JP2012001779A - Method for desulfurizing steel - Google Patents

Method for desulfurizing steel Download PDF

Info

Publication number
JP2012001779A
JP2012001779A JP2010138980A JP2010138980A JP2012001779A JP 2012001779 A JP2012001779 A JP 2012001779A JP 2010138980 A JP2010138980 A JP 2010138980A JP 2010138980 A JP2010138980 A JP 2010138980A JP 2012001779 A JP2012001779 A JP 2012001779A
Authority
JP
Japan
Prior art keywords
slag
cao
steel
flux
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010138980A
Other languages
Japanese (ja)
Other versions
JP5546965B2 (en
Inventor
Tatsuya Kawamoto
達也 河本
Kunihiko Nakajima
邦彦 中島
Noritaka Saito
敬高 齋藤
Sohei Sukenaga
壮平 助永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010138980A priority Critical patent/JP5546965B2/en
Publication of JP2012001779A publication Critical patent/JP2012001779A/en
Application granted granted Critical
Publication of JP5546965B2 publication Critical patent/JP5546965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for desulfurizing the ladle metallurgy of molten steel by using novel slag forming flux at low cost in order to produce slag which satisfies a soil environment standard when forming a road bed material using the slag after the ladle metallurgy by reducing a melt loss of a refractory in the ladle metallurgy.SOLUTION: In the method for desulfurizing steel, a composition of the ladle metallurgy slag being reduction slag is composed of CaO-AlO-SiO-MgO as a fundamental composition, an additive material in place of CaFsuch as conventional fluorite is composed of the slag which is obtained by adding, to the fundamental composition, NaO, KO and LiO which are alkali oxides at 0.5 to 10 mol%, and the molten steel is desulfurized by the ladle metallurgy. In the additive material which is added with the alkali oxides, a solid phase rate is lowered to 3 to 4%, fluidity is secured, and desulfurization becomes large in an order of flux A<CaF<LiO<NaO<KO as shown in Fig.1.

Description

この発明は、溶鋼の電気炉精錬に続く還元精錬工程である取鍋精錬における精錬スラグ中に含有されるフッ素を減少したフッ素レス技術に関する。   The present invention relates to a fluorine-less technique in which fluorine contained in refining slag in ladle refining is a reduction refining process following electric furnace refining of molten steel.

従来、取鍋精錬では、CaO、Al23、SiO2などの造滓材をスラグの基本成分として添加して還元スラグを造り、鋼を脱硫する。この取鍋精錬の造滓方法では、滓化性の向上および脱硫の促進を目的として、上記のCaO、Al23、SiO2などからなるスラグの基本成分に、ホタル石のCaF2を添加し、スラグの流動性を確保している。 Conventionally, in ladle refining, steelmaking materials such as CaO, Al 2 O 3 and SiO 2 are added as basic components of slag to produce reduced slag and desulfurize steel. In this ladle refining method, fluorite CaF 2 is added to the basic components of slag composed of CaO, Al 2 O 3 , SiO 2 and the like for the purpose of improving hatchability and promoting desulfurization. The slag fluidity is ensured.

ところで、例えば、脱硫の促進を図るため溶銑に脱硫剤を添加して反応界面おける還元雰囲気を維持し、さらに反応生成物の移動速度を高めるものとした溶銑脱硫材が開発されている(例えば、特許文献1参照。)。   By the way, for example, a hot metal desulfurization material has been developed in which a desulfurization agent is added to the hot metal to maintain a reducing atmosphere at the reaction interface to further promote the desulfurization and further increase the moving speed of the reaction product (for example, (See Patent Document 1).

一方、溶銑の脱硫方法として生石灰のCaOやCaC2や炭酸ソーダのNa2CO3などが古くから用いられている。中でも炭酸ソーダのNa2CO3は脱硫能が極めて高く、低硫鋼を安定的に製造する方法として利用されているが、炭酸ソーダを用いると耐火物の溶損が激しいことから、ソーダ灰に酸化鉄を混合した粉体が提案されている。しかし、このもので脱硫すると大きな精錬効果は得られるが、依然耐火物の溶損は激しいものであった。これらを改良して耐火物の要素を大幅に抑制し、低コストで溶鋼脱硫処理する脱硫剤が提案されている(例えば、特許文献2参照。)。 On the other hand, such as Na 2 CO 3 of quicklime CaO and CaC 2 or sodium carbonate is used for a long time as the desulfurization method of hot metal. Among them, sodium carbonate Na 2 CO 3 has an extremely high desulfurization ability and is used as a method for stably producing low-sulfur steel. However, when sodium carbonate is used, the refractory melts severely. Powders mixed with iron oxide have been proposed. However, desulfurization with this material can provide a large refining effect, but the refractory was still severely damaged. There has been proposed a desulfurization agent that improves these and significantly suppresses the elements of the refractory and performs a desulfurization treatment of molten steel at a low cost (for example, see Patent Document 2).

