JP2013126404A - Fat production method and fat production apparatus - Google Patents

Fat production method and fat production apparatus Download PDF

Info

Publication number
JP2013126404A
JP2013126404A JP2011277677A JP2011277677A JP2013126404A JP 2013126404 A JP2013126404 A JP 2013126404A JP 2011277677 A JP2011277677 A JP 2011277677A JP 2011277677 A JP2011277677 A JP 2011277677A JP 2013126404 A JP2013126404 A JP 2013126404A
Authority
JP
Japan
Prior art keywords
medium
oils
fat
fats
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011277677A
Other languages
Japanese (ja)
Inventor
Yoshiko Shishido
美子 宍戸
Bunichi Suehiro
文一 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2011277677A priority Critical patent/JP2013126404A/en
Publication of JP2013126404A publication Critical patent/JP2013126404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fat production method and a fat production apparatus that can produce a large amount of fat for a shorter period than heretofore.SOLUTION: The fat production method that uses a fat production apparatus 100 is a fat production method using a heterotrophic microorganism, and includes: a growth process by a growth apparatus 1; and a production process by a production apparatus 2. In the growth process, the heterotrophic microorganism is made to grow by a first medium. The heterotrophic microorganism that has grown by the growth process is made to produce fat in a second medium besides the first medium in the production process. The first medium contains more nitrogen than the second medium, and the second medium contains more carbon than the first medium. As a result, the heterotrophic microorganism is efficiently grown, then the grown heterotrophic microorganism can made to efficiently produce fat, thereby a large amount of fat can be produced for a shorter period than heretofore.

Description

本発明は、従属栄養微生物を用いた油脂生産方法及び油脂生産装置に関する。   The present invention relates to an oil and fat production method and an oil and fat production apparatus using heterotrophic microorganisms.

従来、有機物を栄養源として藻体内に著量の油脂を生産する油脂生産菌を、有機物を含有する培地で培養し、その油脂生産菌が生産した油脂を回収する油脂生産方法が開示されている(例えば、特許文献1参照)。   DESCRIPTION OF RELATED ART Conventionally, the fats and oils production method which culture | cultivates the fats and oils production microbe which produces a remarkable amount of fats and oils in an algal body using organic matter as a nutrient source in the culture medium containing organic matter, and collect | recovers the fats and oils which the fats and oils production microbe produced is disclosed (For example, refer to Patent Document 1).

特開2010−158219号公報JP 2010-158219 A

上述した従来の油脂生産方法では、油脂の生産効率の向上が望まれている。そこで、本発明は、より短期間で大量に油脂を生産することができる油脂生産方法及び油脂生産装置を提供することを目的とする。   In the conventional oil and fat production method described above, improvement in oil and fat production efficiency is desired. Then, an object of this invention is to provide the fats and oils production method and fats and oils production apparatus which can produce fats and oils in large quantities in a shorter period of time.

本発明に係る油脂生産方法は、従属栄養微生物を用いた油脂生産方法であって、第1の培地で従属栄養微生物を増殖させる増殖工程と、増殖工程で増殖した従属栄養微生物に、第1の培地とは別の第2の培地で油脂を生産させる生産工程と、を備え、第1の培地は第2の培地よりも多くの窒素を含有し、第2の培地は第1の培地よりも多くの炭素を含有することを特徴とする。   The method for producing fats and oils according to the present invention is a method for producing fats and oils using heterotrophic microorganisms, a growth step for growing heterotrophic microorganisms in a first medium, A production process for producing fats and oils in a second medium different from the medium, wherein the first medium contains more nitrogen than the second medium, and the second medium is more than the first medium. It is characterized by containing a lot of carbon.

従属栄養微生物には、窒素を多く含有する培地では効率よく増殖し、炭素を多く含有する培地では効率よく油脂を生産する傾向がある。このため、第2の培地よりも多くの窒素を含有する第1の培地を用いる増殖工程では、従属栄養微生物が効率よく増殖する。第1の培地よりも多くの炭素を含有する第2の培地を用いる生産工程では、増殖工程で増殖した従属栄養微生物が効率よく油脂を生産する。従って、従属栄養微生物を効率よく増殖させた上で、増殖した従属栄養微生物に効率よく油脂を生産させることができ、より短期間で大量に油脂を生産することができる。   Heterotrophic microorganisms tend to proliferate efficiently on a medium rich in nitrogen and to produce fats and oils efficiently on a medium rich in carbon. For this reason, heterotrophic microorganisms grow efficiently in the growth step using the first medium containing more nitrogen than the second medium. In the production process using the second culture medium containing more carbon than the first culture medium, heterotrophic microorganisms grown in the growth process efficiently produce fats and oils. Accordingly, the heterotrophic microorganisms can be efficiently propagated, and the proliferated heterotrophic microorganisms can be efficiently produced to produce fats and oils, and a large amount of fats and oils can be produced in a shorter period of time.

