JP2013036062A - Method of desulfurizing molten steel and molten iron alloy - Google Patents

Method of desulfurizing molten steel and molten iron alloy Download PDF

Info

Publication number
JP2013036062A
JP2013036062A JP2011171062A JP2011171062A JP2013036062A JP 2013036062 A JP2013036062 A JP 2013036062A JP 2011171062 A JP2011171062 A JP 2011171062A JP 2011171062 A JP2011171062 A JP 2011171062A JP 2013036062 A JP2013036062 A JP 2013036062A
Authority
JP
Japan
Prior art keywords
slag
bao
concentration
desulfurization
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171062A
Other languages
Japanese (ja)
Other versions
JP5333542B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Reita Saito
礼太 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011171062A priority Critical patent/JP5333542B2/en
Publication of JP2013036062A publication Critical patent/JP2013036062A/en
Application granted granted Critical
Publication of JP5333542B2 publication Critical patent/JP5333542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurizing method for improving a desulfurization rate in a desulfurizing process of reducing a sulfur concentration in molten metal including molten iron alloy such as molten steel and stainless steel by a slag-metal reaction using a CaO-SiOslag concerning a desulfurizing technology of a refractory sulfur steel.SOLUTION: A slag containing CaO, SiO, and AlOby 80% or more in total and one or more of MgO, CrO, MnO, and iron oxide by 20% or less as another component is formed on a surface of the molten metal, and the molten steel and the slag are agitated for a desulfurization treatment. At this time, after concentrations of CaO, SiO, and AlOin the slag are adjusted to simultaneously satisfy Formula (1): (%CaO)/(%AlO)≥2.3 and Formula (2): 0.4≤(%CaO)/(%SiO)≤3.5, and also the molten steel is adjusted to Si concentration [Si]≥0.1 mass% or Al concentration [sol. Al]≥0.005 mass%, BaO is added to the slag to satisfy BaO concentration in the slag as indicated by Formula (3): 4≤(%BaO)≤20.

Description

本発明は、溶鋼ならびに溶融鉄合金の脱硫方法に関し、具体的には、鉄鋼精錬などの溶鋼やステンレス鋼などの溶融鉄合金の精錬処理において、溶融金属中の硫黄濃度を低減する脱硫処理に関し、詳しくは、CaFや大量のAlを用いることなく脱硫効率を高める処理方法に関する。 The present invention relates to a desulfurization method for molten steel and molten iron alloy, and specifically, relates to a desulfurization treatment for reducing the sulfur concentration in a molten metal in a refining treatment of a molten iron alloy such as molten steel and stainless steel such as steel refining, more particularly, to processing method to improve the desulfurization efficiency without using CaF 2 and a large amount of Al.

造船、建築あるいは鋼管で用いられる炭素鋼や、ボイラやガスタンクなどで用いられるステンレス鋼、あるいはNiやCrを大量に含有する高合金鋼では、鋼中S濃度をより低減することが求められる。鋼中SはMnSなどの鋼中非金属介在物を形成して各種欠陥の原因となるため、過酷な使用環境下においても高い特性と信頼性を発揮するためには、鋼中S濃度の低減が必須とされている。   For carbon steel used in shipbuilding, construction or steel pipe, stainless steel used in boilers and gas tanks, or high alloy steel containing a large amount of Ni or Cr, it is required to further reduce the S concentration in the steel. S in steel forms non-metallic inclusions in steel such as MnS and causes various defects. Therefore, in order to demonstrate high characteristics and reliability even in harsh usage environments, the S concentration in steel must be reduced. Is required.

鋼中S濃度の低減は、溶鋼や溶融鉄合金といった溶融状態で脱硫処理を施すことで行われている。このため、溶鋼や溶融ステンレス、高Cr溶鋼さらには高Mn溶鋼などさまざまな溶融鉄合金を対象とした脱硫技術が多数開発されてきた。   Reduction of S concentration in steel is performed by performing desulfurization treatment in a molten state such as molten steel or molten iron alloy. For this reason, many desulfurization techniques for various molten iron alloys such as molten steel, molten stainless steel, high Cr molten steel, and high Mn molten steel have been developed.

溶鋼や溶融鉄合金の脱硫処理(以下単に脱硫)として広く用いられている方法は、以下の二つに大別される。ここでは溶鋼を例に説明する。
第一は、取鍋内溶鋼表面に存在するスラグ組成を制御し、不活性ガスや電磁誘導などで溶鋼を攪拌することによってスラグ−メタル間反応により脱硫する方法である。この方法は、一般的な不活性ガス吹き込み取鍋精錬やVODなどで採用されている。
Methods widely used as a desulfurization treatment (hereinafter simply referred to as desulfurization) of molten steel or molten iron alloy are roughly classified into the following two. Here, molten steel will be described as an example.
The first is a method of controlling the slag composition existing on the surface of the molten steel in the ladle and desulfurizing by a slag-metal reaction by stirring the molten steel with an inert gas or electromagnetic induction. This method is adopted in general inert gas blowing ladle refining and VOD.

第二は、脱硫能力に優れたフラックスを溶鋼に添加、吹き付け、あるいは吹き込んで溶鋼とフラックスを直接反応させることにより脱硫を行う方法である。この方法は、前述の不活性ガス取鍋精錬におけるフラックス吹き込み精錬やRH真空槽内溶鋼への槽内添加や上吹きなどで採用されている。   The second is a method in which desulfurization is performed by adding, spraying, or blowing a flux having excellent desulfurization capability to the molten steel and causing the molten steel and the flux to react directly. This method is adopted in flux blowing refining in the above-described inert gas ladle refining, addition in the tank to the molten steel in the RH vacuum tank, top blowing, or the like.

第一の方法では、主にスラグ組成を、第二の方法ではフラックス組成と添加方法を、適正化することで脱硫処理能力の指標である脱硫率を高めることができるため、このような適正条件についても多数開発がなされている。   In the first method, the desulfurization rate, which is an index of the desulfurization treatment capacity, can be increased by optimizing mainly the slag composition and the second method in the flux composition and addition method. Many developments have also been made.

特に、スラグやフラックスの脱硫能力を高めるためにCaやMgといった金属ならびにこれらの酸化物や塩化物、CaFなどの弗化物、あるいはNa化合物を適量添加することが有効であることは良く知られている。また、CaやMgと同族元素であるBa酸化物BaOも脱硫に有効であることも良く知られており、特に高合金溶鋼での脱リン技術に活用されてきた。 In particular, it is well known that it is effective to add an appropriate amount of metals such as Ca and Mg and fluorides such as oxides, chlorides, CaF 2 or Na compounds in order to enhance the desulfurization ability of slag and flux. ing. In addition, it is well known that Ba oxide BaO, which is an element similar to Ca and Mg, is also effective for desulfurization, and has been utilized particularly for dephosphorization technology in high alloy molten steel.

特許文献1にはCr含有鋼に塩化バリウムと酸化バリウムとクロム酸化物を含有するフラックスを添加するCr含有鋼の脱リン脱硫技術が、特許文献2には溶融高Mn鉄合金にバリウムの酸化物を添加して攪拌する脱リン技術が、さらに、特許文献3にはアルミナとBaOを適性濃度比に制御した脱窒用スラグが、それぞれ開示されている。   Patent Document 1 describes the dephosphorization and desulfurization technology of Cr-containing steel, in which a flux containing barium chloride, barium oxide and chromium oxide is added to Cr-containing steel, and Patent Document 2 discloses a barium oxide to a molten high Mn iron alloy. In addition, Patent Document 3 discloses a denitrification slag in which alumina and BaO are controlled to an appropriate concentration ratio, respectively.