特開昭55−131113号公報JP 55-131113 A 特開2000−119723号公報JP 2000-119723 A

従来の取鍋精錬におけるスラグは、ホタル石のCaF2を添加しているのでフッ素を多く含有している。このために、ホタル石を添加して取鍋精錬したスラグを路盤材などとしてリサイクルして使用する場合、この路盤材を用いた周辺土壌へ路盤材からのフッ素の溶出が問題となる。 The slag in the conventional ladle refining contains a lot of fluorine because CaF 2 of fluorite is added. For this reason, when slag refined with a ladle and added with fluorite is recycled and used as roadbed material, elution of fluorine from the roadbed material into the surrounding soil using this roadbed material becomes a problem.

近年、土壌環境基準にフッ素の溶出量および含有量が規定されているので、それらの規定をクリアしたスラグでなければ路盤材として使用することはできない。また、取鍋耐火物の溶損もスラグ中へのホタル石のCaF2の添加により一層に大きくなる。 In recent years, since the amount and content of fluorine are stipulated in the soil environment standards, it cannot be used as a roadbed material unless it is a slag that satisfies these regulations. Moreover, the melting loss of the ladle refractory is further increased by adding CaF 2 of fluorite to the slag.

そこで、本願発明が解決しようとする課題は、上記の問題を解消することであり、取鍋精錬における取鍋の耐火物の溶損を減少し、さらに取鍋精錬後のスラグを路盤材にする場合に土壌環境基準を満たすスラグとするために、溶鋼の取鍋精錬を新規の造滓剤を用いて低コストで脱硫して実施する方法を提供することである。   Therefore, the problem to be solved by the present invention is to eliminate the above-mentioned problem, reduce the refractory melting of the ladle in ladle refining, and further use the slag after ladle refining as roadbed material In order to obtain a slag that satisfies the soil environmental standards in some cases, the present invention is to provide a method for performing ladle refining of molten steel by desulfurization at a low cost using a novel ironmaking agent.

上記の課題を解決するための本発明の手段は、請求項1の手段では、還元スラグである取鍋精錬用のスラグの組成が、基本組成としてCaO−Al23−SiO2−MgOからなり、この基本組成を100mol%とするとき、従来のホタル石のCaF2に代わる添加材として、上記の基本組成にアルカリ酸化物であるNa2O、K2O、Li2Oを0.5〜10mol%を添加したスラグからなるものとして、溶鋼を取鍋精錬により脱硫することを特徴とする鋼の脱硫方法である。 The means of the present invention for solving the above problem is that, in the means of claim 1, the composition of the slag for ladle refining, which is reduced slag, is CaO—Al 2 O 3 —SiO 2 —MgO as a basic composition. Thus, when the basic composition is 100 mol%, as an additive in place of CaF 2 in the conventional fluorite, 0.52 of Na 2 O, K 2 O, and Li 2 O, which are alkali oxides, are added to the above basic composition. A steel desulfurization method characterized by desulfurizing molten steel by ladle refining as slag added with -10 mol%.

請求項2の手段では、取鍋精錬スラグの基本組成は、質量%で、CaO:50〜70%、Al23:10〜40%、SiO2:5〜15%、MgO:2〜10%であることを特徴とする請求項1の手段の鋼の脱硫方法である。 The means of claim 2, the basic composition of the ladle refining slag, in mass%, CaO: 50~70%, Al 2 O 3: 10~40%, SiO 2: 5~15%, MgO: 2~10 The method of desulfurizing steel according to claim 1, characterized in that the ratio is%.

