WO2020036216A1 - Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha - Google Patents

Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha Download PDF

Info

Publication number
WO2020036216A1
WO2020036216A1 PCT/JP2019/032054 JP2019032054W WO2020036216A1 WO 2020036216 A1 WO2020036216 A1 WO 2020036216A1 JP 2019032054 W JP2019032054 W JP 2019032054W WO 2020036216 A1 WO2020036216 A1 WO 2020036216A1
Authority
WO
WIPO (PCT)
Prior art keywords
pome
culture method
hydrolyzate
culture
aurantiochytrium
Prior art date
Application number
PCT/JP2019/032054
Other languages
French (fr)
Japanese (ja)
Inventor
清志 多田
信 渡邉
吉田 昌樹
順子 伊藤
敏秀 中島
ゴータマ マイケル
Original Assignee
MoBiol株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MoBiol株式会社 filed Critical MoBiol株式会社
Priority to JP2020537104A priority Critical patent/JP6884451B2/en
Priority to MYPI2021000211A priority patent/MY188642A/en
Publication of WO2020036216A1 publication Critical patent/WO2020036216A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention provides a method for culturing heterotrophic microalgae and a method for producing DHA, using a palm oil mill effluent (Palm Oil Mill Effluent: POME) as a medium.
  • a palm oil mill effluent Palm Oil Mill Effluent: POME
  • palm oil factory effluent (hereinafter referred to as POME) is a major environmental and economic problem.
  • POME palm oil factory effluent
  • oxidation pond treatment ⁇ anaerobic treatment
  • aerobic treatment ⁇ aerobic treatment.
  • fermentation gas causes odor, damage to insects and pests, water pollution, and the like, and methane gas generated by anaerobic treatment is released to the atmosphere.
  • Methane has a very large global warming potential, 21 times that of carbon dioxide, and has a negative impact on global warming.
  • POME causes emission of warming substances and water pollution, causing widespread and serious environmental problems such as global warming, deterioration of living environment, and adverse effects on wildlife.
  • the palm oil production industry is a key industry in Indonesia, Malaysia, etc.
  • solving the environmental problems of POME is crucial for the sustainable development of the national society where the palm oil industries, such as Indonesia and Malaysia, are fostering. Is an important issue.
  • microalgae have been proliferated, and lipids or proteins, vitamins, and other valuable materials used as raw materials for fuels, feeds, health foods, and the like have been produced and stored in the cells of the microalgae. It is used for fuel and food.
  • production and storage of high value-added valuables such as ⁇ -3 polyunsaturated fatty acids have attracted attention as a component that can be immediately industrialized.
  • microalgae is also used in wastewater treatment such as purification of sewage and industrial wastewater (Patent Literature 3) and exhaust gas treatment for absorbing and utilizing carbon dioxide (Patent Literature 4).
  • wastewater treatment such as purification of sewage and industrial wastewater (Patent Literature 3) and exhaust gas treatment for absorbing and utilizing carbon dioxide (Patent Literature 4).
  • Patent Literature 3 purification of sewage and industrial wastewater
  • Patent Literature 4 exhaust gas treatment for absorbing and utilizing carbon dioxide
  • microalgae such as chlorella proliferate using POME (Non-Patent Documents 1-5).
  • microalgae are low in algal biomass productivity and lipid productivity and poor in POME utilization efficiency. The production method of high value-added valuables from has not been established.
  • HABIB et. Al. “Growth and Nutritional Values of Moina micrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent”, Asian Fisheries Science, 16, 107-119, 2003 Putri et. Al. “Investigation of Microalgae for High Lipid Content using Palm Oil Mill Effluent (Pome) as Carbon Source, 2011 International Conference on Environment and Industrial Innovation, IPCBEE, 12,2011-89 Nwuche et. Al. “Use of Palm Oil Mill Effluent as Medium for Cultivation of Chlorella sorokiniana”, British Biotechnology Journal, 4 (3) :) 305-316, 2014 Nur et. Al.
  • the present invention provides a culture method capable of efficiently growing microalgae using POME discharged from a palm oil production process, and efficiently producing high value-added valuables from microalgae. It is an object to provide a production method.
  • the present inventors have conducted intensive studies in order to improve the utilization efficiency of POME. Heterotrophic production of ⁇ -3 polyunsaturated fatty acids such as DHA (docosahexaenoic acid) by using POME hydrolyzate has been studied. The present inventors have found that microalgae are efficiently and favorably proliferated, and that the production amount of DHA is improved, and completed the present invention.
  • DHA docosahexaenoic acid
  • the present invention relates to a culture method and a DHA production method capable of efficiently growing heterotrophic microalgae producing ⁇ -3 polyunsaturated fatty acids such as DHA (docosahexaenoic acid) by using a POME hydrolyzate. provide.
  • the method for culturing heterotrophic microalgae according to the present invention for solving the above-mentioned problems is characterized in that a POME hydrolyzate obtained by hydrolyzing a POME containing a squeezed juice obtained by squeezing oil from palm fruit in a palm oil production process is used. , Wherein microalgae producing high value-added components are heterotrophically cultured.
  • the method for culturing microalgae according to the present invention is characterized in that a POME hydrolyzate is supplied.
  • a method for culturing heterotrophic microalgae using a medium containing a POME hydrolyzate (2) The culture method according to (1), wherein the POME hydrolyzate is a POME hydrolyzate obtained by a chemical, physical, and / or biological treatment. (3) The culture method according to (2), wherein the POME hydrolyzate obtained by the chemical treatment is an acid or alkali POME hydrolyzate. (4) The culture method according to (3), wherein the acid is sulfuric acid, hydrochloric acid, and / or phosphoric acid. (5) The culture method according to (3), wherein the alkali is sodium hydroxide, potassium hydroxide, and / or ammonia.
  • the culture method according to (2), wherein the POME hydrolyzate obtained by the physical treatment is a POME hydrolyzate obtained by heat and / or pressure.
  • the culture method according to (2), wherein the POME hydrolyzate obtained by the biological treatment is a POME hydrolyzate obtained by peptidase or amylase.
  • the culture method according to (8), wherein the ⁇ -3 polyunsaturated fatty acid is DHA.
  • the culture method according to (10), wherein the Thraustochytriales is a species belonging to the genus Aurantiochytrium.
  • the culture method according to (11), wherein the algae of the genus Aurantiochytrium are culture strains belonging to Aurantiochytrium limacinum.
  • the culture method according to (11), wherein the algae of the genus Aurantiochytrium are culture strains belonging to Aurantiochytrium mangrovei.
  • the culture according to (12), wherein the cultured strain of Aurantiochytrium limacinum is any one selected from 4W-1b strain, Aurantiochytrium limacinum SR-21 strain, and Aurantiochytrium limacinum NIES3737 strain.
  • the culture method as described above.
  • the culture method according to (13), wherein the cultured strain of Aurantiochytrium mangrovey is an Aurantiochytrium mangrovey strain 18W-13a.
  • the POME hydrolyzate has a solid content removed by centrifugation and / or filtration.
  • the culture method according to any one of (1) to (16), wherein the medium further contains a sugar component.
  • the mineral component is a sulfate such as potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, copper sulfate, nickel sulfate or zinc sulfate; a phosphate such as potassium phosphate; a carbonate such as calcium carbonate; Chlorides such as manganese chloride, sodium chloride and calcium chloride; selenites and molybdates such as sodium molybdate and sodium selenite; halides such as potassium bromide and potassium iodide; natural seawater salts; The culture method according to (20), which is a single salt or a plurality of salts selected from artificial seawater salts.
  • a sulfate such as potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, copper sulfate, nickel sulfate or zinc sulfate
  • a phosphate such as potassium
  • DME can be produced as a valuable resource by efficiently culturing heterotrophic microalgae while effectively utilizing POME.
  • the Aurantiochytrium perimacinum 4W-1b strain grows at a higher growth rate than when the medium containing only POME non-hydrolyzate is used. To achieve a high concentration of DHA production.
  • FIG. 1 shows the Aurantiochi using a medium to which 50% POME sulfuric acid and a hydrolyzate by heating, a 50% POME hydrolyzate by heating, and a 50% POME (control) without hydrolysis were added.
  • the algal cell concentration of Thorium perimacinum 4W-1b strain is shown (OD660).
  • FIG. 2 shows the Aurantiochi using a medium to which 50% POME sulfuric acid and a hydrolyzate obtained by heating, a 50% POME hydrolyzate obtained by heating, and a 50% POME (control) not subjected to hydrolysis were added.
  • 3 shows the total lipid concentration and DHA concentration of Thorium limacinum 4W-1b strain.
  • palm oil production processes include steam treatment for inactivating palm fruit clusters (Fresh Fruit Bunch: FFB), separation of palm fruit and palm empty clusters (Empty Fruit Bunch: EFB), and fruit parts from palm fruit ( It goes through a pretreatment process of separation of mesoca) and seed part.
  • FFB Frsh Fruit Bunch
  • EFB Easy Fruit Bunch
  • the process proceeds to the extraction and separation and purification of crude palm oil from the fruit, producing high-purity palm oil.
  • POME in the present invention means used steam water, a mixed effluent of oil juice and unrecovered oil, and / or unrecovered oil obtained by centrifuging the above-mentioned mixed liquid.
  • POME is rich in carbohydrates, organic acids, vitamins, amino acids, peptides, proteins, minerals, etc., derived from raw materials.
  • POME used for algae culture may be before or after the oxidation pond treatment, anaerobic treatment, or aerobic treatment. In some embodiments, it is preferable to use POME before performing these oxidation pond treatment, anaerobic treatment, and aerobic treatment.
  • @POME contains various solids derived from raw materials.
  • a POME hydrolyzate may be prepared using POME containing a solid substance and used directly in the medium.
  • POME obtained by hydrolyzing and removing solid matter by a known means such as centrifugation or filtration may be used.
  • the solid content may be removed from the POME by a known means such as centrifugation or filtration, and the solid content may be hydrolyzed and added to the supernatant POME for use in the medium.
  • the POME hydrolyzate may or may not contain solids such as non-hydrolyzed solids, and is not limited.
  • POME hydrolyzate can be prepared by any means. For example, chemical treatment with an acid such as sulfuric acid, hydrochloric acid or phosphoric acid, or an alkali such as sodium hydroxide, potassium hydroxide, or ammonia; physical treatment with heat, pressure, or the like; biological treatment with an enzyme such as peptidase or amylase Examples include, but are not limited to, hydrolysis such as treatment.
  • an acid such as sulfuric acid, hydrochloric acid or phosphoric acid, or an alkali such as sodium hydroxide, potassium hydroxide, or ammonia
  • physical treatment with heat, pressure, or the like biological treatment with an enzyme such as peptidase or amylase
  • an enzyme such as peptidase or amylase
  • examples include, but are not limited to, hydrolysis such as treatment.
  • peptidase refers to an enzyme that catalyzes a hydrolysis reaction of a peptide bond, is synonymous with “protease”, and is used interchangeably.
  • the hydrolysis may be performed by arbitrarily combining chemical treatment, physical treatment, biological treatment and the like.
  • POME may be hydrolyzed by combining a chemical treatment with an acid or an alkali and a physical treatment such as heating.
  • a medium containing sulfuric acid and / or heated POME hydrolyzate is used.
  • the concentration of the acid or alkali to be used is not limited, and examples thereof include 1%, 2%, 3%, 5%, 10%, and the like.
  • the concentration of the acid or alkali may be in the range of 0.1-10%, 0.3-8%, 0.5-5%, 1-3%, etc. by volume.
  • the heating temperature is not limited, but for example, at least 40 to 374 ° C, 40 to 300 ° C, 45 to 250 ° C, 50 to 200 ° C, 60 to 180 ° C, 70 to 170 ° C, 80 to 80 ° C. To 160 ° C, 90 to 150 ° C, 100 to 140 ° C, 110 to 130 ° C, 115 to 125 ° C, and the like.
  • the pressure to be added is not limited, but for example, at least 1.0 atm to 5.0 atm, 1.5 atm to 4.0 atm, 2.0 atm to 3.0 atm, 5.0 atm to 50 atm, 50 atm To 100 atm, 100 to 150 atm, 150 to 200 atm, 200 to 218.0 atm, and the like.
  • an enzyme such as a peptidase
  • the hydrolysis is carried out by a biological treatment with an enzyme such as a peptidase, at a concentration of 100 to 1000 Unit, 300 to 800 Unit, 400 to 700 Unit, for example, 60 to 20 ° C., 50 to 30 ° C., 40 to The reaction may be performed at a temperature at which the enzyme is activated, such as 35 ° C. or 37 ° C.
  • the processing time for hydrolyzing POME is not limited, but is 1 to 4 weeks, 1 to 7 days, 1 to 24 hours, 20 to 100 minutes, 30 to 90 minutes, 40 to 80 minutes, 50 to 70 minutes, 55 Up to 65 minutes.
  • it can be arbitrarily set according to the hydrolysis treatment, such as setting a longer time for the biological treatment.
  • these processes may be performed simultaneously or in any order.
  • the conditions such as the method, order, temperature, and time of the hydrolysis treatment are arbitrary as long as POME can be hydrolyzed, and are not limited to the above ranges.
  • 50% by volume POME is hydrolyzed by heating at 121 ° C. for 60 minutes, or by adding 1%, 2%, 3% by volume sulfuric acid, or 1%, 2%, After adding sulfuric acid of 3% or the like, a culture medium may be prepared by performing a hydrolysis treatment by heating at 121 ° C. for 60 minutes.
  • the medium containing the POME hydrolyzate may be sterilized by known means such as filtration sterilization, autoclave sterilization, boiling sterilization, and radiation sterilization, and may be sterilized by known means such as sodium hypochlorite or ozone treatment. May be sterilized.
  • “using a medium containing a POME hydrolyzate” does not exclude the use of a non-POME hydrolyzate as long as the POME hydrolyzate is used in the medium.
  • a medium containing only POME non-hydrolyzate without POME hydrolyzate is prepared and cultured for a certain period of time, for example, 12 hours, 24 hours, 36 hours, 48 hours, and 60 hours, and then the POME hydrolyzate is added. The culture may be continued for a certain period of time, for example, 12 hours, 24 hours, 36 hours, 48 hours, and 60 hours, or vice versa.
  • some or all of the POME in the medium may be hydrolyzed.
  • the ratio of the POME hydrolyzate to the POME non-hydrolysate in the medium containing the POME hydrolyzate is arbitrary.
  • the ratio of the POME hydrolyzate to the total amount of the POME (the total of the POME hydrolyzate and the POME non-hydrolysate) is
  • the percentage of the degradant may be at least 1%, at least 10%, at least 20%, at least 25%, at least 50%, at least 75%, at least 80%, 100% (by volume).
  • the proportion of POME hydrolyzate to the total amount of POME may be in the range of 1-100%, 10-90%, 20-80%, 25-75% (% by volume), and the like.
  • the content of POME in the medium of the heterotrophic microalgae is not limited, but, for example, at least 1%, at least in the medium. It may be at a concentration of 10%, at least 25%, at least 50%, at least 75%, 100% (% by volume). In certain embodiments, the content of POME in the medium (total POME) may be in the range of 1-100%, 10-90%, 20-80%, 25-75% (% by volume), and the like. .
  • the medium may be prepared to have a composition suitable for culturing DHA-producing algae.
  • the additive include saccharides, organic acids, inorganic acids, organic bases, inorganic bases, vitamins, amino acids, peptides, proteins, and minerals (including natural seawater, artificial seawater, and the like).
  • it may be preferable to add sugars and / or minerals.
