JP2016036760A - Method and apparatus for treating glycerin-containing liquid waste - Google Patents

Method and apparatus for treating glycerin-containing liquid waste Download PDF

Info

Publication number
JP2016036760A
JP2016036760A JP2014160440A JP2014160440A JP2016036760A JP 2016036760 A JP2016036760 A JP 2016036760A JP 2014160440 A JP2014160440 A JP 2014160440A JP 2014160440 A JP2014160440 A JP 2014160440A JP 2016036760 A JP2016036760 A JP 2016036760A
Authority
JP
Japan
Prior art keywords
glycerin
waste liquid
treatment
microorganism
containing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014160440A
Other languages
Japanese (ja)
Inventor
加来 啓憲
Hironori Kako
啓憲 加来
雅弘 林
Masahiro Hayashi
雅弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
University of Miyazaki NUC
Original Assignee
Kurita Water Industries Ltd
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, University of Miyazaki NUC filed Critical Kurita Water Industries Ltd
Priority to JP2014160440A priority Critical patent/JP2016036760A/en
Publication of JP2016036760A publication Critical patent/JP2016036760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating glycerin-containing liquid waste such as crude glycerin to be produced as a by-product in a biodiesel production process, each of the method and apparatus of which belongs to a valuable material production type.SOLUTION: The method for treating the glycerin-containing liquid waste comprises the steps of: performing primary treatment on the glycerin-containing liquid waste by using a microorganism, which belongs to genus aurantiochytrium and can be used for producing aliphatic acid having 14 or more carbon atoms; and performing secondary treatment on the primarily-treated water to remove the organic matter remaining in the primarily-treated water. An organic component such as saccharide contained in the glycerin-containing liquid waste is utilized as a culture raw material of the microorganism so that the glycerin-containing liquid waste can be treated effectively and unsaturated aliphatic acid useful as health food, livestock feed, fishery bait or the like can be produced.SELECTED DRAWING: Figure 2

Description

本発明は、グリセリン含有廃液の処理方法及び処理装置に関する。本発明のグリセリン含有廃液の処理方法及び処理装置は、バイオディーゼル製造工程で副生する粗グリセリン等のグリセリン含有廃液を処理すると共に、健康食品や家畜飼料、水産餌料などに利用される不飽和脂肪酸の製造を同時に行う、有価物生産型の廃液処理技術である。   The present invention relates to a processing method and a processing apparatus for glycerin-containing waste liquid. The processing method and processing apparatus for glycerin-containing waste liquid according to the present invention treats glycerin-containing waste liquid such as crude glycerin by-produced in the biodiesel production process, and is used as an unsaturated fatty acid for health food, livestock feed, aquatic feed, etc. This is a waste production technology for producing valuable resources that simultaneously manufactures.

バイオディーゼルは、動植物などの生物資源であるバイオマスを原料として製造されるバイオマス燃料の一種であり、近年、化石燃料に代わる再生可能エネルギーとして普及が進んでいる。   Biodiesel is a type of biomass fuel that is produced using biomass, which is a biological resource such as animals and plants, as a raw material. In recent years, biodiesel has been widely used as a renewable energy to replace fossil fuels.

バイオディーゼルの製造には、大豆油、パーム油、菜種油などの植物油や、魚油、牛脂などの獣脂などが原料に用いられ、原料に含まれるトリグリセリドなどの油脂成分をメチルエステル化して得られる脂肪酸メチルエステル(FAME:Fatty Acid Methyl Ester)などがバイオディーゼルとして使用されている。なお、メチルエステル化の代りにエチルエステル化が行われる場合もある。このエステル化では、副産物としてグリセリンが生成し、生成したグリセリンは、粗グリセリン又は廃グリセリンと称され、系外へ排出される。   For the production of biodiesel, vegetable oils such as soybean oil, palm oil and rapeseed oil, and tallow oil such as fish oil and beef tallow are used as raw materials, and fatty acid methyl obtained by methyl esterifying oil and fat components such as triglycerides contained in the raw materials Esters (FAME: Fatty Acid Methyl Ester) and the like are used as biodiesel. In some cases, ethyl esterification is performed instead of methyl esterification. In this esterification, glycerin is produced as a by-product, and the produced glycerin is called crude glycerin or waste glycerin and is discharged out of the system.

粗グリセリンは、水酸化カリウムや水酸化ナトリウムなどのエステル化反応触媒や、未変換の脂肪酸などの不純物を含むものであるため、これを医薬品、化粧品、石鹸などの原料として利用するには精製が必要であり、多大なコストが必要となる。
このため、粗グリセリンは、一般的には焼却処分されており、通常、産業廃棄物として処理業者に処分を委託している場合が多い。
Crude glycerin contains an esterification reaction catalyst such as potassium hydroxide and sodium hydroxide, and impurities such as unconverted fatty acids. Therefore, it must be purified to use it as a raw material for pharmaceuticals, cosmetics, soaps, etc. There is a great cost.
For this reason, the crude glycerin is generally incinerated, and in many cases, disposal is entrusted to a processing company as industrial waste.

しかし、粗グリセリンは、エステル化反応触媒である水酸化カリウムや水酸化ナトリウムなどを含む強アルカリ性の廃液であるため、これをそのまま焼却すると焼却炉を劣化させる。このため、通常、粗グリセリンは他の廃棄物と混合して焼却しており、処理効率が悪いことから処分費が嵩むという課題があった。
その他、粗グリセリンを嫌気性消化、又は堆肥化するなどの検討も進められているが、普及には至っていない。
However, since crude glycerin is a strong alkaline waste liquid containing potassium hydroxide, sodium hydroxide and the like which are esterification reaction catalysts, incineration of the crude glycerin will degrade the incinerator. For this reason, normally, crude glycerin is mixed and incinerated with other wastes, and there is a problem that disposal costs increase due to poor processing efficiency.
In addition, although studies such as anaerobic digestion or composting of crude glycerin are being promoted, it has not yet spread.

また、粗グリセリンの有効活用についての検討もなされているが、上述の強アルカリ性の問題に加え、粗グリセリンは、残留メタノール又はエタノールや、未変換の脂肪酸、その他原料由来の有機性不純物を含むものであるため、工業的なコストに見合う有効利用技術は見出されていないのが現状である。   Moreover, although examination about effective utilization of crude glycerin is also made, in addition to the above-mentioned strong alkalinity problem, crude glycerin contains residual methanol or ethanol, unconverted fatty acid, and other organic impurities derived from raw materials. Therefore, the present situation is that no effective utilization technique corresponding to the industrial cost has been found.

一方で、オーランチオキトリウム属(Aurantiochytrium)を含むラビリンチュラ類(Labyrinthula)の培養技術が確立している。この場合、通常、糖類などが培養原料に用いられているが、非特許文献1には、グルコースなどの炭素源を添加した焼酎カスを栄養源として培養したラビリンチュラ類の微生物が、ミリスチン酸、パルミチン酸、オレイン酸などの飽和脂肪酸、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、ドコサヘキサエン酸(DHA)などの不飽和脂肪酸を蓄積することが報告されている。   On the other hand, a culture technique of Labyrinthula including Aurantiochytrium has been established. In this case, saccharides and the like are usually used as a culture raw material. However, Non-Patent Document 1 discloses that labyrinthula microorganisms cultured using a shochu residue added with a carbon source such as glucose as a nutrient source, myristic acid, Accumulation of saturated fatty acids such as palmitic acid and oleic acid, and unsaturated fatty acids such as eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) has been reported.

しかし、この非特許文献1は、オーランチオキトリウム属微生物の培養方法に関するものであり、廃液処理に関するものではない。   However, this Non-Patent Document 1 relates to a method for culturing an auranthiochytrium microorganism, and does not relate to waste liquid treatment.

Yamasaki et.al,“Utilization of Shochu Distillery Wastewater for Production of Polyunsaturated Fatty Acid and Xanthophylls Using Thraustochytrid”,Journal of Bioscience and Bioengineering,Vol.102,No.4,p.323-327,2006.DOI:10.1263/jbb.102.323Yamasaki et.al, “Utilization of Shochu Distillery Wastewater for Production of Polyunsaturated Fatty Acid and Xanthophylls Using Thraustochytrid”, Journal of Bioscience and Bioengineering, Vol.102, No.4, p.323-327, 2006.DOI : 10.1263 / jbb .102.323

本発明は、上記従来の実状に鑑みてなされたものであり、バイオディーゼル製造工程で副生する粗グリセリン等のグリセリン含有廃液を効率的に処理すると共に、健康食品や家畜飼料、水産餌料などに利用することができる不飽和脂肪酸を同時に製造する、有価物生産型のグリセリン含有廃液の処理方法及び処理装置を提供することを課題とする。   The present invention has been made in view of the above-described conventional situation, and efficiently treats glycerin-containing waste liquid such as crude glycerin produced as a by-product in the biodiesel production process, as well as health food, livestock feed, aquatic feed, etc. It is an object of the present invention to provide a valuable material production type glycerin-containing waste liquid treatment method and treatment apparatus for simultaneously producing unsaturated fatty acids that can be used.