ここで、増殖工程では、第1の培地の窒素含有物質を可溶化させることが好ましい。この場合、従属栄養微生物が窒素を取り込み易くなるため、更に効率よく油脂を増殖させることができる。   Here, in the growth step, it is preferable to solubilize the nitrogen-containing substance in the first medium. In this case, the heterotrophic microorganisms can easily take up nitrogen, so that the fats and oils can be propagated more efficiently.

また、生産工程では、第2の培地の炭素含有物質を可溶化させることが好ましい。この場合、従属栄養微生物が炭素を取り込み易くなるため、更に効率よく油脂を増殖させることができる。   In the production process, it is preferable to solubilize the carbon-containing substance of the second medium. In this case, since heterotrophic microorganisms can easily take up carbon, the fats and oils can be propagated more efficiently.

また、上記作用をより効果的に奏する油脂生産方法として、従属栄養微生物は、オーランチオキトリウム属、シゾキトリウム属、ヤブレツボカビ属又はウルケニア属に属する微生物を含む油脂生産方法が挙げられる。   In addition, as a method for producing fats and oils that exerts the above action more effectively, the heterotrophic microorganism includes a method for producing fats and oils including microorganisms belonging to the genus Aurantiochytrium, Schizochytrium, Yabetobacteria or Urkenia.

本発明に係る油脂生産装置は、従属栄養微生物を用いた油脂生産装置であって、第1の培地で従属栄養微生物を増殖させる増殖装置と、増殖装置で増殖した従属栄養微生物に、第1の培地とは別の第2の培地で油脂を生産させる生産装置と、を備え、第1の培地は第2の培地よりも多くの窒素を含有し、第2の培地は第1の培地よりも多くの炭素を含有することを特徴とする。   An oil and fat production apparatus according to the present invention is an oil and fat production apparatus using heterotrophic microorganisms, wherein a growth apparatus for growing heterotrophic microorganisms in a first medium, and a heterotrophic microorganism grown in a growth apparatus, A production apparatus for producing fats and oils in a second medium different from the medium, wherein the first medium contains more nitrogen than the second medium, and the second medium is more than the first medium. It is characterized by containing a lot of carbon.

このような油脂生産装置では、第2の培地よりも多くの窒素を含有する第1の培地を用いる増殖装置では、従属栄養微生物が効率よく増殖する。第1の培地よりも多くの炭素を含有する第2の培地を用いる生産装置では、増殖装置で増殖した従属栄養微生物が効率よく油脂を生産する。従って、従属栄養微生物を効率よく増殖させた上で、増殖した従属栄養微生物に効率よく油脂を生産させることができ、より短期間で大量に油脂を生産することができる。   In such an oil and fat production apparatus, heterotrophic microorganisms grow efficiently in the growth apparatus using the first medium containing more nitrogen than the second medium. In the production apparatus using the second culture medium containing more carbon than the first culture medium, heterotrophic microorganisms grown in the growth apparatus efficiently produce fats and oils. Accordingly, the heterotrophic microorganisms can be efficiently propagated, and the proliferated heterotrophic microorganisms can be efficiently produced to produce fats and oils, and a large amount of fats and oils can be produced in a shorter period of time.

また、上記作用をより効果的に奏する油脂生産装置として、増殖装置は、第1の培地を収容し、第1の培地で従属栄養微生物を増殖させる増殖槽と、増殖槽で増殖した従属栄養微生物を第1の培地から分離させる第1の分離装置と、を有し、生産装置は、第2の培地を収容し、第1の分離装置で第1の培地から分離した従属栄養微生物に第2の培地で油脂を生産させる生産槽と、生産槽で油脂を生産した従属栄養微生物を第2の培地から分離させる第2の分離装置と、を有する油脂生産装置が挙げられる。   In addition, as an oil and fat production device that exhibits the above-described action more effectively, the propagation device contains a first culture medium, a growth tank for growing heterotrophic microorganisms in the first culture medium, and heterotrophic microorganisms grown in the growth tank. A first separation device that separates the first culture medium from the first culture medium, wherein the production device contains the second culture medium and the second heterotrophic microorganism separated from the first culture medium by the first separation device. And a production tank for producing fats and oils in the medium, and a second separation apparatus for separating the heterotrophic microorganisms that produced the fats and oils in the production tank from the second medium.

