Scenedesmus (Scenedesmus) genus, for example, Scenedesmus ovaltermus, Scenedesmus disciformis, Scenedesmus acumunatus, like Scenedesmus dimorphus.
 前記オーランチオキトリウム(Aurantiochytrium)属に属する生物としては、例えば、Aurantiochytrium limacinum、又は、Aurantiochytrium mangroveiなどが挙げられる。 Organisms belonging to the O-lunch Oki thorium (Aurantiochytrium) genus, for example, Aurantiochytrium limacinum, or the like Aurantiochytrium mangrovei.
 前記シゾキトリウム(Schizochytorium)属に属する生物としては、例えば、Schizochytrium aggregatumなどが挙げられる。 Examples of the organism belonging to the genus Schizochytorium include Schizochytrium aggregatum .
 上記の微細藻類は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818 千葉県木更津市かずさ鎌足2-5-8)、独立行政法人国立環境研究所微生物系統保存施設(郵便番号305-8506 茨城県つくば市小野川16-2)、又は、The Culture Collection of Algae at the University of Texas at Austin, USA(http://web.biosci.utexas.edu/utex/default.aspx)などから容易に入手される。 The above microalgae can be obtained from the National Institute for Environmental Studies, the National Institute for Environmental Studies, the National Institute for Environmental Studies, the National Institute for Environmental Studies (NIES), the Patent Microorganism Depositary Center (Postal Code 292-0818, Kisarazu-shi, Chiba Prefecture) Postal code 305-8506 (16-2 Onagawa, Tsukuba City, Ibaraki Prefecture), or The Culture Collection of Algae at the University of Texas at Austin, USA (http://web.biosci.utexas.edu/utex/default.aspx) It is easily obtained from
 前記微細藻類としては、バイオディーゼルの原料となるトリグリセリドを大量に蓄積できるという点、食物繊維、ビタミン、カロテノイド、タンパク質、リノール酸、リノレン酸などの有価物を多く含んでいるという点、大量に培養しやすいという点で、前記クロレラ(Chlorella)属に属する生物が好ましい。
 また、前記微細藻類としては、バイオディーゼルの原料となるワックスエステルを大量に蓄積できるという点、ビタミン、カロテノイド、栄養価の高いタンパク質、パラミロンなどの有価物を多く含んでいるという点、大量に培養しやすいという点で、前記ユーグレナ(Euglena)属に属する生物が好ましい。
As the microalgae, it is possible to accumulate a large amount of triglyceride as a raw material for biodiesel, to contain a lot of valuable materials such as dietary fiber, vitamins, carotenoids, proteins, linoleic acid, linolenic acid, and to culture in large quantities From the viewpoint that it is easy to do, organisms belonging to the genus Chlorella are preferred.
The microalgae can accumulate a large amount of wax ester as a raw material for biodiesel, contain a large amount of valuable substances such as vitamins, carotenoids, nutritious proteins, paramylon, and culture in large quantities. Organisms belonging to the genus Euglena are preferred in that they are easy to do.
 前記培養装置2は、微細藻類と液体Aとを槽内にて撹拌する撹拌装置を有する。 The culture device 2 has a stirring device that stirs the microalgae and the liquid A in the tank.
 前記培養装置2は、微細藻類に光合成をさせるために、培養槽2aの上方から培養槽2aへ向けて光Bを照射する照明機器2bを有する。 The culture apparatus 2 includes a lighting device 2b that irradiates light B from above the culture tank 2a toward the culture tank 2a in order to cause the microalgae to perform photosynthesis.
 前記培養槽2aは、培養槽2aの内部に収容する微細藻類の光合成を促進させるべく、上方から照射される光Bが液体Aを透過して底部にまで届くように、比較的深さが浅く形成されている。 The culture tank 2a is relatively shallow so that the light B irradiated from above passes through the liquid A and reaches the bottom in order to promote the photosynthesis of the microalgae contained in the culture tank 2a. Is formed.
 前記培養槽2aは、図1に示すように、収容する液体A中の微細藻類に照明機器2bからの光Bが照射されるように構成されている。 As shown in FIG. 1, the culture tank 2a is configured such that light B from the lighting device 2b is irradiated to the microalgae in the liquid A to be stored.
 前記培養装置2は、微細藻類に光Bを照射しつつ光独立栄養培養により微細藻類を増殖させるように構成されていてもよい。即ち、培養装置2は、明るい条件下で微細藻類を増殖させるように構成されていてもよい。
 前記培養装置2において微細藻類に光Bを照射することにより、光独立栄養の微細藻類は、光合成によって二酸化炭素を細胞内に取り込んで炭化水素や糖類などを合成しつつ増殖し得ると同時に、液体A中の成分(例えば、上述した有機窒素分等)を栄養成分として利用しつつ増殖する。
The culture device 2 may be configured to grow the microalgae by photoautotrophic culture while irradiating the microalgae with the light B. That is, the culture apparatus 2 may be configured to grow microalgae under bright conditions.
By irradiating the microalgae with light B in the culture apparatus 2, the photoautotrophic microalgae can grow while taking carbon dioxide into the cells by photosynthesis and synthesizing hydrocarbons, sugars, etc. It proliferates using the components in A (for example, the above-mentioned organic nitrogen content etc.) as nutrient components.
 また、前記培養装置2は、微細藻類に光Bを照射しつつ光従属栄養培養により微細藻類を増殖させるように構成されていてもよい。即ち、培養装置2は、酸素、二酸化炭素及び炭素源を含む液体中で光照射によって微細藻類に光合成をさせつつ微細藻類を増殖させるように構成されていてもよい。
 前記培養装置2において酸素及び二酸化炭素の存在下(即ち、酸素及び二酸化炭素を含む気体で液体Aを曝気しつつ)において微細藻類に光Bを照射することにより、光合成可能な微細藻類を光合成させつつ、しかも、炭素源を含む液体A中にて微細藻類を従属栄養培養により増殖させることができる。
Moreover, the said culture apparatus 2 may be comprised so that a micro algae may be propagated by light heterotrophic culture, irradiating light B to a micro algae. That is, the culture apparatus 2 may be configured to grow the microalgae while photosynthesis of the microalgae by light irradiation in a liquid containing oxygen, carbon dioxide, and a carbon source.
By irradiating light B to the microalgae in the culture apparatus 2 in the presence of oxygen and carbon dioxide (that is, aeration of liquid A with a gas containing oxygen and carbon dioxide), photosynthesisable microalgae are photosynthesized. In addition, microalgae can be grown by heterotrophic culture in liquid A containing a carbon source.
 一方、前記培養装置2は、光Bを照射しない状態で従属栄養培養により微細藻類を増殖させるように構成されていてもよい。即ち、培養装置2は、暗い条件下で微細藻類を増殖させるように構成されていてもよい。
 前記培養装置2において光Bを照射せず微細藻類を暗条件下に置き、後述する散気管によって散気を行うことにより、微細藻類は、液体A中の炭素源(例えば、上述した糖類、又はアルコール、又は上述した有機窒素分等)を利用しつつ、増殖する。
On the other hand, the culture apparatus 2 may be configured to grow microalgae by heterotrophic culture without irradiating light B. That is, the culture apparatus 2 may be configured to grow microalgae under dark conditions.
By placing the microalgae in a dark condition without irradiating the light B in the culture apparatus 2 and performing aeration with an aeration tube to be described later, the microalgae can be obtained from a carbon source in the liquid A (for example, the sugars described above, or It grows using alcohol or the organic nitrogen content mentioned above.
 なお、前記培養装置2が微細藻類を従属栄養培養のみによって培養するように構成されている場合には、前記培養槽2aは、培養するための液体A中に酸素が溶け込みやすいという点で、比較的深く形成されていてもよい。 In the case where the culture apparatus 2 is configured to culture microalgae only by heterotrophic culture, the culture tank 2a is compared in that oxygen is easily dissolved in the liquid A for culture. It may be formed deeply.
 前記培養装置2は、照明機器2bによって光Bを微細藻類に照射する代わりに、例えば、太陽からの自然光を微細藻類に照射するように構成されていてもよい。 The culture apparatus 2 may be configured to irradiate the microalgae with natural light from the sun, for example, instead of irradiating the microalgae with the light B by the lighting device 2b.
 前記照明機器2bによって照射される光B又は自然光の強度は、特に限定されるものではないが、微細藻類としてユーグレナ属に属する生物を培養する場合、50μmol/m/s~200μmol/m/sであることが好ましい。
 光の強度が50μmol/m/s以上であることにより、光合成をより促すことができるという利点がある。また、光の強度が200μmol/m/s以下であることにより、光による増殖阻害をより確実に抑制できるという利点がある。
The intensity of light B or natural light irradiated by the lighting device 2b is not particularly limited, but when cultivating an organism belonging to the genus Euglena as a microalgae, 50 μmol / m 2 / s to 200 μmol / m 2 / It is preferable that it is s.