  • it may be preferable not to add minerals. If no mineral is added, there are advantages in that metal corrosion of the apparatus can be prevented, wastewater treatment and discharge after culturing are easy, and the cost of the culture medium is kept low.
  • the pH can be appropriately adjusted by adding an appropriate acid or base.
  • the suitable pH of the medium depends on the type of DHA-producing algae to be cultured, and may be adjusted to, for example, pH 6 to pH 7.
  • the mineral component can be, but is not limited to, chemically defined inorganic salts, such as alkali and alkaline earth metal salts, and salts of other metals.
  • inorganic salts include, for example, potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, or sulfates such as copper sulfate, nickel sulfate, and zinc sulfate; phosphates such as potassium phosphate; carbonates such as calcium carbonate; Chlorides such as cobalt chloride, manganese chloride, sodium chloride and calcium chloride; alkali metal oxides; selenites and molybdates such as sodium molybdate and sodium selenite; halogens such as potassium bromide or potassium iodide Or an artificial seawater salt such as Red @ Sea @ Salt (Red Sea Salt).
  • the salts may be added in a total amount of 0.01 to 5.0, 5 to 40, 5 to 35, 10 to 30, or 10 to 25% (g / medium L).
  • the salts are added in a total amount of 19.4% (19.4 g / L of medium).
  • no additional mineral components eg, salts such as chlorides
  • the medium does not contain additional mineral components other than those originally contained in the POME hydrolyzate.
  • the concentration of minerals in such a medium may be, for example, a total of 6.0%, 5.0%, 4.0% in terms of NaCl amount. ⁇ , 3.0 ⁇ , 2.0 ⁇ , less than 1.0 ⁇ (g / medium L), total less than 3.0 ⁇ , 2.0 ⁇ , 1.0 ⁇ (g / medium L) in terms of Cl amount Can be
  • the growth of the heterotrophic microalgae may be promoted by including a saccharide together with the POME hydrolyzate in the culture solution.
  • Saccharides are a carbon source of heterotrophic microalgae, but when POME hydrolyzate does not contain sufficient saccharides available for microalgae, or promote growth of heterotrophic microalgae If desired, saccharides that can be used in any form by microalgae may be added to the culture solution.
  • sugars include, but are not limited to, one or more sugars selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, and sugar alcohols such as glycerol.
  • the saccharide may be added in a total amount of 5 to 40, 10 to 30, and 15 to 25 (g / medium L). For example, in one embodiment, the saccharide is added in a total amount of 20% (20 g / medium L).
  • the microalgae used in the present invention may be an algae that produces ⁇ -3 polyunsaturated fatty acids such as DHA (hereinafter referred to as DHA-producing algae).
  • DHA-producing algae include organisms belonging to Thraustochytriales, such as Aurantiochytrium, Schizochytrium, Thraustochytrium, Parietichytrium, and Parietichytrium.
  • Organisms belonging to the genus Ulkenia or organisms belonging to the genus Oblongichytrium are exemplified.
  • Organisms belonging to the genus Aurantiochytrium include, for example, Aurantiochytrium limacinum, Aurantiochytrium mangrovei, and the like.
  • organisms belonging to the genus Schizochytrium include Schizochytrium aggregatum.
  • strains such as Schizochytrium sp. Maku-1 can be used.
  • Organisms belonging to the genus Thraustochytrium include, for example, Thraustochytrium aureum, Thraustochytrium pachydermum, Thraustochytrium aggregatum, and the like.
  • Organisms belonging to the genus Parietichytrium include, for example, Parietichytrium sarkarianum.
  • strains such as Parietichytrium sp. 6F-10b can be used.
  • Examples of the organism belonging to the genus Ulkenia include Ulkenia visurgensis and Ulkenia profunda. For example, strains such as Ulkenia sp. Yonez 6-9 can be used.
  • Examples of the organism belonging to the genus Oblongichytrium include Oblongichytrium multirudimentale, Oblongichytrium minutum, and the like. For example, strains such as Oblongichytrium sp. H9 can be used.
  • algae of the genus Aurantiochytrium such as Aurantiochytrium Limasinum 4W-1b, Aurantiochytrium Limasinum SR-21, and Aurantiochytrium Limasinum NIES3737, and the like.
  • Limasinum strains and Aurantiochytrium mangrovey strains such as Aurantiochytrium mangrovey strain 18W-13a can be used.
  • the cultivation of algae producing DHA or the like in the present invention is carried out by inoculating the algae on a medium containing the POME hydrolyzate prepared as described above and culturing them according to a standard method.
  • culture may be performed for a certain period of time in a medium containing only the POME non-hydrolysate, and then culture may be continued for a certain period of time in a medium containing the POME hydrolysate, or vice versa.
  • the culture conditions depend on the type of algae producing DHA or the like to be cultured, and the temperature is 5 to 40 ° C, preferably 10 to 35 ° C, particularly preferably 20 to 25 ° C, more preferably 25 ° C ⁇ 1 ° C.
  • Culture can be performed for 1 to 10 days, preferably 2 to 8 days, for example, 3 to 7 days, for example, 4 to 5 days, and can be performed by aeration-agitation culture, shaking culture, or static culture.
  • the production algae such as DHA used in the present invention may be cultured in a culture device having an appropriate cell culture means.
  • Cell culturing means means a means having all functions for culturing cells, for example, a culturing tank, and the culturing tank includes a stirring device, a vibration device, a temperature control device, a pH control device, and a turbidity device. It may have one or more devices selected from a degree measuring device, a light control device, a device for measuring the concentration of a specific gas such as O 2 and CO 2 and a pressure measuring device.
  • the culture tank may be the same tank as the concentration / separation tank, or may be a separate tank from the concentration / separation tank. When it is a separate tank from the concentration / separation tank, the tank may be connected by an appropriate means, for example, a flow path or the like.
  • the culture method is not limited as long as a medium containing the POME hydrolyzate is used.
  • a medium containing a POME hydrolyzate by a chemical treatment with sulfuric acid or the like and a physical treatment such as heating the PME hydrolyzate containing only the physical treatment is subjected to the chemical treatment.
  • Proliferation may be performed using a medium that does not contain a substance such as sulfuric acid used in the above.
  • a medium containing POME hydrolyzate by chemical treatment use a medium containing POME hydrolyzate by physical treatment only but not containing the substance used in chemical treatment.
  • Propagation may be performed.
  • growth is performed using a medium containing no POME hydrolyzate. And vice versa.
  • the present invention further provides a DHA production method, wherein DHA-producing algae cultured by the above-described culture method are collected using a medium containing a POME hydrolyzate, and DHA is extracted from the collected DHA-producing algae.
  • the DHA production method of the present invention is characterized in that DHA or the like-producing algae is produced by culturing DHA or the like-producing algae using a medium containing a POME hydrolyzate.
  • DDHA produced by the DHA-producing algae of the present invention can be extracted and analyzed by methods known to those skilled in the art.
  • the DHA-producing algae can be recovered by an existing method such as centrifugation or filtration.
  • the recovered DHA-producing algae pellets are dried by freeze-drying or drying by heating or the like, or the DHA-producing algal culture is concentrated, and then the undried wet alga is used for the DHA extraction step. Is also good.
  • DDHA can be extracted from the obtained dried algal cells or wet algal cells.
  • the extraction method is not particularly limited, and can be performed by a known method such as extraction with an organic solvent, squeezing, or supercritical extraction.
  • organic solvent used in the organic solvent extraction method include hexane, acetone, chloroform, methanol, ethanol, diethyl ether and the like, and may be used alone or as a mixture of two or more liquids of a polar solvent and a nonpolar solvent. A liquid can also be used.
  • Algae may be crushed before extraction, but is not limited to, chemical crushing with an alkali or acid, homogenizer or ultrasonic, mechanical crushing with a bead mill, biological crushing with an enzyme, etc., performed by known methods. May be.
  • the obtained extract may be subjected to concentration and purification of DHA by a method known to those skilled in the art, for example, column chromatography using silica gel or acid clay, high-performance liquid chromatography, liquid-liquid distribution, urea addition. Concentration and purification may be performed using a known method such as a method.
  • the DHA-producing algae may contain at least 5%, at least 15%, at least 20%, at least 25%, at least 30% (% by weight) of DHA based on its dry weight.
  • Example 1 Growth of Aurantiochytrium Limasinum 4W-1b strain in a medium in which glucose and salts were added to 50% POME hydrolyzate, production of total lipids and DHA (seed algae)
  • Aurantiochytrium limacinum 4W-1b strain belonging to Thraustochytriales provided by the University of Tsukuba in a GTY medium (containing 1 g of 1/2 diluted seawater, 20 g of glucose, 5 g of yeast extract, and 10 g of tryptone) in the following medium for 3 days It was cultured and used as a seed algae.
  • a high-temperature POME provided from a palm oil plant in Riau, Indonesia in April 2018 is immediately cooled in a refrigerator, stored for 3 days, and then hydrolyzed by heating at 121 ° C. for 60 minutes. Sulfuric acid was added so that the concentration became 1%, and hydrolysis was performed by the same heat treatment (121 ° C. for 60 minutes), and the hydrolysis was not performed at all, and the pH was adjusted to 7.0 with NaOH for each.
  • the hydrolyzed supernatant obtained by centrifugation at 4000 rpm (2,700 g) for 15 minutes was subjected to a total of 19.4 g / L salts (15.5 g / L Na 2 SO 4, CaCl 2 ⁇ 2H 2 O of 0.69g / L, MgSO 4 ⁇ 7H 2 O of 5.74g / L, KH 2 PO 4 of 0.59 g / L) and the 20 g / L Those diluted in artificial seawater containing glucose was used as a medium.
  • Algal cells were recovered from 10 mL of the algal culture by centrifugation.
  • the obtained alga body pellet was crushed by ultrasonic waves, and 20 mL of a mixed solution of chloroform / methanol (2: 1 by volume) was added, followed by thorough mixing.
  • 4 mL of a 0.9% aqueous sodium chloride solution was added and mixed well, and after centrifugation, the chloroform layer was collected by filtration with filter paper.
  • the filtrate was concentrated to dryness and the amount of lipid was measured.
  • 0.2 mg of trichosane methyl ester was added as an internal standard substance, 0.5 mL of 0.5 M NaOH methanol solution was added, and a saponification reaction was performed at 100 ° C.
  • FIG. 1 shows a medium obtained by hydrolyzing 50% by volume of POME by a 1% by volume sulfuric acid treatment and a heat treatment at 121 ° C., a medium hydrolyzed only by a heat treatment at 121 ° C., and a volume 50% without hydrolysis as a control.
  • the change with time of the algal cell concentration of Aurantiochytrium Limasinum 4W-1b cultured in a% POME medium (hereinafter referred to as a control medium) is shown (OD660).
  • OD660 algal cell concentration of Aurantiochytrium Limasinum 4W-1b cultured in a% POME medium
  • FIG. 2 shows the total lipid and DHA production after 48 hours of culture. Lipids and DHA were produced in all media, but the amount of lipid production was about 1.3 times higher in the hydrolysis medium with 1% sulfuric acid and heating than in the control. Regarding the amount of DHA produced, the hydrolysis medium with 1% sulfuric acid and heating and the hydrolysis medium with heating alone were clearly higher than the control.
  • Table 1 shows the growth amount (g / L), algal productivity (mg / L / day), total lipid content (%), total lipid amount (mg / L), a table summarizing lipid productivity (mg / L / day), DHA content (%), DHA production amount (mg / L), and DHA productivity (mg / L / day).
  • the productivity is a value obtained by converting the amount of algal bodies, the amount of total lipids, and the amount of DHA after 48 hours of growth per day.
  • Each of the total lipid content and the DHA content indicates a ratio to the algal body content (% by weight).
  • Algae productivity and lipid productivity were highest in sulfuric acid + heated hydrolysis POME medium, while DHA productivity was highest in heated hydrolysis medium, followed by sulfuric acid + heated hydrolysis medium, and The control medium was the lowest.
  • Example 2 Growth of Aurantiochytrium Limasinum 4W-1b Strain in Medium Prepared Using 100% POME Hydrolyzed by Various Methods, Production of Total Lipids and DHA Various hydrolysis conditions were set. The growth of Aurantiochytrium Limasinum 4W-1b strain and total lipid and DHA production were examined. As a seed strain, the same Aurantiochytrium limacinum 4W-1b strain as in Example 1 was used. As the POME, high-temperature POME provided from a palm oil factory in North Sumatra, Indonesia, which was rapidly cooled and stored frozen, was thawed at the start of the experiment and used.
  • POME high-temperature POME provided from a palm oil factory in North Sumatra, Indonesia, which was rapidly cooled and stored frozen, was thawed at the start of the experiment and used.
  • the POME hydrolyzate is hydrolyzed by treating the thawed POME under the conditions shown in Table 2 below (experiment numbers 2 to 4 in Table 2), and after adjusting the pH to 7.0 with acid or alkali.
  • the hydrolyzed POME supernatant (100% volume) obtained by centrifuging at 4000 rpm for 15 minutes was used.
  • As a control (POME non-hydrolysate) only filtration was performed with a filter (0.45 ⁇ m) without hydrolysis at all (experiment number 1 in Table 2), and the pH was similarly adjusted to 7.0, followed by centrifugation at 4000 rpm for 15 minutes.
  • the culture was performed using a POME supernatant obtained by centrifuging the thawed POME at 4000 rpm for 15 minutes (volume: 100%: non-POME hydrolyzate) as an initial medium. After pouring 200 ml into the flask, sterilizing in an autoclave at 121 ° C. for 20 minutes and cooling, the seed strain was inoculated in a medium, the mouth of the flask was sealed with a silico stopper, and subjected to reciprocal shaking culture (25 strokes / 100 strokes / min) at 25 ° C. After culturing for a time, the above-mentioned various POME hydrolysates or 50 ml of control were added to the culture, and the culturing was continued.
  • Example 2 After 60 hours from the start of the culture, 50 to 100 mL were collected in the same manner as in Example 1, and the growth amount (g / L), algal cell productivity (mg / L / day), total lipid content (%), and total lipid amount (%) were obtained. mg / L), lipid productivity (mg / L / day), DHA content (%), DHA production (mg / L), and DHA productivity (mg / L / day).
  • Table 3 shows the effect of physical treatments (hydrolysis by heat and pressure) comparing Run Nos. 2 (1) and (2) to Run No. 1.
  • Table 4 shows the effect of the chemical treatment (hydrolysis with acid) comparing Experiment Nos. 3-1 (1), (2) and (3) to Experiment No. 1.
  • Table 5 shows the effect of the chemical treatment (hydrolysis with alkali) comparing Experiment No. 3-2 (1) and (2) to Experiment No. 1.
  • Table 6 shows the effect of biological treatment (enzymatic hydrolysis) comparing experiment numbers 4 (1) and (2) to experiment number 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing: a culture method whereby it becomes possible to proliferate a microalga with high efficiency using a POME discharged in a palm oil production process; and a method for producing a high-value-added valuable substance from a microalga with high efficiency. By using a POME hydrolysate, it becomes possible to proliferate a heterotrophic microalga capable of producing a ω-3 polyunsaturated fatty acid such as docosahexaenoic acid (DHA) satisfactorily with high efficiency, and it also becomes possible to improve the productivity of DHA.