本発明に係る油脂生産方法及び油脂生産装置によれば、より短期間で大量に油脂を生産することができる。   According to the fat and oil production method and the fat and oil production apparatus according to the present invention, a large amount of fat and oil can be produced in a shorter period of time.

本発明に係る油脂生産方法を実施する油脂生産装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the fats and oils production apparatus which enforces the fats and oils production method concerning this invention. 実験用の培地における従属栄養微生物の量の推移を示す線図である。It is a diagram which shows transition of the quantity of heterotrophic microorganisms in the culture medium for experiment. 排水における従属栄養微生物の量の推移を示す線図である。It is a diagram which shows transition of the quantity of the heterotrophic microorganisms in waste_water | drain. 比較例と実施例との微生物濃度を示す図である。It is a figure which shows the microorganism concentration of a comparative example and an Example. 比較例と実施例との油脂濃度を示す図である。It is a figure which shows the fat and oil density | concentration of a comparative example and an Example.

以下、本発明に係る油脂生産方法及び油脂生産装置の好適な実施形態について、図面を参照しつつ詳細に説明する。図1は、本発明に係る油脂生産方法を実施する油脂生産装置の一実施形態を示すブロック図である。図1に示されるように、本発明に係る油脂生産装置100は、従属栄養微生物を増殖させる増殖装置1と、増殖装置1で増殖した従属栄養微生物に油脂を生産させる生産装置2と、を備えている。増殖装置1は、第1の培地で従属栄養微生物を増殖させる増殖槽1aと、増殖槽1aで増殖した従属栄養微生物を第1の培地から分離する分離装置1bとを有している。生産装置2は、分離装置1bで第1の培地から分離した従属栄養微生物に第2の培地で油脂を生産させる生産槽2aと、生産槽2aで油脂を生産した従属栄養微生物を第2の培地から分離する分離装置2bとを有している。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an oil and fat production method and an oil and fat production apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an oil and fat production apparatus for carrying out the oil and fat production method according to the present invention. As shown in FIG. 1, an oil and fat production device 100 according to the present invention includes a growth device 1 that propagates heterotrophic microorganisms, and a production device 2 that causes heterotrophic microorganisms grown in the growth device 1 to produce fats and oils. ing. The growth apparatus 1 has a growth tank 1a for growing heterotrophic microorganisms in a first medium and a separation apparatus 1b for separating heterotrophic microorganisms grown in the growth tank 1a from the first medium. The production apparatus 2 includes a production tank 2a that causes the heterotrophic microorganisms separated from the first medium by the separation apparatus 1b to produce fats and oils in the second medium, and the heterotrophic microorganisms that produced the fats and oils in the production tank 2a in the second medium. And a separating device 2b for separating from the.

従属栄養微生物は、有機化合物から炭素を吸収する微生物である。このような微生物としては、例えば、オーランチオキトリウム属、シゾキトリウム属、ヤブレツボカビ属又はウルケニア属に属する微生物が挙げられる。従属栄養微生物は、光合成を行い、且つ有機化合物からも炭素を吸収する微生物であってもよい。このような微生物としては、例えばクロレラ属に属する微生物が挙げられる。   Heterotrophic microorganisms are microorganisms that absorb carbon from organic compounds. As such microorganisms, for example, microorganisms belonging to the genus Aurantiochytrium, Schizochytrium, Yabetobacteria or Urkenia. The heterotrophic microorganism may be a microorganism that performs photosynthesis and absorbs carbon from an organic compound. Examples of such microorganisms include microorganisms belonging to the genus Chlorella.

第1の培地には第1の排水が用いられ、第2の培地には第2の排水が用いられる。第1の排水は、例えば下水であり、第2の排水よりも多くの窒素を含有している。第2の排水は、例えば食品工場の排水であり、第1の排水よりも多くの炭素を含有している。   The first waste water is used for the first medium, and the second waste water is used for the second medium. The first waste water is, for example, sewage and contains more nitrogen than the second waste water. The second waste water is, for example, a waste water of a food factory, and contains more carbon than the first waste water.

増殖槽1aには第1の排水及び従属栄養微生物が導入され、従属栄養微生物は第1の排水内で増殖する。分離装置1bは、増殖槽1aに収容されていた第1の排水を、第1の排水内で増殖した従属栄養微生物と共に導入し、第1の排水と従属栄養微生物とを分離する。分離装置1bは、例えば遠心分離装置又は重力沈殿装置である。分離装置1bによって従属栄養微生物から分離した第1の排水は後段の排水処理装置に送られる。一方、第1の排水から分離した従属栄養微生物の一部は増殖槽1aに戻され、残りは生産槽2aに送られる。   The first drainage and heterotrophic microorganisms are introduced into the breeding tank 1a, and the heterotrophic microorganisms are propagated in the first drainage. The separation device 1b introduces the first wastewater contained in the breeding tank 1a together with the heterotrophic microorganisms grown in the first wastewater, and separates the first wastewater and the heterotrophic microorganisms. The separation device 1b is, for example, a centrifugal separation device or a gravity precipitation device. The 1st waste_water | drain isolate | separated from the heterotrophic microorganisms by the separator 1b is sent to a waste_water | drain apparatus of a back | latter stage. On the other hand, part of the heterotrophic microorganisms separated from the first waste water is returned to the breeding tank 1a, and the rest is sent to the production tank 2a.