本発明者らは、上記課題を解決すべく、グリセリン含有廃液中に含まれているグリセリン等の有機成分を微生物の培養原料として利用することを検討し、グリセリン含有廃液を、オーランチオキトリウム属(Aurantiochytrium)に属し、炭素数14以上の脂肪酸を生産しうる微生物(以下「オーランチオキトリウム属微生物」と称す。)で一次処理した後、一次処理水中に残留する有機物を除去する二次処理を行うことにより、グリセリン含有廃液中のグリセリン等の有機成分を効率的に分解除去すると共に、この有機成分を利用して健康食品や家畜飼料、水産餌料などとして有用な不飽和脂肪酸を製造することができることを見出した。   In order to solve the above-mentioned problems, the present inventors have studied using organic components such as glycerin contained in glycerin-containing waste liquid as a culture raw material for microorganisms. Secondary treatment to remove organic substances remaining in the primary treated water after primary treatment with microorganisms belonging to (Aurantiochytrium) and capable of producing fatty acids having 14 or more carbon atoms (hereinafter referred to as “aulanthiochytrium microorganisms”) By efficiently decomposing and removing organic components such as glycerin in glycerin-containing waste liquid, and using these organic components to produce unsaturated fatty acids useful as health food, livestock feed, aquatic feed, etc. I found out that I can.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] グリセリン含有廃液を、オーランチオキトリウム属に属し、炭素数14以上の脂肪酸を生産しうる微生物(以下「オーランチオキトリウム属微生物」と称す。)で処理した後固液分離する一次処理工程と、該一次処理工程の処理水中に残留する有機物を除去する二次処理工程とを有することを特徴とするグリセリン含有廃液の処理方法。 [1] A glycerin-containing waste liquid is treated with a microorganism that belongs to the genus Aulanthiochytrium and can produce fatty acids having 14 or more carbon atoms (hereinafter referred to as “Olanthiochytrium microorganism”), followed by solid-liquid separation. A treatment method for a glycerin-containing waste liquid, comprising: a treatment step; and a secondary treatment step for removing organic substances remaining in the treated water of the primary treatment step.

[2] 前記一次処理工程の微生物処理系内の無機塩類濃度が0.2〜3重量%となるように前記グリセリン含有廃液に無機塩類を添加することを特徴とする[1]に記載のグリセリン含有廃液の処理方法。 [2] The glycerin according to [1], wherein an inorganic salt is added to the glycerin-containing waste liquid so that an inorganic salt concentration in the microbial treatment system of the primary treatment step is 0.2 to 3% by weight. Treatment method for waste liquid.

[3] 前記一次処理工程の微生物処理系内のリン濃度が10mg/L以上となるように前記グリセリン含有廃液にリン源を添加することを特徴とする[1]又は[2]に記載のグリセリン含有廃液の処理方法。 [3] The glycerin according to [1] or [2], wherein a phosphorus source is added to the glycerin-containing waste liquid so that a phosphorus concentration in the microbial treatment system in the primary treatment step is 10 mg / L or more. Treatment method for waste liquid.

[4] 前記一次処理工程の微生物処理系内の窒素濃度が100mg/L以上となるように前記グリセリン含有廃液に窒素源を添加することを特徴とする[1]ないし[3]のいずれかに記載のグリセリン含有廃液の処理方法。 [4] Any one of [1] to [3], wherein a nitrogen source is added to the glycerin-containing waste liquid so that the nitrogen concentration in the microbial treatment system of the primary treatment step is 100 mg / L or more. The processing method of the glycerol containing waste liquid of description.

[5] 前記一次処理工程の微生物処理系内のpHを3.5〜9.0に調整することを特徴とする[1]ないし[4]のいずれかに記載のグリセリン含有廃液の処理方法。 [5] The method for treating a glycerin-containing waste liquid according to any one of [1] to [4], wherein the pH in the microorganism treatment system in the primary treatment step is adjusted to 3.5 to 9.0.

[6] 前記一次処理工程の微生物処理系内の前記オーランチオキトリウム属微生物の濃度が、菌体の乾燥重量濃度で2g/L以上であることを特徴とする[1]ないし[5]のいずれかに記載のグリセリン含有廃液の処理方法。 [6] The concentration of the Aurantiochytrium microorganism in the microorganism treatment system of the primary treatment step is 2 g / L or more in terms of the dry weight concentration of the bacterial cells, according to [1] to [5] The processing method of the waste liquid containing glycerol in any one.

[7] 前記オーランチオキトリウム属微生物が、炭素数20以上で不飽和結合を2つ以上有する高級不飽和脂肪酸を生産する微生物であり、前記一次処理工程で増殖した菌体から該高級不飽和脂肪酸を採取する産生物回収工程を有することを特徴とする[1]ないし[6]のいずれかに記載のグリセリン含有廃液の処理方法。 [7] The Aulanthiochytrium microorganism is a microorganism that produces a higher unsaturated fatty acid having 20 or more carbon atoms and two or more unsaturated bonds, and the higher unsaturated from the cells grown in the primary treatment step. The method for treating a glycerin-containing waste liquid according to any one of [1] to [6], further comprising a product recovery step of collecting a fatty acid.

[8] 前記二次処理工程が、生物処理、凝集沈殿処理、砂濾過処理、及び膜分離処理よりなる群から選ばれる1種又は2種以上の組み合わせよりなることを特徴とする[1]ないし[7]のいずれかに記載のグリセリン含有廃液の処理方法。 [8] The secondary treatment step is composed of one or a combination of two or more selected from the group consisting of biological treatment, coagulation sedimentation treatment, sand filtration treatment, and membrane separation treatment. The processing method of the glycerol containing waste liquid in any one of [7].

[9] 前記グリセリン含有廃液が、バイオディーゼル製造工程で副生する粗グリセリンであることを特徴とする[1]ないし[8]のいずれかに記載のグリセリン含有廃液の処理方法。 [9] The method for treating a glycerin-containing waste liquid according to any one of [1] to [8], wherein the glycerin-containing waste liquid is crude glycerin by-produced in a biodiesel production process.

[10] グリセリン含有廃液を、オーランチオキトリウム属に属し、炭素数14以上の脂肪酸を生産しうる微生物(以下「オーランチオキトリウム属微生物」と称す。)で処理した後固液分離する一次処理手段と、該一次処理手段の処理水中に残留する有機物を除去する二次処理手段とを有することを特徴とするグリセリン含有廃液の処理装置。 [10] A primary liquid that is subjected to solid-liquid separation after treating the glycerin-containing waste liquid with a microorganism that belongs to the genus Aulanthiochytrium and can produce a fatty acid having 14 or more carbon atoms (hereinafter referred to as “Olanthiochytrium microorganism”). An apparatus for treating glycerin-containing waste liquid, comprising: a treatment means; and a secondary treatment means for removing organic substances remaining in the treated water of the primary treatment means.

[11] 前記一次処理手段の微生物処理系内の無機塩類濃度が0.2〜3重量%となるように前記グリセリン含有廃液に無機塩類を添加する無機塩類添加手段を有することを特徴とする[10]に記載のグリセリン含有廃液の処理装置。 [11] It is characterized by having inorganic salt addition means for adding inorganic salts to the glycerin-containing waste liquid so that the inorganic salt concentration in the microbial treatment system of the primary treatment means is 0.2 to 3% by weight. [10] The glycerin-containing waste liquid treatment apparatus according to [10].

[12] 前記一次処理手段の微生物処理系内のリン濃度が10mg/L以上となるように前記グリセリン含有廃液にリン源を添加するリン源添加手段を有することを特徴とする[10]又は[11]に記載のグリセリン含有廃液の処理装置。 [12] The phosphorus source addition means for adding a phosphorus source to the glycerin-containing waste liquid so that the phosphorus concentration in the microbial treatment system of the primary treatment means is 10 mg / L or more [10] or [ [11] The glycerin-containing waste liquid treatment apparatus according to [11].

[13] 前記一次処理手段の微生物処理系内の窒素濃度が100mg/L以上となるように前記グリセリン含有廃液に窒素源を添加する窒素源添加手段を有することを特徴とする[10]ないし[12]のいずれかに記載のグリセリン含有廃液の処理装置。 [13] The system according to [10] to [10], further comprising nitrogen source addition means for adding a nitrogen source to the glycerin-containing waste liquid so that a nitrogen concentration in the microbial treatment system of the primary treatment means is 100 mg / L or more. 12] The processing apparatus of the glycerol containing waste liquid in any one of.

[14] 前記一次処理手段の微生物処理系内のpHを3.5〜9.0に調整するpH調整手段を有することを特徴とする[10]ないし[13]のいずれかに記載のグリセリン含有廃液の処理装置。 [14] The glycerin-containing product according to any one of [10] to [13], further comprising pH adjusting means for adjusting the pH in the microbial treatment system of the primary treatment means to 3.5 to 9.0. Waste liquid treatment equipment.

[15] 前記一次処理手段の微生物処理系内の前記オーランチオキトリウム属微生物の濃度が、菌体の乾燥重量濃度で2g/L以上であることを特徴とする[10]ないし[14]のいずれかに記載のグリセリン含有廃液の処理装置。 [15] The concentration of the Aulanthiochytrium microorganism in the microorganism treatment system of the primary treatment means is 2 g / L or more in terms of the dry weight concentration of the cells, [10] to [14] The processing apparatus of the waste liquid containing glycerol in any one.

[16] 前記オーランチオキトリウム属微生物が、炭素数20以上で不飽和結合を2つ以上有する高級不飽和脂肪酸を生産する微生物であり、前記一次処理手段で増殖した菌体から該高級不飽和脂肪酸を採取する産生物回収手段を有することを特徴とする[10]ないし[15]のいずれかに記載のグリセリン含有廃液の処理装置。 [16] The microorganism of the genus Aurantiochytrium is a microorganism that produces a higher unsaturated fatty acid having 20 or more carbon atoms and two or more unsaturated bonds, and the higher unsaturated from the cells grown by the primary treatment means. The apparatus for treating a glycerin-containing waste liquid according to any one of [10] to [15], comprising product recovery means for collecting fatty acids.

[17] 前記二次処理手段が、生物処理槽、凝集沈殿槽、砂濾過装置、及び膜分離装置よりなる群から選ばれる1種又は2種以上の組み合わせよりなることを特徴とする[10]ないし[16]のいずれかに記載のグリセリン含有廃液の処理装置。 [17] The secondary treatment means is composed of one or a combination of two or more selected from the group consisting of a biological treatment tank, a coagulation sedimentation tank, a sand filtration device, and a membrane separation device. Thru | or the processing apparatus of the waste liquid containing glycerol in any one of [16].

[18] 前記グリセリン含有廃液が、バイオディーゼル製造工程で副生する粗グリセリンであることを特徴とする[10]ないし[17]のいずれかに記載のグリセリン含有廃液の処理装置。 [18] The glycerin-containing waste liquid treatment apparatus according to any one of [10] to [17], wherein the glycerin-containing waste liquid is crude glycerin by-produced in a biodiesel production process.