Description

パームオイル工場排出液(POME)をつかった従属栄養性微細藻類の培養方法及びDHA製造方法Method for culturing heterotrophic microalgae using palm oil mill effluent (POME) and method for producing DHA
 本発明は、パームオイル工場排出液(Palm Oil Mill Effluent: POME)を培地として使用する従属栄養性微細藻類の培養方法とDHA製造方法を提供する。 The present invention provides a method for culturing heterotrophic microalgae and a method for producing DHA, using a palm oil mill effluent (Palm Oil Mill Effluent: POME) as a medium.
 インドネシアやマレーシア等、油椰子(オイルパーム)果実から抽出するパームオイル製造が基幹産業となっている国では、パームオイル工場排液(以下POMEと称す)が大きな環境・経済問題となっている。例えば、インドネシアでは、パームオイル製造工場から、約455,000t/日のPOMEがラグーンに放流され酸化池処理→嫌気性処理→好気性処理されている。この過程で、発酵ガスによる悪臭や害虫・害獣被害、水質汚濁等を引き起こし、嫌気処理により発生するメタンガスは大気へ放出されている状況である。メタンの地球温暖化係数は二酸化炭素に比べて21倍と非常に大きく、地球温暖化に悪影響を及ぼしている。このようにPOMEは、温暖化物質の放出と水質汚濁をひきおこし、地球温暖化や生活環境悪化や野生生物への悪影響等広範でかつ深刻な環境問題を引き起こしている。例えば、パームオイル生産産業は、インドネシア、マレーシア等の基幹産業となっていることから、POMEの環境問題の解決は、インドネシアやマレーシア等パームオイル産業が盛んな国家社会の持続的発展のために重大な課題となっている。 国 In countries such as Indonesia and Malaysia where the production of palm oil extracted from oil palm fruits is a key industry, palm oil factory effluent (hereinafter referred to as POME) is a major environmental and economic problem. For example, in Indonesia, about 455,000 t / day of POME is released from a palm oil manufacturing plant into a lagoon and is subjected to oxidation pond treatment → anaerobic treatment → aerobic treatment. In this process, fermentation gas causes odor, damage to insects and pests, water pollution, and the like, and methane gas generated by anaerobic treatment is released to the atmosphere. Methane has a very large global warming potential, 21 times that of carbon dioxide, and has a negative impact on global warming. As described above, POME causes emission of warming substances and water pollution, causing widespread and serious environmental problems such as global warming, deterioration of living environment, and adverse effects on wildlife. For example, since the palm oil production industry is a key industry in Indonesia, Malaysia, etc., solving the environmental problems of POME is crucial for the sustainable development of the national society where the palm oil industries, such as Indonesia and Malaysia, are thriving. Is an important issue.
 POMEの環境問題解決法として、上述のように嫌気状態でメタンガスが発生することから、これらを回収し、バイオガス発電を行う方法が知られている(特許文献1、2)。しかし、バイオガス発電量がそれ程高くないことから、採算性が悪く、ほとんどが事業として成立しない。その為、現地では依然としてPOMEの新たな利用方法へのニーズが高い。 As a method for solving the environmental problem of POME, a method is known in which methane gas is generated in an anaerobic state as described above, and the methane gas is collected and biogas power is generated (Patent Documents 1 and 2). However, since the amount of biogas power generation is not so high, profitability is poor and most of them are not feasible as a business. Therefore, there is still a strong need for a new method of using POME locally.
 従来から、微細藻類を増殖させ、微細藻類の細胞内に燃料、飼料、健康食品などの原料となる脂質、又は、タンパク質やビタミン等の有価物を生産・貯蔵させ、貯蔵した有価物を利用して燃料や食品等に利用することが行われている。特にω-3多価不飽和脂肪酸等高付加価値有価物の産生・貯蔵については、即産業化可能成分として注目されている。 Conventionally, microalgae have been proliferated, and lipids or proteins, vitamins, and other valuable materials used as raw materials for fuels, feeds, health foods, and the like have been produced and stored in the cells of the microalgae. It is used for fuel and food. In particular, production and storage of high value-added valuables such as ω-3 polyunsaturated fatty acids have attracted attention as a component that can be immediately industrialized.
 この微細藻類の増殖は、下水・産業排水の浄化といった排水処理(特許文献3)や二酸化炭素の吸収・利用を目的とした排ガス処理(特許文献4)などにも利用されている。しかし、微細藻類が効率的に増殖しないと細胞内における有価物の貯蔵量が必ずしも十分なものとならないため、前記有価物の有効利用が困難になるおそれを有する。クロレラ等微細藻類はPOMEを利用して増殖することが報告されている(非特許文献1-5)が、藻体バイオマス生産性や脂質生産性が低く、POME利用効率が悪いことから、微細藻類からの高付加価値有価物の生産法は確立されていない。 増 殖 The growth of microalgae is also used in wastewater treatment such as purification of sewage and industrial wastewater (Patent Literature 3) and exhaust gas treatment for absorbing and utilizing carbon dioxide (Patent Literature 4). However, if the microalgae do not proliferate efficiently, the amount of valuables stored in the cells will not always be sufficient, and there is a risk that effective utilization of the valuables will be difficult. It has been reported that microalgae such as chlorella proliferate using POME (Non-Patent Documents 1-5). However, microalgae are low in algal biomass productivity and lipid productivity and poor in POME utilization efficiency. The production method of high value-added valuables from has not been established.
: 再公表2017-026370号公報: Republished 2017-026370 : 特許第6049937号公報: Patent No. 6049937 : 特開平05-301097号公報: Japanese Patent Laid-Open No. 05-301097 : 特開2010-022331号公報: JP 2010-022331 A
 本発明は、上記の問題点等に鑑み、パームオイル製造工程から排出されるPOMEを用いて微細藻類を効率的に増殖させることができる培養方法と微細藻類から高付加価値有価物を効率的に生産する方法を提供することを課題とする。 In view of the above-mentioned problems, the present invention provides a culture method capable of efficiently growing microalgae using POME discharged from a palm oil production process, and efficiently producing high value-added valuables from microalgae. It is an object to provide a production method.
 本発明者は、POMEの利用効率を改善するために鋭意検討を行ったところ、POME加水分解物を用いることで、DHA(ドコサヘキサエン酸)といったω-3多価不飽和脂肪酸を産生する従属栄養性微細藻類が効率良く良好に増殖されること、DHAの生産量が向上すること等を見出して本発明を完成させるにいたった。 The present inventors have conducted intensive studies in order to improve the utilization efficiency of POME. Heterotrophic production of ω-3 polyunsaturated fatty acids such as DHA (docosahexaenoic acid) by using POME hydrolyzate has been studied. The present inventors have found that microalgae are efficiently and favorably proliferated, and that the production amount of DHA is improved, and completed the present invention.
 本発明は、DHA(ドコサヘキサエン酸)といったω-3多価不飽和脂肪酸を産生する従属栄養性微細藻類をPOME加水分解物を用いることで効率的に増殖させることができる培養方法とDHA製造法を提供する。 The present invention relates to a culture method and a DHA production method capable of efficiently growing heterotrophic microalgae producing ω-3 polyunsaturated fatty acids such as DHA (docosahexaenoic acid) by using a POME hydrolyzate. provide.
 即ち、上記課題を解決するための本発明に係る従属栄養性微細藻類の培養方法は、パームオイル製造過程でパーム果実からオイルをしぼりだした搾り汁を成分とするPOMEを加水分解したPOME加水分解物を用いて、高付加価値成分を産生する微細藻類を従属栄養培養することを特徴とする。 That is, the method for culturing heterotrophic microalgae according to the present invention for solving the above-mentioned problems is characterized in that a POME hydrolyzate obtained by hydrolyzing a POME containing a squeezed juice obtained by squeezing oil from palm fruit in a palm oil production process is used. , Wherein microalgae producing high value-added components are heterotrophically cultured.
 本発明に係る当該微細藻類の培養方法においてはPOME加水分解物を供給することを特徴とする。 に お い て The method for culturing microalgae according to the present invention is characterized in that a POME hydrolyzate is supplied.
 従って、本願は、以下の発明を提供する。
(1)POME加水分解物を含む培地を使用する、従属栄養性微細藻類の培養方法。
(2)前記POME加水分解物は、化学的、物理学的、及び/又は生物学的処理によるPOME加水分解物である、(1)に記載の培養方法。
(3)前記化学的処理によるPOME加水分解物は、酸又はアルカリによるPOME加水分解物である、(2)に記載の培養方法。
(4)前記酸は、硫酸、塩酸、及び/又はリン酸である、(3)に記載の培養方法。
(5)前記アルカリは、水酸化ナトリウム、水酸化カリウム、及び/又はアンモニアである、(3)に記載の培養方法。
(6)前記物理学的処理によるPOME加水分解物は、熱及び/又は圧力によるPOME加水分解物である、(2)に記載の培養方法。
(7)前記生物学的処理によるPOME加水分解物は、ペプチダーゼ又はアミラーゼによるPOME加水分解物である、(2)に記載の培養方法。
(8)前記従属栄養性微細藻類がω―3多価不飽和脂肪酸を産生する藻類である、(1)~(7)のいずれか1項に記載の培養方法。
(9)ω―3多価不飽和脂肪酸は、DHAである、(8)に記載の培養方法。
(10)前記藻類が、ヤブレツボカビ類(Thraustochytriales)に属する藻類の株である、(1)~(9)のいずれか1項に記載の培養方法。
(11)前記ヤブレツボカビ類が、オーランチオキトリウム属(Aurantiochytrium)に属する種である(10)に記載の培養方法。
(12)前記オーランチオキトリウム属の藻類がオーランチオキトリウム リマシナム(Aurantiochytrium limacinum)に属する培養株である(11)に記載の培養方法。
(13)前記オーランチオキトリウム属の藻類がオーランチオキトリウム マングローベイ(Aurantiochytrium mangrovei)に属する培養株である(11)に記載の培養方法。
(14)前記オーランチオキトリウム リマシナムの培養株が4W-1b株、オーランチオキトリウム リマシナムSR-21株、又はオーランチオキトリウム リマシナムNIES3737株から選択されるいずれかの株である(12)に記載の培養方法。
(15)前記オーランチオキトリウム マングローベイの培養株がオーランチオキトリウム マングローベイ18W-13a株である(13)に記載の培養方法。
(16)前記POME加水分解物は遠心分離及び/又はろ過により固形分が除去されている、(1)~(15)のいずれか1項に記載の培養方法。
(17)前記培地は、糖成分を更に含む、(1)~(16)のいずれか1項に記載の培養方法。
(18)前記糖成分はグルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコール、等から選択される1又は複数の糖類である、(17)に記載の培養方法。
(19)前記糖成分の添加量は、合計として10~30g/培地Lである、(17)又は(18)に記載の培養方法。
(20)前記培地は、ミネラル成分を更に含む、(1)~(19)のいずれか1項に記載の培養方法。
(21)前記ミネラル成分は、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム、硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩;炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;モリブデン酸ナトリウム、亜セレン酸ナトリウム等の亜セレン酸塩及びモリブデン酸塩;臭化カリウム、ヨウ化カリウム等のハロゲン化物;天然海水塩類;並びに人工海水塩類から選択される単一又は複数の塩類である、(20)に記載の培養方法。
(22)前記ミネラル成分の添加量は、合計として5~35g/培地Lである(20)又は(21)に記載の培養方法。
(23)(1)~(22)のいずれか1項に記載の培養方法で培養した従属栄養性微細藻類を回収することと、当該回収された藻類からDHAを抽出することを含む、DHA製造方法。
Accordingly, the present application provides the following inventions.
(1) A method for culturing heterotrophic microalgae using a medium containing a POME hydrolyzate.
(2) The culture method according to (1), wherein the POME hydrolyzate is a POME hydrolyzate obtained by a chemical, physical, and / or biological treatment.
(3) The culture method according to (2), wherein the POME hydrolyzate obtained by the chemical treatment is an acid or alkali POME hydrolyzate.
(4) The culture method according to (3), wherein the acid is sulfuric acid, hydrochloric acid, and / or phosphoric acid.
(5) The culture method according to (3), wherein the alkali is sodium hydroxide, potassium hydroxide, and / or ammonia.
(6) The culture method according to (2), wherein the POME hydrolyzate obtained by the physical treatment is a POME hydrolyzate obtained by heat and / or pressure.
(7) The culture method according to (2), wherein the POME hydrolyzate obtained by the biological treatment is a POME hydrolyzate obtained by peptidase or amylase.
(8) The culture method according to any one of (1) to (7), wherein the heterotrophic microalgae is an algae that produces ω-3 polyunsaturated fatty acids.
(9) The culture method according to (8), wherein the ω-3 polyunsaturated fatty acid is DHA.
(10) The culture method according to any one of (1) to (9), wherein the algae is a strain of algae belonging to Thraustochytriales.
(11) The culture method according to (10), wherein the Thraustochytriales is a species belonging to the genus Aurantiochytrium.
(12) The culture method according to (11), wherein the algae of the genus Aurantiochytrium are culture strains belonging to Aurantiochytrium limacinum.
(13) The culture method according to (11), wherein the algae of the genus Aurantiochytrium are culture strains belonging to Aurantiochytrium mangrovei.
(14) The culture according to (12), wherein the cultured strain of Aurantiochytrium limacinum is any one selected from 4W-1b strain, Aurantiochytrium limacinum SR-21 strain, and Aurantiochytrium limacinum NIES3737 strain. The culture method as described above.
(15) The culture method according to (13), wherein the cultured strain of Aurantiochytrium mangrovey is an Aurantiochytrium mangrovey strain 18W-13a.
(16) The culture method according to any one of (1) to (15), wherein the POME hydrolyzate has a solid content removed by centrifugation and / or filtration.
(17) The culture method according to any one of (1) to (16), wherein the medium further contains a sugar component.
(18) The culture according to (17), wherein the sugar component is one or more sugars selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, sugar alcohols such as glycerol, and the like. Method.
(19) The culture method according to (17) or (18), wherein the total amount of the sugar component is 10 to 30 g / medium L.
(20) The culture method according to any one of (1) to (19), wherein the medium further includes a mineral component.
(21) The mineral component is a sulfate such as potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, copper sulfate, nickel sulfate or zinc sulfate; a phosphate such as potassium phosphate; a carbonate such as calcium carbonate; Chlorides such as manganese chloride, sodium chloride and calcium chloride; selenites and molybdates such as sodium molybdate and sodium selenite; halides such as potassium bromide and potassium iodide; natural seawater salts; The culture method according to (20), which is a single salt or a plurality of salts selected from artificial seawater salts.
(22) The culture method according to (20) or (21), wherein the total amount of the mineral components is 5 to 35 g / medium L.
(23) DHA production, comprising collecting heterotrophic microalgae cultured by the culture method according to any one of (1) to (22), and extracting DHA from the collected alga. Method.
 本発明により、POMEの有効利用が図れるとともに、従属栄養性微細藻類の培養を効率的に行うことにより有価物としてDHAを製造することができる。 According to the present invention, DME can be produced as a valuable resource by efficiently culturing heterotrophic microalgae while effectively utilizing POME.
 驚くべきことに、POME加水分解物を含む培地を使用する場合、POME非加水分解物のみを含む培地を使用する場合に比べて早い増殖速度でオーランチオキトリウム リマシナム4W-1b株を良好に増殖させ、高濃度のDHA生産を達成した。 Surprisingly, when the medium containing POME hydrolyzate is used, the Aurantiochytrium perimacinum 4W-1b strain grows at a higher growth rate than when the medium containing only POME non-hydrolyzate is used. To achieve a high concentration of DHA production.