請求項3の手段では、取鍋精錬用のスラグである還元スラグに添加するアルカリ酸化物がNa2O、K2OおよびLi2Oから選択した1種以上であることを特徴とする請求項1又は2に記載の鋼の脱硫方法である。 The means of claim 3 is characterized in that the alkali oxide added to the reduced slag, which is a slag for ladle refining, is at least one selected from Na 2 O, K 2 O and Li 2 O. The method for desulfurizing steel according to 1 or 2.

この本願の発明の方法において、上記の取鍋精錬スラグの基本組成にアルカリ酸化物を添加する手段により、取鍋精錬スラグの基本組成に従来のホタル石のCaF2を添加した方法の手段における脱硫能と同等か又はそれ以上の脱硫能を確保することができる。 In the method of the invention of this application, desulfurization in the means of the conventional method of adding CaF 2 of fluorite to the basic composition of the ladle refining slag by means of adding an alkali oxide to the basic composition of the above ladle refining slag A desulfurization capacity equal to or higher than the capacity can be ensured.

本発明は、上記の手段に記載の様に、鋼の取鍋精錬における還元スラグの添加材として、還元スラグの基本組成であるCaO−Al23−SiO2−MgOからなる添加材に、従来のホタル石であるCaF2を添加する代わりに、アルカリ酸化物の適切な量を添加することで、ホタル石のCaF2を添加する以上の脱硫効果が確認された。さらに還元スラグ中におけるCaF2レス化により、取鍋精錬後に得られたスラグを有効利用として路盤材などにリサイクルする際に、周辺土壌へのフッ素の溶出が減少でき、フッ素溶出量が土壌環境基準を超える恐れがなくなった。又、スラグ中にCaF2を含有していないので、CaF2による取鍋耐火物の溶損もなくなるなど、本発明の手段は優れた効果を奏する。 The present invention, as described in the above means, as an additive for reducing slag in steel ladle refining, an additive consisting of CaO-Al 2 O 3 —SiO 2 —MgO, which is the basic composition of reduced slag, Instead of adding CaF 2 , which is a conventional fluorite, the addition of an appropriate amount of an alkali oxide confirmed a desulfurization effect more than adding CaF 2 of fluorite. Furthermore, by eliminating CaF 2 in the reduced slag, when the slag obtained after ladle refining is recycled to roadbed materials, etc. for effective use, the leaching of fluorine into the surrounding soil can be reduced, and the amount of leaching of fluorine is the soil environment standard The fear of exceeding In addition, since no contain CaF 2 in the slag, such as is also eliminated erosion of ladle refractories by CaF 2, it means of the present invention exhibits an excellent effect.

赤外線吸収法によりS分析を実施し、このS分析結果を、縦軸をS/SO、横軸を時間(min)として示すグラフである。It is a graph which implements S analysis by the infrared absorption method, and shows this S analysis result as S / SO on the vertical axis and time (min) on the horizontal axis. 自由エネルギーのΔG0を縦軸に温度(k)を横軸にとり、フラックスの基本成分および基本成分に添加材をそれぞれアルカリ酸化物を添加した脱硫反応の自由エネルギー変化を示すグラフである。The abscissa the temperature (k) a .DELTA.G 0 free energy on the vertical axis is a graph showing the change in free energy of the desulfurization reaction the additive to the base component and the basic component of the flux were added respectively alkali oxides. JIS規定のSCM420からなる肌焼鋼における赤外線吸収法によりS分析を実施し、このS分析結果を縦軸をS/SOとし、横軸を時間(min)としてアルカリ酸化物(Na2O)の添加量の影響を示すグラフである。S analysis is performed by infrared absorption method in case-hardened steel made of JIS SCM420, and the result of S analysis is expressed as alkali oxide (Na 2 O) with S / SO on the vertical axis and time (min) on the horizontal axis. It is a graph which shows the influence of addition amount. JIS規定のS45Cからなる炭素鋼における赤外線吸収法によりS分析を実施し、このS分析結果を縦軸をS/SOとし、横軸を時間(min)としてアルカリ酸化物(Na2O)の添加量の影響を示すグラフである。S analysis is carried out by infrared absorption method in carbon steel composed of JIS S45C. The result of S analysis is the addition of alkali oxide (Na 2 O) with the vertical axis as S / SO and the horizontal axis as time (min). It is a graph which shows the influence of quantity.