本発明によれば、バイオディーゼル製造工程で副生する粗グリセリン等のグリセリン含有廃液を、効率的に処理すると共に、グリセリン含有廃液中に含まれるグリセリン等の有機成分をオーランチオキトリウム属微生物の培養原料として使用して、健康食品や家畜飼料、水産餌料などとして有用な不飽和脂肪酸を製造することができる。このように、グリセリン含有廃液の処理と有価物である不飽和脂肪酸の製造とを兼ねることで処理コストを削減すると共に、廃棄物の有効利用と廃棄物量の低減を図ることができる。   According to the present invention, glycerin-containing waste liquid such as crude glycerin produced as a by-product in the biodiesel production process is efficiently treated, and organic components such as glycerin contained in the glycerin-containing waste liquid are removed from the aurantiochytrium microorganism. Unsaturated fatty acids useful as health foods, livestock feeds, aquatic feeds and the like can be produced by using them as culture raw materials. Thus, the treatment cost can be reduced by combining the treatment of the glycerin-containing waste liquid and the production of the unsaturated fatty acid that is a valuable material, and the waste can be effectively used and the amount of waste can be reduced.

本発明のグリセリン含有廃液の処理方法の実施の形態の一例を示す工程図である。It is process drawing which shows an example of embodiment of the processing method of the glycerol containing waste liquid of this invention. 本発明のグリセリン含有廃液の処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the processing apparatus of the glycerol containing waste liquid of this invention. 本発明のグリセリン含有廃液の処理装置の実施の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of embodiment of the processing apparatus of the glycerol containing waste liquid of this invention. 実施例1で培養したオーランチオキトリウム属微生物mh2112株の顕微鏡写真である。4 is a photomicrograph of the Aulanthiochytrium microorganism mh2112 strain cultured in Example 1. FIG. 実施例1で培養したオーランチオキトリウム属微生物mh2112株の細胞内に蓄積された脂肪酸のガスクロマトグラフィー分析結果を示すチャートである。2 is a chart showing the results of gas chromatographic analysis of fatty acids accumulated in cells of the Aurantiochytrium sp. Strain mh2112 cultured in Example 1. FIG.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[グリセリン含有廃液の処理方法]
本発明のグリセリン含有廃液の処理方法は、グリセリン含有廃液をオーランチオキトリウム属微生物で一次処理した後、一次処理水中に残留する有機物を除去する二次処理を行うものである。
[Method for treating glycerin-containing waste liquid]
In the method for treating a glycerin-containing waste liquid of the present invention, the glycerin-containing waste liquid is firstly treated with an auranthiochytrium microorganism, and then a secondary treatment is performed to remove organic substances remaining in the primary treated water.

本発明のグリセリン含有廃液(以下、「粗グリセリン」と称す場合がある。)の処理方法の処理手順としては、上記一次処理と二次処理を行えるものであればよく、特に制限はないが、例えば次のような方法が挙げられる。   The treatment procedure of the treatment method of the glycerin-containing waste liquid of the present invention (hereinafter sometimes referred to as “crude glycerin”) is not particularly limited as long as it can perform the primary treatment and the secondary treatment. For example, the following method is mentioned.

(1) 図1(a)に示す如く、粗グリセリンをオーランチオキトリウム属微生物で処理する微生物処理を行った後、分離水(一次処理水)と分離汚泥(培養物)に固液分離し(一次処理工程)、一次処理水中の残留有機物の処理を行った後分離水(二次処理水)と分離汚泥に固液分離(二次処理工程)する。一次処理工程の固液分離で得られた分離汚泥は培養物として回収する。
(2) 図1(b)に示す如く、一次処理水で粗グリセリンを希釈した後、希釈した粗グリセリンについて図1(a)と同様に一次処理及び二次処理を行う。即ち、例えばバイオディーゼル製造工程で副生する粗グリセリンは、一般的に粘度の高い高pH廃液であることから、取り扱い上、2〜10倍程度に水で希釈して、例えばグリセリン濃度5〜30重量%程度に希釈して処理を行うことが好ましい。
(3) 図1(c)に示す如く、一次処理における固液分離で得られた分離汚泥を脱水処理し、脱離液を一次処理水と共に二次処理し、濃縮スラリー又は脱水ケーキを培養物として回収する。その他は図1(a)と同様に一次処理及び二次処理を行う。
(1) As shown in FIG. 1 (a), after microbial treatment of treating crude glycerin with an auranthiochytrium microorganism, it is separated into separated water (primary treated water) and separated sludge (cultured product). (Primary treatment step) After the treatment of the residual organic matter in the primary treatment water, it is subjected to solid-liquid separation (secondary treatment step) into separated water (secondary treatment water) and separated sludge. The separated sludge obtained by solid-liquid separation in the primary treatment step is recovered as a culture.
(2) As shown in FIG. 1 (b), after the crude glycerin is diluted with the primary treated water, the diluted crude glycerin is subjected to the primary treatment and the secondary treatment in the same manner as in FIG. 1 (a). That is, for example, crude glycerin by-produced in the biodiesel production process is generally a high-viscosity waste liquid with a high viscosity, so that it is diluted with water to about 2 to 10 times for handling, for example, glycerin concentration 5 to 30 It is preferable to perform the treatment after diluting to about% by weight.
(3) As shown in FIG. 1 (c), the separated sludge obtained by the solid-liquid separation in the primary treatment is dehydrated, the desorbed liquid is secondarily treated with the primary treated water, and the concentrated slurry or dehydrated cake is cultured. As recovered. Otherwise, the primary processing and secondary processing are performed in the same manner as in FIG.

図1(a)〜(c)における二次処理水は、必要に応じて更にイオン交換樹脂塔、活性炭塔、逆浸透膜などにより高度処理した後放流されるか、水回収される。また、図1(a)〜(c)における二次処理工程の固液分離で得られる分離汚泥は、濃縮脱水後、焼却、埋め立て処理される。或いは、嫌気性消化を経て処理される場合もある。また、一次処理工程の固液分離で得られた培養物は、そのまま脱水乾燥して、或いは、菌体内に産生された不飽和脂肪酸等の脂肪酸を分離回収して有価物として利用される。   The secondary treated water in FIGS. 1 (a) to 1 (c) is discharged after being further treated with an ion exchange resin tower, an activated carbon tower, a reverse osmosis membrane or the like, if necessary, or recovered. Moreover, the separation sludge obtained by solid-liquid separation in the secondary treatment step in FIGS. 1A to 1C is subjected to incineration and landfill treatment after concentration and dehydration. Or it may be processed through anaerobic digestion. In addition, the culture obtained by the solid-liquid separation in the primary treatment step is dehydrated and dried as it is, or fatty acids such as unsaturated fatty acids produced in the cells are separated and recovered and used as valuable resources.

<グリセリン含有廃液>
本発明で処理対象とするグリセリン含有廃液は、大豆油、パーム油、菜種油などの植物油や、回収された調理廃油、或いは魚油、牛脂などの獣脂などのバイオマスをメタノール、エタノール等でエステル交換して脂肪酸メチル又は脂肪酸エチルを主成分とするバイオディーゼルを製造する工程で副生する、粗グリセリンが例示されるが、これに限定されない。
粗グリセリンは、グリセリンを主体とし、エステル化反応の未反応物であるメタノール、エタノールといったアルコール、水酸化カリウム、水酸化ナトリウム等のエステル化反応触媒、未反応油脂などを含むものである。
<Glycerin-containing waste liquid>
The glycerin-containing waste liquid to be treated in the present invention is obtained by transesterifying biomass such as soybean oil, palm oil, rapeseed oil, etc., recovered cooking waste oil, or tallow such as fish oil, beef tallow with methanol, ethanol, etc. Although crude glycerol produced as a by-product in the process of producing biodiesel containing fatty acid methyl or fatty acid ethyl as a main component is exemplified, it is not limited thereto.
Crude glycerin is mainly composed of glycerin and contains an unreacted product of an esterification reaction, such as alcohols such as methanol and ethanol, an esterification reaction catalyst such as potassium hydroxide and sodium hydroxide, and unreacted fats and oils.

粗グリセリンの代表的な水質は、以下の通りである。
<粗グリセリンの水質>
pH:9.0〜12.0
グリセリン:40.0〜60.0重量%
メタノール、エタノール等のアルコール:2.0〜20.0重量%
カリウム、ナトリウム等のエステル化反応触媒由来金属:2.0〜15.0重量%
Typical water quality of crude glycerin is as follows.
<Water quality of crude glycerin>
pH: 9.0 to 12.0
Glycerin: 40.0 to 60.0% by weight
Alcohols such as methanol and ethanol: 2.0 to 20.0% by weight
Esterification reaction catalyst-derived metal such as potassium and sodium: 2.0 to 15.0% by weight

粗グリセリンは、そのまま一次処理に供してもよいが、前述の通り、一次処理水、その他の水で希釈した後一次処理に供してもよい。また、希釈は、一次処理工程で行ってもよい。   The crude glycerin may be subjected to the primary treatment as it is, but as described above, it may be subjected to the primary treatment after being diluted with the primary treatment water or other water. Further, dilution may be performed in a primary processing step.

<オーランチオキトリウム属微生物>
本発明において、粗グリセリンの微生物処理に用いるオーランチオキトリウム属微生物は、培養により、炭素数14以上の脂肪酸、好ましくは炭素数20以上で2つ以上の不飽和結合を有する高級不飽和脂肪酸、例えば、ミリスチン酸、パルミチン酸、ステアリン酸などの飽和脂肪酸、アラキドン酸(ARA)、エイコサジエン酸(EDA)、エイコサペンタエン酸(EPA)、ドコサペンタエン酸(DPA)、ドコサヘキサエン酸(DHA)などの不飽和脂肪酸を産生して菌体内に蓄積するものであり、熱帯から亜熱帯域にかけてのマングローブ林や河口域など、海水と淡水の入り混じる汽水域に多く生息する微生物である。
<Orlanthiochytrium microorganism>
In the present invention, the aurantiochytrium microorganism used for microbial treatment of crude glycerin is a higher fatty acid having 14 or more carbon atoms, preferably 20 or more carbon atoms and having two or more unsaturated bonds, by culture, For example, saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidonic acid (ARA), eicosadienoic acid (EDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), etc. Saturated fatty acids are produced and accumulated in the fungus body, and are abundant in the brackish waters where seawater and fresh water are mixed, such as mangrove forests and estuaries from the tropics to the subtropical zone.