生産槽2aには第2の排水が導入され、分離装置1bから生産槽2aに送られた従属栄養微生物は第2の排水内で油脂を生産する。分離装置2bは、生産槽2aに収容されていた第2の排水を、第2の排水内で油脂を生産した従属栄養微生物と共に導入し、第2の排水と従属栄養微生物とを分離する。分離装置2bは、例えば遠心分離装置又は重力沈殿装置である。分離装置2bによって従属栄養微生物から分離した第2の排水は後段の排水処理装置に送られる。一方、第2の排水から分離した従属栄養微生物は、後段の油脂抽出装置に送られ、従属栄養微生物が生産した油脂が抽出される。   The second wastewater is introduced into the production tank 2a, and the heterotrophic microorganisms sent from the separation device 1b to the production tank 2a produce fats and oils in the second wastewater. The separation device 2b introduces the second wastewater stored in the production tank 2a together with the heterotrophic microorganisms that have produced the fats and oils in the second wastewater, and separates the second wastewater from the heterotrophic microorganisms. The separation device 2b is, for example, a centrifugal separation device or a gravity precipitation device. The second wastewater separated from the heterotrophic microorganisms by the separation device 2b is sent to a subsequent wastewater treatment device. On the other hand, the heterotrophic microorganisms separated from the second waste water are sent to the oil / fat extraction apparatus in the subsequent stage, and the fats and oils produced by the heterotrophic microorganisms are extracted.

一方、従属栄養生物の一部が戻された増殖槽1aには新たに第1の排水が導入され、増殖槽1aにおける増殖と、分離装置1bにおける分離と、生産槽2aにおける油脂生産と、分離装置2bにおける分離とが繰り返される。これにより、油脂が順次生産される。   On the other hand, the first waste water is newly introduced into the breeding tank 1a to which a part of the heterotrophic organisms is returned, and the breeding in the breeding tank 1a, the separation in the separation device 1b, the fat production in the production tank 2a, and the separation. The separation in the device 2b is repeated. Thereby, fats and oils are sequentially produced.

以上説明したように、増殖装置1では、第1の培地で従属栄養微生物を増殖させる増殖工程が行われる。生産装置2では、増殖工程で増殖した従属栄養微生物に、第1の培地とは別の第2の培地で油脂を生産させる生産工程が行われる。すなわち、油脂生産装置100では、増殖工程と生産工程とを備える油脂生産方法が実施される。   As described above, in the growth apparatus 1, the growth process for growing heterotrophic microorganisms in the first medium is performed. In the production apparatus 2, a production process is performed in which the heterotrophic microorganisms grown in the growth process produce fats and oils in a second medium different from the first medium. That is, in the oil and fat production apparatus 100, an oil and fat production method including a multiplication process and a production process is performed.

従属栄養微生物には、窒素を多く含有する培地では効率よく増殖し、炭素を多く含有する培地では効率よく油脂を生産する傾向がある。このため、第2の培地(第2の排水)よりも多くの窒素を含有する第1の培地(第1の排水)を用いる増殖工程では、従属栄養微生物が効率よく増殖する。第1の培地よりも多くの炭素を含有する第2の培地を用いる生産工程では、増殖工程で増殖した従属栄養微生物が効率よく油脂を生産する。従って、従属栄養微生物を効率よく増殖させた上で、増殖した従属栄養微生物に効率よく油脂を生産させることができ、より短期間で大量に油脂を生産することができる。   Heterotrophic microorganisms tend to proliferate efficiently on a medium rich in nitrogen and to produce fats and oils efficiently on a medium rich in carbon. For this reason, heterotrophic microorganisms proliferate efficiently in the growth step using the first culture medium (first waste water) containing more nitrogen than the second culture medium (second waste water). In the production process using the second culture medium containing more carbon than the first culture medium, heterotrophic microorganisms grown in the growth process efficiently produce fats and oils. Accordingly, the heterotrophic microorganisms can be efficiently propagated, and the proliferated heterotrophic microorganisms can be efficiently produced to produce fats and oils, and a large amount of fats and oils can be produced in a shorter period of time.