これらの技術では、BaOの使用目的、使用方法は異なるがCaOが有する脱硫能力や脱リン能力よりBaOの有する能力が高いことを利用している。
さらに近年では、脱硫能力の向上に加えて、環境の観点からCaFやNaCOの使用が制限されつつある。この制限による脱硫能力の低下を補うためにBaOを用いた低融点組成のカルシウムアルミネート系脱硫剤が特許文献4、5に開示されている。
In these techniques, although the usage purpose and method of use of BaO are different, the ability of BaO is higher than the desulfurization ability and dephosphorization ability of CaO.
Furthermore, in recent years, in addition to improving desulfurization capacity, the use of CaF 2 and Na 2 CO 3 is being restricted from the viewpoint of the environment. Patent Documents 4 and 5 disclose calcium aluminate-based desulfurization agents having a low melting point composition using BaO in order to compensate for a decrease in desulfurization capacity due to this restriction.

このように、従来はBaOの高い反応性を利用した脱硫可能な脱リン技術や環境に配慮した脱硫剤が開発されてきた。また、従来の技術は、BaOの高い反応性を利用するためにBaOを含有したフラックスを溶鋼に直接添加する第二の方法が広く用いられている。   Thus, conventionally, desulfurization technology capable of desulfurization utilizing the high reactivity of BaO and environmentally-friendly desulfurization agents have been developed. Moreover, in order to utilize the high reactivity of BaO, the 2nd method of adding the flux containing BaO directly to molten steel is widely used for the prior art.

以上のようにBaO系フラックスが開発され、特に近年では環境に配慮したBaO含有ライムアルミネート系フラックスなどが開発されてきた。   As described above, BaO-based fluxes have been developed, and in recent years, BaO-containing lime aluminate-based fluxes that are environmentally friendly have been developed.

特開昭58−31011号公報JP 58-31011 A 特開昭61−272312号公報JP-A-61-272312 特開昭64−42519号公報JP-A-64-42519 特開2002−60832号公報JP 2002-60832 A 特開2003−328022号公報JP 2003-328022 A

ところで、最近では前述した環境に対する配慮に加えて、要求製品性能の高まりから、従来には高い脱硫率が困難とされていた製品に対しても高い脱硫率を要求される場合が増加している。例えば、従来技術では、溶鋼もしくは溶融鉄合金のAlやCaを用いた強い脱酸やCaO−Al系スラグの使用が前提となっていたが、製品特性改善の観点から低Al化が必要とされる場合があり、この要求に応えるにはAlを使用できないのに加え、スラグからのAl混入を抑制するためにCaO−Al系よりも脱硫力に劣るCaO−SiO系スラグを使用せざるを得ない。 Recently, in addition to the environmental considerations described above, the demand for high desulfurization rates is increasing for products that had previously been considered difficult to achieve high desulfurization rates due to the increase in required product performance. . For example, in the prior art, strong deoxidation using Al or Ca of molten steel or molten iron alloy or the use of CaO-Al 2 O 3 slag was premised. In order to meet this requirement, Al cannot be used, and in addition, CaO—SiO 2 system is inferior in desulfurization power to CaO—Al 2 O 3 system in order to suppress Al contamination from slag. I have to use slag.

このように、Al脱酸ではなくSi脱酸などの弱い脱酸や低Al濃度のCaO−SiO系スラグでも高い脱硫率を得る必要性が高まりつつある。
しかし、前述したようにこれまで主として開発されたBaO含有フラックスの目的は、脱リンが困難な高Cr鋼や高Mnの脱リン脱硫あるいは環境の観点からCaF使用回避であったため、低Al濃度の溶鋼や溶融鉄合金あるいは低Al濃度であるCaO−SiO系スラグを対象に脱硫率を改善することには十分対応することができなかった。
As described above, there is an increasing need to obtain a high desulfurization rate even with weak deoxidation such as Si deoxidation and CaO-SiO 2 slag having a low Al 2 O 3 concentration instead of Al deoxidation.
However, as described above, the purpose of the BaO-containing flux that has been mainly developed so far was to avoid the use of CaF 2 from the viewpoint of high Cr steel, high Mn dephosphorization desulfurization, or environment that is difficult to dephosphorize. It has not been possible to sufficiently cope with improving the desulfurization rate of molten steel, molten iron alloy, or CaO—SiO 2 slag having a low Al 2 O 3 concentration.

本発明は、上記課題に鑑みてなされたものであり、難脱硫鋼の脱硫技術に関し、溶鋼やステンレス鋼などの溶融鉄合金をCaO−SiO系スラグを用いてスラグ−メタル間反応により溶融金属中の硫黄濃度を低減する脱硫処理において脱硫率を向上させる脱硫方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and relates to a desulfurization technique for hardly desulfurized steel. Molten iron alloy such as molten steel and stainless steel is melted by a slag-metal reaction using CaO-SiO 2 slag. It aims at providing the desulfurization method which improves a desulfurization rate in the desulfurization process which reduces the sulfur concentration in the inside.

酸化物を用いた溶鋼などの脱硫は、サルファイドキャパシティや光学的塩基度といった熱力学を用いて学術的に体系化されており、既に説明しているとおりBaOやNaを含むスラグやフラックスは脱硫率が高いことは良く知られている。 Desulfurization of molten steel using oxide has been systematized academically using thermodynamics such as sulfide capacity and optical basicity, and as already explained, slag containing BaO and Na 2 O 3 It is well known that flux has a high desulfurization rate.

これらの既往研究知見によれば、CaO−Al系やCaO−SiO系など基本成分系によらずBaOを多配合することによって脱硫率が向上すると予測される。
そこで、アルミナ飽和CaO−Al−BaOスラグを用いてAl脱酸S含有溶鋼の脱硫実験を行った。溶鋼量は10kg、スラグ量は200gである。実験ではCaOとAlを添加し、その後BaOを添加する手順で行い、BaO添加時刻を0minとした。スラグ中のBaO濃度を2水準として脱硫率の経時変化を測定した。BaO添加前の溶鋼中Al濃度は0.007〜0.01%(本明細書では特に断りがない限り、濃度または化学組成に関する「%」は「質量%」を意味する)、Si濃度は0.1%に調整した。脱硫率は(5)式で定義する。
脱硫率=(初期溶鋼中S濃度-ある時刻の溶鋼中S濃度)/(初期溶鋼中S濃度)×100 ・・・・・(5)
According to these past research findings, it is predicted that the desulfurization rate is improved by adding BaO in large amounts regardless of the basic component system such as CaO—Al 2 O 3 system and CaO—SiO 2 system.
Therefore, we desulfurization experiments Al deoxidation S-containing molten steel with alumina saturated CaO-Al 2 O 3 -BaO slag. The amount of molten steel is 10 kg, and the amount of slag is 200 g. In the experiment, CaO and Al 2 O 3 were added, and then BaO was added. The BaO addition time was set to 0 min. The change with time of the desulfurization rate was measured with the BaO concentration in the slag as two levels. The Al concentration in the molten steel before addition of BaO is 0.007 to 0.01% (unless otherwise specified in this specification, “%” in terms of concentration or chemical composition means “mass%”), and the Si concentration is 0. Adjusted to 1%. The desulfurization rate is defined by equation (5).
Desulfurization rate = (S concentration in the initial molten steel-S concentration in the molten steel at a certain time) / (S concentration in the initial molten steel) x 100 (5)

実験結果を図1にグラフで示す。図1のグラフに示すように、スラグ中のBaO濃度を高めたほうが最終的な脱硫率が高くなっており、BaO濃度が高いほど脱硫力が向上するという既往研究知見に良く一致する。   The experimental results are shown graphically in FIG. As shown in the graph of FIG. 1, the final desulfurization rate is higher when the BaO concentration in the slag is increased, and this agrees well with the existing research findings that the desulfurization power improves as the BaO concentration increases.

一方、0分から40分までの実験結果に着目すると、BaO濃度の低い実験の方が、脱硫率が高く推移している。このことから、平衡もしくは平衡に近い状態ではBaO濃度が高いほど高い脱硫率が得られるが、速度はBaO濃度が高いほど早いとは限らないことが分かる。この原因は、スラグの粘性や濡れ性あるいは溶鋼中介在物吸収性などの速度論的な因子が影響していると考えられるが、定かではない。   On the other hand, paying attention to the experimental results from 0 minutes to 40 minutes, the experiment with a lower BaO concentration has a higher desulfurization rate. From this, it can be seen that the higher the BaO concentration, the higher the desulfurization rate is obtained in the state of equilibrium or near equilibrium, but the rate is not necessarily higher as the BaO concentration is higher. The cause of this is thought to be due to kinetic factors such as slag viscosity and wettability or inclusion absorption in molten steel, but it is not clear.