図1は、50%POMEの硫酸及び加熱による加水分解物、50%POMEの加熱による加水分解物、および加水分解を行わない50%POME(コントロール)を添加した培地を用いた場合のオーランチオキトリウム リマシナム4W-1b株の藻体濃度を示す(OD660)。FIG. 1 shows the Aurantiochi using a medium to which 50% POME sulfuric acid and a hydrolyzate by heating, a 50% POME hydrolyzate by heating, and a 50% POME (control) without hydrolysis were added. The algal cell concentration of Thorium perimacinum 4W-1b strain is shown (OD660). 図2は、50%POMEの硫酸及び加熱による加水分解物、50%POMEの加熱による加水分解物、および加水分解を行わない50%POME(コントロール)を添加した培地を用いた場合のオーランチオキトリウム リマシナム 4W-1b株の総脂質濃度およびDHA濃度を示す。FIG. 2 shows the Aurantiochi using a medium to which 50% POME sulfuric acid and a hydrolyzate obtained by heating, a 50% POME hydrolyzate obtained by heating, and a 50% POME (control) not subjected to hydrolysis were added. 3 shows the total lipid concentration and DHA concentration of Thorium limacinum 4W-1b strain.
 一般に、パームオイルの製造工程は、パーム果房(Fresh Fruit Bunch:FFB)の不活化のためのスチーム処理、パーム果実とパーム空房(Empty Fruit Bunch:EFB)の分離、パーム果実からの果実部(メソカ)と種部の分離という前処理工程を経る。果実部からのクルードパームオイル抽出、分離精製へと進み、純度の高いパームオイルが製造される。本発明におけるPOMEとは、このパ-ムオイルの製造過程において生じる、使用済みスチーム水、オイル絞り汁と未回収オイルの混合排出液、及び/又は、上記の混合液を遠心分離により未回収オイルを除去または回収した排出液(温度が70-90℃)、および、それらが冷却後に酸化池処理→嫌気性処理→好気性処理を経て、放流される排液をいう。POMEは、原材料に由来する、糖質、有機酸、ビタミン、アミノ酸、ペプチド、タンパク質及びミネラル等を豊富に含有する。藻類の培養に使用するPOMEは、酸化池処理、嫌気性処理、又は好気性処理を行う前のものであっても処理後のものであってもよい。ある実施形態では、これら酸化池処理、嫌気性処理、及び好気性処理を行う前のPOMEを使用することが好ましい。 In general, palm oil production processes include steam treatment for inactivating palm fruit clusters (Fresh Fruit Bunch: FFB), separation of palm fruit and palm empty clusters (Empty Fruit Bunch: EFB), and fruit parts from palm fruit ( It goes through a pretreatment process of separation of mesoca) and seed part. The process proceeds to the extraction and separation and purification of crude palm oil from the fruit, producing high-purity palm oil. POME in the present invention means used steam water, a mixed effluent of oil juice and unrecovered oil, and / or unrecovered oil obtained by centrifuging the above-mentioned mixed liquid. This refers to the discharged liquid that has been removed or recovered (temperature is 70-90 ° C), and the discharged liquid that is discharged after being cooled and then subjected to oxidation pond treatment → anaerobic treatment → aerobic treatment. POME is rich in carbohydrates, organic acids, vitamins, amino acids, peptides, proteins, minerals, etc., derived from raw materials. POME used for algae culture may be before or after the oxidation pond treatment, anaerobic treatment, or aerobic treatment. In some embodiments, it is preferable to use POME before performing these oxidation pond treatment, anaerobic treatment, and aerobic treatment.
 POMEは、原材料由来の様々な固形物を含有する。DHA産生藻類の培養に際して、固形物を含有するPOMEを使用してPOME加水分解物を調製し直接培地に使用してもよい。あるいは、POMEは加水分解されたのち、遠心分離や濾過等、公知の手段により固形物を除去したものを使用してもよい。あるいは、POMEから遠心分離や濾過等、公知の手段により固形分を除去して、その固形分を加水分解したものを上清POMEに添加した形態で培地に使用してもよい。しかし、POME加水分解物は非加水分解固形分等の固形物を含有していてもいなくてもよく、限定されない。 @POME contains various solids derived from raw materials. When culturing the DHA-producing algae, a POME hydrolyzate may be prepared using POME containing a solid substance and used directly in the medium. Alternatively, POME obtained by hydrolyzing and removing solid matter by a known means such as centrifugation or filtration may be used. Alternatively, the solid content may be removed from the POME by a known means such as centrifugation or filtration, and the solid content may be hydrolyzed and added to the supernatant POME for use in the medium. However, the POME hydrolyzate may or may not contain solids such as non-hydrolyzed solids, and is not limited.
 POME加水分解物は、任意の手段によって調製され得る。例えば、硫酸、塩酸、リン酸等の酸、水酸化ナトリウム、水酸化カリウム、又はアンモニア等のアルカリによる化学的処理;熱、圧力等による物理学的処理;ペプチダーゼ、アミラーゼ等の酵素による生物学的処理等の加水分解などが挙げられるがこれらに限定されない。本願において、用語「ペプチダーゼ」は、ペプチド結合の加水分解反応を触媒する酵素を指し、「プロテアーゼ」と同義であり互換可能に用いられる。 POME hydrolyzate can be prepared by any means. For example, chemical treatment with an acid such as sulfuric acid, hydrochloric acid or phosphoric acid, or an alkali such as sodium hydroxide, potassium hydroxide, or ammonia; physical treatment with heat, pressure, or the like; biological treatment with an enzyme such as peptidase or amylase Examples include, but are not limited to, hydrolysis such as treatment. In the present application, the term “peptidase” refers to an enzyme that catalyzes a hydrolysis reaction of a peptide bond, is synonymous with “protease”, and is used interchangeably.
 加水分解は、化学的処理、物理学的処理、生物学的処理等を任意に組み合わせて行ってもよい。例えば、酸又はアルカリによる化学的処理と加熱等による物理学的処理を組み合わせてPOMEの加水分解を行ってもよい。例えば、ある実施形態では、硫酸及び/又は加熱によるPOME加水分解物を含む培地が使用される。POMEを酸又はアルカリによる化学的処理により加水分解する場合、使用する酸又はアルカリの濃度は限定されないものの、例えば、容量1%、2%、3%、5%、10%等が挙げられる。ある実施形態では、酸又はアルカリの濃度が、容量0.1~10%、0.3~8%、0.5~5%、1~3%等の範囲内にあってもよい。POMEを加熱により加水分解する場合、加熱温度は限定されないものの、例えば、少なくとも40~374℃、40~300℃、45~250℃、50~200℃、60~180℃、70~170℃、80~160℃、90~150℃、100~140℃、110~130℃、115~125℃等が挙げられる。POMEを圧力により加水分解する場合、加える圧力は限定されないものの、例えば、少なくとも1.0atm~5.0atm、1.5atm~4.0atm、2.0atm~3.0atm、5.0atm~50atm、50atm~100atm、100atm~150atm、150atm~200atm、200atm~218.0atm等が挙げられる。ペプチダーゼ等の酵素による生物学的処理により加水分解する場合、限定されないものの、100~1000Unit、300~800Unit、400~700Unit等の濃度にて、例えば、60~20℃、50~30℃、40~35℃、37℃等といった酵素が活性化するような温度で行ってもよい。また、POMEを加水分解する処理時間は限定されないものの、1~4週間、1~7日、1~24時間、20~100分、30~90分、40~80分、50~70分、55~65分等が挙げられる。例えば、生物学的処理の時間を長めに設定するなど、加水分解処理に応じて任意に設定できる。上記処理を組み合わせる場合、これらの処理は同時に行ってもよいし任意の順番で行ってもよい。しかし、加水分解処理の方法、順序、温度、時間等の条件は、POMEが加水分解できれば任意であり上記範囲に限定されない。 The hydrolysis may be performed by arbitrarily combining chemical treatment, physical treatment, biological treatment and the like. For example, POME may be hydrolyzed by combining a chemical treatment with an acid or an alkali and a physical treatment such as heating. For example, in one embodiment, a medium containing sulfuric acid and / or heated POME hydrolyzate is used. When POME is hydrolyzed by an acid or alkali chemical treatment, the concentration of the acid or alkali to be used is not limited, and examples thereof include 1%, 2%, 3%, 5%, 10%, and the like. In certain embodiments, the concentration of the acid or alkali may be in the range of 0.1-10%, 0.3-8%, 0.5-5%, 1-3%, etc. by volume. When POME is hydrolyzed by heating, the heating temperature is not limited, but for example, at least 40 to 374 ° C, 40 to 300 ° C, 45 to 250 ° C, 50 to 200 ° C, 60 to 180 ° C, 70 to 170 ° C, 80 to 80 ° C. To 160 ° C, 90 to 150 ° C, 100 to 140 ° C, 110 to 130 ° C, 115 to 125 ° C, and the like. When POME is hydrolyzed by pressure, the pressure to be added is not limited, but for example, at least 1.0 atm to 5.0 atm, 1.5 atm to 4.0 atm, 2.0 atm to 3.0 atm, 5.0 atm to 50 atm, 50 atm To 100 atm, 100 to 150 atm, 150 to 200 atm, 200 to 218.0 atm, and the like. When the hydrolysis is carried out by a biological treatment with an enzyme such as a peptidase, at a concentration of 100 to 1000 Unit, 300 to 800 Unit, 400 to 700 Unit, for example, 60 to 20 ° C., 50 to 30 ° C., 40 to The reaction may be performed at a temperature at which the enzyme is activated, such as 35 ° C. or 37 ° C. The processing time for hydrolyzing POME is not limited, but is 1 to 4 weeks, 1 to 7 days, 1 to 24 hours, 20 to 100 minutes, 30 to 90 minutes, 40 to 80 minutes, 50 to 70 minutes, 55 Up to 65 minutes. For example, it can be arbitrarily set according to the hydrolysis treatment, such as setting a longer time for the biological treatment. When the above processes are combined, these processes may be performed simultaneously or in any order. However, the conditions such as the method, order, temperature, and time of the hydrolysis treatment are arbitrary as long as POME can be hydrolyzed, and are not limited to the above ranges.
 例えば、ある実施形態では、容量50%POMEを121℃にて60分の加熱による加水分解処理、あるいは、容量1%、2%、3%硫酸の添加による、あるいは、容量1%、2%、3%等の硫酸を添加した後121℃にて60分の加熱による加水分解処理することにより培地を作成してもよい。 For example, in some embodiments, 50% by volume POME is hydrolyzed by heating at 121 ° C. for 60 minutes, or by adding 1%, 2%, 3% by volume sulfuric acid, or 1%, 2%, After adding sulfuric acid of 3% or the like, a culture medium may be prepared by performing a hydrolysis treatment by heating at 121 ° C. for 60 minutes.
 本発明において、POME加水分解物を含む培地は、濾過滅菌、オートクレーブ滅菌、煮沸滅菌、及び放射線滅菌等、公知の手段で滅菌されてもよく、次亜塩素酸ソーダやオゾン処理等、公知の手段で殺菌されてもよい。 In the present invention, the medium containing the POME hydrolyzate may be sterilized by known means such as filtration sterilization, autoclave sterilization, boiling sterilization, and radiation sterilization, and may be sterilized by known means such as sodium hypochlorite or ozone treatment. May be sterilized.
 本発明において、「POME加水分解物を含む培地を使用する」とは、POME加水分解物を培地に使用する限り、POME非加水分解物の使用を排除するものではない。例えば、POME加水分解物を含まずPOME非加水分解物のみを含む培地を作成し一定時間、例えば、12時間、24時間、36時間、48時間、60時間培養し、その後POME加水分解物を添加して一定時間、例えば、12時間、24時間、36時間、48時間、60時間培養を継続しても、その逆であってもよい。あるいは、培地におけるPOMEの一部又は全部を加水分解してもよい。POME加水分解物を含む培地におけるPOME加水分解物とPOME非加水分解物の割合は任意であり、例えば、POME全体量(POME加水分解物とPOME非加水分解物との合計)に対し、POME加水分解物の割合が少なくとも1%、少なくとも10%、少なくとも20%、少なくとも25%、少なくとも50%、少なくとも75%、少なくとも80%、100%(容量%)であってもよい。ある実施形態では、POME全体量に対するPOME加水分解物の割合が、1~100%、10~90%、20~80%、25~75%(容量%)等の範囲内にあってもよい。また、本発明において、当該従属栄養性微細藻類の培地におけるPOMEの含有量(POME加水分解物とPOME非加水分解物を含むPOME全体量)は限定されないものの、例えば、培地において少なくとも1%、少なくとも10%、少なくとも25%、少なくとも50%、少なくとも75%、100%(容量%)の濃度であってもよい。ある実施形態では、培地におけるPOMEの含有量(POME全体量)が、1~100%、10~90%、20~80%、25~75%(容量%)等の範囲内にあってもよい。 に お い て In the present invention, “using a medium containing a POME hydrolyzate” does not exclude the use of a non-POME hydrolyzate as long as the POME hydrolyzate is used in the medium. For example, a medium containing only POME non-hydrolyzate without POME hydrolyzate is prepared and cultured for a certain period of time, for example, 12 hours, 24 hours, 36 hours, 48 hours, and 60 hours, and then the POME hydrolyzate is added. The culture may be continued for a certain period of time, for example, 12 hours, 24 hours, 36 hours, 48 hours, and 60 hours, or vice versa. Alternatively, some or all of the POME in the medium may be hydrolyzed. The ratio of the POME hydrolyzate to the POME non-hydrolysate in the medium containing the POME hydrolyzate is arbitrary. For example, the ratio of the POME hydrolyzate to the total amount of the POME (the total of the POME hydrolyzate and the POME non-hydrolysate) is The percentage of the degradant may be at least 1%, at least 10%, at least 20%, at least 25%, at least 50%, at least 75%, at least 80%, 100% (by volume). In some embodiments, the proportion of POME hydrolyzate to the total amount of POME may be in the range of 1-100%, 10-90%, 20-80%, 25-75% (% by volume), and the like. In the present invention, the content of POME in the medium of the heterotrophic microalgae (the total amount of POME including the POME hydrolyzate and the POME non-hydrolyzate) is not limited, but, for example, at least 1%, at least in the medium. It may be at a concentration of 10%, at least 25%, at least 50%, at least 75%, 100% (% by volume). In certain embodiments, the content of POME in the medium (total POME) may be in the range of 1-100%, 10-90%, 20-80%, 25-75% (% by volume), and the like. .
 本発明において、POME加水分解物を含む培地に様々な添加物を添加することにより、当該培地が、DHA産生藻類の培養に適した組成となるように調製されてもよい。当該添加物として、糖類、有機酸、無機酸、有機塩基、無機塩基、ビタミン、アミノ酸、ペプチド、タンパク質、ミネラル(天然海水、人工海水等も含む)が挙げられる。ある実施形態では、糖類及び/又はミネラルを添加することが好ましい場合がある。ある実施形態では、ミネラルを添加しないことが好ましい場合がある。ミネラルを添加しないと装置の金属腐食を防止できる、培養後の排水処理や放流が容易になる、培地コストを低く抑えるという利点がある。更に、必要であれば適当な酸又は塩基を加えることにより適宜pHを調整できる。培地の好適なpHは培養するDHA産生藻類の種類に依存し、例えば、pH6~pH7に調整してもよい。 In the present invention, by adding various additives to the medium containing the POME hydrolyzate, the medium may be prepared to have a composition suitable for culturing DHA-producing algae. Examples of the additive include saccharides, organic acids, inorganic acids, organic bases, inorganic bases, vitamins, amino acids, peptides, proteins, and minerals (including natural seawater, artificial seawater, and the like). In some embodiments, it may be preferable to add sugars and / or minerals. In some embodiments, it may be preferable not to add minerals. If no mineral is added, there are advantages in that metal corrosion of the apparatus can be prevented, wastewater treatment and discharge after culturing are easy, and the cost of the culture medium is kept low. Further, if necessary, the pH can be appropriately adjusted by adding an appropriate acid or base. The suitable pH of the medium depends on the type of DHA-producing algae to be cultured, and may be adjusted to, for example, pH 6 to pH 7.