なお、増殖工程では、増殖槽1aに収容される第1の排水の窒素含有物質を可溶化させてもよい。この場合、従属栄養微生物が窒素を取り込み易くなるため、更に効率よく油脂を増殖させることができる。また、生産工程では、生産槽2aに収容される第2の培地の炭素含有物質を可溶化させてもよい。この場合、従属栄養微生物が炭素を取り込み易くなるため、更に効率よく油脂を増殖させることができる。可溶化の具体的方法としては、例えば加熱により可溶化させる方法や、酸、アルカリ、酵素などの薬剤により可溶化させる方法等が挙げられる。   In the breeding process, the nitrogen-containing substance of the first waste water stored in the breeding tank 1a may be solubilized. In this case, the heterotrophic microorganisms can easily take up nitrogen, so that the fats and oils can be propagated more efficiently. Further, in the production process, the carbon-containing substance of the second medium accommodated in the production tank 2a may be solubilized. In this case, since heterotrophic microorganisms can easily take up carbon, the fats and oils can be propagated more efficiently. Specific methods of solubilization include, for example, a method of solubilization by heating, a method of solubilization by a drug such as acid, alkali, and enzyme.

また、後段の油脂抽出装置によって油脂を抽出した後の残留物を、可溶化させて生産槽2aに戻してもよい。この場合、残留物を炭素源として活用し、第2の培地の炭素含有量を増やし、生産槽2aにおける油脂生産効率を更に高めることができる。また、油脂抽出装置において抽出し切れなかった油脂を改めて抽出しなおすこともできるため、油脂の抽出率を高めることもできる。   Moreover, you may solubilize the residue after extracting fats and oils with a fat extraction apparatus of a back | latter stage, and may return to the production tank 2a. In this case, the residue can be utilized as a carbon source, the carbon content of the second medium can be increased, and the oil production efficiency in the production tank 2a can be further increased. Moreover, since the fats and oils that could not be completely extracted by the fat and oil extraction device can be extracted again, the extraction rate of the fats and oils can be increased.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。例えば、第1の培地及び第2の培地は排水に限られず、固形の廃棄物を液体に溶解させたものであってもよい。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the first culture medium and the second culture medium are not limited to waste water, and may be solid waste dissolved in a liquid.

続いて、本実施形態の実施例を示す。以下に示す各例において、従属栄養微生物には、オーランチオキトリウム属に属する従属栄養微生物であるAurantiochytrium limacinum SR21(以下、A.limacinum SR21)を用いた。
[培地の成分が増殖効率に与える影響の確認]
Subsequently, examples of the present embodiment will be described. In each example shown below, Aurantiochytrium limacinum SR21 (hereinafter, A. limacinum SR21), which is a heterotrophic microorganism belonging to the genus Aurantiochytrium, was used as the heterotrophic microorganism.
[Confirmation of effects of medium components on growth efficiency]

以下の培地を用意し、各培地におけるA. limacinum SR21の量の推移を確認することで、培地の成分が増殖効率に与える影響を確認した。
培地1:海水500ml、蒸留水500ml、グルコース(窒素を含有しない有機物)20g、ポリペプトン(窒素を含有する有機物)10g及び酵母エキス(窒素を含有する有機物)5gを混合した培地。
培地2:窒素を含有しない有機物であるグルコースを培地1に対して半減させた培地。
培地3:窒素を含有する有機物であるポリペプトン及び酵母エキスを培地1に対して半減させた培地。
The following media were prepared, and changes in the amount of A. limacinum SR21 in each media were confirmed to confirm the influence of the components of the media on the growth efficiency.
Medium 1: A medium in which 500 ml of seawater, 500 ml of distilled water, 20 g of glucose (organic substance containing no nitrogen), 10 g of polypeptone (organic substance containing nitrogen) and 5 g of yeast extract (organic substance containing nitrogen) were mixed.
Medium 2: A medium in which glucose, which is an organic substance not containing nitrogen, is halved with respect to medium 1.
Medium 3: A medium in which polypeptone and yeast extract, which are organic substances containing nitrogen, are halved with respect to medium 1.