しかしながら、工業的規模での生産を考えた場合は平衡もしくは平衡に近い状態に加え、脱硫速度も重要な要件である。そこで、本発明者らは、平衡に到達する過程での脱硫率とスラグ組成の関係に着目し、短時間で脱硫率が向上する最適条件を鋭意検討し、本発明を完成した。   However, when considering production on an industrial scale, desulfurization rate is an important requirement in addition to equilibrium or near equilibrium. Therefore, the present inventors paid attention to the relationship between the desulfurization rate and the slag composition in the process of reaching the equilibrium, and intensively studied the optimum conditions for improving the desulfurization rate in a short time, and completed the present invention.

本発明は、以下の通りである。
(1)溶融金属表面に、CaO、SiO、Alを合計で80%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20%以下含有するスラグを形成させ、溶鋼とスラグとを攪拌し脱硫処理を行う精錬処理において、
スラグ中のCaO,SiO、Alの各濃度が(1)式と(2)式を同時に満足するように調整し、かつ溶鋼中のSi濃度[Si]≧0.1%、もしくはAl濃度[sol.Al]≧0.005%に調整した後、スラグ中BaO濃度が(3)式を満足するようにスラグにBaOを添加すること
を特徴とする溶鋼ならびに溶融鉄合金の脱硫方法。
The present invention is as follows.
(1) On the surface of the molten metal, CaO, SiO 2 , Al 2 O 3 is contained in total of 80% or more, and MgO, Cr 2 O 3 , MnO, one or two or more kinds of iron oxides are contained as other components. In a refining process in which a slag containing 20% or less in total is formed and the molten steel and slag are stirred and desulfurized,
Each concentration of CaO, SiO 2 and Al 2 O 3 in the slag is adjusted so as to satisfy the expressions (1) and (2) at the same time, and the Si concentration in the molten steel [Si] ≧ 0.1%, or Al concentration [sol. A method for desulfurizing molten steel and molten iron alloy, characterized by adding BaO to the slag so that the BaO concentration in the slag satisfies the formula (3) after adjusting to Al] ≧ 0.005%.

(%CaO)/(%Al)≧2.3 ・・・・・(1)
0.4≦(%CaO)/(%SiO)≦3.5 ・・・・・(2)
4≦(%BaO)≦20 ・・・・・(3)
(1)〜(3)式において、(%MO)は、Mの酸化物のスラグ中質量濃度を意味する。
(2)スラグ中BaO濃度がスラグ中SiO濃度との関係を示す(4)式を満足させることを特徴とする(1)項に記載の溶鋼ならびに溶融鉄合金の脱硫方法。
11.2×ln(%SiO)−30≦(%BaO)≦9.4×ln(%SiO)−19 ・・・・・(4)
(3)総脱硫処理時間の60%経過時以降かつ85%経過時までにBaOをスラグに添加することを特徴とする(1)項または(2)項に記載の溶鋼ならびに溶融鉄合金の脱硫方法。
(% CaO) / (% Al 2 O 3 ) ≧ 2.3 (1)
0.4 ≦ (% CaO) / (% SiO 2 ) ≦ 3.5 (2)
4 ≦ (% BaO) ≦ 20 (3)
In the formulas (1) to (3), (% MO) means the mass concentration of M oxide in the slag.
(2) The molten steel and molten iron alloy desulfurization method according to (1), wherein the BaO concentration in the slag satisfies the formula (4) indicating the relationship with the SiO 2 concentration in the slag.
11.2 × ln (% SiO 2 ) −30 ≦ (% BaO) ≦ 9.4 × ln (% SiO 2 ) -19 (4)
(3) Desulfurization of molten steel and molten iron alloy according to (1) or (2), characterized in that BaO is added to slag after 60% and 85% of the total desulfurization treatment time. Method.

本発明により、CaO−SiO系スラグを用いたスラグ−メタル間反応を利用した脱硫処理において、脱硫率を大幅に向上させることができる。 According to the present invention, the desulfurization rate can be significantly improved in the desulfurization treatment using the slag-metal reaction using CaO—SiO 2 slag.

図1は、脱硫率の経時変化におよぼすスラグ中BaO濃度の影響を示すグラフである。FIG. 1 is a graph showing the influence of the BaO concentration in slag on the temporal change of the desulfurization rate. 図2は、スラグ中BaO濃度と脱硫率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the BaO concentration in the slag and the desulfurization rate. 図3は、スラグ中SiO濃度、BaO濃度と脱硫率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the SiO 2 concentration and BaO concentration in the slag and the desulfurization rate. 図4は、BaO添加時期指標と規格化脱硫率との関係を示すグラフである(C/S=1,(%BaO)=7〜8%)。FIG. 4 is a graph showing the relationship between the BaO addition time index and the normalized desulfurization rate (C / S = 1, (% BaO) = 7-8%).

初めに、CaO、SiO、Alを合計で80質量%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグに限定する理由を説明する。 First, CaO, SiO 2 , Al 2 O 3 is contained in a total of 80% by mass or more, and MgO, Cr 2 O 3 , MnO, or one or more of iron oxides in total as 20% by mass as other components. The reason for limiting to slag containing no more than% will be described.

溶鋼あるいは溶融鉄合金の脱硫では、CaO、SiO、Alなどの成分を主成分とするのが一般的であり、この他にMgOやMnO、FeOあるいはCrあるいはREM酸化物などを含んでいる。CaO,SiO,Al以外の成分が20%を超えて高くなると前述した速度論的な因子が大きく変化してしまうと考えられるため、CaO、SiO、Alを合計で80質量%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグに限定する。 In the desulfurization of molten steel or molten iron alloy, components such as CaO, SiO 2 and Al 2 O 3 are generally used as the main components. Besides this, MgO, MnO, FeO, Cr 2 O 3 or REM oxides are used. Etc. If the components other than CaO, SiO 2 and Al 2 O 3 become higher than 20%, the above-mentioned kinetic factors are considered to change greatly. Therefore, CaO, SiO 2 and Al 2 O 3 are combined in total. It contains 80 mass% or more, and is limited to slag containing 20 mass% or less in total of MgO, Cr 2 O 3 , MnO, or one or more of iron oxides as other components.

次に、スラグ組成を上記(1)式および(2)式により規定される範囲に限定する理由を説明する。
前述したように、本発明は、従来技術では脱硫が困難なCaO−SiO系を対象とし、BaOの適性添加による脱硫速度向上を目標としている。そこで、比較的Al濃度の低いCaO−SiOスラグを用いBaO添加効果を前述と同様の方法で測定した結果、(1)式および(2)式により示される領域では、BaO添加の効果が認められたが、それ以外の領域では効果が小さかった。そこで、本発明が対象とするスラグ組成範囲を(1)式および(2)式により示される範囲に限定する。
Next, the reason why the slag composition is limited to the range defined by the above formulas (1) and (2) will be described.
As described above, the present invention targets the CaO—SiO 2 system, which is difficult to desulfurize by the prior art, and aims to improve the desulfurization rate by appropriately adding BaO. Therefore, as a result of measuring the BaO addition effect using the CaO-SiO 2 slag having a relatively low Al 2 O 3 concentration by the same method as described above, in the region represented by the formulas (1) and (2), the addition of BaO Although the effect was recognized, the effect was small in other areas. Then, the slag composition range which this invention makes object is limited to the range shown by (1) Formula and (2) Formula.