 ミネラル成分としては、限定されないが、化学的に定義された無機塩、例えばアルカリ及びアルカリ土類金属塩、並びに他の金属の塩であってよい。このような無機塩として、例えば、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム、又は硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩;炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;アルカリ金属酸化物;モリブデン酸ナトリウム及び亜セレン酸ナトリウム等の亜セレン酸塩及びモリブデン酸塩;臭化カリウム又はヨウ化カリウム等のハロゲン化物;天然海水塩類;並びにRed Sea Salt(レッドシー塩)といった人工海水塩類;から選択される単一又は複数の塩類が挙げられる。前記塩類は、合計で0.01~5.0、5~40、5~35、10~30、又は10~25‰(g/培地L)の量で添加されてもよい。例えば、ある実施形態では、前記塩類は、合計で19.4‰(19.4g/培地L)の量で添加される。 The mineral component can be, but is not limited to, chemically defined inorganic salts, such as alkali and alkaline earth metal salts, and salts of other metals. Such inorganic salts include, for example, potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, or sulfates such as copper sulfate, nickel sulfate, and zinc sulfate; phosphates such as potassium phosphate; carbonates such as calcium carbonate; Chlorides such as cobalt chloride, manganese chloride, sodium chloride and calcium chloride; alkali metal oxides; selenites and molybdates such as sodium molybdate and sodium selenite; halogens such as potassium bromide or potassium iodide Or an artificial seawater salt such as Red @ Sea @ Salt (Red Sea Salt). The salts may be added in a total amount of 0.01 to 5.0, 5 to 40, 5 to 35, 10 to 30, or 10 to 25% (g / medium L). For example, in one embodiment, the salts are added in a total amount of 19.4% (19.4 g / L of medium).
 ある実施形態では、追加的なミネラル成分、例えば、塩化物等の塩類を培地に添加しない。かかる実施形態では、培地はPOME加水分解物に元々含まれていた以外に追加的なミネラル成分を含まない。POME加水分解物を用いる本願発明の培地にミネラル成分を添加せずヤブレツボカビ類(Thraustochytriales)等のDHA産生藻類を培養するとDHA生産性が増加することがある。POME等に元々含まれていた以外に追加的なミネラル成分を含まない培地の場合、かかる培地におけるミネラルの濃度は、例えば、NaCl量換算で合計6.0‰、5.0‰、4.0‰、3.0‰、2.0‰、1.0‰(g/培地L)未満、Cl量換算で合計3.0‰、2.0‰、1.0‰(g/培地L)未満であり得る。 In certain embodiments, no additional mineral components, eg, salts such as chlorides, are added to the medium. In such embodiments, the medium does not contain additional mineral components other than those originally contained in the POME hydrolyzate. When a DHA-producing algae such as Thraustochytriales is cultured without adding a mineral component to the medium of the present invention using a POME hydrolyzate, DHA productivity may increase. In the case of a medium that does not contain additional mineral components other than that originally contained in POME or the like, the concentration of minerals in such a medium may be, for example, a total of 6.0%, 5.0%, 4.0% in terms of NaCl amount. ‰, 3.0 ‰, 2.0 ‰, less than 1.0 ‰ (g / medium L), total less than 3.0 ‰, 2.0 ‰, 1.0 ‰ (g / medium L) in terms of Cl amount Can be
 ある実施形態では、POME加水分解物とともに糖類を培養液に含有させることで、該従属栄養性微細藻類の増殖が促進される場合がある。糖類は、従属栄養性微細藻類の炭素源となるものであるが、POME加水分解物に微細藻類が利用可能な糖類が十分に含有されていない場合や、該従属栄養性微細藻類の増殖を促進したい場合には、何等かの形で微細藻類が利用可能な糖類を培養液に添加してもよい。 In one embodiment, the growth of the heterotrophic microalgae may be promoted by including a saccharide together with the POME hydrolyzate in the culture solution. Saccharides are a carbon source of heterotrophic microalgae, but when POME hydrolyzate does not contain sufficient saccharides available for microalgae, or promote growth of heterotrophic microalgae If desired, saccharides that can be used in any form by microalgae may be added to the culture solution.
 糖類としては、限定されないが、例えば、グルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコール、から選択される1又は複数の糖類が挙げられる。前記糖類は、合計で5~40、10~30、15~25(g/培地L)の量で添加されてもよい。例えば、ある実施形態では、前記糖類は、合計で20‰(20g/培地L)の量で添加される。 Examples of sugars include, but are not limited to, one or more sugars selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, and sugar alcohols such as glycerol. The saccharide may be added in a total amount of 5 to 40, 10 to 30, and 15 to 25 (g / medium L). For example, in one embodiment, the saccharide is added in a total amount of 20% (20 g / medium L).
 本発明で使用する微細藻類としては、特にDHA等ω-3多価不飽和脂肪酸を産生する藻類(以下DHA等産生藻類と称す)であってもよい。DHA等産生藻類としては、ヤブレツボカビ類(Thraustochytriales)に属する生物であるオーランチオキトリウム属(Aurantiochytrium)、シゾキトリウム属(Schizochytrium)、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、又はウルケニア属(Ulkenia)に属する生物、あるいはオブロンギキトリウム属(Oblongichytrium)に属する生物などが挙げられる。
 前記オーランチオキトリウム属(Aurantiochytrium)に属する生物としては、例えば、オーランチオキトリウム リマシナム(Aurantiochytrium limacinum)、オーランチオキトリウム マングローベイ(Aurantiochytrium mangrovei)などが挙げられる。
 前記シゾキトリウム属(Schizochytrium)に属する生物としては、例えば、Schizochytrium aggregatumなどが挙げられる。例えば、Schizochytrium sp. Maku-1等の株が使用できる。
 前記スラウストキトリウム属(Thraustochytrium)に属する生物としては、例えば、Thraustochytrium aureum、Thraustochytrium pachydermum、Thraustochytrium aggregatumなどが挙げられる。
 前記パリエティキトリウム属(Parietichytrium)に属する生物としては、例えば、Parietichytrium sarkarianumなどが挙げられる。例えば、Parietichytrium sp. 6F-10b等の株が使用できる。
 前記ウルケニア属(Ulkenia)に属する生物としては、例えば、Ulkenia visurgensis、又は、Ulkenia profundaなどが挙げられる。例えば、Ulkenia sp. Yonez6-9等の株が使用できる。
 前記オブロンギキトリウム属(Oblongichytrium)に属する生物としては、例えば、Oblongichytrium multirudimentale、Oblongichytrium minutumなどが挙げられる。例えば、Oblongichytrium sp. H9等の株が使用できる。
 特に好ましいのはオーランチオキトリウム属の藻類であり、例えば、オーランチオキトリウム リマシナム4W-1b株、オーランチオキトリウム リマシナムSR-21株、及びオーランチオキトリウム リマシナムNIES3737株などのオーランチオキトリウム リマシナムの株、並びにオーランチオキトリウム マングローベイ18W-13a株などのオーランチオキトリウム マングローベイの株等が使用できる。
The microalgae used in the present invention may be an algae that produces ω-3 polyunsaturated fatty acids such as DHA (hereinafter referred to as DHA-producing algae). Examples of DHA-producing algae include organisms belonging to Thraustochytriales, such as Aurantiochytrium, Schizochytrium, Thraustochytrium, Parietichytrium, and Parietichytrium. Organisms belonging to the genus Ulkenia or organisms belonging to the genus Oblongichytrium are exemplified.
Organisms belonging to the genus Aurantiochytrium include, for example, Aurantiochytrium limacinum, Aurantiochytrium mangrovei, and the like.
Examples of organisms belonging to the genus Schizochytrium include Schizochytrium aggregatum. For example, strains such as Schizochytrium sp. Maku-1 can be used.
Organisms belonging to the genus Thraustochytrium include, for example, Thraustochytrium aureum, Thraustochytrium pachydermum, Thraustochytrium aggregatum, and the like.
Organisms belonging to the genus Parietichytrium include, for example, Parietichytrium sarkarianum. For example, strains such as Parietichytrium sp. 6F-10b can be used.
Examples of the organism belonging to the genus Ulkenia include Ulkenia visurgensis and Ulkenia profunda. For example, strains such as Ulkenia sp. Yonez 6-9 can be used.
Examples of the organism belonging to the genus Oblongichytrium include Oblongichytrium multirudimentale, Oblongichytrium minutum, and the like. For example, strains such as Oblongichytrium sp. H9 can be used.
Particularly preferred are algae of the genus Aurantiochytrium, such as Aurantiochytrium Limasinum 4W-1b, Aurantiochytrium Limasinum SR-21, and Aurantiochytrium Limasinum NIES3737, and the like. Limasinum strains and Aurantiochytrium mangrovey strains such as Aurantiochytrium mangrovey strain 18W-13a can be used.
 本発明におけるDHA等産生藻類の培養は、当該藻類を上記のように調製されたPOME加水分解物を含む培地に播種し、定法にしたがって培養することにより行われる。あるいは上述のように、POME非加水分解物のみを含む培地で一定時間培養し、その後POME加水分解物を含む培地にて一定時間培養を継続しても、その逆であってもよい。培養条件は培養するDHA等産生藻類の種類に依存し、温度は5~40℃、好ましくは10~35℃、特に好ましいのは20~25℃、より好ましくは25℃±1℃にて、通常1~10日間、好ましくは2~8日間、例えば3~7日間、例えば4~5日間培養を行い、通気攪拌培養、振とう培養又は静置培養で行うことができる。 The cultivation of algae producing DHA or the like in the present invention is carried out by inoculating the algae on a medium containing the POME hydrolyzate prepared as described above and culturing them according to a standard method. Alternatively, as described above, culture may be performed for a certain period of time in a medium containing only the POME non-hydrolysate, and then culture may be continued for a certain period of time in a medium containing the POME hydrolysate, or vice versa. The culture conditions depend on the type of algae producing DHA or the like to be cultured, and the temperature is 5 to 40 ° C, preferably 10 to 35 ° C, particularly preferably 20 to 25 ° C, more preferably 25 ° C ± 1 ° C. Culture can be performed for 1 to 10 days, preferably 2 to 8 days, for example, 3 to 7 days, for example, 4 to 5 days, and can be performed by aeration-agitation culture, shaking culture, or static culture.
 本発明に使用するDHA等産生藻類は、適当な細胞培養手段を有する培養装置で培養してよい。「細胞培養手段」とは、細胞を培養するためのあらゆる機能を有する手段を意味し、例えば、培養槽であり、当該培養槽は、攪拌装置、振動装置、温度制御装置、pH調節装置、濁度測定装置、光制御装置、O、CO等の特定気体濃度測定装置及び圧力測定装置から選択される1又は複数の装置を有してもよい。当該培養槽は濃縮・分離槽と同一の槽であっても、濃縮・分離槽とは別の槽であってもよい。濃縮・分離槽と別の槽である場合、適切な手段、例えば流路等により連結されていてもよい。 The production algae such as DHA used in the present invention may be cultured in a culture device having an appropriate cell culture means. "Cell culturing means" means a means having all functions for culturing cells, for example, a culturing tank, and the culturing tank includes a stirring device, a vibration device, a temperature control device, a pH control device, and a turbidity device. It may have one or more devices selected from a degree measuring device, a light control device, a device for measuring the concentration of a specific gas such as O 2 and CO 2 and a pressure measuring device. The culture tank may be the same tank as the concentration / separation tank, or may be a separate tank from the concentration / separation tank. When it is a separate tank from the concentration / separation tank, the tank may be connected by an appropriate means, for example, a flow path or the like.
 培養方法としては、POME加水分解物を含む培地を使用すれば限定されない。例えば、硫酸等による化学的処理及び加熱等の物理学的処理によるPOME加水分解物を含む培地を使用して増殖を行った後、物理学的処理のみによるPOME加水分解物を含むが化学的処理で用いた硫酸等の物質を含まない培地を使用して増殖を行ってもよい。あるいは、化学的処理によるPOME加水分解物を含む培地を使用して増殖を行った後、物理学的処理のみによるPOME加水分解物を含むが化学的処理で用いた物質を含まない培地を使用して増殖を行ってもよい。あるいは、化学的処理、物理学的処理、生物学的処理等によるPOME加水分解物を含む培地を使用して増殖を行った後、POME加水分解物を含まない培地を使用して増殖を行ってもその逆であってもよい。 The culture method is not limited as long as a medium containing the POME hydrolyzate is used. For example, after growing using a medium containing a POME hydrolyzate by a chemical treatment with sulfuric acid or the like and a physical treatment such as heating, the PME hydrolyzate containing only the physical treatment is subjected to the chemical treatment. Proliferation may be performed using a medium that does not contain a substance such as sulfuric acid used in the above. Alternatively, after growing using a medium containing POME hydrolyzate by chemical treatment, use a medium containing POME hydrolyzate by physical treatment only but not containing the substance used in chemical treatment. Propagation may be performed. Alternatively, after growing using a medium containing POME hydrolyzate by chemical treatment, physical treatment, biological treatment, etc., growth is performed using a medium containing no POME hydrolyzate. And vice versa.
 本発明はさらに、POME加水分解物を含む培地を使用し上記培養方法で培養したDHA産生藻類を回収し、当該回収されたDHA等産生藻類からDHAを抽出する、DHA製造方法を提供する。本発明のDHA製造方法は、POME加水分解物を含む培地を使用してDHA等産生藻類を培養することにより、当該DHA等産生藻類にDHAを産生させることを特徴とする。 The present invention further provides a DHA production method, wherein DHA-producing algae cultured by the above-described culture method are collected using a medium containing a POME hydrolyzate, and DHA is extracted from the collected DHA-producing algae. The DHA production method of the present invention is characterized in that DHA or the like-producing algae is produced by culturing DHA or the like-producing algae using a medium containing a POME hydrolyzate.
 本発明のDHA等産生藻類が産生するDHAは、当業者に既知の方法で抽出及び分析することができる。例えば、上記の通りDHA産生藻類を培養して増殖させ、得られた培養液からDHA産生藻類を回収する場合は、遠心分離又は濾過等既存の方法で回収することができる。回収したDHA産生藻類のペレットを、凍結乾燥又は加温による乾燥等により乾燥させた藻体、または、DHA産生藻類培養を濃縮したのち乾燥していない湿潤の藻体をDHAの抽出ステップに用いてもよい。 DDHA produced by the DHA-producing algae of the present invention can be extracted and analyzed by methods known to those skilled in the art. For example, when a DHA-producing algae is cultured and grown as described above, and the DHA-producing algae is recovered from the obtained culture solution, the DHA-producing algae can be recovered by an existing method such as centrifugation or filtration. The recovered DHA-producing algae pellets are dried by freeze-drying or drying by heating or the like, or the DHA-producing algal culture is concentrated, and then the undried wet alga is used for the DHA extraction step. Is also good.
 得られた乾燥藻体、又は湿潤藻体から、DHAを抽出できる。抽出方法は、特に限定されず、有機溶媒抽出や圧搾、超臨界抽出等既知の方法で行うことができる。有機溶媒抽出法に用いられる有機溶媒としては、例えばヘキサン、アセトン、クロロホルム、メタノール、エタノール、ジエチルエーテル等が挙げられ、単体で用いてもよく、又は極性溶媒と無極性溶媒の2液以上の混合液を用いることもできる。抽出前に藻体を破砕してもよく、以下に限定されないが、アルカリや酸による化学的破砕、ホモジナイザーや超音波、ビーズミル等の機械的破砕、酵素による生物的破砕等、既知の方法で行っても良い。上記抽出後に、得られた抽出液を、当業者に既知の方法でDHAを濃縮・精製してもよく、例えば、シリカゲルや酸性白土を用いたカラムクロマトグラフィ、高速液体クロマトグラフィ、液液分配、尿素付加法等既知の方法を用いて、濃縮・精製してもよい。 DDHA can be extracted from the obtained dried algal cells or wet algal cells. The extraction method is not particularly limited, and can be performed by a known method such as extraction with an organic solvent, squeezing, or supercritical extraction. Examples of the organic solvent used in the organic solvent extraction method include hexane, acetone, chloroform, methanol, ethanol, diethyl ether and the like, and may be used alone or as a mixture of two or more liquids of a polar solvent and a nonpolar solvent. A liquid can also be used. Algae may be crushed before extraction, but is not limited to, chemical crushing with an alkali or acid, homogenizer or ultrasonic, mechanical crushing with a bead mill, biological crushing with an enzyme, etc., performed by known methods. May be. After the above-mentioned extraction, the obtained extract may be subjected to concentration and purification of DHA by a method known to those skilled in the art, for example, column chromatography using silica gel or acid clay, high-performance liquid chromatography, liquid-liquid distribution, urea addition. Concentration and purification may be performed using a known method such as a method.