When the light intensity is 50 μmol / m 2 / s or more, there is an advantage that photosynthesis can be further promoted. Moreover, there exists an advantage that the growth inhibition by light can be suppressed more reliably because the intensity | strength of light is 200 micromol / m < 2 > / s or less.
 前記培養装置2は、培養槽2a内の液体A中で微細藻類を増殖させつつ、微細藻類に光Bを照射する期間と、光Bを照射しない期間とを交互に設けるように構成されていることが好ましい。
 即ち、前記培養装置2は、微細藻類に光Bを照射して光合成を行わせつつ微細藻類を増殖させる期間と、暗条件下にて微細藻類を増殖させる期間とを、繰り返し交互に設けるように構成されていることが好ましい。
 前記培養装置2において微細藻類に光Bを照射する期間は、8時間~15時間であることが好ましい。また、微細藻類に光合成を行わせない暗条件の期間は、9時間~16時間であることが好ましい。
The culture apparatus 2 is configured to alternately provide a period in which the microalgae are irradiated with the light B and a period in which the light B is not irradiated while the microalgae are grown in the liquid A in the culture tank 2a. It is preferable.
That is, the culture apparatus 2 repeatedly and alternately provides a period for growing microalgae while irradiating microalgae with light B to perform photosynthesis and a period for growing microalgae under dark conditions. It is preferable to be configured.
The period during which the microalgae are irradiated with the light B in the culture apparatus 2 is preferably 8 hours to 15 hours. Further, the period of dark conditions in which microalgae are not subjected to photosynthesis is preferably 9 to 16 hours.
 前記培養装置2は、培養槽2aにおける培養温度が、例えば、20℃~35℃に制御されるように構成されている。 The culture apparatus 2 is configured such that the culture temperature in the culture tank 2a is controlled to 20 ° C. to 35 ° C., for example.
 前記培養装置2における液体AのpHは、微細藻類が増殖できるpHであれば、特に限定されない。該pHとしては、ユーグレナ(Euglena)属生物を培養する場合には、例えば、3.0~5.5が採用される。
 なお、液体AのpHを調整するためには、塩酸のような無機酸を液体Aに添加しても良く、酢酸のような有機酸を液体Aに添加してもよい。また、無機酸と有機酸とを組み合わせて用いても良い。有機酸を液体Aに添加することにより、微細藻類が該有機酸を炭素源として利用し増殖することができる。
The pH of the liquid A in the culture apparatus 2 is not particularly limited as long as it is a pH at which microalgae can grow. The pH is, for example, 3.0 to 5.5 when culturing organisms of the genus Euglena .
In order to adjust the pH of the liquid A, an inorganic acid such as hydrochloric acid may be added to the liquid A, or an organic acid such as acetic acid may be added to the liquid A. Moreover, you may use combining an inorganic acid and an organic acid. By adding an organic acid to the liquid A, microalgae can grow using the organic acid as a carbon source.
 前記培養装置2は、培養槽2a中の液体Aを散気するための散気管を有する。
 具体的には、前記培養装置2は、例えば、培養槽2a内の微細藻類に呼吸用の酸素を供給すべく、散気管を経由させて液体A中に空気等を供給することにより、液体Aを散気するように構成されている。
 また、前記培養装置2は、例えば、散気管を経由させて二酸化炭素を比較的多く含むガスなどを培養槽2a内の液体Aに供給することにより液体Aを散気しつつ、微細藻類に光合成を行わせるように構成されている。
 また、前記培養装置2は、散気管からの散気を止めることにより、液体Aを嫌気条件下におくようにも構成されている。
The culture apparatus 2 has an air diffuser for aeration of the liquid A in the culture tank 2a.
Specifically, the culture apparatus 2 supplies the liquid A by supplying air or the like into the liquid A via an air diffuser in order to supply oxygen for respiration to the microalgae in the culture tank 2a. It is configured to diffuse.
In addition, the culture device 2, for example, photosynthesizes microalgae while aerating the liquid A by supplying a gas containing a relatively large amount of carbon dioxide to the liquid A in the culture tank 2 a via an air diffuser. It is comprised so that it may perform.
The culture apparatus 2 is also configured to place the liquid A under anaerobic conditions by stopping the diffusion from the diffusion tube.
 前記培養装置2は、常に、培養槽2a中の液体Aを散気するように構成されていてもよい。また、前記培養装置2は、暗条件下において微細藻類を培養するときのみ培養槽2a中の液体Aを散気するように構成されていてもよい。
 なお、上記の培養装置2は、微細藻類の培養時において、光合成に利用される二酸化炭素や呼吸に利用される酸素を散気管によって液体A中に供給するように構成されているが、二酸化炭素や酸素の供給手段は、散気管に限定されるものではない。具体的には、該供給手段としては、例えば、供給された二酸化炭素や酸素を培養槽2a中の液体Aに溶解させるべく、撹拌翼を用いて液体Aを撹拌する手段、又は、供給された二酸化炭素や酸素を加圧して溶け込ませた加圧水を液体Aに供給する手段などが採用され得る。
The culture apparatus 2 may be configured to always diffuse the liquid A in the culture tank 2a. Moreover, the said culture apparatus 2 may be comprised so that the liquid A in the culture tank 2a may be diffused only when culture | cultivating a micro algae under dark conditions.
The culture apparatus 2 is configured to supply carbon dioxide used for photosynthesis or oxygen used for respiration into the liquid A through an air diffuser during the cultivation of microalgae. The oxygen supply means is not limited to the air diffuser. Specifically, as the supply means, for example, means for stirring the liquid A using a stirring blade in order to dissolve the supplied carbon dioxide and oxygen in the liquid A in the culture tank 2a, or supplied A means for supplying pressurized liquid in which carbon dioxide or oxygen is pressurized and dissolved to the liquid A may be employed.
 前記培養装置2は、例えば、微細藻類としてユーグレナ(Euglena)属に属する生物を採用し、光Bが照射される条件下では、ユーグレナ(Euglena)属生物を増殖させつつ、光合成によって二酸化炭素から有機物(多糖類や脂質等)を合成させ、該有機物を細胞内に貯めさせるように構成されている。
 一方、前記培養装置2は、光Bが照射されない暗条件下では、ユーグレナ(Euglena)属生物を増殖させつつ、液体A中の有機性炭素から有機物(多糖類や脂質等)を合成させて該有機物を細胞内に貯蔵させるように構成されている。該有機物を細胞内に貯蔵したユーグレナ(Euglena)属生物は、例えば回収されて、直接的に有価物として利用され得る。
 さらに、前記培養装置2は、細胞内に多糖類や脂質等の有機物を貯蔵したユーグレナ(Euglena)属生物を暗所で嫌気条件下におくことにより、ユーグレナ(Euglena)属生物の細胞内にワックスエステル等を貯蔵させるように構成されている。貯蔵されたワックスエステルは、ユーグレナ(Euglena)属生物の細胞内から取り出されることにより、燃料、化成品などの原料として利用され得る。
The culture apparatus 2 employs, for example, an organism belonging to the genus Euglena as a microalgae. Under conditions where light B is irradiated, an organic substance is produced from carbon dioxide by photosynthesis while growing the Euglena genus organism. It is configured to synthesize (polysaccharides, lipids, etc.) and store the organic matter in cells.
On the other hand, the culture apparatus 2 synthesizes organic substances (polysaccharides, lipids, etc.) from organic carbon in the liquid A under the dark condition where the light B is not irradiated while growing Euglena genus organisms. It is configured to store organic matter in cells. The Euglena genus organism in which the organic substance is stored in cells can be recovered, for example, and used directly as a valuable resource.
Furthermore, the culture apparatus 2 by placing the polysaccharide and Euglena was stored organic matter such as lipids (Euglena) genus organism into the cell under anaerobic conditions in the dark, Euglena (Euglena) genus organisms wax into cells It is configured to store esters and the like. The stored wax ester can be used as a raw material for fuels, chemical products and the like by being taken out from the cells of Euglena genus organisms.
 前記固液分離装置5は、培養装置2において培養した微細藻類と液体Aとの混合物が培養装置2から供給されるように構成され、また、該混合物を液体と微細藻類とに分離するように構成されている。 The solid-liquid separation device 5 is configured such that a mixture of the microalgae cultured in the culture device 2 and the liquid A is supplied from the culture device 2, and the mixture is separated into the liquid and the microalgae. It is configured.
 前記固液分離装置5は、例えば、微細藻類と液体Aとの混合物に対して、浮上濃縮、重力濃縮、膜濃縮などの濃縮処理を施す濃縮処理機を備えている。さらに、前記固液分離装置5は、濃縮処理を施した後に微細藻類を脱水処理するために、例えば、真空脱水機、加圧脱水機(フィルタープレス)、ベルトプレス、スクリュープレス、遠心濃縮脱水機(スクリューデカンタ)、又は、多重円板脱水機などを備え得る。 The solid-liquid separation device 5 includes a concentration processor that performs a concentration process such as flotation concentration, gravity concentration, and membrane concentration on a mixture of microalgae and liquid A, for example. Further, the solid-liquid separation device 5 is, for example, a vacuum dehydrator, a pressure dehydrator (filter press), a belt press, a screw press, or a centrifugal concentration dehydrator in order to dehydrate the microalgae after the concentration process. (Screw decanter), or a multiple disk dehydrator.