本発明を実施するための形態について、表および図面を参照して以下に説明する。このためには、取鍋精錬スラグの基本組成として、質量%で、CaO:50〜70%、Al23:10〜40%、SiO2:5〜15%、MgO:2〜10%からなるものとする。この基本組成に、ホタル石のCaF2に代わる添加材として、アルカリ酸化物であるNa2O、K2O、Li2Oのいずれか1種以上を添加して取鍋精錬スラグとしたものとして検討する。 EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated below with reference to a table | surface and drawing. For this purpose, the basic composition of the ladle refining slag is, in mass%, CaO: 50 to 70%, Al 2 O 3 : 10 to 40%, SiO 2 : 5 to 15%, MgO: 2 to 10%. Shall be. To this basic composition, one or more of alkali oxides Na 2 O, K 2 O and Li 2 O were added as an alternative to fluorite CaF 2 to make a ladle refining slag. consider.

そこで、上記の検討を表1に示し、以下の(1)〜(5)に区分して説明した。なお、表1におけるΔG0は温度1600Kにおけるものである。(1)は精錬スラグの基本組成をCaO、Al23、SiO2、MgOとして、図1にフラックスAとして示した。この場合、表1で、スラグの基本組成として主成分である固相のCaOで示し、添加材を無添加とした。そのCaOの固相率は33.3%であった。この基本組成では、さらなる添加材は使用しないものであった。この基本組成のみからなる取鍋精錬スラグの自由エネルギーのΔG0は、図2に見られるように、温度1600Kで−904kJ/molであった。 Therefore, the above examination is shown in Table 1 and described in the following (1) to (5). In Table 1, ΔG 0 is the temperature at 1600K. (1) shows the basic composition of the smelted slag as CaO, Al 2 O 3 , SiO 2 , MgO, and as flux A in FIG. In this case, in Table 1, the basic composition of slag is indicated by solid-phase CaO as the main component, and the additive was not added. The solid phase ratio of CaO was 33.3%. In this basic composition, no additional additives were used. The ΔG 0 of the free energy of the ladle smelting slag consisting only of this basic composition was −904 kJ / mol at a temperature of 1600 K as seen in FIG.

(2)は精錬スラグの基本組成に、さらに、従来のホタル石であるCaF2を添加して取鍋精錬スラグとしたものであり、図1にCaF2として示した。この場合、表1で、(1)と同様に、スラグの基本組成として主成分である固相のCaOで示し、そのCaOの固相率は28.0%とし、添加材はCaFであった。 (2) is obtained by adding CaF 2 which is a conventional fluorite to the basic composition of the refining slag to obtain a ladle refining slag, which is shown as CaF 2 in FIG. In this case, similarly to (1), in Table 1, the basic composition of slag is represented by solid phase CaO as a main component, the solid phase ratio of CaO was 28.0%, and the additive was CaF. .

以下は精錬スラグの基本組成に、さらにアルカリ酸化物を添加材として取鍋精錬スラグとしたもので、添加材のアルカリ酸化物としてLi2O、Na2O、K2Oを使用するもので、これらを以下の(3)〜(5)で説明した。 The following is a basic composition of smelting slag, and further using an alkali oxide as a ladle smelting slag, and using Li 2 O, Na 2 O, K 2 O as an alkali oxide of the additive, These are described in the following (3) to (5).

(3)は取鍋精錬スラグの基本組成に、添加材としてLi2Oを使用したもので、図1にLi2Oとして示した。この場合、表1で、(1)と同様に、スラグの基本組成として主成分である固相のCaOで示し、そのCaOの固相率は30.1%であった。この取鍋精錬スラグの自由エネルギーのΔG0は、図2に見られるように、温度1600Kで−908kJ/molであった。 (3) uses Li 2 O as an additive in the basic composition of the ladle smelting slag, and is shown as Li 2 O in FIG. In this case, in Table 1, similarly to (1), the basic composition of slag is indicated by solid phase CaO as the main component, and the solid phase ratio of CaO was 30.1%. The free energy ΔG 0 of this ladle refining slag was −908 kJ / mol at a temperature of 1600 K as seen in FIG.