 前記DHA等産生藻類は、その乾燥重量当たり、少なくとも5%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%(重量%)のDHAを含有することがある。 産生 The DHA-producing algae may contain at least 5%, at least 15%, at least 20%, at least 25%, at least 30% (% by weight) of DHA based on its dry weight.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(実施例1)50%POME加水分解物にグルコースと塩類を添加した培地におけるオーランチオキトリウム リマシナム4W-1b株の増殖、総脂質とDHAの生産
(種藻)
 下記培地にて、筑波大学から提供されたヤブレツボカビ類に属するオーランチオキトリウム リマシナム4W-1b株をGTY培地(1/2希釈海水1Lにグルコース20g、酵母エキス5g、トリプトン10g含有)で3日間培養し、種藻とした。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(Example 1) Growth of Aurantiochytrium Limasinum 4W-1b strain in a medium in which glucose and salts were added to 50% POME hydrolyzate, production of total lipids and DHA (seed algae)
Aurantiochytrium limacinum 4W-1b strain belonging to Thraustochytriales provided by the University of Tsukuba in a GTY medium (containing 1 g of 1/2 diluted seawater, 20 g of glucose, 5 g of yeast extract, and 10 g of tryptone) in the following medium for 3 days It was cultured and used as a seed algae.
 2018年4月にインドネシアのリアウ州にあるパームオイル工場から提供された高温のPOMEを速やかに冷蔵庫で冷却して3日間保存したのち、121℃で60分間加熱処理することにより加水分解したもの、1%となるように硫酸を添加して同様の加熱処理(121℃で60分間)により加水分解をおこなったもの、全く加水分解をおこなわないもの、それぞれについてNaOHをつかってpH7.0に調整し、4000rpm(2,700g)で15分間遠心分離して得られた加水分解上清液を50%(容量%)となるように合計19.4g/Lの塩類(15.5g/LのNaSO、0.69g/LのCaCl・2HO、5.74g/LのMgSO・7HO、0.59g/LのKHPO)と20g/Lのグルコースを含む人工海水で希釈したものを培地として使用した。 A high-temperature POME provided from a palm oil plant in Riau, Indonesia in April 2018 is immediately cooled in a refrigerator, stored for 3 days, and then hydrolyzed by heating at 121 ° C. for 60 minutes. Sulfuric acid was added so that the concentration became 1%, and hydrolysis was performed by the same heat treatment (121 ° C. for 60 minutes), and the hydrolysis was not performed at all, and the pH was adjusted to 7.0 with NaOH for each. The hydrolyzed supernatant obtained by centrifugation at 4000 rpm (2,700 g) for 15 minutes was subjected to a total of 19.4 g / L salts (15.5 g / L Na 2 SO 4, CaCl 2 · 2H 2 O of 0.69g / L, MgSO 4 · 7H 2 O of 5.74g / L, KH 2 PO 4 of 0.59 g / L) and the 20 g / L Those diluted in artificial seawater containing glucose was used as a medium.
 上記各培地を、500ml容積の三角フラスコに200ml注ぎ、オートクレーブで120℃、20分間滅菌した。培地冷却後にオーランチオキトリウム リマシナム4W-1b株の種藻を滅菌海水で洗浄したのち、培地に播種した。フラスコの口をシリコ栓で封じ、25℃で往復振盪培養した(100ストローク/分)。 200 200 ml of each of the above media was poured into a 500 ml Erlenmeyer flask, and sterilized in an autoclave at 120 ° C. for 20 minutes. After cooling the medium, the seed algae of Aurantiochytrium perimacinum 4W-1b strain was washed with sterilized seawater, and then seeded on the medium. The mouth of the flask was sealed with a silicon stopper, and cultured at 25 ° C. with reciprocal shaking (100 strokes / min).
 培養中の培養液1mlを所定のタイムポイントで回収し、紫外可視吸光度計により660nmの光学濁度を計測することで、増殖曲線を得た。培養は、全ての培養で増殖がプラトーに達するまで、最長で60時間実施された。培養終了後の培養液を50~100mL回収し、高速冷却遠心分離機で3900rpm、15分遠心分離した。その後、上清を捨て、ペレットを蒸留水で洗浄し、再度遠心分離を行った。その後、試料を-80℃で凍結し、これらを凍結乾燥機で乾燥させることで、乾燥藻体を得た。乾燥藻体重量を微量天秤により計量し、培養液1L当たりの藻体量を算出した。 1 1 ml of the culture solution during the culture was collected at a predetermined time point, and the optical turbidity at 660 nm was measured with an ultraviolet-visible absorptiometer to obtain a growth curve. Cultures were performed for up to 60 hours until growth reached a plateau in all cultures. After the completion of the culture, 50 to 100 mL of the culture solution was collected and centrifuged at 3900 rpm for 15 minutes using a high-speed cooling centrifuge. Thereafter, the supernatant was discarded, the pellet was washed with distilled water, and centrifuged again. Thereafter, the sample was frozen at −80 ° C. and dried with a freeze dryer to obtain a dried alga body. The weight of the dried algal cells was measured with a microbalance, and the amount of algal cells per liter of the culture solution was calculated.
 上記藻類培養液10mLから遠心分離により藻体を回収した。得られた藻体ペレットを超音波破砕し、クロロホルム/メタノール(体積比2:1)混合溶液20mLを添加後、よく混合した。0.9%塩化ナトリウム水溶液4mLを加えてよく混合し、遠心分離後、クロロホルム層をろ紙でろ過しながら回収した。当該濾液を濃縮乾固して、脂質量を測定した。当該脂質に内部標準物質としてトリコサンメチルエステルを0.2mg加え、0.5M NaOHメタノール溶液0.5mLを添加し、100℃、9分間でけん化反応を行った後、14%三フッ化ほう素メタノール溶液0.7mLを加え、100℃、7分間でメチルエステル化反応を行った。当該試料に飽和食塩水3mLとヘキサン3mLを加えてよく混合し、遠心分離後ヘキサン層をGC(ガスクロマトグラフィー)分析によりDHA含有量を測定した。 藻 Algal cells were recovered from 10 mL of the algal culture by centrifugation. The obtained alga body pellet was crushed by ultrasonic waves, and 20 mL of a mixed solution of chloroform / methanol (2: 1 by volume) was added, followed by thorough mixing. 4 mL of a 0.9% aqueous sodium chloride solution was added and mixed well, and after centrifugation, the chloroform layer was collected by filtration with filter paper. The filtrate was concentrated to dryness and the amount of lipid was measured. To the lipid, 0.2 mg of trichosane methyl ester was added as an internal standard substance, 0.5 mL of 0.5 M NaOH methanol solution was added, and a saponification reaction was performed at 100 ° C. for 9 minutes, followed by 14% boron trifluoride. 0.7 mL of a methanol solution was added, and a methyl esterification reaction was performed at 100 ° C. for 7 minutes. To the sample, 3 mL of saturated saline and 3 mL of hexane were added and mixed well. After centrifugation, the DHA content of the hexane layer was measured by GC (gas chromatography) analysis.
 以上の結果を図1、図2に示す。
 図1は、容量50%のPOMEを容量1%の硫酸処理および121℃の加熱処理により加水分解した培地、121℃の加熱処理だけで加水分解した培地、並びに対照として加水分解を行わない容量50%POME培地(以下コントロール培地)で培養したオーランチオキトリウム リマシナム4W-1bの藻体濃度の経時変化を示す(OD660)。すべての培地で当該株は増殖したが、加水分解処理した培地のほうがコントロール培地よりも明らかに良好な増殖を示した。さらには、POMEを加熱のみにより加水分解した培地より、硫酸及び加熱により加水分解処理した培地のほうが良好な増殖を示した。
 図2は培養48時間後の総脂質とDHAの生産量を示す。すべての培地で脂質およびDHAが産生されたが、脂質生産量では、1%硫酸及び加熱による加水分解培地がコントロールと比べて1.3倍程度高かった。DHA産生量については、1%硫酸及び加熱による加水分解培地と加熱のみによる加水分解培地はコントロールより明らかに増加していた。
 表1に各培地における当該株を48時間増殖させた後の増殖量(g/L)、藻体生産性(mg/L/日)、総脂質含有量(%)、総脂質量(mg/L)、脂質生産性(mg/L/日)、DHA含有量(%)、DHA生産量(mg/L)、およびDHA生産性(mg/L/日)をまとめた表を示す。生産性は、48時間増殖後の藻体量、総脂質量、およびDHA量をそれぞれ1日当たりに換算した値である。総脂質含有量及びDHA含有量は、それぞれ藻体量に対する割合を示す(重量%)。
Figure JPOXMLDOC01-appb-T000001
The above results are shown in FIGS.
FIG. 1 shows a medium obtained by hydrolyzing 50% by volume of POME by a 1% by volume sulfuric acid treatment and a heat treatment at 121 ° C., a medium hydrolyzed only by a heat treatment at 121 ° C., and a volume 50% without hydrolysis as a control. The change with time of the algal cell concentration of Aurantiochytrium Limasinum 4W-1b cultured in a% POME medium (hereinafter referred to as a control medium) is shown (OD660). Although the strain grew on all media, the hydrolyzed media showed significantly better growth than the control media. Furthermore, the culture medium hydrolyzed by sulfuric acid and heating showed better growth than the culture medium obtained by hydrolyzing POME only by heating.
FIG. 2 shows the total lipid and DHA production after 48 hours of culture. Lipids and DHA were produced in all media, but the amount of lipid production was about 1.3 times higher in the hydrolysis medium with 1% sulfuric acid and heating than in the control. Regarding the amount of DHA produced, the hydrolysis medium with 1% sulfuric acid and heating and the hydrolysis medium with heating alone were clearly higher than the control.
Table 1 shows the growth amount (g / L), algal productivity (mg / L / day), total lipid content (%), total lipid amount (mg / L), a table summarizing lipid productivity (mg / L / day), DHA content (%), DHA production amount (mg / L), and DHA productivity (mg / L / day). The productivity is a value obtained by converting the amount of algal bodies, the amount of total lipids, and the amount of DHA after 48 hours of growth per day. Each of the total lipid content and the DHA content indicates a ratio to the algal body content (% by weight).
Figure JPOXMLDOC01-appb-T000001
 藻体生産性および脂質生産性は、硫酸+加熱による加水分解POME培地が最も高く、一方、DHA生産性は、加熱による加水分解培地が最も高く、ついで硫酸+加熱による加水分解培地が高く、そしてコントロール培地が最も低かった。 Algae productivity and lipid productivity were highest in sulfuric acid + heated hydrolysis POME medium, while DHA productivity was highest in heated hydrolysis medium, followed by sulfuric acid + heated hydrolysis medium, and The control medium was the lowest.
 (実施例2)各種方法にて加水分解処理した100%POMEを用いて調製した培地におけるオーランチオキトリウム リマシナム4W-1b株の増殖、総脂質とDHAの生産
 様々な加水分解条件を設定してオーランチオキトリウム リマシナム4W-1b株の増殖、総脂質とDHAの生産を調べた。
 種株は、実施例1と同じオーランチオキトリウム リマシナム4W-1b株を用いた。POMEは、インドネシアの北スマトラ州にあるパームオイル工場から提供された高温のPOMEを速やかに冷却して冷凍保存したものを実験開始時に解凍して使用した。
 POME加水分解物は、解凍したPOMEを下記の表2に記載の各条件(表2の実験番号2~4)で処理することにより加水分解を行い、酸又はアルカリでpH7.0に調整した後、4000rpmで15分間遠心分離して得られた加水分解POME上清液(容量100%)を使用した。コントロール(POME非加水分解物)として、全く加水分解をおこなわずフィルター(0.45μm)でろ過のみを行い(表2の実験番号1)、同様にpH7.0に調整した後、4000rpmで15分間遠心分離して得られた非加水分解POME上清液(容量100%)を使用した。
 培養は、解凍したPOMEを4000rpmで15分間遠心分離して得られたPOME上清液(容量100%:POME非加水分解物)を初期培地として使用し、実施例1と同様に500ml容積の三角フラスコに200ml注ぎ、オートクレーブで121℃、20分間滅菌し冷却後、種株を培地に播種し、フラスコの口をシリコ栓で封じ、25℃で往復振盪培養(100ストローク/分)することにより36時間培養後、上記各種POME加水分解物又はコントロール50mlを培養物に添加し、培養を継続した。
Figure JPOXMLDOC01-appb-T000002
Example 2 Growth of Aurantiochytrium Limasinum 4W-1b Strain in Medium Prepared Using 100% POME Hydrolyzed by Various Methods, Production of Total Lipids and DHA Various hydrolysis conditions were set. The growth of Aurantiochytrium Limasinum 4W-1b strain and total lipid and DHA production were examined.
As a seed strain, the same Aurantiochytrium limacinum 4W-1b strain as in Example 1 was used. As the POME, high-temperature POME provided from a palm oil factory in North Sumatra, Indonesia, which was rapidly cooled and stored frozen, was thawed at the start of the experiment and used.
The POME hydrolyzate is hydrolyzed by treating the thawed POME under the conditions shown in Table 2 below (experiment numbers 2 to 4 in Table 2), and after adjusting the pH to 7.0 with acid or alkali. The hydrolyzed POME supernatant (100% volume) obtained by centrifuging at 4000 rpm for 15 minutes was used. As a control (POME non-hydrolysate), only filtration was performed with a filter (0.45 μm) without hydrolysis at all (experiment number 1 in Table 2), and the pH was similarly adjusted to 7.0, followed by centrifugation at 4000 rpm for 15 minutes. The non-hydrolyzed POME supernatant (volume 100%) obtained by separation was used.
The culture was performed using a POME supernatant obtained by centrifuging the thawed POME at 4000 rpm for 15 minutes (volume: 100%: non-POME hydrolyzate) as an initial medium. After pouring 200 ml into the flask, sterilizing in an autoclave at 121 ° C. for 20 minutes and cooling, the seed strain was inoculated in a medium, the mouth of the flask was sealed with a silico stopper, and subjected to reciprocal shaking culture (25 strokes / 100 strokes / min) at 25 ° C. After culturing for a time, the above-mentioned various POME hydrolysates or 50 ml of control were added to the culture, and the culturing was continued.
Figure JPOXMLDOC01-appb-T000002
 培養開始から60時間後に実施例1と同様に50~100mL回収し、増殖量(g/L)、藻体生産性(mg/L/日)、総脂質含有量(%)、総脂質量(mg/L)、脂質生産性(mg/L/日)、DHA含有量(%)、DHA生産量(mg/L)、およびDHA生産性(mg/L/日)を求めた。 After 60 hours from the start of the culture, 50 to 100 mL were collected in the same manner as in Example 1, and the growth amount (g / L), algal cell productivity (mg / L / day), total lipid content (%), and total lipid amount (%) were obtained. mg / L), lipid productivity (mg / L / day), DHA content (%), DHA production (mg / L), and DHA productivity (mg / L / day).
 結果を表3~6に示す。表3は、実験番号1に対する実験番号2(1)及び(2)を比較した物理学的処理(熱及び圧力による加水分解)による影響を示す。表4は、実験番号1に対する実験番号3-1(1)、(2)及び(3)を比較した化学的処理(酸による加水分解)による影響を示す。表5は、実験番号1に対する実験番号3-2(1)及び(2)を比較した化学的処理(アルカリによる加水分解)による影響を示す。表6は、実験番号1に対する実験番号4(1)及び(2)を比較した生物学的処理(酵素による加水分解)による影響を示す。いずれの実験でも、POME加水分解物を含む培地を使用した場合、POME非加水分解物のみを含むコントロール培地を使用した場合に比べて藻体、脂質、DHAの生産量及び生産性が向上した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
The results are shown in Tables 3 to 6. Table 3 shows the effect of physical treatments (hydrolysis by heat and pressure) comparing Run Nos. 2 (1) and (2) to Run No. 1. Table 4 shows the effect of the chemical treatment (hydrolysis with acid) comparing Experiment Nos. 3-1 (1), (2) and (3) to Experiment No. 1. Table 5 shows the effect of the chemical treatment (hydrolysis with alkali) comparing Experiment No. 3-2 (1) and (2) to Experiment No. 1. Table 6 shows the effect of biological treatment (enzymatic hydrolysis) comparing experiment numbers 4 (1) and (2) to experiment number 1. In all experiments, the production amount and productivity of alga bodies, lipids, and DHA were improved when the medium containing the POME hydrolyzate was used, as compared with the case where the control medium containing only the POME non-hydrolyzate was used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、オーランチオキトリウム リマシナム4W-1b株をはじめとする従属栄養性微細藻類の増殖や脂質・DHAの生産には、POME加水分解物を含む培地を用いることが好ましいことが示された。 The above results indicate that it is preferable to use a medium containing a POME hydrolyzate for the growth of heterotrophic microalgae including the Aurantiochytrium perimacinum 4W-1b strain and the production of lipid / DHA. Was.