 前記微細藻類の培養設備20は、図1に示すように、固液分離装置5における分離によって得られた微細藻類を設備外へ取り出す微細藻類取出用配管6を備えている。
 前記微細藻類の培養設備20は、微細藻類取出用配管6によって、分離後の微細藻類を培養設備20外へ送るように構成されている。培養設備20外へ送られた微細藻類は、例えば、そのまま回収され、目的に応じて利用される。
As shown in FIG. 1, the microalgae culture facility 20 includes a microalgae extraction pipe 6 that extracts microalgae obtained by separation in the solid-liquid separator 5 to the outside of the facility.
The microalgae culture facility 20 is configured to send the separated microalgae out of the culture facility 20 by the microalgae extraction pipe 6. For example, the microalgae sent to the outside of the culture facility 20 are collected as they are and used according to the purpose.
 前記微細藻類の培養設備20は、図1に示すように、固液分離装置5における分離によって得られた液体を設備外へ取り出す液体取出用配管7を備えている。
 前記微細藻類の培養設備20は、液体取出用配管7によって、分離後の液体を培養設備20外へ送るように構成されている。培養設備20外へ送られた分離後の液体は、例えば、そのまま放流されるか、又は、さらに水処理されて放流される。
As shown in FIG. 1, the microalgae cultivation facility 20 includes a liquid extraction pipe 7 that takes out the liquid obtained by the separation in the solid-liquid separation device 5 to the outside of the facility.
The microalgae culture facility 20 is configured to send the separated liquid to the outside of the culture facility 20 through the liquid extraction pipe 7. The separated liquid sent to the outside of the culture facility 20 is discharged, for example, as it is or after being further treated with water.
 前記微細藻類の培養設備20は、図1に示すように、膜分離装置1における膜ユニット1bの濾過膜を透過した透過水を設備外へ取り出す透過水取出用配管12を備え、透過水の一部を透過水取出用配管12によって培養設備20外へ送るように構成されていてもよい。
 固液分離装置5における分離によって得られた液体の水質は、排水の種類や微細藻類の種類による影響を受けることから、透過水の水質よりも常に良好なものではない。従って、斯かる液体においては、例えば、懸濁物質の濃度が透過水におけるよりも高くなり得る。従って、透過水の水質が、固液分離装置5における分離によって得られた液体の水質より良好であれば、透過水を培養設備20外へ排出し、その透過水を直接放流することもできる。また、培養設備20外へ排出した上記分離後の液体又は透過水をさらに浄化設備によって浄化する場合には、より水質の良好な透過水の一部を培養設備20外へ排出して上記分離後の液体に加えることができる。これにより、上記分離後の液体の浄化度を上げることができ、浄化設備への負荷を低減させることができる。
As shown in FIG. 1, the microalgae cultivation facility 20 includes a permeate extraction pipe 12 that takes out permeate that has permeated through the filtration membrane of the membrane unit 1 b in the membrane separation apparatus 1 to the outside of the facility. The part may be configured to be sent out of the culture facility 20 by the permeated water extraction pipe 12.
The water quality of the liquid obtained by the separation in the solid-liquid separator 5 is not always better than the quality of the permeated water because it is affected by the type of drainage and the type of microalgae. Thus, in such a liquid, for example, the concentration of suspended matter can be higher than in permeate. Therefore, if the quality of the permeated water is better than the quality of the liquid obtained by the separation in the solid-liquid separator 5, the permeated water can be discharged out of the culture facility 20 and the permeated water can be directly discharged. Further, when the separated liquid or permeate discharged to the outside of the culture facility 20 is further purified by the purification facility, a part of the permeate having better water quality is discharged outside the culture facility 20 and after the separation. Can be added to the liquid. Thereby, the purification degree of the liquid after the separation can be increased, and the load on the purification equipment can be reduced.
 前記微細藻類の培養設備20は、培養装置2における微細藻類の培養後の液体を水処理装置3の曝気槽3a及び/又は濾過槽1aへ送る液体回収用配管8を備えている。
 具体的には、前記微細藻類の培養設備20は、図1及び図2に示すように、固液分離装置5における分離によって得られた液体(微細藻類の培養後の液体)を、水処理装置3の曝気槽3a及び/又は膜濾過装置1の濾過槽1aへ送る液体回収用配管8を備えている。
 前記液体回収用配管8は、例えば図1に示すように、一端が液体取出用配管7の途中に取り付けられている。また、前記液体回収用配管8は、他端側が2つに分かれ、他端のそれぞれが水処理装置3の曝気槽3a及び/又は濾過槽1aに液体を供給するように配されている。また、前記液体回収用配管8の一端には、弁が取り付けられている。そして、液体回収用配管8は、この弁を制御することにより、液体取出用配管7を経た液体を他端側へ送り、他端のそれぞれから曝気槽3a及び/又は濾過槽1aに該液体を供給するように構成されている。
The microalgae cultivation facility 20 includes a liquid recovery pipe 8 that sends the liquid after the microalgae culture in the culture apparatus 2 to the aeration tank 3a and / or the filtration tank 1a of the water treatment apparatus 3.
Specifically, as shown in FIGS. 1 and 2, the microalgae culture facility 20 uses a liquid (liquid after microalgae culture) obtained by separation in the solid-liquid separator 5 as a water treatment device. 3 aeration tank 3a and / or a liquid recovery pipe 8 to be sent to the filtration tank 1a of the membrane filtration device 1.
For example, as shown in FIG. 1, one end of the liquid recovery pipe 8 is attached in the middle of the liquid extraction pipe 7. The other end of the liquid recovery pipe 8 is divided into two, and the other ends are arranged so as to supply the liquid to the aeration tank 3a and / or the filtration tank 1a of the water treatment device 3. A valve is attached to one end of the liquid recovery pipe 8. Then, by controlling this valve, the liquid recovery pipe 8 sends the liquid that has passed through the liquid extraction pipe 7 to the other end side, and sends the liquid from each of the other ends to the aeration tank 3a and / or the filtration tank 1a. It is configured to supply.
 前記微細藻類の培養設備20は、上記のように、培養装置2における微細藻類の培養後の液体を水処理装置3の曝気槽3a及び/又は膜濾過装置1の濾過槽1aへ送るように構成されている。
 前記微細藻類の培養設備20においては、微細藻類の培養後の液体を再び培養設備20において用いる分、培養設備20において新たに加える水量を抑えることができる。即ち、微細藻類の培養後の液体を曝気槽3aにおいて活性汚泥法によって水処理することにより、及び/又は、微細藻類の培養後の液体を濾過槽1aに加えることにより、前記微細藻類の培養設備20において新たに加える水量を抑えることができる。
As described above, the microalgae culture facility 20 is configured to send the liquid after the culture of the microalgae in the culture apparatus 2 to the aeration tank 3a of the water treatment apparatus 3 and / or the filtration tank 1a of the membrane filtration apparatus 1. Has been.
In the culture facility 20 for microalgae, the amount of water newly added in the culture facility 20 can be reduced by the amount of the liquid after culturing the microalgae being used again in the culture facility 20. That is, the microalgae culture equipment is obtained by water-treating the liquid after cultivation of microalgae in the aeration tank 3a by the activated sludge method and / or adding the liquid after culture of microalgae to the filtration tank 1a. The amount of water newly added at 20 can be reduced.
 また、微細藻類が培養された後の液体においては、微細藻類の増殖に伴って微細藻類から生成された増殖阻害成分が含まれている。ところが、該成分を含む液体が、曝気槽3aに送られて活性汚泥法によって水処理されると、増殖阻害成分の少なくとも一部が、活性汚泥法によって分解されることにより、増殖阻害成分が、減少し得る。従って、微細藻類の培養後の液体を曝気槽3aにおいて活性汚泥法によって水処理することにより、培養装置2における微細藻類の培養において、微細藻類の増殖阻害成分による悪影響を抑制することができる。 Further, the liquid after the microalgae are cultured contains a growth inhibitory component generated from the microalgae along with the growth of the microalgae. However, when the liquid containing the component is sent to the aeration tank 3a and water-treated by the activated sludge method, at least part of the growth inhibiting component is decomposed by the activated sludge method, so that the growth inhibiting component is May decrease. Therefore, when the liquid after culturing the microalgae is water-treated in the aeration tank 3a by the activated sludge method, adverse effects due to the microalgae growth inhibitory component can be suppressed in the culture of the microalgae in the culture apparatus 2.