(4)は取鍋精錬スラグの基本組成に、添加材としてNa2Oを使用したもので、図1にNa2Oとして示した。この場合、表1で、(1)と同様に、スラグの基本組成として主成分である固相のCaOで示し、固相CaOの固相率は26.0%であった。この取鍋精錬スラグの自由エネルギーのΔG0は、図2に見られるように、温度1600Kで−1247kJ/molであった。 (4) uses Na 2 O as an additive in the basic composition of the ladle refining slag, and is shown as Na 2 O in FIG. In this case, in Table 1, similarly to (1), the basic composition of slag is indicated by solid phase CaO as the main component, and the solid phase ratio of solid phase CaO was 26.0%. ΔG 0 of the free energy of this ladle refining slag was −1247 kJ / mol at a temperature of 1600 K as seen in FIG.

(5)は取鍋精錬スラグの基本組成に、添加材としてK2Oを使用したもので、図1にK2Oとして示した。この場合、表1で、(1)と同様に、スラグの基本組成として主成分である固相のCaOで示し、固相CaOの固相率は28.6%であった。この取鍋精錬スラグの自由エネルギーのΔG0は、図2に見られるように、温度1600Kで−1387kJ/molであった。 (5) uses K 2 O as an additive in the basic composition of the ladle smelting slag, and is shown as K 2 O in FIG. In this case, in Table 1, as in (1), the basic composition of slag is represented by solid phase CaO as the main component, and the solid phase ratio of solid phase CaO was 28.6%. ΔG 0 of the free energy of this ladle refining slag was −1387 kJ / mol at a temperature of 1600 K as seen in FIG.

Figure 2012001779
Figure 2012001779

表1に示す検討の結果、(2)の従来のCaOにホタル石を添加する場合も、(3)〜(5)のアルカリ酸化物を添加する場合、すなわち取鍋精錬スラグの基本組成に、ホタル石に代わる添加材として、アルカリ酸化物であるNa2O、K2O、Li2Oのいずれかを添加する場合も、脱硫率の高いCaOの固相が存在し、この固相率は(1)の基本に比して3.2%〜7.3%低下し、スラグの流動性は向上しており、さらにΔG0の値から脱硫反応の駆動力が大である。したがって、取鍋精錬スラグの基本組成にアルカリ酸化物であるNa2O、K2O、Li2Oのいずれかを添加することで、従来のホタル石のCaF2の添加と同等か、それ以上の脱硫能が確保できることが判明した。 As a result of the examination shown in Table 1, when adding fluorite to the conventional CaO of (2), when adding the alkali oxides of (3) to (5), that is, to the basic composition of the ladle smelting slag, When adding any one of alkali oxides Na 2 O, K 2 O, and Li 2 O as an additive instead of fluorite, there is a CaO solid phase with a high desulfurization rate. Compared to the basis of (1), the slag fluidity is improved by 3.2% to 7.3%, and the driving force of the desulfurization reaction is large from the value of ΔG 0 . Therefore, adding any of alkali oxides Na 2 O, K 2 O, Li 2 O to the basic composition of ladle smelting slag is equivalent to or higher than the addition of CaF 2 in conventional fluorite. It was proved that the desulfurization ability of can be secured.

以下に、取鍋精錬における脱硫反応式を熱力学的に化1により示す。取鍋精錬スラグである均一液相のフラックスによる脱硫反応はこの化1により進行する。

Figure 2012001779
The desulfurization reaction formula in ladle refining is shown thermodynamically as follows. The desulfurization reaction by the uniform liquid phase flux which is ladle refining slag proceeds by this chemical formula 1.
Figure 2012001779

本実験におけるフラックスの中の主な塩基性成分はCaOおよびアルカリ酸化物であるため、化1の反応の自由エネルギー変化は化2で表される。そこで、上記の脱硫反応式におけるフラックスの反応の自由エネルギー変化を化2により示す。

Figure 2012001779
ここで、a:各成分の活量、R:気体定数、T:温度である。なお、この化2から後記の図2の脱硫反応の自由エネルギー変化を示す。 Since the main basic components in the flux in this experiment are CaO and alkali oxide, the change in free energy of the reaction of Chemical Formula 1 is expressed by Chemical Formula 2. Therefore, the change in the free energy of the flux reaction in the above desulfurization reaction formula is shown by Chemical Formula 2.
Figure 2012001779
Here, a: activity of each component, R: gas constant, T: temperature. The change in free energy of the desulfurization reaction shown in FIG.