各培地におけるA. limacinum SR21の量の推移を図2に示す。図2において、横軸は経過日数を示し、縦軸は培地の吸光度を示す。従属栄養微生物が増殖すると、培地の濁りが進行するため、培地の吸光度が高くなる。このため、培地の吸光度によって従属栄養微生物の量の推移を把握することができる。図2の吸光度は、次の式で算出された値である。
吸光度 = Log(I/I)
:培地に進入する光の強さ
I:培地を透過する光の強さ
Changes in the amount of A. limacinum SR21 in each medium are shown in FIG. In FIG. 2, the horizontal axis indicates the number of days elapsed, and the vertical axis indicates the absorbance of the medium. When heterotrophic microorganisms grow, the turbidity of the medium proceeds, and the absorbance of the medium increases. For this reason, the transition of the amount of heterotrophic microorganisms can be grasped by the absorbance of the medium. The absorbance in FIG. 2 is a value calculated by the following equation.
Absorbance = Log (I 0 / I)
I 0 : intensity of light entering the medium I: intensity of light passing through the medium

図2において、曲線L1は培地1の吸光度の推移を示し、曲線L2は培地2の吸光度の推移を示し、曲線L3は培地3の吸光度の推移を示している。曲線L2と曲線L1との間に大きな乖離はないことから、窒素を含有しない有機物を減らしても増殖効率にはほとんど影響が無いことが確認された。一方、曲線L3は曲線L1よりも低位置で推移していることから、窒素を含有する有機物を減らすと増殖効率が低下することが確認された。
[排水における増殖効率の確認]
In FIG. 2, a curve L1 indicates a change in absorbance of the medium 1, a curve L2 indicates a change in absorbance of the medium 2, and a curve L3 indicates a change in absorbance of the medium 3. Since there is no great divergence between the curve L2 and the curve L1, it was confirmed that there is almost no influence on the growth efficiency even if organic substances not containing nitrogen are reduced. On the other hand, since the curve L3 transitions at a lower position than the curve L1, it was confirmed that the growth efficiency was lowered when the organic matter containing nitrogen was reduced.
[Confirmation of breeding efficiency in waste water]

以下の排水を用意し、各排水におけるA. limacinum SR21の量の推移を確認することで、排水における増殖効率を確認した。
排水1:後述の実施例及び比較例において第1の排水として用いる下水。
排水2:後述の実施例及び比較例において第2の排水として用いる食品工場の排水。
The following drainage was prepared, and the growth efficiency in the drainage was confirmed by confirming the transition of the amount of A. limacinum SR21 in each drainage.
Wastewater 1: Sewage used as the first wastewater in Examples and Comparative Examples described later.
Wastewater 2: Wastewater from a food factory used as the second wastewater in Examples and Comparative Examples described later.

各排水におけるA. limacinum SR21の量の推移を図3に示す。図3において、横軸は経過時間を示し、縦軸は排水に対するA. limacinum SR21の濃度を示している。図3において、曲線L4は排水1に対するA. limacinum SR21の濃度の推移を示し、曲線L5は排水2に対するA.limacinum SR21の濃度の推移を示している。曲線L4は曲線L5よりも高位置で推移していることから、第2の排水よりも第1の排水での増殖効率が高いことが確認された。
[微生物量及び油脂生産量の比較]
The transition of the amount of A. limacinum SR21 in each drainage is shown in FIG. In FIG. 3, the horizontal axis indicates the elapsed time, and the vertical axis indicates the concentration of A. limacinum SR21 with respect to the waste water. In FIG. 3, a curve L4 shows a change in the concentration of A. limacinum SR21 with respect to the wastewater 1, and a curve L5 shows a change in the concentration of A. limacinum SR21 with respect to the wastewater 2. Since the curve L4 is changing at a higher position than the curve L5, it was confirmed that the growth efficiency in the first drainage was higher than that in the second drainage.
[Comparison of the amount of microorganisms and oil production]

本実施形態の実施例として、第1の排水には下水を用い、第2の排水には食品工場の排水を用いて油脂生産を行った。実施例では、増殖工程と生産工程とを含む全工程の期間を4日間とした。また、比較例として、増殖工程と生産工程とを分けずに一工程とし、一種類の培地でA. limacinum SR21を増殖させながら、そのA. limacinumSR21に油脂を生産させる方法で油脂生産を行った。比較例では、全工程の期間を4日間とした。比較例の培地としては、第1及び第2の排水を混合した第3の排水を用いた。   As an example of the present embodiment, fat and oil was produced using sewage for the first wastewater and using wastewater from a food factory for the second wastewater. In the examples, the period of all processes including the proliferation process and the production process was set to 4 days. In addition, as a comparative example, the growth process and the production process were separated into one process, and A. limacinum SR21 was grown in one type of medium, while the fat was produced by the method of producing the fat in the A. limacinum SR21. . In the comparative example, the period of all steps was 4 days. As the culture medium of the comparative example, a third drainage obtained by mixing the first and second drainage was used.