また、本発明では、CaO−SiO系スラグを基準に少量のBaOを併用したスラグによるスラグーメタル間反応を利用する脱硫方法であるため、CaO−SiOスラグを形成させた後にBaOを添加する手法が最も安定性と再現性に優れる。例えば、CaO、SiOならびにCaOを混合添加すると、取鍋内溶鋼に添加するこれら酸化物の量が非常に多くなり、結果、スラグの溶解速度や各酸化物の混合速度の影響が大きくなってしまう。 In the present invention, since a desulfurization process that utilizes combined slag Metal intermolecular reactions due to the slag of a small amount of BaO based on CaO-SiO 2 slag, method of adding BaO after forming a CaO-SiO 2 slag Is the most stable and repeatable. For example, when CaO, SiO 2 and CaO are mixed and added, the amount of these oxides added to the molten steel in the ladle becomes very large. As a result, the influence of the dissolution rate of slag and the mixing rate of each oxide increases. End up.

次に、(3)式の限定理由を説明する。
図1のグラフを参照しながら説明したように、BaO濃度範囲は速度論的要因によって規定される適性範囲が存在すると考えられることから、(1)式および(2)式により規定されるCaO−SiO−Al系スラグ中BaO濃度を変化させて、脱硫率の経時変化を測定した。
Next, the reason for limiting equation (3) will be described.
As described with reference to the graph of FIG. 1, since the BaO concentration range is considered to have an appropriate range defined by kinetic factors, the CaO − defined by the equations (1) and (2) is used. The BaO concentration in the SiO 2 —Al 2 O 3 slag was changed, and the change over time in the desulfurization rate was measured.

測定は、以下の方法によって行った。予め酸素濃度と硫黄濃度を調整した溶融鉄10kgを1873Kに調整し、鋼からサンプルを採取して得られた溶鋼中S濃度を初期溶鋼中S濃度とした。次に、溶鋼にArガスを吹き込んで攪拌しつつCaO試薬とSiO試薬ならびにAl試薬を溶鋼表面上に添加しスラグを形成させた。なお、スラグ中の各酸化物濃度が(1)式と(2)式を満足するように試薬添加量を決定した。次に、炭酸バリウム試薬を所定量添加し、スラグ中BaO濃度を調整した。BaO添加後のスラグ重量は200gになるように調整した。また、溶鋼中のAlとSiの濃度は図1と同様とした。CaO,SiO,Al試薬添加後、30min間保持した。保持時間は前述した速度の観点から図1のグラフを元に決定した。保持後、溶鋼とスラグからサンプルを採取し、溶鋼中S濃度とスラグ組成を定量した。 The measurement was performed by the following method. 10 kg of molten iron whose oxygen concentration and sulfur concentration were adjusted in advance was adjusted to 1873 K, and the S concentration in molten steel obtained by taking a sample from steel was taken as the S concentration in the initial molten steel. Next, CaO reagent, SiO 2 reagent and Al 2 O 3 reagent were added on the molten steel surface while Ar gas was blown into the molten steel and stirred to form slag. The reagent addition amount was determined so that each oxide concentration in the slag satisfied the expressions (1) and (2). Next, a predetermined amount of barium carbonate reagent was added to adjust the BaO concentration in the slag. The slag weight after addition of BaO was adjusted to 200 g. The concentrations of Al and Si in the molten steel were the same as those in FIG. After adding the CaO, SiO 2 , and Al 2 O 3 reagents, the mixture was held for 30 minutes. The holding time was determined based on the graph of FIG. After holding, samples were taken from the molten steel and slag, and the S concentration and slag composition in the molten steel were quantified.

結果を図2にグラフで示す。図2のグラフに示すように、スラグ中CaO/SiO比(以下、C/S)によらずスラグ中BaO濃度が4%未満では、BaO添加の効果が認められず、4%以上で急激に脱硫率が向上する。さらに、BaO濃度が20%を超えて高くなると脱硫率がやや低下する。この結果から、(3)式に示すようにスラグ中BaO濃度は4%以上20%以下が適正であることが分かる。また、スラグ中BaO濃度が8%以上15%以下の範囲で脱硫率が高位で安定していることが分かる。 The results are shown graphically in FIG. As shown in the graph of FIG. 2, regardless of the CaO / SiO 2 ratio in the slag (hereinafter referred to as C / S), when the BaO concentration in the slag is less than 4%, the effect of the addition of BaO is not recognized, and abruptly occurs at 4% or more. The desulfurization rate is improved. Furthermore, when the BaO concentration exceeds 20%, the desulfurization rate slightly decreases. From this result, it is understood that the BaO concentration in the slag is appropriate to be 4% or more and 20% or less as shown in the equation (3). It can also be seen that the desulfurization rate is high and stable when the BaO concentration in the slag is in the range of 8% to 15%.

次に、請求項2について説明する。図2のグラフから理解されるように、C/Sによらず一定のBaOを添加することで脱硫率は改善するが、同時に同一BaO濃度であればC/Sが小さいスラグの方が、脱硫率が低い。そこで、これを改善する条件を検討した。   Next, claim 2 will be described. As understood from the graph of FIG. 2, the desulfurization rate is improved by adding a constant BaO regardless of C / S, but at the same time, slag having a smaller C / S is desulfurized at the same BaO concentration. The rate is low. Therefore, the conditions for improving this were examined.

図2のグラフに着目すると、C/S=0.7の実験では低BaO濃度の実験結果ほどC/S=2.5の実験結果との差が大きい。これを改善するためにスラグ中SiO濃度に応じてBaO濃度を制御すれば良いと考えられる。この関係を調査した結果を図3にグラフで示す。 When paying attention to the graph of FIG. 2, in the experiment of C / S = 0.7, the difference from the experimental result of C / S = 2.5 is larger as the experimental result of the lower BaO concentration. In order to improve this, it is considered that the BaO concentration should be controlled according to the SiO 2 concentration in the slag. The results of investigating this relationship are shown graphically in FIG.

図3のグラフから、スラグ中BaO濃度が4%未満では脱硫率Rを70%以上にすることが出来なかった。図中黒丸印は、脱硫率が80%以上93%未満の結果を示し、白丸印は脱硫率が93%以上の結果を示す。   From the graph of FIG. 3, when the BaO concentration in the slag was less than 4%, the desulfurization rate R could not be made 70% or more. In the figure, black circles indicate results with a desulfurization rate of 80% or more and less than 93%, and white circles indicate results with a desulfurization rate of 93% or more.

スラグ中SiO濃度に応じてBaO濃度を増加させる必要があり、高い脱硫率を得るには、図3のグラフにおける曲線B以上である必要があることが分かる。ただし、曲線Aを超えてBaO濃度が高くなると、再び脱硫率は93%未満となる。曲線A、Bをそれぞれ回帰すると、下記(5)式および(6)式が得られる。よって、上記(4)式を満足する必要がある。 It can be seen that the BaO concentration needs to be increased in accordance with the SiO 2 concentration in the slag, and in order to obtain a high desulfurization rate, it is necessary to exceed the curve B in the graph of FIG. However, when the BaO concentration increases beyond the curve A, the desulfurization rate again becomes less than 93%. When the curves A and B are regressed, the following equations (5) and (6) are obtained. Therefore, it is necessary to satisfy the above expression (4).

つまり、スラグ中SiO濃度を珪砂などのSiO添加量ならびに脱酸で生成するSiO量などからスラグ中SiO濃度を予め計算し、この計算濃度に応じてBaO濃度が(4)式を満足するようにBaO添加量を制御すれば良い。
11.2×ln(%SiO)−30≦(%BaO) ・・・・・(5)
(%BaO)≦9.4×ln(%SiO)−19 ・・・・・(6)
最後に請求項3について説明する。
In other words, pre-calculate the SiO 2 concentration in the slag of SiO 2 or the like the amount of generating SiO 2 concentration in the slag in the additive amount of SiO 2 and deoxidation, such as quartz sand, is BaO concentration in accordance with this calculation concentration (4) What is necessary is just to control BaO addition amount so that it may be satisfied.
11.2 × ln (% SiO 2 ) −30 ≦ (% BaO) (5)
(% BaO) ≦ 9.4 × ln (% SiO 2 ) -19 (6)
Finally, claim 3 will be described.