 前記微細藻類の培養設備20は、図2に示すように、前記混合タンク4において得られた水溶液であって上述した培養成分を含む水溶液を除菌する除菌装置9を備えていてもよい。即ち、前記微細藻類の培養設備20は、前記透過水に除菌処理を施す除菌装置9を備え、該除菌装置9にて除菌処理が施された透過水を培養装置2に送るように構成されていてもよい。 The microalgae cultivation facility 20 may include a sterilization apparatus 9 for sterilizing the aqueous solution obtained in the mixing tank 4 and containing the above-described culture components, as shown in FIG. That is, the culture facility 20 for microalgae includes a sterilization apparatus 9 that performs sterilization treatment on the permeated water, and sends the permeated water that has been sterilized by the sterilization apparatus 9 to the culture apparatus 2. It may be configured.
 前記除菌装置9は、前記混合タンク4において得られた水溶液が供給されるように構成されている。そして、前記除菌装置9は、前記水溶液に含まれる透過水及び培養成分を除菌処理し、透過水及び培養成分を含む除菌処理された水溶液を培養装置2に供給するように構成されている。 The sterilization apparatus 9 is configured to be supplied with the aqueous solution obtained in the mixing tank 4. The sterilization apparatus 9 is configured to sterilize permeated water and culture components contained in the aqueous solution, and supply the sterilized aqueous solution containing the permeated water and culture components to the culture apparatus 2. Yes.
 具体的には、前記除菌装置9は、例えば、水蒸気などの熱を利用した加熱、濾過膜を利用した菌の濾過除去などによって除菌処理を行うように構成されている。 Specifically, the sterilization apparatus 9 is configured to perform sterilization processing by, for example, heating using heat such as water vapor, filtration removal of bacteria using a filtration membrane, or the like.
 前記除菌装置9においては、濾過膜を透過した透過水に含まれる微生物をさらに減らすことができる。また、培養成分に含まれ得る細菌類等を除菌処理によって減らすことができる。 In the sterilization apparatus 9, the microorganisms contained in the permeated water that has passed through the filtration membrane can be further reduced. In addition, bacteria and the like that can be included in the culture components can be reduced by sterilization treatment.
 本実施形態の微細藻類の培養設備20においては、前記除菌装置9を用いることにより、混合タンク4を経た透過水及び培養成分が、除菌されて培養装置2へ送られるため、微細藻類の増殖に対する微生物の悪影響をより確実に抑制できる。これにより、微細藻類をより十分に増殖させることができる。 In the microalgae culture facility 20 of the present embodiment, by using the sterilization apparatus 9, the permeated water and the culture components that have passed through the mixing tank 4 are sterilized and sent to the culture apparatus 2. The adverse effect of microorganisms on growth can be more reliably suppressed. Thereby, microalgae can be more fully proliferated.
 本実施形態の微細藻類の培養設備20においては、微細藻類を培養するための液体として、少なくとも排水を用いるため、排水を用いる分、微細藻類を培養するための液体として用いる工業用水や水道水の量を少なくすることができる。従って、本実施形態の微細藻類の培養設備20においては、運転に費やされる費用が比較的少ないものとなり得る。
 また、本実施形態の微細藻類の培養設備20は、通常は廃棄される排水を用いて微細藻類を培養することができるという点、また、培養した微細藻類から有価物を得ることができるという点で、運転に費やされる費用に対して得られる利益が比較的高いという利点を有する。
In the microalgae culturing facility 20 of the present embodiment, since at least drainage is used as a liquid for culturing microalgae, industrial water and tap water used as liquids for cultivating microalgae by the amount of wastewater used. The amount can be reduced. Therefore, in the microalgae culture facility 20 of the present embodiment, the cost for operation can be relatively small.
In addition, the microalgae culturing equipment 20 of the present embodiment can cultivate microalgae using wastewater that is normally discarded, and can obtain valuable resources from the cultured microalgae. Thus, there is an advantage that the profit obtained for the cost spent for operation is relatively high.
 なお、本実施形態の微細藻類の培養設備20は、前記排水を嫌気処理によって水処理する水処理装置を備え、該水処理装置にて水処理された排水を膜濾過装置1に送るように構成されていてもよい。
 前記水処理装置(排水を嫌気処理によって水処理するもの)は、培養設備20外から供給された排水を収容する嫌気処理槽を有し、該嫌気処理槽において排水を嫌気処理によって水処理するように構成されている。
 前記嫌気処理槽は、嫌気性微生物によって、嫌気的条件下において、排水中の化合物をより分子量の小さい化合物へ分解する水処理を行うように構成されている。そして、嫌気処理槽は、嫌気処理が施された消化液や消化脱離液などの排水を膜濾過装置1に送るように構成されている。
 前記嫌気処理槽としては、具体的には例えば、グラニュールを利用した上向流式嫌気処理(UASB法)を行うように構成されたもの、又は、下水汚泥を処理するように構成された消化槽などが採用され得る。
 前記嫌気処理としては、具体的には例えば、嫌気性消化処理などが採用され得る。嫌気性消化処理が施されることにより、排水中の前記窒素分や前記リン分が分解されて低分子化されたアンモニアやリン酸等を比較的多く含む排水(消化液)が発生する。斯かる排水(消化液)が膜濾過装置において膜濾過されることにより、アンモニアやリン酸等を比較的多く含む透過水が生じ、該透過水が培養装置において微細藻類の培養に利用されることとなる。
 このように、前記嫌気処理槽を備えた微細藻類の培養設備においては、嫌気処理によって生じたアンモニア等を微細藻類の培養に利用できることから、アンモニア等の化学的な分解処理を行わなくとも、アンモニア等を微細藻類によって分解させることができる。
The microalgae culture facility 20 of the present embodiment includes a water treatment device that treats the wastewater by anaerobic treatment, and is configured to send the wastewater treated by the water treatment device to the membrane filtration device 1. May be.
The water treatment apparatus (which treats the wastewater by anaerobic treatment) has an anaerobic treatment tank that accommodates the wastewater supplied from outside the culture facility 20, and treats the wastewater by anaerobic treatment in the anaerobic treatment tank. It is configured.
The anaerobic treatment tank is configured to perform water treatment by anaerobic microorganisms to decompose a compound in waste water into a compound having a lower molecular weight under anaerobic conditions. The anaerobic treatment tank is configured to send wastewater such as digested liquid and digested and desorbed liquid subjected to anaerobic treatment to the membrane filtration device 1.
Specifically, as the anaerobic treatment tank, for example, a digestion apparatus configured to perform an upflow anaerobic process (UASB method) using granules, or a digestion configured to process sewage sludge. A tank or the like may be employed.
Specifically, as the anaerobic treatment, for example, an anaerobic digestion treatment or the like may be employed. By performing the anaerobic digestion treatment, waste water (digestion liquid) containing a relatively large amount of ammonia, phosphoric acid and the like, which are reduced in molecular weight due to decomposition of the nitrogen content and phosphorus content in the waste water, is generated. Such drainage (digested liquid) is subjected to membrane filtration in a membrane filtration device, so that permeated water containing a relatively large amount of ammonia, phosphoric acid and the like is generated, and the permeated water is used for culturing microalgae in the culture device. It becomes.
As described above, in the microalgae cultivation facility equipped with the anaerobic treatment tank, ammonia and the like produced by the anaerobic treatment can be used for culturing the microalgae, so that ammonia can be used without chemical decomposition treatment such as ammonia. Etc. can be decomposed by microalgae.
 なお、前記水処理装置が嫌気処理槽を有し、嫌気処理槽内に膜ユニットが配されている場合には、膜ユニットに付着する汚泥等を除去すべく、嫌気処理槽は、収容する排水に気泡状の気体を供給するように構成されていてもよい。
 斯かる気体としては、酸素を含まないガス(不活性ガスや二酸化炭素など)が採用される。
 嫌気処理槽が斯かる気体を排水に供給するように構成されていることにより、膜ユニットを洗浄できるとともに、嫌気処理槽内を嫌気状態に保つことができる。
In addition, when the water treatment apparatus has an anaerobic treatment tank and a membrane unit is arranged in the anaerobic treatment tank, the anaerobic treatment tank contains wastewater to be contained in order to remove sludge and the like attached to the membrane unit. It may be configured to supply a bubble-like gas.
As such a gas, a gas not containing oxygen (such as an inert gas or carbon dioxide) is employed.
Since the anaerobic treatment tank is configured to supply such gas to the waste water, the membrane unit can be cleaned and the inside of the anaerobic treatment tank can be kept in an anaerobic state.