図4の縦棒B1,B2は、それぞれ上記比較例と上記実施例との微生物濃度を示している。図4における微生物濃度は、油脂抽出前のA. limacinum SR21の重量を、培地1リットルあたりに換算した値である。図4に示されるように、実施例の微生物濃度は、比較例の微生物濃度に対して約26%高かった。すなわち、実施例では比較例よりも効率よくA. limacinum SR21を増殖させることができた。   Vertical bars B1 and B2 in FIG. 4 indicate the microbial concentrations of the comparative example and the example, respectively. The microbial concentration in FIG. 4 is a value obtained by converting the weight of A. limacinum SR21 before oil extraction into one liter of medium. As shown in FIG. 4, the microbial concentration of the example was about 26% higher than the microbial concentration of the comparative example. That is, A. limacinum SR21 could be propagated more efficiently in the Examples than in the Comparative Examples.

図5の縦棒B3,B4は、それぞれ上記比較例と上記実施例との油脂濃度を示している。油脂濃度とは、抽出された油脂重量を、培地1リットルあたりに換算した値である。図5に示されるように、実施例の油脂濃度は、比較例の油脂濃度に対して約45%高かった。すなわち、実施例では比較例よりも短期間で大量に油脂を生産することができた。   Vertical bars B3 and B4 in FIG. 5 indicate the oil and fat concentrations of the comparative example and the example, respectively. The fat concentration is a value obtained by converting the extracted fat weight per liter of the medium. As shown in FIG. 5, the fat and oil concentration of the example was about 45% higher than the fat and oil concentration of the comparative example. That is, in the examples, fats and oils could be produced in a large amount in a shorter period than the comparative example.

1…増殖装置、1a…増殖槽、1b…分離装置、2…生産装置、2a…生産槽、2b…分離装置、100…油脂生産装置。   DESCRIPTION OF SYMBOLS 1 ... Growth apparatus, 1a ... Growth tank, 1b ... Separation apparatus, 2 ... Production apparatus, 2a ... Production tank, 2b ... Separation apparatus, 100 ... Oil production apparatus.

Claims (6)

従属栄養微生物を用いた油脂生産方法であって、
第1の培地で従属栄養微生物を増殖させる増殖工程と、
前記増殖工程で増殖した前記従属栄養微生物に、前記第1の培地とは別の第2の培地で油脂を生産させる生産工程と、を備え、
前記第1の培地は前記第2の培地よりも多くの窒素を含有し、前記第2の培地は前記第1の培地よりも多くの炭素を含有することを特徴とする油脂生産方法。
A method for producing fats and oils using heterotrophic microorganisms,
A growth step of growing heterotrophic microorganisms in a first medium;
A step of producing fats and oils in a heterogeneous microorganism grown in the growth step in a second medium different from the first medium, and
The first medium contains more nitrogen than the second medium, and the second medium contains more carbon than the first medium.
前記増殖工程では、前記第1の培地の窒素含有物質を可溶化させることを特徴とする請求項1記載の油脂生産方法。   The method for producing fats and oils according to claim 1, wherein in the growth step, the nitrogen-containing substance in the first medium is solubilized. 前記生産工程では、前記第2の培地の炭素含有物質を可溶化させることを特徴とする請求項1又は2記載の油脂生産方法。   The method for producing fats and oils according to claim 1 or 2, wherein in the production step, the carbon-containing substance of the second medium is solubilized. 前記従属栄養微生物は、オーランチオキトリウム属、シゾキトリウム属、ヤブレツボカビ属又はウルケニア属に属する微生物を含むことを特徴とする請求項1〜3のいずれか一項記載の油脂生産方法。   The method for producing fats and oils according to any one of claims 1 to 3, wherein the heterotrophic microorganism includes a microorganism belonging to the genus Aurantiochytrium, Schizochytrium, Yabetobacteria or Urkenia. 従属栄養微生物を用いた油脂生産装置であって、
第1の培地で従属栄養微生物を増殖させる増殖装置と、
前記増殖装置で増殖した前記従属栄養微生物に、前記第1の培地とは別の第2の培地で油脂を生産させる生産装置と、を備え、
前記第1の培地は前記第2の培地よりも多くの窒素を含有し、前記第2の培地は前記第1の培地よりも多くの炭素を含有することを特徴とする油脂生産装置。
An oil and fat production apparatus using heterotrophic microorganisms,
A growth device for growing heterotrophic microorganisms in a first medium;
A production device for producing fats and oils in a second medium different from the first medium, to the heterotrophic microorganisms grown in the growth apparatus,
The said 1st culture medium contains more nitrogen than the said 2nd culture medium, The said 2nd culture medium contains more carbon than the said 1st culture medium, The fats and oils production apparatus characterized by the above-mentioned.
前記増殖装置は、前記第1の培地を収容し、前記第1の培地で従属栄養微生物を増殖させる増殖槽と、前記増殖槽で増殖した前記従属栄養微生物を前記第1の培地から分離させる第1の分離装置と、を有し、
前記生産装置は、前記第2の培地を収容し、前記第1の分離装置で第1の培地から分離した前記従属栄養微生物に前記第2の培地で油脂を生産させる生産槽と、前記生産槽で油脂を生産した前記従属栄養微生物を前記第2の培地から分離させる第2の分離装置と、を有することを特徴とする請求項5記載の油脂生産装置。
The growth apparatus contains the first medium, a growth tank for growing heterotrophic microorganisms in the first medium, and a first tank for separating the heterotrophic microorganisms grown in the growth tank from the first medium. 1 separation device,
The production apparatus contains the second culture medium, and causes the heterotrophic microorganisms separated from the first culture medium by the first separation apparatus to produce fats and oils in the second culture medium, and the production tank The oil and fat production apparatus according to claim 5, further comprising: a second separation device that separates the heterotrophic microorganism that produced the oil and fat from the second medium.
JP2011277677A 2011-12-19 2011-12-19 Fat production method and fat production apparatus Pending JP2013126404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277677A JP2013126404A (en) 2011-12-19 2011-12-19 Fat production method and fat production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277677A JP2013126404A (en) 2011-12-19 2011-12-19 Fat production method and fat production apparatus