Claims (23)

  1.  POME加水分解物を含む培地を使用する、従属栄養性微細藻類の培養方法。 培養 A method for culturing heterotrophic microalgae using a medium containing a POME hydrolyzate.
  2.  前記POME加水分解物は、化学的、物理学的、及び/又は生物学的処理によるPOME加水分解物である、請求項1に記載の培養方法。 The culture method according to claim 1, wherein the POME hydrolyzate is a POME hydrolyzate obtained by a chemical, physical, and / or biological treatment.
  3.  前記化学的処理によるPOME加水分解物は、酸又はアルカリによるPOME加水分解物である、請求項2に記載の培養方法。 The culture method according to claim 2, wherein the POME hydrolyzate obtained by the chemical treatment is an acid or alkali POME hydrolyzate.
  4.  前記酸は、硫酸、塩酸、及び/又はリン酸である、請求項3に記載の培養方法。 The method according to claim 3, wherein the acid is sulfuric acid, hydrochloric acid, and / or phosphoric acid.
  5.  前記アルカリは、水酸化ナトリウム、水酸化カリウム、及び/又はアンモニアである、請求項3に記載の培養方法。 The method according to claim 3, wherein the alkali is sodium hydroxide, potassium hydroxide, and / or ammonia.
  6.  前記物理学的処理によるPOME加水分解物は、熱及び/又は圧力によるPOME加水分解物である、請求項2に記載の培養方法。 The culture method according to claim 2, wherein the POME hydrolyzate obtained by the physical treatment is a POME hydrolyzate obtained by heat and / or pressure.
  7.  前記生物学的処理によるPOME加水分解物は、ペプチダーゼ又はアミラーゼによるPOME加水分解物である、請求項2に記載の培養方法。 The culture method according to claim 2, wherein the POME hydrolyzate obtained by the biological treatment is a POME hydrolyzate obtained by peptidase or amylase.
  8.  前記従属栄養性微細藻類がω―3多価不飽和脂肪酸を産生する藻類である、請求項1~7のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 7, wherein the heterotrophic microalgae is an algae that produces ω-3 polyunsaturated fatty acids.
  9.  ω―3多価不飽和脂肪酸は、DHAである、請求項8に記載の培養方法。 The culture method according to claim 8, wherein the ω-3 polyunsaturated fatty acid is DHA.
  10.  前記藻類が、ヤブレツボカビ類(Thraustochytriales)に属する藻類の株である、請求項1~9のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 9, wherein the algae is a strain of algae belonging to Thraustochytriales.
  11.  前記ヤブレツボカビ類が、オーランチオキトリウム属(Aurantiochytrium)に属する種である、請求項10に記載の培養方法。 The method according to claim 10, wherein the Thraustochytriales is a species belonging to the genus Aurantiochytrium.
  12.  前記オーランチオキトリウム属の藻類がオーランチオキトリウム リマシナム(Aurantiochytrium limacinum)に属する培養株である、請求項11に記載の培養方法。 The method according to claim 11, wherein the algae belonging to the genus Aurantiochytrium are culture strains belonging to Aurantiochytrium limacinum.
  13.  前記オーランチオキトリウム属の藻類がオーランチオキトリウム マングローベイ(Aurantiochytrium mangrovei)に属する培養株である、請求項11に記載の培養方法。 The culture method according to claim 11, wherein the algae belonging to the genus Aurantiochytrium are cultures belonging to Aurantiochytrium mangrovei.
  14.  前記オーランチオキトリウム リマシナムの培養株が4W-1b株、オーランチオキトリウム リマシナムSR-21株、又はオーランチオキトリウム リマシナムNIES3737株から選択されるいずれかの株である、請求項12に記載の培養方法。 13. The culture according to claim 12, wherein the cultured strain of Aurantiochytrium perimacinum is any strain selected from 4W-1b strain, Aurantiochytrium perimacinum SR-21 strain, and Aurantiochytrium perimacinum NIES3737 strain. Culture method.
  15.  前記オーランチオキトリウム マングローベイの培養株がオーランチオキトリウム マングローベイ18W-13a株である、請求項13に記載の培養方法。 The culture method according to claim 13, wherein the {Aulanthiochitrium} mangrovey strain is an Aurantiochytrium @ Mangrovey strain 18W-13a.
  16.  前記POME加水分解物は遠心分離及び/又はろ過により固形分が除去されている、請求項1~15のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 15, wherein the POME hydrolyzate has a solid content removed by centrifugation and / or filtration.
  17.  前記培地は、糖成分を更に含む、請求項1~16のいずれか1項に記載の培養方法。 The culture method according to any one of claims 1 to 16, wherein the medium further contains a sugar component.
  18.  前記糖成分はグルコース、ガラクトース、フルクトース、マルトース、シュクロース、ラクトース、オリゴ糖、及びグリセロール等の糖アルコール、等から選択される1又は複数の糖類である、請求項17に記載の培養方法。 18. The culture method according to claim 17, wherein the sugar component is one or more sugars selected from glucose, galactose, fructose, maltose, sucrose, lactose, oligosaccharides, sugar alcohols such as glycerol, and the like.
  19.  前記糖成分の添加量は、合計として10~30g/培地Lである、請求項17又は18に記載の培養方法。 The culture method according to claim 17, wherein the total amount of the sugar component is 10 to 30 g / medium L.
  20.  前記培地は、ミネラル成分を更に含む、請求項1~19のいずれか1項に記載の培養方法。 培養 The culture method according to any one of claims 1 to 19, wherein the medium further contains a mineral component.
  21.  前記ミネラル成分は、硫酸カリウム、硫酸マグネシウム、硫酸鉄、硫酸アンモニウム、硫酸銅、硫酸ニッケル、硫酸亜鉛等の硫酸塩;リン酸カリウム等のリン酸塩;炭酸カルシウム等の炭酸塩;塩化コバルト、塩化マンガン、塩化ナトリウム、塩化カルシウム等の塩化物;モリブデン酸ナトリウム、亜セレン酸ナトリウム等の亜セレン酸塩及びモリブデン酸塩;臭化カリウム、ヨウ化カリウム等のハロゲン化物;天然海水塩類;並びに人工海水塩類から選択される単一又は複数の塩類である、請求項20に記載の培養方法。 The mineral components include sulfates such as potassium sulfate, magnesium sulfate, iron sulfate, ammonium sulfate, copper sulfate, nickel sulfate and zinc sulfate; phosphates such as potassium phosphate; carbonates such as calcium carbonate; cobalt chloride, manganese chloride Chlorides such as sodium chloride and calcium chloride; selenites and molybdates such as sodium molybdate and sodium selenite; halides such as potassium bromide and potassium iodide; natural seawater salts; and artificial seawater salts. The culture method according to claim 20, which is a single salt or a plurality of salts selected from the group consisting of:
  22.  前記ミネラル成分の添加量は、合計として5~35g/培地Lである、請求項20又は21に記載の培養方法。 The culture method according to claim 20, wherein the total amount of the mineral components is 5 to 35 g / medium L.
  23.  請求項1~22のいずれか1項に記載の培養方法で培養した従属栄養性微細藻類を回収することと、当該回収された藻類からDHAを抽出することを含む、DHA製造方法。 A method for producing DHA, comprising recovering a heterotrophic microalgae cultured by the culture method according to any one of claims 1 to 22, and extracting DHA from the recovered algae.
PCT/JP2019/032054 2018-08-16 2019-08-15 Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha WO2020036216A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020537104A JP6884451B2 (en) 2018-08-16 2019-08-15 Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)
MYPI2021000211A MY188642A (en) 2018-08-16 2019-08-15 Method for culturing heterotrophic microalgae using palm oil mill effluent (pome) and method for producing dha