 次に、本発明に係る微細藻類の培養方法の一実施形態について説明する。 Next, an embodiment of the method for culturing microalgae according to the present invention will be described.
 本実施形態の微細藻類の培養方法においては、上述した各装置類を用いることにより下記の各工程を実施することができる。また、本実施形態の微細藻類の培養方法においては、上述した操作などが適宜採用される。 In the method for culturing microalgae of the present embodiment, the following steps can be performed by using the above-described devices. Further, in the method for culturing microalgae of the present embodiment, the above-described operations and the like are appropriately employed.
 本実施形態の微細藻類の培養方法は、少なくとも窒素分及びリン分のいずれか一方を含む排水を濾過膜によって膜濾過することにより濾過膜を透過した透過水を得る膜濾過工程と、前記透過水を含む液体中で微細藻類を培養する培養工程とを実施するものである。 The method for culturing microalgae of the present embodiment includes a membrane filtration step for obtaining permeated water that has permeated through a filtration membrane by subjecting wastewater containing at least one of nitrogen and phosphorus to a membrane through a filtration membrane, and the permeated water. A culture step of culturing microalgae in a liquid containing
 本実施形態の微細藻類の培養方法においては、膜濾過工程にて、排水中の微生物を減少させた透過水を得る。また、培養工程にて、微生物が減少した前記透過水を含む液体中で微細藻類を培養する。従って、微生物が減った分、培養工程における微細藻類の培養にて、微生物による微細藻類の増殖阻害が抑制される。
 即ち、本実施形態の微細藻類の培養方法においては、前記透過水が濾過膜を透過したものであるため、前記透過水における微生物の数が濾過前の排水におけるよりも少なくなっている。従って、微生物の数が少なくなった分、微生物が微細藻類の増殖を阻害することを抑えることができる。
 従って、本実施形態の微細藻類の培養方法は、微細藻類を十分に増殖させることができるという効果を奏する。
In the method for culturing microalgae of the present embodiment, permeated water in which microorganisms in the wastewater are reduced is obtained in the membrane filtration step. In the culturing step, microalgae are cultured in a liquid containing the permeated water in which microorganisms are reduced. Therefore, the inhibition of the growth of microalgae due to the microorganisms is suppressed in the culture of the microalgae in the culture process as much as the number of microorganisms is reduced.
That is, in the method for culturing microalgae of the present embodiment, since the permeated water permeates the filtration membrane, the number of microorganisms in the permeated water is smaller than that in the drainage before filtration. Therefore, it is possible to suppress the inhibition of the growth of microalgae by the amount of the microorganisms.
Therefore, the method for culturing microalgae of the present embodiment has an effect that microalgae can be sufficiently grown.
 前記微細藻類の培養方法においては、膜濾過工程の前に、排水を活性汚泥法又は嫌気処理によって水処理する水処理工程をさらに実施し、該水処理工程にて水処理された排水を膜濾過工程にて膜濾過して透過水を得ることが好ましい。
 即ち、前記微細藻類の培養方法においては、少なくとも窒素分及びリン分のいずれか一方を含む排水を活性汚泥法又は嫌気処理によって水処理する水処理工程と、濾過膜によって前記水処理工程にて水処理された排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過工程と、前記透過水を含む液体中で微細藻類を培養する培養工程とを実施することが好ましい。
In the method for culturing microalgae, before the membrane filtration step, a water treatment step of treating the wastewater with an activated sludge method or anaerobic treatment is further performed, and the wastewater treated with water in the water treatment step is subjected to membrane filtration. It is preferable to obtain permeated water by membrane filtration in the process.
That is, in the method for culturing microalgae, a water treatment step in which wastewater containing at least one of nitrogen and phosphorus is treated with an activated sludge method or anaerobic treatment, and a water treatment step in the water treatment step with a filtration membrane. It is preferable to carry out a membrane filtration step for obtaining permeated water that has permeated the filtration membrane by subjecting the treated wastewater to membrane filtration, and a culture step for culturing microalgae in a liquid containing the permeated water.
 前記水処理工程を実施することにより、排水における窒素分(窒素含有化合物)が、より分子量の小さいアンモニア、硝酸イオンなどの窒素分へ分解され得る。同様に、排水におけるリン分(リン含有化合物)が、より分子量の小さいリン酸イオンなどのリン分へ分解され得る。即ち、水処理工程において水処理された排水中には、水処理によって低分子化された窒素分、リン分などが含まれている。これらの成分は、低分子化される前よりも微細藻類が増殖における栄養成分として利用しやすいものである。
 水処理工程において水処理された排水は、栄養成分として微細藻類が利用しやすい窒素分やリン分を含んでいる。従って、該排水から膜濾過工程にて透過水を得て、該透過水が培養工程における液体Aに含まれることにより、微細藻類の増殖がより促され得る。
 即ち、前記微細藻類の培養方法においては、水処理工程をさらに実施することにより、水処理工程において水処理された排水が膜濾過工程にて膜濾過されることによって透過水が得られる。そして、培養工程において該透過水を含む液体A中で微細藻類が培養される。これにより、栄養成分としてより利用しやすい低分子化された窒素分等を微細藻類が利用できる。従って、微細藻類の増殖がより促される。
By performing the water treatment step, the nitrogen content (nitrogen-containing compound) in the wastewater can be decomposed into nitrogen content such as ammonia and nitrate ions having a lower molecular weight. Similarly, the phosphorus content (phosphorus-containing compound) in the wastewater can be decomposed into phosphorus content such as phosphate ions having a lower molecular weight. That is, the wastewater that has been subjected to water treatment in the water treatment step contains nitrogen, phosphorus, and the like that have been reduced in molecular weight by water treatment. These components are easier for microalgae to use as nutritional components in growth than before the molecular weight is reduced.
Wastewater that has been water-treated in the water treatment process contains nitrogen and phosphorus that are easily utilized by microalgae as nutrients. Therefore, permeated water is obtained from the wastewater in the membrane filtration step, and the permeated water is contained in the liquid A in the culturing step, whereby the growth of microalgae can be further promoted.
That is, in the method for culturing microalgae, by further carrying out a water treatment step, the drainage water treated in the water treatment step is subjected to membrane filtration in the membrane filtration step to obtain permeated water. Then, microalgae are cultured in the liquid A containing the permeated water in the culturing step. Thereby, microalgae can utilize a low molecular weight nitrogen component that can be more easily used as a nutrient component. Therefore, the growth of microalgae is further promoted.
 前記微細藻類の培養方法においては、膜濾過工程により得られた透過水と微細藻類の培養成分とを混合する培養成分混合工程をさらに実施することができる。また、前記微細藻類の培養方法においては、培養工程において培養した微細藻類と液体との混合物を液体と微細藻類とに分離する固液分離工程をさらに実施することができる。 In the method for culturing microalgae, a culture component mixing step of mixing the permeated water obtained by the membrane filtration step and the culture components of microalgae can be further performed. In the method for culturing microalgae, a solid-liquid separation step of separating a mixture of microalgae and liquid cultured in the culture step into liquid and microalgae can be further performed.
 前記微細藻類の培養方法においては、前記透過水に除菌処理を施す除菌工程をさらに実施し、培養工程では、除菌工程にて除菌処理が施された前記透過水を含む液体中で、微細藻類を培養することが好ましい。
 前記除菌工程は、培養成分混合工程の後に実施することが好ましい。即ち、除菌工程においては、培養成分混合工程にて透過水と微細藻類の培養成分とを混合してなる水溶液に、除菌処理を施すことが好ましい。
 前記除菌工程を実施することにより、培養工程において、除菌後の透過水を含む液体A中で微細藻類を培養するため、微細藻類の増殖に対する微生物の悪影響をより確実に抑制できるという利点がある。従って、微細藻類をより十分に増殖させることができるという利点がある。
In the method for culturing microalgae, a sterilization step of sterilizing the permeated water is further performed, and in the culturing step, in the liquid containing the permeated water that has been sterilized in the sterilization step. It is preferable to culture microalgae.