本発明は、平衡ではなく速度を利用しているためCaO−SiO系スラグへのBaO添加時期の最適時期があると考えられる。そこで、次の方法により検討した。BaOを含まないCaO−SiOスラグを添加した時間を0とし不活性ガスを吹き込みながら20〜40min間保持した。この保持時間をTeとする。次に、保持中に炭酸バリウムを用いてスラグにBaOを添加するが、この添加時間をTbとする。そして、BaOの添加時期を示す指標としてBaO添加時期指標Aを(7)式で定義する。 Since the present invention uses speed rather than equilibrium, it is considered that there is an optimum time for adding BaO to CaO—SiO 2 slag. Then, it examined by the following method. The time for adding CaO—SiO 2 slag not containing BaO was set to 0, and the mixture was held for 20 to 40 minutes while blowing an inert gas. Let this retention time be Te. Next, while holding, BaO is added to the slag using barium carbonate, and this addition time is Tb. A BaO addition time index A is defined by equation (7) as an index indicating the BaO addition time.

BaO添加時期指標A=Tb/Te×100 ・・・・・(7)
そして、脱硫能力の指標としてA=3での脱硫率をR1として各Aでの脱硫率Rを規格化脱硫率として(8)式で定義する。
BaO addition time index A = Tb / Te × 100 (7)
Then, as a desulfurization capacity index, the desulfurization rate at A = 3 is defined as R1, and the desulfurization rate R at each A is defined as a standardized desulfurization rate by equation (8).

規格化脱硫率=R/R1 ・・・・・(8)
Aと規格化脱硫率の関係を図4にグラフで示す。A<50%では添加時期によらずほぼ同一の脱硫率が得られることが分かるが、Aが60%以上85%以下では初期に添加するよりも高い脱硫率が得られる。しかし、Aが85%を超えると脱硫率は低下する。Aが過剰に大きくなると脱硫率が低下するのはBaOが有効に作用する反応時間が短くなるためであるが、Aが60%以上85%以下で脱硫率が高くなるのは以下の理由と考えられる。
Standardized desulfurization rate = R / R1 (8)
FIG. 4 is a graph showing the relationship between A and the normalized desulfurization rate. It can be seen that when A <50%, almost the same desulfurization rate can be obtained regardless of the addition time, but when A is 60% or more and 85% or less, a higher desulfurization rate than when initially added is obtained. However, when A exceeds 85%, the desulfurization rate decreases. The reason why the desulfurization rate decreases when A becomes excessively large is that the reaction time for effective action of BaO is shortened, but the reason why the desulfurization rate increases when A is 60% or more and 85% or less is considered to be as follows. It is done.

熱力学的平衡から考えると、スラグ組成が同一であれば脱硫率は同一となるので、平衡脱硫率を得るためには、特許文献4に開示されているように、BaOもCaOなどその他成分と同時に添加することが最も適当である。   Considering thermodynamic equilibrium, the desulfurization rate is the same if the slag composition is the same. Therefore, in order to obtain the equilibrium desulfurization rate, BaO is also different from other components such as CaO as disclosed in Patent Document 4. It is most appropriate to add them simultaneously.

一方、本発明のように非平衡状態を活用する場合は、以下のような機構が発現していると推定される。予めCaO−SiO系スラグを添加するとこのスラグによって一定の脱硫が進行するが、この状態でBaOを添加するとBaOがスラグに溶解するまでBaO(s)として存在する。このときBaO(s)と溶鋼中との直接反応等により、一時的に脱硫率が高まる。しかし、一定時間を経過してBaO(s)がスラグに完全に溶解するとCaO−SiO−BaOスラグとなるため平衡脱硫率に向かって脱硫率が低下する。図4のグラフにおいてAが60%以上85%以下ではBaO添加から溶解までの過渡的現象により熱力学から予測されるより高い脱硫率が得られていると推定される。 On the other hand, when the non-equilibrium state is utilized as in the present invention, it is presumed that the following mechanism is expressed. When CaO—SiO 2 -based slag is added in advance, desulfurization proceeds with this slag, but when BaO is added in this state, BaO is present as BaO (s) until dissolved in the slag. At this time, the desulfurization rate temporarily increases due to a direct reaction between BaO (s) and the molten steel. However, when BaO (s) completely dissolves in the slag after a certain period of time, it becomes CaO—SiO 2 —BaO slag, so the desulfurization rate decreases toward the equilibrium desulfurization rate. In the graph of FIG. 4, when A is 60% or more and 85% or less, it is estimated that a higher desulfurization rate than that predicted from thermodynamics is obtained due to a transient phenomenon from addition of BaO to dissolution.

以上から、予め所定の組成に制御したCaO−SiOスラグにBaOを添加するスラグ−メタル間反応脱硫ではBaOの添加時期を、総脱硫処理時間の60%経過時以降かつ85%経過時までとすることで、さらに脱硫率を高めることができる。 From the above, in the slag-metal reaction desulfurization in which BaO is added to CaO—SiO 2 slag that has been controlled to a predetermined composition in advance, the addition time of BaO is from the time when 60% of the total desulfurization treatment time has elapsed until the time when 85% has elapsed By doing so, the desulfurization rate can be further increased.

なお、脱硫総処理時間とは、溶鋼攪拌下でCaO−SiOスラグ組成を請求項1記載の濃度に調整した時点から溶鋼攪拌終了までを指す。この溶鋼攪拌中に脱硫を阻害しない精錬操作、たとえば硫化物を除く合金添加や脱ガスなどを行って良い。 Note that the desulfurization total processing time refers to the CaO-SiO 2 slag composition under molten steel agitation from the time of adjusting the concentration of claim 1, wherein to the molten steel completion of stirring. During the molten steel stirring, a refining operation that does not inhibit desulfurization, for example, addition of an alloy excluding sulfide or degassing may be performed.

また、以上の説明は溶鋼を対象に行ったが、本発明は溶鋼に限定されるものではなく、溶融ステンレス鋼や溶融高合金鋼でも同様に処理できる。具体的には、Cr濃度40%以下、Ni濃度45%以下でCrとNiとの合計濃度が60%以下、CrとNiとFeとの合計が95%以上の溶融金属まで処理できる。   Moreover, although the above description was made | formed about molten steel, this invention is not limited to molten steel, It can process similarly with molten stainless steel and molten high alloy steel. Specifically, a molten metal having a Cr concentration of 40% or less, a Ni concentration of 45% or less, a total concentration of Cr and Ni of 60% or less, and a total of Cr, Ni and Fe of 95% or more can be processed.


次に、本発明を、転炉と大気圧下不活性ガス吹き込み精錬装置とを用いて実施する形態を例にとって、さらに具体的に説明する。

Next, the present invention will be described more specifically by taking as an example an embodiment in which the present invention is implemented using a converter and an inert gas blowing refining apparatus under atmospheric pressure.

転炉で脱炭精錬を行った後に溶鋼を取鍋内へ出鋼する。出鋼時にSi、Mn、Alなどの合金やCaO、SiOなどを溶鋼に添加しても良い。このとき、CaOならびにSiOの添加量を本発明の規定範囲となるように添加しておくことによって、次工程の負荷を低減できる。 After decarburization refining in the converter, the molten steel is taken into the ladle. Si at the time of tapping, Mn, alloy and CaO, such as Al, may be added, such as SiO 2 in the molten steel. At this time, the load of the next process can be reduced by adding the addition amounts of CaO and SiO 2 so as to be within the specified range of the present invention.

所定の合金と酸化物を添加した後、取鍋を大気圧下不活性ガス吹き込み精錬装置へ移送する。なお、転炉出鋼後にRHなどにて真空脱ガス処理を行った後に大気圧下不活性ガス吹き込み精錬を行っても良い。   After adding a predetermined alloy and oxide, the ladle is transferred to a refining apparatus with an inert gas blown at atmospheric pressure. In addition, after carrying out vacuum degassing processing by RH etc. after converter steelmaking, you may perform refining by blowing in inert gas under atmospheric pressure.