Publications (1)

Publication Number Publication Date
JP2013126404A true JP2013126404A (en) 2013-06-27

Family

ID=48777330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277677A Pending JP2013126404A (en) 2011-12-19 2011-12-19 Fat production method and fat production apparatus

Country Status (1)

Country Link
JP (1) JP2013126404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010149A1 (en) * 2014-07-18 2016-01-21 国立大学法人筑波大学 Method of acclimating algae belonging to aurantiochytrium sp. to low-salt conditions
JP2016036760A (en) * 2014-08-06 2016-03-22 栗田工業株式会社 Method and apparatus for treating glycerin-containing liquid waste
JP2017063633A (en) * 2015-09-28 2017-04-06 株式会社シー・アクト Medium for increasing content of odd-numbered fatty acids in cultured aurantiochytrium algae
JP2018515148A (en) * 2015-05-25 2018-06-14 ネステ コーポレイション Continuous production method of microorganism-derived products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010149A1 (en) * 2014-07-18 2016-01-21 国立大学法人筑波大学 Method of acclimating algae belonging to aurantiochytrium sp. to low-salt conditions
JPWO2016010149A1 (en) * 2014-07-18 2017-04-27 国立大学法人 筑波大学 Method for acclimatizing low salinity conditions of Aurantiochytrium algae
JP2016036760A (en) * 2014-08-06 2016-03-22 栗田工業株式会社 Method and apparatus for treating glycerin-containing liquid waste
JP2018515148A (en) * 2015-05-25 2018-06-14 ネステ コーポレイション Continuous production method of microorganism-derived products
JP2017063633A (en) * 2015-09-28 2017-04-06 株式会社シー・アクト Medium for increasing content of odd-numbered fatty acids in cultured aurantiochytrium algae

Similar Documents

Publication Publication Date Title
Peng et al. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR)
Gao et al. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater
Tsolcha et al. Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium
Ruiz-Martinez et al. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent
Michels et al. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm
Valigore et al. Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock
Olguín Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery
Tsai et al. Growth condition study of algae function in ecosystem for CO2 bio-fixation
CN103396950B (en) A kind of natural pond liquid ecological purification method based on both culturing microalgae
Lutzu et al. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus
Lutzu et al. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds
Feng et al. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol
Wang et al. Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods
Zhou et al. Co-cultivation of fungal-microalgal strains in biogas slurry and biogas purification under different initial CO2 concentrations
Arbib et al. Chlorella stigmatophora for urban wastewater nutrient removal and CO2 abatement
Rahman et al. Bioremediation of domestic wastewater and production of bioproducts from microalgae using waste stabilization ponds
CN102586116B (en) Common chlorella as well as culturing method and application thereof
JP2013126404A (en) Fat production method and fat production apparatus
EP2883952A1 (en) Culture apparatus for microalgae and culture method for microalgae
CN108220165A (en) A kind of method for strengthening microalgae removal breeding wastewater carbon nitrogen and phosphorus pollution using association flora
CN105254024A (en) Method for preparing garbage enzyme from fruits
CN101130754B (en) High-density ferment method for petroleum hydrocarbon degradation bacterium
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
JP2009261287A (en) Chlorella/hydrogen production method and chlorella/hydrogen production apparatus
CN105969664A (en) Method for promoting oil accumulation of microalgae by adding high-concentration organic wastewater into natural seawater