ここで、フラックス中の硫化物およびメタル中のSの活量を活量係数を用いて表すと化3の様になる。

Figure 2012001779
Here, when the activity of the sulfide in the flux and the S in the metal is expressed using the activity coefficient, the chemical formula 3 is obtained.
Figure 2012001779

化3を化2に代入することにより化4に示すS分配比のLsが得られる。

Figure 2012001779
By substituting chemical formula 3 into chemical formula 2, Ls of S distribution ratio shown in chemical formula 4 is obtained.
Figure 2012001779

化4中のf'S 、aAl、3RTは一定であるため、Sの分配値は化5の右辺に比例する値である。

Figure 2012001779
化5より、−ΔG0の値が大きいほど、S分配比のLsが大きくなる。 Since f ′ S , a Al , and 3RT in Chemical formula 4 are constant, the distribution value of S is a value proportional to the right side of Chemical formula 5.
Figure 2012001779
From Equation 5, the larger the value of -ΔG 0, the larger the S distribution ratio Ls.

鋼種としてJIS規格のSCM420を取鍋精錬する際のスラグを基本にして、この鋼成分に質量%で、Alを0.050%、Sを0.10%となるように、AlおよびSを添加して鋼成分を調整した。このSCM420を取鍋精錬により還元精錬する際のフラックス組成の基本組成を表2、表3に示す。当スラグは、SCM420や下記のS45Cのみならず、SCr、軸受などの一般鋼やステンレス鋼などにも適用できる。   Based on slag when refining JIS standard SCM420 as a steel type, Al and S are added to this steel component so that the mass percentage is 0.050% for Al and 0.10% for S. And the steel component was adjusted. Tables 2 and 3 show the basic composition of the flux composition when the SCM420 is refining by ladle refining. This slag can be applied not only to SCM420 and S45C described below, but also to general steel such as SCr and bearings, and stainless steel.

Figure 2012001779
Figure 2012001779

鋼種としてJIS規格のS45Cを取鍋精錬する際のスラグを基本にして、この鋼成分に質量%で、Alを0.050%、Sを0.10%となるように、AlおよびSを添加して鋼成分を調整した。このS45Cを取鍋精錬により還元精錬する際のフラックス組成の基本組成を表3に示す。   Based on slag when ladle refining JIS S45C as a steel grade, Al and S are added to this steel component so that the mass percentage is 0.050% for Al and 0.10% for S. And the steel component was adjusted. Table 3 shows the basic composition of the flux composition when S45C is refining by ladle refining.

Figure 2012001779
Figure 2012001779

この表2に示すフラックス組成を図1のフラックスAの基本組成とし、この基本組成を100mol%としたとき、この基本組成100mol%のフラックスAに対して、添加材としてそれぞれCaF2、Li2O、Na2O、K2Oを3mol%を添加して全量を103mol%として取鍋精錬スラグであるフラックスとした。 When the flux composition shown in Table 2 is the basic composition of flux A in FIG. 1 and the basic composition is 100 mol%, CaF 2 and Li 2 O are added as additives to the flux A having the basic composition of 100 mol%, respectively. Then, 3 mol% of Na 2 O and K 2 O were added to make the total amount 103 mol% to obtain a flux as ladle refining slag.

上記で調整した上記のフラックスを用いて模式的な取鍋精錬として、シリコニット縦型炉により1500°C、350cc/minのArガス雰囲気中でSCM420の溶鋼を精錬した。この溶鋼を120g、フラックスを20gずつ5分毎にサンプリングし、赤外線吸収法によりS分析を実施した。このS分析結果を、縦軸をS/SO、横軸を時間(min)とするグラフとして図1に示す。なお、グラフにおいてフラックスAはフラックスの基本成分からなるものである。この基本成分のフラックスAに添加材としてCaF2、Li2O、Na2O、K2Oを3mol%加えた場合のS分析値のS/SOを示す。この結果、脱硫は、フラックスA<CaF2<Li2O<Na2O<K2Oの順に、早くなった。 As a typical ladle refining using the above-prepared flux, molten steel of SCM420 was refined in a siliconite vertical furnace in an Ar gas atmosphere of 1500 ° C. and 350 cc / min. 120 g of this molten steel and 20 g of flux were sampled every 5 minutes, and S analysis was performed by an infrared absorption method. The S analysis results are shown in FIG. 1 as a graph with the vertical axis representing S / SO and the horizontal axis representing time (min). In the graph, flux A is composed of basic components of the flux. S / SO of the S analysis value when 3 mol% of CaF 2 , Li 2 O, Na 2 O, and K 2 O is added as an additive to the basic component flux A is shown. As a result, desulfurization was accelerated in the order of flux A <CaF 2 <Li 2 O <Na 2 O <K 2 O.