不活性ガス吹き込み精錬装置では溶鋼に不活性ガスを吹き込みつつ以下の様に処理を行う。
初めに、溶鋼成分調整に必要な合金等を添加する。さらに、AlもしくはSiを溶鋼に添加し酸化性ガスを溶鋼に吹き付けるなどの方法による溶鋼温度上昇処理を行う場合は、本発明による脱硫処理を行う前に実施する。これは、脱硫後に酸化性ガスを用いるとスラグから溶鋼へSが移動する復硫現象が生じるためである。
In an inert gas blowing refining apparatus, the following treatment is performed while blowing an inert gas into molten steel.
First, an alloy necessary for adjusting the molten steel components is added. Furthermore, when performing the molten steel temperature rise process by methods, such as adding Al or Si to molten steel, and spraying oxidizing gas on molten steel, it implements before performing the desulfurization process by this invention. This is because if an oxidizing gas is used after desulfurization, a resulfurization phenomenon in which S moves from slag to molten steel occurs.

また、AlもしくはSiを用いて溶鋼温度上昇処理を行うと、AlもしくはSiOが生じるため、温度上昇処理後に本発明に規定する(1)式および(2)式を満足できない場合にはCaOを再度添加し、(1)式および(2)式を満足させる必要がある。 In addition, when the molten steel temperature rise treatment is performed using Al or Si, Al 2 O 3 or SiO 2 is generated. Therefore, when the formulas (1) and (2) defined in the present invention cannot be satisfied after the temperature rise treatment, Needs to add CaO again to satisfy the formulas (1) and (2).

前述したように、本発明では溶鋼が攪拌された状態でスラグ組成が(1)式および(2)式が満足された時点から脱硫処理開始と定義する。例えば、転炉出鋼時に必要なCaO、SiOを全て添加して取鍋移送後にガス吹き込み攪拌を速やかに開始した場合は、不活性ガス吹き込み精錬での処理開始が脱硫処理開始となり、温度上昇処理を行った場合は温度上昇処理後に必要なCaO等を添加した時点が脱硫処理開始となる。 As described above, in the present invention, the slag composition is defined as the start of the desulfurization treatment when the slag composition satisfies the expressions (1) and (2) while the molten steel is being stirred. For example, when all of the CaO and SiO 2 required for steel leaving the converter are added and the gas blowing and stirring is started immediately after the ladle is transferred, the treatment start with the inert gas blowing refining becomes the desulfurization treatment start and the temperature rises When the treatment is performed, the desulfurization treatment starts when the necessary CaO or the like is added after the temperature increase treatment.

成分調整の再調整もしくは微調整のため、再度合金を添加する必要がある場合は、脱硫処理前半に添加することが望ましく、処理開始直後に添加することがさらに望ましい。これは、脱硫処理中に溶鋼中酸素活量が変化したり、添加物からの微量な汚染が生じると脱硫が不安定になるためである。   When it is necessary to add the alloy again for readjustment or fine adjustment of the component adjustment, it is desirable to add it in the first half of the desulfurization treatment, and it is more desirable to add it immediately after the start of the treatment. This is because desulfurization becomes unstable if the oxygen activity in the molten steel changes during the desulfurization treatment or if a slight amount of contamination from the additive occurs.

脱硫開始後、スラグにBaOを添加する。BaOは、BaOの他に炭酸バリウムなどの化合物として添加しても良い。添加時期は、総脱硫処理時間の60%経過時以降かつ85%経過時までの時期とすることで、最も高い脱硫率が得られるが、脱硫処理末期特にA≧90%で添加する効果が小さくなるため、90%未満で添加することが望ましい。   After desulfurization is started, BaO is added to the slag. BaO may be added as a compound such as barium carbonate in addition to BaO. The addition time is set to the time from the time when 60% of the total desulfurization treatment time has elapsed until the time when 85% has passed, so that the highest desulfurization rate can be obtained. Therefore, it is desirable to add less than 90%.

また、CaOとSiO添加に引き続いて添加しても良いが、CaOやSiOの添加と同時もしくはこれらの添加より先行してBaO添加を行わないことが必要である。本発明は、CaO−SiO系スラグによる脱硫を少量のBaO添加によって速度的に改善するため、CaO−SiO系スラグの存在が前提となる。よって、BaOを同時または先行して行うと、本発明で意図する効果が小さくなる場合がある。 Further, it may be added subsequently to CaO and SiO 2 added, but it is necessary not to perform BaO added prior to the addition simultaneously with or addition of these CaO and SiO 2. The present invention, in order to kinetically improved by a small amount of BaO added desulfurization by CaO-SiO 2 slag, the presence of CaO-SiO 2 slag is assumed. Therefore, if BaO is performed simultaneously or in advance, the effect intended by the present invention may be reduced.

スラグ中BaO源として添加するBaOもしくは炭酸バリウムなどのBa化合物は、100メッシュアンダーなどの粉体、数mmから数十mmの塊状などいかなる形状でも良いが、ホッパーなどの自由落下を利用した添加装置を用いる場合には、飛散抑制のため塊状であることが望ましい。粉体のBa化合物を用いる場合は、スラグ表面に不活性ガス等を搬送ガスとして上吹きランスを介してスラグ表面に吹き付ける方法で添加することが望ましい。   BaO added as a BaO source in slag or Ba compounds such as barium carbonate may be in any shape such as powder of 100 mesh under, lump of several mm to several tens mm, etc., but addition device using free fall such as hopper In the case of using, it is desirable that it is a lump for suppressing scattering. When using a powdery Ba compound, it is desirable to add an inert gas or the like to the slag surface as a carrier gas by a method of spraying the slag surface via an upper blowing lance.

用いるスラグ量は、20kg/ton以上80kg/ton以下が望ましい。20kg/ton以下では物質収支から脱硫が困難である。また、80kg/tonを超えてスラグ量が多いと、本発明を満足するために添加する各酸化物の量が多くなり、スラグ組成の均一化に時間を要し、処理時間が長くなったり脱硫率が不安定になる場合がある。   The amount of slag used is preferably 20 kg / ton or more and 80 kg / ton or less. At 20 kg / ton or less, desulfurization is difficult due to the material balance. Further, if the amount of slag exceeds 80 kg / ton, the amount of each oxide added to satisfy the present invention increases, and it takes time to make the slag composition uniform, and the processing time becomes longer or desulfurized. The rate may become unstable.

BaO添加時の溶鋼成分としては、Si濃度[Si]≧0.1%もしくはAl濃度[Al]≧0.005%が必要である。[Si]<0.1%もしくは[Al]<0.005%では脱酸が不充分となり、脱硫が不安定になる場合がある。また、[Al]<0.015%であることが望ましい。過剰に[Al]を高めると、BaO→Ba+Oなる反応により溶鋼中介在物の一部にBaOが含有される場合がある。   As a molten steel component at the time of adding BaO, Si concentration [Si] ≧ 0.1% or Al concentration [Al] ≧ 0.005% is required. If [Si] <0.1% or [Al] <0.005%, deoxidation may be insufficient and desulfurization may become unstable. [Al] <0.015% is desirable. When [Al] is excessively increased, BaO may be contained in some of the inclusions in the molten steel due to the reaction BaO → Ba + O.

溶鋼とスラグを攪拌するための不活性ガスは溶鋼中に浸漬したガス吹き込みランスを用いても良いし、取鍋底部に設置した多孔質レンガや羽口から溶鋼に吹き込んでも良い。
脱硫処理中の不活性ガス流量は8Nl/(min・溶鋼ton)以上20Nl/(min・溶鋼ton)以下が望ましい。8Nl/(min・溶鋼ton)未満では、添加したBaOのスラグ中への均一混合が遅れる場合がある。一方、20Nl/(min・溶鋼ton)を超えて大きいと、スラグが溶鋼中に巻き込まれ、意図しないBaO含有介在物が鋼中に生成する場合がある。
The inert gas for stirring the molten steel and slag may be a gas blowing lance immersed in the molten steel, or may be blown into the molten steel from a porous brick or tuyere installed at the bottom of the ladle.
The inert gas flow rate during the desulfurization treatment is desirably 8 Nl / (min · molten ton) or more and 20 Nl / (min · molten ton) or less. If it is less than 8 Nl / (min · molten steel ton), uniform mixing of the added BaO into the slag may be delayed. On the other hand, if it exceeds 20 Nl / (min · molten steel ton), the slag is caught in the molten steel, and unintended BaO-containing inclusions may be generated in the steel.