オーランチオキトリウム属微生物は、例えば、次のようにして採取することができる。
オーランチオキトリウム属微生物の遊走細胞は多糖類に対する走化性を有することから、水面に浮かべた松花粉の周囲にオーランチオキトリウム属微生物の遊走細胞を選択的に濃縮することができる。例えば、天然海から採取した海水に少量の松花粉を添加し、数日間放置した後に松花粉とその周辺の海水を、抗生物質を添加した寒天培地に塗布することでオーランチオキトリウム属微生物のコロニーを形成させ採取することができる。
The Aulanthiochytrium microorganism can be collected, for example, as follows.
Since the migratory cells of the Aulanthiochytrium microorganism have chemotaxis to polysaccharides, the migratory cells of the Aurantiochytrium microorganism can be selectively concentrated around the pine pollen floating on the water surface. For example, a small amount of pine pollen is added to seawater collected from the natural sea, and after standing for several days, the pine pollen and the surrounding seawater are applied to an agar medium supplemented with antibiotics. Colonies can be formed and collected.

<一次処理>
オーランチオキトリウム属微生物による粗グリセリンの処理、即ち、粗グリセリンを栄養源とするオーランチオキトリウム属微生物の培養による粗グリセリンの処理は、オーランチオキトリウム属微生物を保持する微生物処理槽(オーランチオキトリウム属微生物培養槽)に、粗グリセリン又はその希釈液を導入して所定時間処理(培養)することにより行われる。
<Primary processing>
Treatment of crude glycerin with an auranthiochytrium microorganism, that is, treatment of crude glycerin by cultivation of an auranthiochytrium microorganism using crude glycerin as a nutrient source is a microorganism treatment tank (au It is carried out by introducing crude glycerin or a diluted solution thereof into a lanthiochytrium microorganism culture tank) and treating (culturing) it for a predetermined time.

オーランチオキトリウム属微生物は海洋性の微生物であるため、若干濃度の無機塩類が存在しないと増殖できない。そこで、本発明では、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸ナトリウム、塩化カルシウム等の無機塩類の存在下に微生物処理を行うために、必要に応じて粗グリセリン又はその希釈液に、工業用岩塩や海水、ミネラル含有水として工業用水や水道水などの新水や、それを含む廃水などを添加する。その添加量は、オーランチオキトリウム属微生物を培養するのに必要な無機塩類を供給する程度でよく、通常、微生物処理系内の液中の無機塩類濃度が0.2〜3重量%、好ましくは0.2〜1.5重量%の範囲となる量である。   Since Aulanthiochytrium microorganisms are marine microorganisms, they cannot grow unless there are some inorganic salts. Therefore, in the present invention, in order to perform microbial treatment in the presence of inorganic salts such as sodium chloride, potassium chloride, magnesium chloride, sodium sulfate, and calcium chloride, industrial rock salt is added to crude glycerin or a diluted solution thereof as necessary. Add fresh water such as industrial water and tap water or waste water containing it as seawater, mineral-containing water. The amount of addition may be such that the inorganic salts necessary for culturing the Aurantiochytrium microorganism are supplied, and the concentration of inorganic salts in the liquid in the microorganism treatment system is usually 0.2 to 3% by weight, preferably Is an amount in the range of 0.2 to 1.5% by weight.

また、微生物の増殖には、有機物由来の炭素のみならず通常、窒素やリンも必要とされ、オーランチオキトリウム属微生物についてもこれらの存在が必要となる。グリセリン含有廃液には前述のバイオディーゼル製造工程で副生する粗グリセリンのように、窒素についてもリンについても微生物の増殖に必要な量が含まれていない場合が多い。従って、このような場合、粗グリセリン又はその希釈液にリン源及び窒素源を添加することが好ましい。   In addition, the growth of microorganisms usually requires not only carbon derived from organic substances but also nitrogen and phosphorus, and the presence of auranthiochytrium microorganisms is also necessary. In many cases, the glycerin-containing waste liquid does not contain an amount necessary for the growth of microorganisms for both nitrogen and phosphorus, like the crude glycerin by-produced in the biodiesel production process described above. Therefore, in such a case, it is preferable to add a phosphorus source and a nitrogen source to the crude glycerin or a diluted solution thereof.

リン源としては、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二カリウムなどを用いることができるが、リン成分を含む廃水であってもよい。リン源の添加量は、オーランチオキトリウム属微生物を培養するのに必要なリン源を供給する程度でよく、通常、微生物処理系内の液中のリン濃度が10mg/L以上、好ましくは50mg/L以上、例えば100〜2,000mg/L程度となる量である。   As the phosphorus source, disodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate and the like can be used, but waste water containing a phosphorus component may also be used. The addition amount of the phosphorus source is sufficient to supply the phosphorus source necessary for culturing the Aulanthiochytrium microorganism, and the phosphorus concentration in the liquid in the microorganism treatment system is usually 10 mg / L or more, preferably 50 mg. / L or more, for example, an amount of about 100 to 2,000 mg / L.

窒素源としては、硝酸、硝酸塩、アンモニウム塩などの無機窒素や、尿素、アミノ酸などの有機窒素を用いることができるが、窒素成分を含む廃水であってもよい。窒素の添加量は、オーランチオキトリウム属微生物を培養するのに必要な窒素を供給する程度でよく、通常、微生物処理系内の液中の窒素濃度が100mg/L以上、好ましくは250mg/L以上、例えば250〜1,000mg/L程度となる量である。   As the nitrogen source, inorganic nitrogen such as nitric acid, nitrate and ammonium salt, and organic nitrogen such as urea and amino acid can be used, but waste water containing a nitrogen component may also be used. The amount of nitrogen added is sufficient to supply nitrogen necessary for culturing the Aurantiochytrium microorganism, and the nitrogen concentration in the liquid in the microorganism treatment system is usually 100 mg / L or more, preferably 250 mg / L. For example, the amount is about 250 to 1,000 mg / L.

また、オーランチオキトリウム属微生物の培養時のpH条件についても、一般の生物処理と同様に最適なpH条件が存在し、その好適pHは通常3.5〜9.0、好ましくは5.0〜8.0の範囲である。グリセリン含有廃液のpHは通常アルカリ性であるため、必要に応じて酸の添加によるpH調整を行う。ただし、粗グリセリンが酸性の場合は、アルカリの添加によるpH調整を行う。   Further, there is an optimum pH condition for culturing auranthiochytrium microorganisms as in the case of general biological treatment, and the preferred pH is usually 3.5 to 9.0, preferably 5.0. It is in the range of ~ 8.0. Since the pH of the glycerin-containing waste liquid is usually alkaline, the pH is adjusted by adding an acid as necessary. However, when the crude glycerin is acidic, the pH is adjusted by adding an alkali.

また、微生物処理系内のオーランチオキトリウム属微生物の濃度は、過度に低いと粗グリセリンを栄養源とする微生物処理の効率が悪いため、微生物処理系内の液中の菌体の乾燥重量濃度として2g/L以上、特に4g/L以上であることが好ましい。ただし、オーランチオキトリウム属微生物の濃度が過度に高いと処理に必要な酸素量が増大するため、酸素供給のための空気曝気動力が嵩んだり、酸素使用に伴うコスト増が生じたりするので、菌体の乾燥重量濃度として好ましくは100g/L以下とする。   Also, if the concentration of Auranthiochytrium microorganisms in the microbial treatment system is too low, the efficiency of microbial treatment using crude glycerin as a nutrient source is poor, so the dry weight concentration of the cells in the liquid in the microbial treatment system Is preferably 2 g / L or more, particularly 4 g / L or more. However, if the concentration of Auranthiochytrium microorganisms is excessively high, the amount of oxygen required for treatment increases, which increases the aeration power for supplying oxygen and increases the costs associated with the use of oxygen. The dry weight concentration of the bacterial cells is preferably 100 g / L or less.

また、オーランチオキトリウム属微生物による微生物処理温度は通常5〜40℃、好ましくは20〜35℃程度で行われる。   The microbial treatment temperature by the Aulanthiochytrium microorganism is usually 5 to 40 ° C, preferably about 20 to 35 ° C.

オーランチオキトリウム属微生物による微生物処理後は、微生物処理水を固液分離して一次処理水と分離汚泥(培養物)を得る。この固液分離に当たり、オーランチオキトリウム属微生物の微生物細胞に凝集性がある場合には、沈殿槽による沈降分離などで固液分離が可能であるが、微生物細胞に凝集性がない場合や、経時により沈降性が悪化した場合などは必要に応じてポリ塩化アルミニウム(PAC)や塩化鉄(III)等の無機凝集剤や有機凝集剤などの各種の凝集剤を添加する凝集処理を行った後固液分離を行うことが好ましい。
微生物処理水の固液分離には、その他、加圧浮上、膜分離、遠心分離など種々の固液分離方法が単独で、もしくはこれらの組み合わせで適用することができる。
After the microbial treatment with the Aurantiochytrium microorganism, the microbial treated water is solid-liquid separated to obtain primary treated water and separated sludge (cultured product). In this solid-liquid separation, if the microbial cells of the Aurantiochytrium microorganism are aggregating, solid-liquid separation is possible by sedimentation separation in a sedimentation tank, but if the microbial cells are not aggregating, If sedimentation deteriorates over time, etc., after performing agglomeration treatment by adding various aggregating agents such as inorganic aggregating agents such as polyaluminum chloride (PAC) and iron chloride (III) and organic aggregating agents as necessary It is preferable to perform solid-liquid separation.
For solid-liquid separation of microbial treated water, various other solid-liquid separation methods such as pressurized flotation, membrane separation, and centrifugal separation can be applied singly or in combination.

また、微生物処理槽として膜分離式バイオリアクター(MBR)を採用することもできる。この場合、膜の目詰まりが問題となる場合には、必要に応じて凝集剤を添加してもよい。   Moreover, a membrane separation bioreactor (MBR) can also be employed as the microorganism treatment tank. In this case, if clogging of the film becomes a problem, a flocculant may be added as necessary.