The sterilization step is preferably performed after the culture component mixing step. That is, in the sterilization step, it is preferable to perform sterilization treatment on an aqueous solution obtained by mixing permeate and microalgae culture components in the culture component mixing step.
By carrying out the sterilization step, since the microalgae are cultured in the liquid A containing the permeated water after sterilization in the culture step, there is an advantage that the adverse effect of the microorganisms on the growth of the microalgae can be more reliably suppressed. is there. Therefore, there is an advantage that microalgae can be propagated more sufficiently.
 前記微細藻類の培養方法においては、培養工程にて微細藻類を培養した後の液体を回収し、回収した液体を水処理工程で水処理される排水と混合する液体回収工程をさらに実施し、水処理工程では、培養工程にて微細藻類を培養した後の液体も水処理することが好ましい。
 前記培養工程にて微細藻類を培養した後の液体においては、微細藻類の増殖に伴って微細藻類から生成された増殖阻害成分が含まれている。該成分を含む液体を水処理工程において活性汚泥法又は嫌気処理によって水処理すると、増殖阻害成分の少なくとも一部が、活性汚泥法又は嫌気処理によって分解され、増殖阻害成分は、減少し得る。従って、液体回収工程において、培養工程にて微細藻類を培養した後の液体を回収し、水処理工程において、回収した液体を水処理することによって、培養工程において、微細藻類の増殖阻害成分による悪影響を抑制することができる。
In the method for culturing microalgae, the liquid after culturing the microalgae in the culturing process is recovered, and a liquid recovery process is further performed in which the recovered liquid is mixed with wastewater that is water-treated in the water treatment process, In the treatment step, the liquid after culturing the microalgae in the culturing step is also preferably treated with water.
The liquid after culturing the microalgae in the culturing step contains a growth inhibitory component generated from the microalgae along with the growth of the microalgae. When the liquid containing the component is water-treated by the activated sludge method or the anaerobic treatment in the water treatment step, at least a part of the growth inhibiting component is decomposed by the activated sludge method or the anaerobic treatment, and the growth inhibiting component can be reduced. Therefore, in the liquid recovery process, the liquid after culturing the microalgae in the culturing process is recovered, and in the water treatment process, the recovered liquid is treated with water, thereby adversely affecting the growth inhibition components of the microalgae in the culturing process. Can be suppressed.
 本実施形態の微細藻類の培養設備及び微細藻類の培養方法は、上記例示の通りであるが、本発明は、上記例示の微細藻類の培養設備及び微細藻類の培養方法に限定されるものではない。
 また、一般の微細藻類の培養設備及び培養方法において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
 即ち、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記の説明ではなく、特許請求の範囲によって示される。また、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Although the microalgae culture facility and the microalgae culture method of the present embodiment are as described above, the present invention is not limited to the microalgae culture facility and microalgae culture method illustrated above. .
Moreover, the various aspects used in the culture | cultivation equipment and culture | cultivation method of a general microalga can be employ | adopted in the range which does not impair the effect of this invention.
That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 例えば、上記実施形態の微細藻類の培養方法においては、エタノール、アミノ酸、又はブドウ糖(グルコース)などの糖類といった培養成分を混合タンク4に加えるが、本発明の微細藻類の培養方法は、このような実施形態に限定されず、例えば、培養成分を培養槽2aに加えるものであってもよい。 For example, in the method for culturing microalgae in the above embodiment, a culture component such as ethanol, amino acid, or saccharide such as glucose (glucose) is added to the mixing tank 4, but the method for culturing microalgae of the present invention is such It is not limited to embodiment, For example, you may add a culture component to the culture tank 2a.
 また、本発明の微細藻類の培養方法は、醸造酒、麦汁、清酒粕、廃糖蜜、酵母エキス、タンパク質などを混合タンク4や培養槽2aに加えるものであってもよい。これらの物質の存在下で微細藻類を培養することにより、微細藻類をより効率的に増殖させることができる。なお、酵母エキスとは、熱によって酵母の細胞壁を破壊させて得られたもの、又は、酵素によって酵母の細胞壁を破壊させて得られたものである。 In addition, the method for culturing microalgae of the present invention may add brewed liquor, wort, sake lees, molasses, yeast extract, protein, etc. to the mixing tank 4 or the culture tank 2a. By culturing microalgae in the presence of these substances, microalgae can be more efficiently grown. The yeast extract is obtained by destroying the cell wall of yeast with heat, or obtained by destroying the cell wall of yeast with an enzyme.
 また、上記実施形態の微細藻類の培養設備は、液体回収用配管8によって培養後の液体を水処理装置へ送るように構成されているが、本発明の微細藻類の培養設備は、このような実施形態に限定されない。例えば、本発明の微細藻類の培養設備は、培養装置と固液分離装置とを別途さらに備え、別途備えられた培養装置にて別の種類の微細藻類を培養し、培養した別種の微細藻類と液体との混合物とを、別途備えられた固液分離装置にて微細藻類と液体とに分離するように構成されていてもよい。また、上記実施形態において微細藻類を培養した後の液体を、液体回収用配管8によって、別途備えられた培養装置に送るように構成されていてもよい。また、別途備えられた固液分離装置にて分離された液体を上述の水処理装置3及び/又は濾過槽1a送るように構成されていてもよい。
 上記構成の微細藻類の培養設備においては、液体回収用配管8によって別途備えられた培養装置に送られる培養後の液体が、培養装置2における微細藻類の培養には必要とされない栄養成分、又は、培養装置2における微細藻類の培養で利用し切らなかった栄養成分を含んでいる。従って、これらを栄養成分として増殖する別種の微細藻類を、別途備えられた培養装置にて培養することができる。このように、各種の微細藻類の特性に合わせ、培養後の液体を利用することにより、排水に含まれている栄養成分を効率的に分解させることができる。
In addition, the microalgae culture facility of the above embodiment is configured to send the cultured liquid to the water treatment device by the liquid recovery pipe 8, but the microalgae culture facility of the present invention is such a It is not limited to the embodiment. For example, the microalgae culture facility of the present invention further comprises a culture device and a solid-liquid separation device, and another type of microalgae is cultured in the culture device provided separately and cultured. You may comprise so that a mixture with a liquid may be isolate | separated into a micro algae and a liquid with the solid-liquid separator provided separately. Further, the liquid after culturing microalgae in the above embodiment may be configured to be sent to a culture apparatus separately provided by the liquid recovery pipe 8. Moreover, you may comprise so that the liquid isolate | separated with the solid-liquid separator provided separately may be sent to the above-mentioned water treatment apparatus 3 and / or the filtration tank 1a.
In the culture facility for microalgae having the above-described configuration, the cultured liquid sent to the culture device separately provided by the liquid recovery pipe 8 is a nutrient component that is not required for culture of microalgae in the culture device 2, or It contains nutrients that could not be used in the cultivation of microalgae in the culture device 2. Therefore, different types of microalgae that grow using these as nutrient components can be cultured in a separately provided culture apparatus. Thus, according to the characteristics of various kinds of microalgae, the nutrient components contained in the wastewater can be efficiently decomposed by using the liquid after the culture.
 本発明の微細藻類の培養設備及び微細藻類の培養方法は、細胞内に炭化水素や多糖類などの有機物を貯蔵した微細藻類を、健康食品、医薬品、飼料、化成品、又は燃料等の用途で利用するために、好適に使用できる。 The microalgae cultivation facility and the microalgae cultivation method of the present invention can be used in applications such as health foods, pharmaceuticals, feeds, chemicals, and fuels for microalgae that store organic substances such as hydrocarbons and polysaccharides in cells. In order to utilize, it can use suitably.
 1:膜濾過装置、 1a:濾過槽、 1b:膜ユニット、
 2:培養装置、 2a:培養槽、 2b:照明機器、
 3:水処理装置、 3a:曝気槽、 3b:曝気管、
 4:混合タンク、 4a:撹拌機、
 5:固液分離装置、
 6:微細藻類取出用配管、
 7:液体取出用配管、
 8:液体回収用配管、
 9:除菌装置、
 10:培養成分貯留タンク、 11:検出センサ、 12:透過水取出用配管、
 20:培養設備、
 A:液体、B:光。 
 