脱硫処理時間は10分間以上30分間以内が望ましく、さらに望ましくは15分間以上20分間未満である。処理時間が短いと十分に脱硫が進行しない場合がある。また、処理時間が長いと脱硫率が熱力学平衡に近づき却って脱硫率が低下する場合がある。よって、処理時間は上記のように適切な範囲で行うことが望ましい。   The desulfurization treatment time is preferably from 10 minutes to 30 minutes, and more preferably from 15 minutes to less than 20 minutes. If the treatment time is short, desulfurization may not proceed sufficiently. In addition, if the treatment time is long, the desulfurization rate may approach thermodynamic equilibrium and the desulfurization rate may decrease. Therefore, it is desirable to perform the processing time within an appropriate range as described above.

本発明では、先に説明したように、CaO、SiO、Alを合計で80質量%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグに限定した。 In the present invention, as described above, CaO, SiO 2 , Al 2 O 3 is contained in a total of 80% by mass or more, and MgO, Cr 2 O 3 , MnO, one of iron oxides as the other components or It limited to the slag which contains 2 or more types in total 20 mass% or less.

さらに、好ましくは、MgO濃度15%以下、Cr濃度1%以下、鉄酸化物とMnO濃度の合計で2%以下である。MgOやCrの濃度がこれらの値を超えて高いとスラグの流動性が低下するため、これらの濃度を低減しておくことで脱硫率をさらに安定化できる。MnOや鉄酸化物は低級酸化物と呼ばれ、スラグーメタル界面の酸素活量を増加させて脱硫を阻害することは良く知られている。したがって、これらの濃度はより低いことが望ましく、合計で2%以下であることがさらに望ましい。また、本発明は、BaOを用いることで十分な脱硫力が得られるため、環境保全の観点からスラグにNaCOやCaFを含まないことが望ましい。 Further, the MgO concentration is preferably 15% or less, the Cr 2 O 3 concentration is 1% or less, and the total of the iron oxide and MnO concentrations is 2% or less. If the concentration of MgO or Cr 2 O 3 is higher than these values, the slag fluidity decreases, so that the desulfurization rate can be further stabilized by reducing these concentrations. MnO and iron oxide are called lower oxides, and it is well known to inhibit desulfurization by increasing the oxygen activity at the slag metal interface. Therefore, these concentrations are desirably lower, and more desirably 2% or less in total. In the present invention, since sufficient desulfurization power can be obtained by using BaO, it is desirable that the slag does not contain Na 2 CO 3 or CaF 2 from the viewpoint of environmental conservation.

以上の説明では、転炉と大気圧下不活性ガス吹き込み精錬装置を用いた場合を例にとったが、本発明は、この場合には限定されず、電気炉とVODなどを用いる場合はVODにて本発明を実施することができる。VODでの実施要件も前述した大気圧下不活性ガス吹き込み精錬装置の場合と同様である。   In the above description, the case where a converter and an inert gas blowing refining apparatus under atmospheric pressure are used is taken as an example. However, the present invention is not limited to this case, and VOD is used when an electric furnace and VOD are used. The present invention can be implemented. VOD implementation requirements are the same as in the case of the above-described inert gas blown refining apparatus under atmospheric pressure.

転炉にて脱炭した溶鋼250tonを取鍋へ出鋼した。出鋼時に取鍋内溶鋼へAl,Siなどの脱酸材およびCaO(生石灰)、SiO(珪砂)を添加し、溶鋼成分とスラグ組成を調整した。 250 ton of molten steel decarburized in the converter was taken out into a ladle. A deoxidizing material such as Al and Si, CaO (quick lime), and SiO 2 (silica sand) were added to the molten steel in the ladle at the time of steel removal to adjust the molten steel components and the slag composition.

取鍋を大気圧下Arガス吹き込み精錬装置に移送し、Arガスを溶鋼に浸漬した吹き込みランスから14Nl/(min・溶鋼ton)で吹き込み、溶鋼とスラグを攪拌した。最初に溶鋼にAlを添加して酸素ガスを上吹きする溶鋼の温度上昇処理を5〜8分実施した。その後、MnやNi、Crなどの金属あるいは合金を添加して溶鋼組成を調整した。さらに、添加したAlやSiの量と溶鋼中Al濃度もしくはSi濃度から発生したAl量やSiO量を算定し、(1)式および(2)式を満足するようにCaOを再添加した。スラグ量は18〜22kg/溶鋼tonとした。 The ladle was transferred to an Ar gas blowing refining apparatus under atmospheric pressure, and Ar gas was blown from the blowing lance immersed in the molten steel at 14 Nl / (min · molted steel ton) to stir the molten steel and slag. First, a temperature rise treatment of molten steel in which Al was added to the molten steel and oxygen gas was blown up was performed for 5 to 8 minutes. Thereafter, a molten steel composition was adjusted by adding a metal or alloy such as Mn, Ni, or Cr. Further, the amount of Al 2 O 3 and the amount of SiO 2 generated from the amount of Al and Si added and the Al concentration or Si concentration in the molten steel are calculated, and CaO is reconstituted to satisfy the equations (1) and (2). Added. The amount of slag was 18-22 kg / molten steel ton.

CaO再添加時点を脱硫処理開始時刻とし、開始時刻から20分間脱硫処理を行った。既に述べたBaO添加時期指標Aを用いて所定量の炭酸バリウムを添加した。なお、比較として炭酸バリウムを添加しない処理も行った。脱硫処理を20分間行い、ガス吹き込みを終了して大気圧下Arガス吹き込み精錬を終了した。脱硫処理前の溶鋼中S濃度と脱硫処理後の溶鋼中S濃度を分析し、前述した方法で脱硫率を算出した。   The CaO re-addition time was set as the desulfurization treatment start time, and the desulfurization treatment was performed for 20 minutes from the start time. A predetermined amount of barium carbonate was added using the BaO addition time index A described above. For comparison, a treatment without adding barium carbonate was also performed. The desulfurization treatment was performed for 20 minutes, the gas blowing was finished, and the Ar gas blowing refining under atmospheric pressure was finished. The S concentration in the molten steel before the desulfurization treatment and the S concentration in the molten steel after the desulfurization treatment were analyzed, and the desulfurization rate was calculated by the method described above.

結果を表1にまとめて示す。表1に示すAl濃度とSi濃度はBaO添加前の濃度である。   The results are summarized in Table 1. The Al concentration and Si concentration shown in Table 1 are the concentrations before adding BaO.

Figure 2013036062
Figure 2013036062

試験番号1〜4は請求項1を満足した条件であり、BaOを添加しなかった比較試験である試験番号12〜16に比較して高い脱硫率が得られている。特に、最も脱硫困難な低C/S試験であった実施例試験番号1では脱硫率が77.8%であるのに対し、最も脱硫に優位な高C/S試験であった比較例試験番号15では脱硫率が75.1%であり、脱硫が最も有利な比較試験よりも脱硫が最も不利な実施例試験のほうが同等もしくはやや高い脱硫率を得られることが分かる。このことは、先に説明したように従来困難とされていた条件での脱硫を可能となったことを示す。   Test Nos. 1 to 4 are conditions satisfying claim 1, and a high desulfurization rate is obtained as compared with Test Nos. 12 to 16, which are comparative tests in which BaO was not added. In particular, in Example Test No. 1, which was the most difficult C / S test for desulfurization, the desulfurization rate was 77.8%, whereas in Comparative Example Test No., which was the highest C / S test superior to desulfurization. No. 15 has a desulfurization rate of 75.1%, and it can be seen that an example test in which desulfurization is most disadvantageous can obtain an equivalent or slightly higher desulfurization rate than a comparative test in which desulfurization is most advantageous. This indicates that desulfurization under conditions that have been difficult in the past has become possible as described above.