<二次処理>
一次処理で得られた一次処理水(微生物処理水の固液分離水)は、次いで二次処理を行って、一次処理水中に残留する有機物を除去する。
この二次処理としては、一次処理水中の有機物を除去することができるものであればよく、特に制限はなく、活性汚泥法などの好気性生物処理、メタンを生成する嫌気性消化処理、凝集剤を用いた凝集分離処理、精密濾過(MF)膜や逆浸透(RO)膜を用いた膜濾過ないしは膜分離処理、砂濾過処理などの1種又はこれらの2種以上の組み合わせなどを用いることができるが、何らこれらに限定されるものではなく、一般的な水処理に用いられる方法をいずれも使用することができる。
<Secondary processing>
The primary treatment water (solid-liquid separation water of the microbial treatment water) obtained by the primary treatment is then subjected to a secondary treatment to remove organic substances remaining in the primary treatment water.
The secondary treatment is not particularly limited as long as it can remove organic substances in the primary treated water, and is an aerobic biological treatment such as an activated sludge method, an anaerobic digestion treatment that produces methane, and a flocculant. It is possible to use one or a combination of two or more of these, such as agglomeration separation treatment using a membrane, membrane filtration or membrane separation treatment using a microfiltration (MF) membrane or reverse osmosis (RO) membrane, and sand filtration treatment. However, the method is not limited to these, and any method used for general water treatment can be used.

一次処理水を更に二次処理して有機物を除去することにより、後述の実施例に示されるように、溶解性TOC等が十分に低減された二次処理水が得られる。この二次処理水は、このまま放流することもできるが、更にイオン交換塔や活性炭塔、RO膜などにより高度処理して水回収してもよく、このような処理後に放流してもよい。   By further subjecting the primary treated water to the removal of organic substances, secondary treated water in which the soluble TOC and the like are sufficiently reduced can be obtained as shown in the examples described later. The secondary treated water can be discharged as it is, but it may be further treated by an advanced treatment using an ion exchange tower, an activated carbon tower, an RO membrane, etc., or may be discharged after such treatment.

<有価物の回収>
一次処理では粗グリセリンに含まれるグリセリン等の有機成分を栄養源とする培養でオーランチオキトリウム属微生物が不飽和脂肪酸等の脂肪酸を産生し、菌体内に蓄積する。微生物処理水の固液分離で得られる分離汚泥は、このような不飽和脂肪酸等の脂肪酸を含むオーランチオキトリウム属微生物を主体とするものであり、これらは、必要に応じて更に脱水処理等を行った後、乾燥処理して、脂肪酸を含む菌体として、水産餌料や家畜飼料として利用される。或いは、この細菌から抽出法等の常法に従って不飽和脂肪酸等の脂肪酸を分離して健康食品(サプリメント)や飼料添加物として利用される。
<Recovery of valuable materials>
In the primary treatment, auranthiochytrium microorganisms produce fatty acids such as unsaturated fatty acids in culture using organic components such as glycerin contained in crude glycerin as nutrients, and accumulate in the cells. Separation sludge obtained by solid-liquid separation of microbially treated water is mainly composed of auranthiochytrium microorganisms containing fatty acids such as unsaturated fatty acids, and these are further dehydrated as necessary. Then, it is dried and used as an aquatic feed or livestock feed as cells containing fatty acids. Alternatively, fatty acids such as unsaturated fatty acids are separated from this bacterium according to conventional methods such as extraction, and used as health foods (supplements) and feed additives.

[グリセリン含有廃液の処理装置]
以下に、図2〜3を参照して本発明のグリセリン含有廃液の処理装置の実施の形態を説明する。図2〜3において、同一機能を奏する部材には同一符号を付してある。
[Glycerin-containing waste liquid treatment equipment]
Below, with reference to FIGS. 2-3, embodiment of the processing apparatus of the waste liquid containing glycerol of this invention is described. 2 to 3, members having the same function are denoted by the same reference numerals.

図2の処理装置は、粗グリセリンの貯槽1、微生物処理槽(オーランチオキトリウム属微生物培養槽)2、沈殿槽3、二次処理槽としての流動担体式活性汚泥槽4、及び遠心分離機5で主として構成され、粗グリセリンは、貯槽1より、ポンプPで配管11を経て抜き出され、微生物処理槽2に導入される。この微生物処理槽2には、無機塩類とリン源と窒素源がポンプPにより配管12を経て添加されると共に、配管20を経て希釈水が添加されている。また、必要に応じてpH調整剤が添加される。
なお、無機塩類、リン源、窒素源、希釈水は、貯槽1に添加されてもよい。
The processing apparatus of FIG. 2 includes a crude glycerin storage tank 1, a microorganism processing tank (aulanthiochytrium microorganism culture tank) 2, a sedimentation tank 3, a fluidized carrier activated sludge tank 4 as a secondary processing tank, and a centrifuge. 5, the crude glycerin is extracted from the storage tank 1 through the pipe 11 by the pump P 1 and introduced into the microorganism treatment tank 2. Into this microorganism treatment tank 2, inorganic salts, a phosphorus source, and a nitrogen source are added via a pipe 12 by a pump P 2 and dilution water is added via a pipe 20. Moreover, a pH adjuster is added as needed.
In addition, inorganic salts, a phosphorus source, a nitrogen source, and dilution water may be added to the storage tank 1.

微生物処理槽2においては、ブロワ2Aによる曝気及び撹拌機2Bによる撹拌下に、粗グリセリンを栄養源とするオーランチオキトリウム属微生物の培養が行われると共に粗グリセリン中の有機物が分解除去される。微生物処理槽2の微生物処理水は配管13より沈殿槽3に送給されて固液分離される。沈殿槽3の分離水は一次処理水として配管14より二次処理槽である流動担体式活性汚泥槽4に送給されてブロワ4Aによる曝気下に活性汚泥処理され、一次処理水中に残留する有機物が分解除去され、処理水は担体分離用のスクリーン4Bを経て配管15より系外へ排出され、更に高度処理されるか、放流される。   In the microorganism treatment tank 2, the auranthiochytrium microorganisms using the crude glycerin as a nutrient source are cultured while being aerated by the blower 2 </ b> A and stirred by the stirrer 2 </ b> B, and organic substances in the crude glycerin are decomposed and removed. The microbial treatment water in the microbial treatment tank 2 is supplied to the precipitation tank 3 through the pipe 13 and is separated into solid and liquid. The separated water in the settling tank 3 is supplied as primary treated water to the fluidized carrier activated sludge tank 4 which is a secondary treatment tank through the pipe 14 and is treated with activated sludge under aeration by a blower 4A, and remains in the primary treated water. Then, the treated water is discharged out of the system 15 through the carrier separation screen 4B and further processed or discharged.

一方、沈殿槽3の分離汚泥は、培養により不飽和脂肪酸等の脂肪酸を蓄積したオーランチオキトリウム属微生物を含むものであり、配管16を経て抜き出され、一部はバルブVを備える配管17を経てスクリュウデカンタ型遠心分離機等の遠心分離機5で更に脱水処理されて菌体が分離され、配管18より系外へ排出される。この菌体は、前述の通り、そのまま、或いは菌体から不飽和脂肪酸等の脂肪酸等を分離して有効利用される。遠心分離機5の脱離液は一次処理水と共に流動担体式活性汚泥槽4に送給して処理してもよい。分離汚泥の残部は、微生物処理槽2の微生物濃度保持のためにポンプPを備える配管19を経て微生物処理槽2に返送される。 On the other hand, the separated sludge in the sedimentation tank 3 contains aurantiochytrium microorganisms in which fatty acids such as unsaturated fatty acids are accumulated by culturing, and is extracted through a pipe 16 and a part of the pipe 17 provided with a valve V. After that, the cells are further dehydrated by the centrifugal separator 5 such as a screw decanter type centrifugal separator to separate the cells and are discharged from the pipe 18 to the outside of the system. As described above, the cells are effectively used as they are or after separating fatty acids such as unsaturated fatty acids from the cells. The desorbed liquid from the centrifugal separator 5 may be processed by being fed to the fluid carrier activated sludge tank 4 together with the primary treated water. The remaining portion of the separated sludge is returned to the microorganism treatment tank 2 via the pipe 19 provided with the pump P 3 in order to maintain the microorganism concentration in the microorganism treatment tank 2.

図3の処理装置は、沈殿槽3の代りにMF膜分離装置6を設けた点が図2に示す装置と異なりその他は同様の構成とされている。この装置においても、図2の装置と同様にオーランチオキトリウム属微生物による粗グリセリンの処理と不飽和脂肪酸等の脂肪酸の製造が行われる。   3 differs from the apparatus shown in FIG. 2 in that the MF membrane separation device 6 is provided instead of the settling tank 3, and the other configuration is the same. In this apparatus, as in the apparatus of FIG. 2, the treatment of crude glycerin and the production of fatty acids such as unsaturated fatty acids are carried out by the auranthiochytrium microorganism.

なお、図2〜3の装置は、本発明のグリセリン含有廃液の処理装置の実施の形態の一例を示すものであって、本発明のグリセリン含有廃液の処理装置は何ら図示のものに限定されない。   In addition, the apparatus of FIGS. 2-3 shows an example of embodiment of the processing apparatus of the glycerol containing waste liquid of this invention, Comprising: The processing apparatus of the glycerol containing waste liquid of this invention is not limited to what is illustrated.