上記した脱硫反応式である化2の式の自由エネルギーのΔG0を縦軸に、温度(k)を横軸にとり、フラックスの基本成分をCaOのみとするもの、基本成分に添加材をそれぞれLi2O、Na2O、K2Oとして添加した脱硫反応の自由エネルギー変化を示して図2とした。この結果、上記した表1の基本とアルカリ酸化物に示しているものにおいて、添加材としてアルカリ酸化物を添加するものでは、固相率が基本よりも3〜4%低下し、流動性が確保され、脱硫反応の駆動力が大となっていることが示された。 In the above desulfurization reaction formula, the free energy ΔG 0 of the formula 2 is plotted on the vertical axis, the temperature (k) is plotted on the horizontal axis, the basic component of the flux is only CaO, and the additive is added to the basic component. Changes in the free energy of the desulfurization reaction added as 2 O, Na 2 O, and K 2 O are shown in FIG. As a result, in the basic and alkaline oxides shown in Table 1 above, in the case where an alkaline oxide is added as an additive, the solid phase ratio is reduced by 3 to 4% from the basic, ensuring fluidity. It was shown that the driving force of the desulfurization reaction is large.

上記の実施例1、実施例2では、フラックス組成の基本組成が表2、表3に示すものであり、添加材としてのアルカリ酸化物を表1に示すCaOの固相率となるように適切量添加したものであるが、この実施例1、実施例2と同様にアルカリ酸化物を適切量としながらも、フラックス組成の基本組成のCaOが表2、表3よりも少ない場合、すなわち、質量%で、CaO:46%、Al23:42%、Si2O:8%、MgO:4%とするときは、CaOが少なすぎて流動性及び脱硫反応が悪く×であった。これに反し、フラックス組成の基本組成のCaOが表2、表3よりも多い場合、フラックス組成の基本組成のCaOが、質量%で、70%を超えるとスラグの融点が高くなりすぎ、×であった。 In the above Example 1 and Example 2, the basic composition of the flux composition is as shown in Tables 2 and 3, and the alkali oxide as the additive is appropriately set to have a solid phase ratio of CaO shown in Table 1. Although it is added in an amount, the basic composition of the flux composition is less than those in Tables 2 and 3 while the alkali oxide is set to an appropriate amount in the same manner as in Examples 1 and 2, that is, mass. in%, CaO: 46%, Al 2 O 3: 42%, Si 2 O: 8%, MgO: when the 4%, CaO is too small fluidity and desulfurization reaction was bad ×. On the other hand, when the CaO of the basic composition of the flux composition is larger than those in Tables 2 and 3, the CaO of the basic composition of the flux composition is in mass%, and when it exceeds 70%, the melting point of the slag becomes too high. there were.

上記の実施例1、2では、フラックス組成の基本組成が表2、表3に示すもので、添加材としてのアルカリ酸化物(Na2O)を0.3〜10mol%添加したものであるが、添加材としてのアルカリ酸化物が少ない場合、すなわち0.3mol%で、0.5mol%より少ないときは、添加物の効果がなくなり、×であった。これに反し、アルカリ酸化物が多い場合、すなわち、mol%で、10%添加しても、脱硫に差がなく、コストアップとなるので×であった。 In the above Examples 1 and 2, the basic composition of the flux composition is shown in Tables 2 and 3, and 0.3 to 10 mol% of an alkali oxide (Na 2 O) as an additive is added. When the amount of the alkali oxide as the additive is small, that is, 0.3 mol% and less than 0.5 mol%, the effect of the additive is lost and the result is x. On the other hand, when the amount of alkali oxide is large, that is, mol%, even if 10% is added, there is no difference in desulfurization and the cost is increased.