試験番号5〜7は請求項1と請求項2を、試験番号8と9は請求項1と請求項3を満足した結果、試験番号10と11は全ての請求項を満足した結果であるが、試験番号1〜4よりもさらに高い脱硫率が得られた。   Test numbers 5 to 7 are the results of claims 1 and 2, test numbers 8 and 9 are the results of satisfying claims 1 and 3, and test numbers 10 and 11 are the results of satisfying all claims. Further, a higher desulfurization rate than Test Nos. 1 to 4 was obtained.

Claims (3)

溶融金属表面に、CaO、SiO、Alを合計で80質量%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグを形成させ、溶鋼とスラグとを攪拌し脱硫処理を行う精錬処理において、
スラグ中のCaO,SiO、Alの各濃度が(1)式と(2)式を同時に満足するように調整し、かつ溶鋼中のSi濃度[Si]≧0.1質量%、もしくはAl濃度[sol.Al]≧0.005質量%に調整した後、スラグ中BaO濃度が(3)式を満足するようにスラグにBaOを添加すること
を特徴とする溶鋼ならびに溶融鉄合金の脱硫方法。
(%CaO)/(%Al)≧2.3 ・・・・・(1)
0.4≦(%CaO)/(%SiO)≦3.5 ・・・・・(2)
4≦(%BaO)≦20 ・・・・・(3)
(1)〜(3)式において、(%MO)は、Mの酸化物のスラグ中質量濃度を意味する。
On the surface of the molten metal, CaO, SiO 2 , Al 2 O 3 is contained in a total of 80% by mass or more, and MgO, Cr 2 O 3 , MnO, one or two or more of iron oxides are added in total as other components. In a refining process in which a slag containing 20% by mass or less is formed and the molten steel and slag are stirred and desulfurized,
Each concentration of CaO, SiO 2 and Al 2 O 3 in the slag is adjusted so as to satisfy the expressions (1) and (2) at the same time, and the Si concentration in the molten steel [Si] ≧ 0.1% by mass, Or Al concentration [sol. A method for desulfurizing molten steel and molten iron alloy, characterized by adding BaO to the slag so that the BaO concentration in the slag satisfies the formula (3) after adjusting to Al] ≧ 0.005 mass%.
(% CaO) / (% Al 2 O 3 ) ≧ 2.3 (1)
0.4 ≦ (% CaO) / (% SiO 2 ) ≦ 3.5 (2)
4 ≦ (% BaO) ≦ 20 (3)
In the formulas (1) to (3), (% MO) means the mass concentration of M oxide in the slag.
スラグ中BaO濃度がスラグ中SiO濃度との関係を示す(4)式を満足させることを特徴とする請求項1に記載の溶鋼ならびに溶融鉄合金の脱硫方法。
11.2×ln(%SiO)−30≦(%BaO)≦9.4×ln(%SiO)−19 ・・・・・(4)
The molten steel and molten iron alloy desulfurization method according to claim 1, wherein the BaO concentration in the slag satisfies the formula (4) indicating a relationship with the SiO 2 concentration in the slag.
11.2 × ln (% SiO 2 ) −30 ≦ (% BaO) ≦ 9.4 × ln (% SiO 2 ) -19 (4)
総脱硫処理時間の60%経過時以降かつ85%経過時までにBaOをスラグに添加することを特徴とする請求項1または2に記載の溶鋼ならびに溶融鉄合金の脱硫方法。   The method for desulfurizing molten steel and molten iron alloy according to claim 1 or 2, wherein BaO is added to the slag after 60% and 85% of the total desulfurization treatment time.
JP2011171062A 2011-08-04 2011-08-04 Desulfurization method for molten steel and molten iron alloy Active JP5333542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171062A JP5333542B2 (en) 2011-08-04 2011-08-04 Desulfurization method for molten steel and molten iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171062A JP5333542B2 (en) 2011-08-04 2011-08-04 Desulfurization method for molten steel and molten iron alloy

Publications (2)

Publication Number Publication Date
JP2013036062A true JP2013036062A (en) 2013-02-21
JP5333542B2 JP5333542B2 (en) 2013-11-06

Family

ID=47885939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171062A Active JP5333542B2 (en) 2011-08-04 2011-08-04 Desulfurization method for molten steel and molten iron alloy

Country Status (1)

Country Link
JP (1) JP5333542B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834605A (en) * 2017-03-31 2017-06-13 四川鸿舰重型机械制造有限责任公司 A kind of rotary feeding device for vanadium-titanium-iron-water desulfurization
JP2020111773A (en) * 2019-01-10 2020-07-27 日本製鉄株式会社 MELTING METHOD OF HIGH Al-CONTAINING STEEL
JP2022027515A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 Method for desulfurizing molten steel and desulfurization flux

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713116A (en) * 1980-06-27 1982-01-23 Sumitomo Metal Ind Ltd Adding method for barium to molten steel
JPH06192722A (en) * 1992-12-25 1994-07-12 Nippon Steel Corp Method for denitrogenize-refining molten metal
JP2002060832A (en) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd Calcium aluminate-based desulfurizing agent
JP2003328022A (en) * 2002-05-16 2003-11-19 Nippon Magnetic Dressing Co Ltd Desulfurizing agent for molten steel and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713116A (en) * 1980-06-27 1982-01-23 Sumitomo Metal Ind Ltd Adding method for barium to molten steel
JPH06192722A (en) * 1992-12-25 1994-07-12 Nippon Steel Corp Method for denitrogenize-refining molten metal
JP2002060832A (en) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd Calcium aluminate-based desulfurizing agent
JP2003328022A (en) * 2002-05-16 2003-11-19 Nippon Magnetic Dressing Co Ltd Desulfurizing agent for molten steel and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834605A (en) * 2017-03-31 2017-06-13 四川鸿舰重型机械制造有限责任公司 A kind of rotary feeding device for vanadium-titanium-iron-water desulfurization
JP2020111773A (en) * 2019-01-10 2020-07-27 日本製鉄株式会社 MELTING METHOD OF HIGH Al-CONTAINING STEEL
JP7156041B2 (en) 2019-01-10 2022-10-19 日本製鉄株式会社 Melting method of high Al content steel
JP2022027515A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 Method for desulfurizing molten steel and desulfurization flux
JP7255639B2 (en) 2020-07-31 2023-04-11 Jfeスチール株式会社 Molten steel desulfurization method and desulfurization flux

Also Published As

Publication number Publication date
JP5333542B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
CN102248142B (en) Method for producing medium and low carbon aluminum killed steel
JP5573424B2 (en) Desulfurization treatment method for molten steel
CN102268513B (en) Method for improving castability of molten steel of medium and low carbon steel
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
RU2608865C2 (en) Method of desulphurising steel
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP6028755B2 (en) Method for melting low-sulfur steel
JP5895887B2 (en) Desulfurization treatment method for molten steel
KR20220008897A (en) Ca Addition Method to Molten Steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2008063646A (en) Dephosphorizing method of molten iron
RU2566230C2 (en) Method of processing in oxygen converter of low-siliceous vanadium-bearing molten metal
JP5293759B2 (en) Desulfurization method for molten steel
JP2021059759A (en) Production method of ultra-low sulfur stainless steel
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP2017075356A (en) Flux for refining molten steel and method for refining molten steel
JP2012158789A (en) Method for desulfurizing molten metal using vacuum degassing apparatus
JP6828498B2 (en) Desulfurization method of molten steel
JP2012207248A (en) Method for dephosphorizing molten iron
JP2017145435A (en) Method for desiliconizing molten iron
RU2588915C1 (en) Desulphurisation method
Ashok et al. Process evaluation of AOD stainless steel making in Salem Steel Plant, SAIL
JP2012001779A (en) Method for desulfurizing steel
JP2014058732A (en) Desulfurizing agent of molten steel and desulfurization method using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350