例えば、図2〜3では、二次処理槽として流動担体式活性汚泥槽4を用いており、流動担体式活性汚泥槽4の処理水出口のスクリーン4Aにより担体の分離と共に固液分離が行われるため、流動担体式活性汚泥槽2の後段の固液分離手段が省略されているが、流動担体式活性汚泥槽等の二次処理槽の後段に沈殿槽や膜分離装置等の固液分離手段が設けられてもよい。
また、二次処理槽は、メタン発酵槽等の嫌気性処理槽であってもよく、嫌気性処理と好気性処理の二段処理であってもよい。
また、微生物処理槽2と沈殿槽3との間に凝集処理槽、例えば、急速撹拌槽と緩速撹拌槽とからなる凝集処理槽を設け、微生物処理槽2からの微生物処理水を、急速撹拌槽に導入して凝集剤を添加混合し、更に緩速撹拌槽で凝集処理した後、沈殿槽3に送給するようにしてもよい。
For example, in FIGS. 2 to 3, the fluidized carrier activated sludge tank 4 is used as the secondary treatment tank, and the solid-liquid separation is performed together with the separation of the carrier by the screen 4 </ b> A at the treated water outlet of the fluidized carrier activated sludge tank 4. Therefore, the solid-liquid separation means in the subsequent stage of the fluid carrier type activated sludge tank 2 is omitted, but the solid-liquid separation means such as a sedimentation tank and a membrane separator is provided in the latter stage of the secondary treatment tank such as the fluid carrier type activated sludge tank. May be provided.
The secondary treatment tank may be an anaerobic treatment tank such as a methane fermentation tank, or may be a two-stage treatment of an anaerobic treatment and an aerobic treatment.
Further, an agglomeration treatment tank, for example, an agglomeration treatment tank composed of a rapid agitation tank and a slow agitation tank is provided between the microbial treatment tank 2 and the sedimentation tank 3, and the microbial treatment water from the microbial treatment tank 2 is rapidly agitated. The flocculant may be added and mixed into the tank, and after further agglomeration treatment in a slow stirring tank, the flocculant may be fed to the precipitation tank 3.

なお、図2〜3に示されるような微生物処理槽2で粗グリセリンの処理とオーランチオキトリウム属微生物の培養を行う場合、粗グリセリン又はその希釈液の滞留時間には特に制限はないが、HRT(水理学的滞留時間)15〜50hr、SRT(汚泥滞留時間)50〜100hrで処理することが好ましい。
また、沈殿槽3等の固液分離手段で微生物処理水を固液分離して得られた分離汚泥の一部から菌体を回収し、残部を微生物処理槽2に返送する場合、分離汚泥のうちの50〜90%を菌体回収に供し、その残部を返送するようにすることが処理効率の面で好ましい。
In addition, when performing the treatment of crude glycerin and culturing auranthiochytrium microorganisms in the microorganism treatment tank 2 as shown in FIGS. 2 to 3, there is no particular limitation on the residence time of the crude glycerin or its diluted solution, It is preferable to process by HRT (hydraulic residence time) 15-50 hr and SRT (sludge residence time) 50-100 hr.
In addition, when the cells are collected from a part of the separated sludge obtained by solid-liquid separation of the microorganism-treated water by the solid-liquid separation means such as the sedimentation tank 3 and the remainder is returned to the microorganism treatment tank 2, It is preferable in terms of processing efficiency that 50 to 90% of them is used for cell recovery and the remainder is returned.

前述の通り、本発明における一次処理で得られる分離汚泥は、不飽和脂肪酸等の脂肪酸を含むオーランチオキトリウム属微生物を主体とするものであるが、この分離汚泥に必要に応じて各種の処理を施して有効利用する際の製品品質を保つため、微生物処理槽への雑菌の混入を可能な限り防ぐことが好ましい。例えば、粗グリセリンが微生物処理槽に移送されるまでの移送工程や貯留工程で雑菌が混入すると、混入した雑菌が微生物処理槽に持ち込まれ、更に培養物中に混入することとなるため、培養物又は培養物から分離した不飽和脂肪酸等の脂肪酸を健康食品や家畜飼料、水産餌料などとして利用する場合、好ましくない。   As described above, the separated sludge obtained by the primary treatment in the present invention is mainly composed of auranthiochytrium microorganisms containing fatty acids such as unsaturated fatty acids, but various treatments can be applied to the separated sludge as necessary. In order to maintain the product quality when effectively used, it is preferable to prevent contamination of microorganisms in the microorganism treatment tank as much as possible. For example, if miscellaneous bacteria are mixed in the transfer process or storage process until crude glycerin is transferred to the microorganism treatment tank, the mixed bacteria are brought into the microorganism treatment tank and further mixed into the culture. Or when using fatty acids, such as an unsaturated fatty acid isolate | separated from culture, as health food, livestock feed, aquatic feed, etc., it is not preferable.

従って、粗グリセリンを一時的に貯留する貯槽、この貯槽まで粗グリセリンを移送する移送配管、貯槽内の粗グリセリンを微生物処理槽に移送する移送配管などは、可能な限り雑菌の混入を防ぐ構造とし、また、定期的に又は不定期的に殺菌剤や熱水による除菌又は殺菌処理を行うことが好ましく、従って、このような処理に対応し得る部材構成とすることが好ましい。   Therefore, the storage tank that temporarily stores the crude glycerin, the transfer pipe that transfers the crude glycerin to this storage tank, the transfer pipe that transfers the crude glycerin in the storage tank to the microorganism treatment tank, etc., have a structure that prevents contamination of germs as much as possible. In addition, it is preferable to perform sterilization or sterilization treatment with a bactericide or hot water regularly or irregularly, and therefore, it is preferable to have a member configuration that can cope with such treatment.

また、上述の微生物処理槽についても同様に雑菌の混入を防止する構造とし、また適宜除菌又は殺菌処理を行うことが好ましい。   Moreover, it is preferable that the above-described microbial treatment tank has a structure that prevents contamination of germs and that sterilization or sterilization is appropriately performed.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

[オーランチオキトリウム属微生物の採取]
以下の方法で、沖縄県石垣島沿岸の海水からオーランチオキトリウム属微生物(オーランチオキトリウム属微生物mh2112株)を採取した。
採取した海水100mLに少量の松花粉を添加し、一週間放置した後に松花粉とその周辺の海水を、塩類濃度50%の人工海水に、グリセリン(キシダ化学、CAS56−81−5)を100g/L溶解させた後、抗生物質としてペニシリンGカリウムおよびトレプトマイシン硫酸塩をそれぞれ500mg/L添加し1.5%寒天で固化した寒天培地に塗布し、微生物のコロニーを形成させた。コロニーを同じ寒天培地に3回以上、植継ぎを行い、微生物を単離した。単離した微生物を後述の廃食用油(植物油)を原料にバイオディーゼル燃料を製造した際に副成するグリセリン含有廃液に人工海水原料塩とリン酸二水素カリウムを添加し、無機塩類濃度を1.5重量%に調整したのち、pHを7.0に調整した液(5mL)で試験管培養し、増殖させた細胞の顕微鏡観察結果と、細胞から抽出した脂肪酸組成の分析結果からオーランチオキトリウム属微生物と判定された微生物を選抜した。
このようにして採取したオーランチオキトリウム属mh2112株の顕微鏡写真を図4に示す。
[Collecting Aurantiochytrium microorganisms]
The aurantiochytrium microorganism (Alanthiochytrium microorganism mh2112 strain) was collected from seawater along the coast of Ishigaki Island in Okinawa Prefecture by the following method.
A small amount of pine pollen is added to 100 mL of the collected seawater, and after standing for one week, the pine pollen and the surrounding seawater are mixed with artificial seawater with a salt concentration of 50%, and glycerin (Kishida Chemical, CAS 56-81-5) is 100 g / After L dissolution, 500 mg / L each of penicillin G potassium and treptomycin sulfate was added as antibiotics and applied to an agar medium solidified with 1.5% agar to form microbial colonies. Colonies were transplanted three times or more on the same agar medium, and microorganisms were isolated. Artificial seawater raw salt and potassium dihydrogen phosphate are added to the glycerin-containing waste liquid produced as a by-product when biodiesel fuel is produced using the isolated microorganisms as a raw material for waste cooking oil (vegetable oil), which will be described later, and the inorganic salt concentration is set to 1. After adjusting to 5% by weight, culture in a test tube with a solution adjusted to pH 7.0 (5 mL), and the results of microscopic observation of the proliferated cells and the analysis result of fatty acid composition extracted from the cells Microorganisms determined to be thorium microorganisms were selected.
A micrograph of the Aulanthiochytrium sp. Mh2112 strain collected in this manner is shown in FIG.

[実施例1]
上記のオーランチオキトリウム属微生物mh2112株を用い、廃食用油(植物油)からバイオディーゼルを製造する過程で副生される粗グリセリンを、図2に示す構成の試験装置で処理する試験を行った。ただし、リン源としてのリン酸二水素カリウム(キシダ化学、CAS7778−77−0)と、窒素源としての硝酸(キシダ化学、CAS7697−37−2)と、希釈水は貯槽1に添加し、希釈水により粗グリセリンを5倍に希釈し、この希釈粗グリセリンに対して、硝酸を0.7重量%、リン酸二水素カリウムを0.2重量%添加した。
試験に供した粗グリセリン(希釈前の粗グリセリン)の組成は下記表1に示す通りである。
[Example 1]
Using the above-mentioned Aurantiochytrium sp. Strain mh2112, a test was conducted in which crude glycerin produced as a by-product in the process of producing biodiesel from waste cooking oil (vegetable oil) was treated with a test apparatus having the configuration shown in FIG. . However, potassium dihydrogen phosphate as a phosphorus source (Kishida Chemical, CAS 7778-77-0), nitric acid as a nitrogen source (Kishida Chemical, CAS 7697-37-2), and dilution water are added to the storage tank 1 for dilution. The crude glycerin was diluted 5 times with water, and 0.7% by weight of nitric acid and 0.2% by weight of potassium dihydrogen phosphate were added to the diluted crude glycerin.
The composition of crude glycerin subjected to the test (crude glycerin before dilution) is as shown in Table 1 below.