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018153306 2018-08-16
JP2018-153306 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020036216A1 true WO2020036216A1 (en) 2020-02-20

Family

ID=69525381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032054 WO2020036216A1 (en) 2018-08-16 2019-08-15 Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha

Country Status (3)

Country Link
JP (1) JP6884451B2 (en)
MY (1) MY188642A (en)
WO (1) WO2020036216A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
JP2015012842A (en) * 2013-07-05 2015-01-22 国立大学法人 筑波大学 Culturing method of squalene-producing seaweed using waste water of white distilled liquor as culture medium
JP2016036760A (en) * 2014-08-06 2016-03-22 栗田工業株式会社 Method and apparatus for treating glycerin-containing liquid waste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696310B1 (en) * 2014-07-15 2015-04-08 国立大学法人東北大学 Sludge nutrient recovery method, algae culture method, and algae culture system
JP6667242B2 (en) * 2015-09-28 2020-03-18 株式会社シー・アクト Medium for increasing the odd fatty acid content of cultured Aurantiochytrium algae
JP2018038275A (en) * 2016-09-05 2018-03-15 特定非営利活動法人広島循環型社会推進機構 Microorganisms belonging to labyrinthula aurantiochytrium genus and lipid production method using said microorganisms
JP6939276B2 (en) * 2017-09-01 2021-09-22 三菱マテリアル株式会社 Method for producing algae-producing oil using biomass resources
WO2020026794A1 (en) * 2018-08-01 2020-02-06 MoBiol株式会社 Method for culturing heterotrophic microalgae using palm oil mill effluent (pome) and method for producing dha

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
JP2015012842A (en) * 2013-07-05 2015-01-22 国立大学法人 筑波大学 Culturing method of squalene-producing seaweed using waste water of white distilled liquor as culture medium
JP2016036760A (en) * 2014-08-06 2016-03-22 栗田工業株式会社 Method and apparatus for treating glycerin-containing liquid waste

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEAH, W. Y. ET AL.: "Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation.", ENERGY CONVERSION AND MANAGEMENT, vol. 164, 23 March 2018 (2018-03-23), pages 188 - 197, XP085371549, DOI: 10.1016/j.enconman.2018.02.094 *

Also Published As

Publication number Publication date
JP6884451B2 (en) 2021-06-09
MY188642A (en) 2021-12-22
JPWO2020036216A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
da Maia et al. Microalgae starch: A promising raw material for the bioethanol production
Parmar et al. Cyanobacteria and microalgae: a positive prospect for biofuels
Rajkumar et al. Potential of micro and macro algae for biofuel production: a brief review
Maity et al. Trends and advances in sustainable bioethanol production by marine microalgae: A critical review
Gouveia et al. Microalgae as a Feedstock for Biofuels
Chaudhary et al. Algae as a feedstock for bioethanol production: new entrance in biofuel world
Xia et al. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis
Taparia et al. Developments and challenges in biodiesel production from microalgae: A review
Surendhiran et al. Microalgal biodiesel-a comprehensive review on the potential and alternative biofuel
JP6265407B2 (en) Method for culturing squalene-producing algae using shochu wastewater as culture medium
US20130309757A1 (en) Method and apparatus for producing cells and fat soluble materials by cell culture
Özçimen et al. Bioethanol production from microalgae
Jothibasu et al. Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products
Nguyen et al. A review on microalgae and cyanobacteria in biofuel production
JP7385799B2 (en) Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
US11193100B2 (en) Method for carbon resource utilization
Chen et al. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp.
WO2020036216A1 (en) Method for culturing heterotrophic microalga using palm oil mill effluent (pome), and method for producing dha
Sambasivam et al. Cascading utilization of residual microalgal biomass: sustainable strategies for energy, environmental and value-added product applications
JP7048056B2 (en) Lipid production method
Zhang et al. Microbial biodiesel production—oil feedstocks produced from microbial cell cultivations
Tiwari et al. Algal biomass: Potential renewable feedstock for biofuel production
Mandawat Hydrolysis of algal biomass to recover nutrients and sugar
Malla et al. Aquatic microalgal biofuel production
Iqbal et al. Processing techniques of algae-based materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850600

Country of ref document: EP

Kind code of ref document: A1