 
1: membrane filtration device, 1a: filtration tank, 1b: membrane unit,
2: culture apparatus, 2a: culture tank, 2b: lighting equipment,
3: water treatment device, 3a: aeration tank, 3b: aeration tube,
4: Mixing tank, 4a: Stirrer,
5: Solid-liquid separator,
6: Piping for extracting microalgae,
7: Liquid extraction piping,
8: Pipe for liquid recovery,
9: disinfection device,
10: culture component storage tank, 11: detection sensor, 12: permeate extraction pipe,
20: culture equipment,
A: Liquid, B: Light.

Claims (6)

  1.  少なくとも窒素分及びリン分のいずれか一方を含む排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過工程と、前記透過水を含む液体中で微細藻類を培養する培養工程とを実施する微細藻類の培養方法。 A membrane filtration step of obtaining permeated water that has permeated through the filtration membrane by membrane filtering waste water containing at least one of nitrogen and phosphorus, and a culture step of culturing microalgae in the liquid containing the permeated water A method for culturing microalgae to be performed.
  2.  前記膜濾過工程の前に、前記排水を活性汚泥法又は嫌気処理によって水処理する水処理工程をさらに実施し、該水処理工程にて水処理した排水を前記膜濾過工程にて膜濾過する請求項1記載の微細藻類の培養方法。 Prior to the membrane filtration step, a water treatment step of water treatment of the wastewater by an activated sludge method or anaerobic treatment is further performed, and the wastewater treated in the water treatment step is subjected to membrane filtration in the membrane filtration step. Item 4. The method for culturing microalgae according to Item 1.
  3.  前記透過水に除菌処理を施す除菌工程をさらに実施し、前記培養工程では、前記除菌工程にて除菌処理が施された前記透過水を含む液体中で、微細藻類を培養する請求項1又は2に記載の微細藻類の培養方法。 Further performing a sterilization step of sterilizing the permeated water, and in the culturing step, culturing microalgae in a liquid containing the permeated water that has been sterilized in the sterilization step. Item 3. The method for culturing microalgae according to Item 1 or 2.
  4.  少なくとも窒素分及びリン分のいずれか一方を含む排水を膜濾過することにより濾過膜を透過した透過水を得る膜濾過装置と、前記透過水を含む液体中で微細藻類を培養する培養装置とを備えた微細藻類の培養設備。 A membrane filtration device for obtaining permeated water that has permeated through a filtration membrane by membrane filtration of waste water containing at least one of nitrogen and phosphorus, and a culture device for culturing microalgae in a liquid containing the permeated water Equipped with microalgae culture equipment.
  5.  さらに、前記排水を活性汚泥法又は嫌気処理によって水処理する水処理装置を備え、該水処理装置にて水処理された排水を前記膜濾過装置に送るように構成されている請求項4記載の微細藻類の培養設備。 Furthermore, the water treatment apparatus which water-processes the said waste_water | drain by an activated sludge process or anaerobic treatment is provided, It is comprised so that the waste_water | drain treated with this water treatment apparatus may be sent to the said membrane filtration apparatus. Microalgae culture equipment.
  6.  さらに、前記透過水に除菌処理を施す除菌装置を備え、該除菌装置にて除菌処理が施された前記透過水を前記培養装置に送るように構成されている請求項4又は5に記載の微細藻類の培養設備。
     