Figure 2016036760
Figure 2016036760

リン酸二水素カリウム及び硝酸を添加した希釈粗グリセリンを、貯槽1を経て、オーランチオキトリウム属微生物mh2112を保持する微生物処理槽(オーランチオキトリウム属微生物槽)2に送給し、この微生物処理槽2に無機塩類として、人工海水原料塩(マリンアートSF−1:大阪薬研株式会社商品)を添加し、処理水量0.5L/hrの条件で試験を実施した。微生物処理槽2内の液の無機塩類(塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸ナトリウムを主体とする。)の濃度は1.5重量%で、リン濃度は1,500mg/L、窒素濃度は500mg/Lとなった。微生物処理槽2内の液のpHは硫酸を用いて6.5〜7.5の範囲に調整した。また、微生物処理槽1内の液中のオーランチオキトリウム属微生物濃度は、菌体の乾燥重量濃度で4〜6g/Lとし、液温は28℃とした。
微生物処理槽1の容量は15Lであり、HRTが30hr、SRTが60〜70hrとなるように運転した。
Diluted crude glycerin added with potassium dihydrogen phosphate and nitric acid is supplied to a microbial treatment tank (aulanthiochytrium microorganism tank) 2 holding an auranthiochytrium microorganism mh2112 through a storage tank 1, and this microorganism Artificial seawater raw material salt (Marine Art SF-1: Osaka Yakken Co., Ltd. product) was added to the treatment tank 2 as an inorganic salt, and the test was conducted under the condition of a treatment water amount of 0.5 L / hr. The concentration of inorganic salts (mainly sodium chloride, potassium chloride, magnesium chloride and sodium sulfate) in the liquid in the microbial treatment tank 2 is 1.5% by weight, the phosphorus concentration is 1,500 mg / L, and the nitrogen concentration is It became 500 mg / L. The pH of the liquid in the microorganism treatment tank 2 was adjusted to a range of 6.5 to 7.5 using sulfuric acid. Moreover, the auranthiochytrium genus microbe density | concentration in the liquid in the microbe processing tank 1 was 4-6 g / L in the dry weight density | concentration of a microbial cell, and the liquid temperature was 28 degreeC.
The capacity of the microbial treatment tank 1 was 15 L, and it was operated so that the HRT was 30 hr and the SRT was 60 to 70 hr.

沈殿槽3の容量は0.8L、レーキ周速1rpmで、水面積負荷が13m/m/日となるようにし、分離水(一次処理水、SS濃度10〜50mg/L)と分離汚泥(培養物、SS濃度30〜100g/L)を得、分離汚泥のうち50〜60%を微生物処理槽1に返送し、残部を遠心分離機5で遠心分離して菌体(スラリー、含水率90%前後)を回収した。なお、沈殿槽3には凝集剤としてポリ塩化アルミニウム(PAC)を200〜500mg/L添加した。また、遠心分離機5としては、実験用遠心分離機を使用し、スクリューデカンタ型遠心分離機と同等の遠心力(2,000〜3,000G)となるように回転数を調整した。
流動担体式活性汚泥槽4には、生物担体方式生物膜法の小型試験装置(バイオマイティSK:栗田工業株式会社商品)を用い、3mm角のポリウレタンスポンジを見掛け容量で50%となるように投入し、沈殿槽3の分離水(一次処理水)を導入して1.0kg−BOD/m/日の負荷量で運転を行った。
The capacity of the sedimentation tank 3 is 0.8 L, the rake peripheral speed is 1 rpm, the water area load is 13 m 3 / m 2 / day, the separated water (primary treated water, SS concentration 10 to 50 mg / L) and the separated sludge (Culture, SS concentration 30 to 100 g / L) is obtained, 50 to 60% of the separated sludge is returned to the microorganism treatment tank 1, and the remainder is centrifuged with the centrifuge 5 to obtain bacterial cells (slurry, moisture content). About 90%). In addition, 200 to 500 mg / L of polyaluminum chloride (PAC) as a flocculant was added to the precipitation tank 3. In addition, as the centrifugal separator 5, an experimental centrifugal separator was used, and the rotation speed was adjusted so that the centrifugal force (2,000 to 3,000 G) was the same as that of the screw decanter centrifugal separator.
In the fluidized carrier type activated sludge tank 4, a small test device (Biomighty SK: Kurita Kogyo Co., Ltd.) using a biological carrier type biofilm method is used and an apparent volume of 3 mm square polyurethane sponge is 50%. Then, the separated water (primary treated water) of the precipitation tank 3 was introduced and the operation was performed at a load of 1.0 kg-BOD / m 3 / day.

この処理試験における原水(微生物処理槽2の流入水)、一次処理水(沈殿槽3の分離水)、及び二次処理水(流動担体式活性汚泥槽4の流出水)の水質の分析結果を表2に示す。   The analysis results of the quality of raw water (inflow water from the microorganism treatment tank 2), primary treatment water (separated water from the sedimentation tank 3), and secondary treatment water (outflow water from the fluid carrier activated sludge tank 4) in this treatment test It shows in Table 2.

Figure 2016036760
Figure 2016036760

表2に示す通り、本発明により、粗グリセリンを問題なく処理できることが確認された。   As shown in Table 2, according to the present invention, it was confirmed that crude glycerin can be treated without problems.

遠心分離機5で回収した菌体の細胞内に蓄積された脂肪酸をクロロホルム−メタノール混合溶液で抽出し、塩酸を10重量%濃度混合したメタノールを用いてメチルエステル化した後、ガスクロマトグラフィーで分析し、その結果を図5に示した。
このガスクロマトグラフィー分析結果から、回収したオーランチオキトリウム属微生物の菌体には、脂肪酸が35〜41重量%蓄積されており、うち約40重量%がDHAを主にする不飽和脂肪酸であることが確認された。
The fatty acid accumulated in the cells of the cells recovered by the centrifuge 5 is extracted with a chloroform-methanol mixed solution, methylesterified with methanol mixed with 10% by weight of hydrochloric acid, and then analyzed by gas chromatography. The results are shown in FIG.
From the gas chromatographic analysis results, 35 to 41% by weight of fatty acid is accumulated in the collected cells of the Aulanthiochytrium microorganism, of which about 40% by weight is unsaturated fatty acid mainly composed of DHA. It was confirmed.

以上の結果から、本発明によれば、粗グリセリンの処理と同時に、有価物である不飽和脂肪酸を含む脂肪酸を製造できることが確認された。   From the above result, according to this invention, it was confirmed that the fatty acid containing the unsaturated fatty acid which is a valuable thing can be manufactured simultaneously with the process of crude glycerol.

1 貯槽
2 微生物処理槽
3 沈殿槽
4 流動担体式活性汚泥槽
5 遠心分離機
6 MF膜分離装置
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Microbial processing tank 3 Settling tank 4 Fluid carrier type activated sludge tank 5 Centrifugal separator 6 MF membrane separator

Claims (18)