Claims (3)

取鍋精錬用のスラグである還元スラグの基本組成がCaO−Al23−SiO2−MgOからなり、その基本組成を100mol%としたとき、この100mol%に対してアルカリ酸化物を0.5〜10mol%添加してスラグを形成して取鍋精錬により溶鋼を脱硫することを特徴とする鋼の脱硫方法。 The basic composition of reduced slag, which is a slag for ladle refining, is CaO—Al 2 O 3 —SiO 2 —MgO, and when the basic composition is 100 mol%, the alkali oxide is reduced to 0.1% with respect to 100 mol%. A method for desulfurizing steel, comprising adding 5 to 10 mol% to form slag and desulfurizing molten steel by ladle refining. 取鍋精錬用のスラグの基本組成は、質量%で、CaO:50〜70%、Al23:10〜40%、SiO2:5〜15%、MgO:2〜10%であることを特徴とする請求項1に記載の鋼の脱硫方法。 Basic composition of the slag for ladle refining, in mass%, CaO: 50~70%, Al 2 O 3: 10~40%, SiO 2: 5~15%, MgO: that it is 2-10% The steel desulfurization method according to claim 1, wherein the steel is desulfurized. 取鍋精錬用のスラグである還元スラグに添加するアルカリ酸化物がNa2O、K2OおよびLi2Oのうち少なくとも1種以上であることを特徴とする請求項1又は2に記載の鋼の脱硫方法。 The steel according to claim 1 or 2, wherein the alkali oxide added to the reduced slag, which is a slag for ladle refining, is at least one of Na 2 O, K 2 O, and Li 2 O. Desulfurization method.
JP2010138980A 2010-06-18 2010-06-18 Steel desulfurization method Active JP5546965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138980A JP5546965B2 (en) 2010-06-18 2010-06-18 Steel desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138980A JP5546965B2 (en) 2010-06-18 2010-06-18 Steel desulfurization method

Publications (2)

Publication Number Publication Date
JP2012001779A true JP2012001779A (en) 2012-01-05
JP5546965B2 JP5546965B2 (en) 2014-07-09

Family

ID=45534097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138980A Active JP5546965B2 (en) 2010-06-18 2010-06-18 Steel desulfurization method

Country Status (1)

Country Link
JP (1) JP5546965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127327B2 (en) 2011-03-31 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Environmentally friendly flux for molten steel desulfurization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913016A (en) * 1972-05-19 1974-02-05
JPS5594411A (en) * 1979-01-11 1980-07-17 Ishii Sangyo Kk Production of desulfurizer
JP2002060832A (en) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd Calcium aluminate-based desulfurizing agent
JP2002285217A (en) * 2001-03-23 2002-10-03 Kobe Steel Ltd Dephosphorizing agent and desulfurizing agent for molten iron and molten steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913016A (en) * 1972-05-19 1974-02-05
JPS5594411A (en) * 1979-01-11 1980-07-17 Ishii Sangyo Kk Production of desulfurizer
JP2002060832A (en) * 2000-08-08 2002-02-28 Nippon Magnetic Dressing Co Ltd Calcium aluminate-based desulfurizing agent
JP2002285217A (en) * 2001-03-23 2002-10-03 Kobe Steel Ltd Dephosphorizing agent and desulfurizing agent for molten iron and molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127327B2 (en) 2011-03-31 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Environmentally friendly flux for molten steel desulfurization

Also Published As

Publication number Publication date
JP5546965B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5251360B2 (en) Manufacturing method of clean steel by ladle refining method
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP5152442B2 (en) Environmental protection molten steel desulfurization flux
KR20120124229A (en) steelmaking method recycling of SiMn slag
JP5605337B2 (en) Hot metal desulfurization agent and desulfurization method
JP4150194B2 (en) Desulfurization method by mechanical stirring of hot metal
JP5546965B2 (en) Steel desulfurization method
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP4453532B2 (en) Hot metal desulfurization method
JP5324142B2 (en) Refining method using electric furnace
JP2011246765A (en) Method of reduction-refining molten steel
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP2013064179A (en) Method for preventing elution of hexavalent chromium in slag, and slag
CN105087871A (en) Refining agent composition, method for refining liquid steel, production method for high-cleanness steel and high-cleanness steel manufactured through production method
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JP6451363B2 (en) Desulfurization method for molten steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP7167704B2 (en) Hot metal desulfurization method
CN101365811A (en) Flux used in smelting low-nitrogen, low-oxygen, and low-sulfur steel
KR101257269B1 (en) Additive for controlling ingredient of molten steel and method thereof
JP7156041B2 (en) Melting method of high Al content steel
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP4414562B2 (en) Hot metal desulfurization agent and desulfurization method
JP2004204307A (en) Desulfurizing agent for molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5546965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250