    Furthermore, it comprises a sterilization apparatus for sterilizing the permeated water, and is configured to send the permeated water that has been sterilized by the sterilization apparatus to the culture apparatus. A culture facility for microalgae as described in 1.
PCT/JP2013/075350 2012-09-21 2013-09-19 Method for culturing microalga and facility for culturing microalga WO2014046205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208718 2012-09-21
JP2012208718A JP2014060967A (en) 2012-09-21 2012-09-21 Fine algae culture method and fine algae culture facility

Publications (1)

Publication Number Publication Date
WO2014046205A1 true WO2014046205A1 (en) 2014-03-27

Family

ID=50341509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075350 WO2014046205A1 (en) 2012-09-21 2013-09-19 Method for culturing microalga and facility for culturing microalga

Country Status (2)

Country Link
JP (1) JP2014060967A (en)
WO (1) WO2014046205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010623A (en) * 2017-06-30 2019-01-24 栗田工業株式会社 PROCESSING METHOD OF LOW-pH FINE-ALGAE CULTURE WATER
WO2023014294A3 (en) * 2021-08-02 2023-03-09 National University Of Singapore Recirculating algal-bacterial symbiosis system
GB2617306A (en) * 2021-03-31 2023-10-11 Industrial Phycology Ltd Consumption of at least one compound from a fluid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446866B2 (en) * 2014-07-08 2019-01-09 栗田工業株式会社 Shochu residue processing method and processing apparatus
JP6402524B2 (en) * 2014-07-30 2018-10-10 富士電機株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
CN106587484A (en) * 2016-10-08 2017-04-26 哈尔滨工业大学 Reaction system for removal of nitrogen and phosphorus in domestic sewage by use of microalgae
JP6897370B2 (en) * 2017-06-30 2021-06-30 株式会社デンソー Treatment method of low pH KJ strain culture water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292900A (en) * 1993-03-31 1994-10-21 Mitsui Zosen Eng Kk Waste water treating device using ultrafilter membrane
JPH0731994A (en) * 1993-07-20 1995-02-03 Toshiba Corp Waste water treating device
JP2001170671A (en) * 1999-12-15 2001-06-26 Research Institute Of Innovative Technology For The Earth Biological treatment method and device for waste water
JP2002315568A (en) * 2001-04-23 2002-10-29 Kubota Corp Culturing method and apparatus
JP2010088368A (en) * 2008-10-09 2010-04-22 Kobelco Eco-Solutions Co Ltd Algae culturing apparatus and algae culturing method
WO2012077250A1 (en) * 2010-12-09 2012-06-14 ▲緑▼合能源有限公司 Method and system for producing and supplying biogas using mixed microalgae
US20120152829A1 (en) * 2009-08-24 2012-06-21 Kellogg Brown & Root Llc Biological wastewater treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984749B2 (en) * 1990-03-01 1999-11-29 農林水産省食品総合研究所長 Algae cultivation method using silicon
JPH0686667A (en) * 1992-05-18 1994-03-29 Mitsubishi Heavy Ind Ltd Culture of algae
JP2009072129A (en) * 2007-09-21 2009-04-09 Hitachi Plant Technologies Ltd Device for separating living cell, device of culturing and method for separating living cell
JP2011234676A (en) * 2010-05-11 2011-11-24 Trance Energy Kk Biofuel production method using microalgae
JP5815931B2 (en) * 2010-10-14 2015-11-17 株式会社フジタ Useful substance production system by culturing algae

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292900A (en) * 1993-03-31 1994-10-21 Mitsui Zosen Eng Kk Waste water treating device using ultrafilter membrane
JPH0731994A (en) * 1993-07-20 1995-02-03 Toshiba Corp Waste water treating device
JP2001170671A (en) * 1999-12-15 2001-06-26 Research Institute Of Innovative Technology For The Earth Biological treatment method and device for waste water
JP2002315568A (en) * 2001-04-23 2002-10-29 Kubota Corp Culturing method and apparatus
JP2010088368A (en) * 2008-10-09 2010-04-22 Kobelco Eco-Solutions Co Ltd Algae culturing apparatus and algae culturing method
US20120152829A1 (en) * 2009-08-24 2012-06-21 Kellogg Brown & Root Llc Biological wastewater treatment method
WO2012077250A1 (en) * 2010-12-09 2012-06-14 ▲緑▼合能源有限公司 Method and system for producing and supplying biogas using mixed microalgae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WONG,M.H.: "The comparison of activated and digested sludge extracts in cultivating Chlorella pyrenoidosa and C.Salina", ENVIRON. POLLUT., vol. 14, 1977, pages 207 - 211 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010623A (en) * 2017-06-30 2019-01-24 栗田工業株式会社 PROCESSING METHOD OF LOW-pH FINE-ALGAE CULTURE WATER
GB2617306A (en) * 2021-03-31 2023-10-11 Industrial Phycology Ltd Consumption of at least one compound from a fluid
WO2023014294A3 (en) * 2021-08-02 2023-03-09 National University Of Singapore Recirculating algal-bacterial symbiosis system

Also Published As

Publication number Publication date
JP2014060967A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2014046205A1 (en) Method for culturing microalga and facility for culturing microalga
Tao et al. Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge
Pahazri et al. Production and harvesting of microalgae biomass from wastewater: a critical review
MX2015005622A (en) Methods of culturing microorganisms in non-axenic mixotrophic conditions and controlling bacterial contamination in the cultures using acetate and/or oxidizing agents.
EP2408294A1 (en) System and method for treating wastewater via phototactic heterotrophic microorganism growth
Hu et al. Integration of sodium hypochlorite pretreatment with co-immobilized microalgae/bacteria treatment of meat processing wastewater
Chitapornpan et al. Photosynthetic bacteria production from food processing wastewater in sequencing batch and membrane photo-bioreactors
Hajar et al. Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans
WO2014057889A1 (en) Apparatus for culturing microalga, and method for culturing microalga
CN105776745A (en) Biological treatment method of high-ammonia nitrogen pig raising biogas slurry
JP5775862B2 (en) Method for culturing microalgae and method for using microalgae
JP6446866B2 (en) Shochu residue processing method and processing apparatus
WO2018053071A1 (en) Methods of treating wastewater with microalgae cultures supplemented with organic carbon
JP2016036777A (en) Wastewater treatment method and wastewater treatment equipment
CA2962442C (en) Digestion of waste activated sludge with algae
KR101378481B1 (en) Apparatus and method for cultivating micro-algae with anaerobic digestion vessel and membrane bio-reactor
KR101819007B1 (en) Apparatus and method for animal wastewater treatment using heterotrophic microalga
Nair et al. Chlorella Pyrenoidosa mediated phycoremediation of landfill leachate
Nath et al. Bioreactor and enzymatic reactions in bioremediation
Pandey et al. Phyco-remediation of dairy effluents and biomass valorization: a sustainable approach
Whangchenchom et al. Wastewater from instant noodle factory as the whole nutrients source for the microalga Scenedesmus sp. cultivation
JP2016036760A (en) Method and apparatus for treating glycerin-containing liquid waste
Al-Gheethi et al. Recycle of greywater for microalgae biomass production
Sakarika et al. Wastewater treatment coupled to algal biomass production
KR101622936B1 (en) Apparatus and method for cultivating micro-algae applied ozone oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838630

Country of ref document: EP

Kind code of ref document: A1