グリセリン含有廃液を、オーランチオキトリウム属に属し、炭素数14以上の脂肪酸を生産しうる微生物(以下「オーランチオキトリウム属微生物」と称す。)で処理した後固液分離する一次処理工程と、該一次処理工程の処理水中に残留する有機物を除去する二次処理工程とを有することを特徴とするグリセリン含有廃液の処理方法。   A primary treatment step in which a glycerin-containing waste liquid is treated with a microorganism belonging to the genus Aulanthiochytrium and capable of producing a fatty acid having 14 or more carbon atoms (hereinafter referred to as “aulanthiochytrium microorganism”), followed by solid-liquid separation; And a secondary treatment step for removing organic substances remaining in the treated water of the primary treatment step. 前記一次処理工程の微生物処理系内の無機塩類濃度が0.2〜3重量%となるように前記グリセリン含有廃液に無機塩類を添加することを特徴とする請求項1に記載のグリセリン含有廃液の処理方法。   The glycerin-containing waste liquid according to claim 1, wherein inorganic salts are added to the glycerin-containing waste liquid so that the inorganic salt concentration in the microbial treatment system of the primary treatment step is 0.2 to 3% by weight. Processing method. 前記一次処理工程の微生物処理系内のリン濃度が10mg/L以上となるように前記グリセリン含有廃液にリン源を添加することを特徴とする請求項1又は2に記載のグリセリン含有廃液の処理方法。   The method for treating a glycerin-containing waste liquid according to claim 1 or 2, wherein a phosphorus source is added to the glycerin-containing waste liquid so that a phosphorus concentration in the microbial treatment system in the primary treatment step is 10 mg / L or more. . 前記一次処理工程の微生物処理系内の窒素濃度が100mg/L以上となるように前記グリセリン含有廃液に窒素源を添加することを特徴とする請求項1ないし3のいずれか1項に記載のグリセリン含有廃液の処理方法。   The glycerin according to any one of claims 1 to 3, wherein a nitrogen source is added to the glycerin-containing waste liquid so that a nitrogen concentration in the microbial treatment system in the primary treatment step is 100 mg / L or more. Treatment method for waste liquid. 前記一次処理工程の微生物処理系内のpHを3.5〜9.0に調整することを特徴とする請求項1ないし4のいずれか1項に記載のグリセリン含有廃液の処理方法。   The method for treating a glycerin-containing waste liquid according to any one of claims 1 to 4, wherein the pH in the microorganism treatment system in the primary treatment step is adjusted to 3.5 to 9.0. 前記一次処理工程の微生物処理系内の前記オーランチオキトリウム属微生物の濃度が、菌体の乾燥重量濃度で2g/L以上であることを特徴とする請求項1ないし5のいずれか1項に記載のグリセリン含有廃液の処理方法。   The concentration of the Aurantiochytrium microorganism in the microorganism treatment system of the primary treatment step is 2 g / L or more in terms of the dry weight concentration of the bacterial cell, according to any one of claims 1 to 5. The processing method of the glycerol containing waste liquid of description. 前記オーランチオキトリウム属微生物が、炭素数20以上で不飽和結合を2つ以上有する高級不飽和脂肪酸を生産する微生物であり、前記一次処理工程で増殖した菌体から該高級不飽和脂肪酸を採取する産生物回収工程を有することを特徴とする請求項1ないし6のいずれか1項に記載のグリセリン含有廃液の処理方法。   The Aulanthiochytrium microorganism is a microorganism that produces a higher unsaturated fatty acid having 20 or more carbon atoms and two or more unsaturated bonds, and the higher unsaturated fatty acid is collected from the cells grown in the primary treatment step. The method for treating a glycerin-containing waste liquid according to any one of claims 1 to 6, further comprising a product recovery step. 前記二次処理工程が、生物処理、凝集沈殿処理、砂濾過処理、及び膜分離処理よりなる群から選ばれる1種又は2種以上の組み合わせよりなることを特徴とする請求項1ないし7のいずれか1項に記載のグリセリン含有廃液の処理方法。   The said secondary treatment process consists of 1 type, or 2 or more types of combinations chosen from the group which consists of a biological treatment, a coagulation sedimentation treatment, a sand filtration process, and a membrane separation process. The processing method of the waste liquid containing glycerin according to claim 1. 前記グリセリン含有廃液が、バイオディーゼル製造工程で副生する粗グリセリンであることを特徴とする請求項1ないし8のいずれか1項に記載のグリセリン含有廃液の処理方法。   The method for treating glycerin-containing waste liquid according to any one of claims 1 to 8, wherein the glycerin-containing waste liquid is crude glycerin by-produced in a biodiesel production process. グリセリン含有廃液を、オーランチオキトリウム属に属し、炭素数14以上の脂肪酸を生産しうる微生物(以下「オーランチオキトリウム属微生物」と称す。)で処理した後固液分離する一次処理手段と、該一次処理手段の処理水中に残留する有機物を除去する二次処理手段とを有することを特徴とするグリセリン含有廃液の処理装置。   A primary treatment means for treating a glycerin-containing waste liquid with a microorganism belonging to the genus Aulanthiochytrium and capable of producing a fatty acid having 14 or more carbon atoms (hereinafter referred to as an "Olanthiochytrium microorganism"), followed by solid-liquid separation; And a secondary treatment means for removing organic substances remaining in the treated water of the primary treatment means. 前記一次処理手段の微生物処理系内の無機塩類濃度が0.2〜3重量%となるように前記グリセリン含有廃液に無機塩類を添加する無機塩類添加手段を有することを特徴とする請求項10に記載のグリセリン含有廃液の処理装置。   The inorganic salt adding means for adding the inorganic salt to the glycerin-containing waste liquid so that the inorganic salt concentration in the microbial treatment system of the primary treatment means is 0.2 to 3% by weight. The processing apparatus of the waste liquid containing glycerol of description. 前記一次処理手段の微生物処理系内のリン濃度が10mg/L以上となるように前記グリセリン含有廃液にリン源を添加するリン源添加手段を有することを特徴とする請求項10又は11に記載のグリセリン含有廃液の処理装置。   12. The phosphorus source addition means for adding a phosphorus source to the glycerin-containing waste liquid so that the phosphorus concentration in the microbial treatment system of the primary treatment means is 10 mg / L or more. Glycerin-containing waste liquid treatment equipment. 前記一次処理手段の微生物処理系内の窒素濃度が100mg/L以上となるように前記グリセリン含有廃液に窒素源を添加する窒素源添加手段を有することを特徴とする請求項10ないし12のいずれか1項に記載のグリセリン含有廃液の処理装置。   The nitrogen source addition means for adding a nitrogen source to the glycerin-containing waste liquid so that the nitrogen concentration in the microbial treatment system of the primary treatment means is 100 mg / L or more. The processing apparatus of the waste liquid containing glycerol of 1 item | term. 前記一次処理手段の微生物処理系内のpHを3.5〜9.0に調整するpH調整手段を有することを特徴とする請求項10ないし13のいずれか1項に記載のグリセリン含有廃液の処理装置。   The glycerin-containing waste liquid treatment according to any one of claims 10 to 13, further comprising pH adjusting means for adjusting the pH in the microorganism treatment system of the primary treatment means to 3.5 to 9.0. apparatus. 前記一次処理手段の微生物処理系内の前記オーランチオキトリウム属微生物の濃度が、菌体の乾燥重量濃度で2g/L以上であることを特徴とする請求項10ないし14のいずれか1項に記載のグリセリン含有廃液の処理装置。   The concentration of the Aurantiochytrium microorganism in the microorganism treatment system of the primary treatment means is 2 g / L or more in terms of the dry weight concentration of the bacterial cells, according to any one of claims 10 to 14. The processing apparatus of the waste liquid containing glycerol of description. 前記オーランチオキトリウム属微生物が、炭素数20以上で不飽和結合を2つ以上有する高級不飽和脂肪酸を生産する微生物であり、前記一次処理手段で増殖した菌体から該高級不飽和脂肪酸を採取する産生物回収手段を有することを特徴とする請求項10ないし15のいずれか1項に記載のグリセリン含有廃液の処理装置。   The Aulanthiochytrium microorganism is a microorganism that produces a higher unsaturated fatty acid having 20 or more carbon atoms and two or more unsaturated bonds, and the higher unsaturated fatty acid is collected from the cells grown by the primary treatment means The glycerin-containing waste liquid treatment apparatus according to any one of claims 10 to 15, further comprising product recovery means for performing the process. 前記二次処理手段が、生物処理槽、凝集沈殿槽、砂濾過装置、及び膜分離装置よりなる群から選ばれる1種又は2種以上の組み合わせよりなることを特徴とする請求項10ないし16のいずれか1項に記載のグリセリン含有廃液の処理装置。   17. The secondary treatment means comprises one or a combination of two or more selected from the group consisting of a biological treatment tank, a coagulation sedimentation tank, a sand filtration device, and a membrane separation device. The processing apparatus of the waste liquid containing glycerol of any one of Claims 1. 前記グリセリン含有廃液が、バイオディーゼル製造工程で副生する粗グリセリンであることを特徴とする請求項10ないし17のいずれか1項に記載のグリセリン含有廃液の処理装置。   The glycerin-containing waste liquid treatment apparatus according to any one of claims 10 to 17, wherein the glycerin-containing waste liquid is crude glycerin by-produced in a biodiesel production process.
JP2014160440A 2014-08-06 2014-08-06 Method and apparatus for treating glycerin-containing liquid waste Pending JP2016036760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160440A JP2016036760A (en) 2014-08-06 2014-08-06 Method and apparatus for treating glycerin-containing liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160440A JP2016036760A (en) 2014-08-06 2014-08-06 Method and apparatus for treating glycerin-containing liquid waste

Publications (1)

Publication Number Publication Date
JP2016036760A true JP2016036760A (en) 2016-03-22

Family

ID=55528348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160440A Pending JP2016036760A (en) 2014-08-06 2014-08-06 Method and apparatus for treating glycerin-containing liquid waste

Country Status (1)

Country Link
JP (1) JP2016036760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036216A1 (en) * 2018-08-16 2020-02-20 MoBiol株式会社 Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha
CN111894095A (en) * 2020-06-01 2020-11-06 林进峰 Underground building rainwater collecting and utilizing device
JP2021030198A (en) * 2019-08-16 2021-03-01 佛山市永原針織有限公司 Waste water treatment equipment for spinning business

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126404A (en) * 2011-12-19 2013-06-27 Sumitomo Heavy Ind Ltd Fat production method and fat production apparatus
JP2013183687A (en) * 2012-03-07 2013-09-19 Sumitomo Heavy Ind Ltd Production method of oil and fat and production system of oil and fat
JP2014030383A (en) * 2012-08-03 2014-02-20 Fuji Electric Co Ltd Method and device for producing oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126404A (en) * 2011-12-19 2013-06-27 Sumitomo Heavy Ind Ltd Fat production method and fat production apparatus
JP2013183687A (en) * 2012-03-07 2013-09-19 Sumitomo Heavy Ind Ltd Production method of oil and fat and production system of oil and fat
JP2014030383A (en) * 2012-08-03 2014-02-20 Fuji Electric Co Ltd Method and device for producing oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彼谷邦光, 養殖, vol. 48(9), JPN6016008815, August 2011 (2011-08-01), pages 29 - 32 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036216A1 (en) * 2018-08-16 2020-02-20 MoBiol株式会社 Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha
JPWO2020036216A1 (en) * 2018-08-16 2021-02-15 株式会社MoBiol藻類研究所 Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)
JP2021030198A (en) * 2019-08-16 2021-03-01 佛山市永原針織有限公司 Waste water treatment equipment for spinning business
CN111894095A (en) * 2020-06-01 2020-11-06 林进峰 Underground building rainwater collecting and utilizing device

Similar Documents

Publication Publication Date Title
Ahmad et al. Utilization of wastewater from edible oil industry, turning waste into valuable products: A review
Guldhe et al. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation
Gao et al. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater
Cheah et al. Cultivation in wastewaters for energy: a microalgae platform
US8308944B2 (en) System and method for treating wastewater via phototactic heterotrophic microorganism growth
JP6446866B2 (en) Shochu residue processing method and processing apparatus
Kamyab et al. Micro-macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
Silkina et al. Formulation and utilisation of spent anaerobic digestate fluids for the growth and product formation of single cell algal cultures in heterotrophic and autotrophic conditions
Ahmad et al. Biotechnological application of microalgae for integrated palm oil mill effluent (POME) remediation: a review
Wang et al. Factors impacting the effectiveness of biological pretreatment for the alleviation of algal growth inhibition on anaerobic digestate
EP3198000B1 (en) Digestion of waste activated sludge with algae
JP5880217B2 (en) Treatment method for oil-containing wastewater
JP2016036760A (en) Method and apparatus for treating glycerin-containing liquid waste
Cheirsilp et al. Phytoremediation of secondary effluent from palm oil mill by using oleaginous microalgae for integrated lipid production and pollutant removal
Brar et al. Algae: A cohesive tool for biodiesel production alongwith wastewater treatment
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP6135144B2 (en) Oil production method
de Alva et al. Phycoremediation by simulating marine aquaculture effluent using Tetraselmis sp. and the potential use of the resulting biomass
JPWO2016103949A1 (en) Method and apparatus for treating oil-containing wastewater
Lu et al. Application of microalgae biotechnology for the sustainable development of aquaculture
Low et al. Biodiesel production by microalgae cultivated using permeate from membrane bioreactors in continuous system
Shabbir et al. Revitalization of wastewater from the edible oil industry
JP2019214039A (en) Biomass treatment method, wastewater treatment method, and wastewater treatment facility
JP2015008676A (en) Microalga culture method and water drainage method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106