JP2013033945A - Detection device and detection system - Google Patents

Detection device and detection system Download PDF

Info

Publication number
JP2013033945A
JP2013033945A JP2012140740A JP2012140740A JP2013033945A JP 2013033945 A JP2013033945 A JP 2013033945A JP 2012140740 A JP2012140740 A JP 2012140740A JP 2012140740 A JP2012140740 A JP 2012140740A JP 2013033945 A JP2013033945 A JP 2013033945A
Authority
JP
Japan
Prior art keywords
region
thin film
film transistor
semiconductor layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012140740A
Other languages
Japanese (ja)
Inventor
Jun Kawanabe
潤 川鍋
Chiori Mochizuki
千織 望月
Minoru Watanabe
実 渡辺
Keigo Yokoyama
啓吾 横山
Masahito Ofuji
将人 大藤
Kentaro Fujiyoshi
健太郎 藤吉
Hiroshi Wayama
弘 和山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012140740A priority Critical patent/JP2013033945A/en
Priority to PCT/JP2012/004090 priority patent/WO2013001778A1/en
Publication of JP2013033945A publication Critical patent/JP2013033945A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer

Abstract

PROBLEM TO BE SOLVED: To provide a detection device with pixels each including an amplification TFT and a selection TFT, in which off-leak of the selection TFT is sufficiently reduced.SOLUTION: A detection device comprises: a conversion element 100; a first thin film transistor 110 having a gate 114 connected to the conversion element 100; and a second thin film transistor 120 having a gate 124 connected to a drive wiring 150. The second thin film transistor 120 includes a polycrystalline semiconductor layer which is an intrinsic semiconductor region, and has a third region 121 allowing an orthographic projection of the gate 124 to be located between a first region 122 and a second region 123. One of the first region 122 and the second region 123 is connected to one 113 of source and drain of the first thin film transistor 110. The polycrystalline semiconductor layer has a fourth region 125 and a fifth region 126 each having a lower concentration of impurities than the first region 122 and the second region 123, between the first region 122 and the third region 121, and between the second region 123 and the third region 121.

Description

本発明は、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置などに応用される検出装置及び検出システムに関するものである。   The present invention relates to a detection apparatus and a detection system applied to a medical diagnostic imaging apparatus, a nondestructive inspection apparatus, an analysis apparatus using radiation, and the like.

薄膜半導体製造技術は、TFT(薄膜トランジスタ)等のスイッチ素子と光電変換素子等の変換素子とを組み合わせた画素のアレイ(画素アレイ)を有する光検出装置や放射線検出装置等の検出装置にも利用されている。特に近年では、装置の高速化、高感度化の要求に対して、スイッチ素子として多結晶半導体TFTを使用した画素のアレイ(画素アレイ)を有する検出装置の検討がなされている。   Thin film semiconductor manufacturing technology is also used for detection devices such as light detection devices and radiation detection devices having an array of pixels (pixel array) in which switch elements such as TFTs (thin film transistors) and conversion elements such as photoelectric conversion elements are combined. ing. Particularly in recent years, in order to meet the demand for higher speed and higher sensitivity of the device, a detection device having an array of pixels (pixel array) using a polycrystalline semiconductor TFT as a switching element has been studied.

特許文献1では、複数の画素を有し、複数の画素の夫々は、変換素子と、多結晶半導体の増幅用TFTと、非晶質又は多結晶半導体のリセット用TFTと、多結晶半導体の選択用TFTと、を有する検出装置が開示されている。増幅用TFTのゲートは変換素子に接続され、ソース及びドレインの一方は選択用TFTのソース及びドレインの一方と接続される。リセット用TFTのソース及びドレインの一方は変換素子及び増幅用TFTのゲートと接続され、ソース及びドレインの他方は電源線に接続される。リセット用TFTのゲートにはリセット用の駆動配線が、選択用TFTのゲートには画素選択用の駆動配線が、それぞれ接続される。選択用TFTは、ドレイン側のみにゲートの電極と重ねたLDD構造を有しており、ホットキャリア注入を低減させ且つ動作速度を落とさないための対策を講じている。   In Patent Document 1, a plurality of pixels are provided, and each of the plurality of pixels is selected from a conversion element, a polycrystalline semiconductor amplification TFT, an amorphous or polycrystalline semiconductor reset TFT, and a polycrystalline semiconductor. A detection device having a TFT for use is disclosed. The gate of the amplification TFT is connected to the conversion element, and one of the source and the drain is connected to one of the source and the drain of the selection TFT. One of the source and drain of the reset TFT is connected to the conversion element and the gate of the amplifier TFT, and the other of the source and drain is connected to the power supply line. A reset driving wiring is connected to the gate of the reset TFT, and a pixel selecting driving wiring is connected to the gate of the selection TFT. The selection TFT has an LDD structure in which the gate electrode is overlapped only on the drain side, and measures are taken to reduce hot carrier injection and not to reduce the operation speed.

特開2001−298663号公報JP 2001-298663 A

以上に述べた従来の検出装置の選択用TFTの構成では、ゲートに非導通用の電位を供給した状態での抵抗値が十分確保できず、非導通にしたい時でも選択用TFTでのキャリアの移動を阻止しきれない、所謂オフリークの対策が十分ではなかった。そのため、選択用TFTのゲートに導通用の電位が供給された画素から出力された信号に、選択用TFTのゲートに非導通用の電位が供給された画素から出力された信号が重畳されてしまう、所謂クロストークが発生するおそれがあった。   In the configuration of the selection TFT of the conventional detection device described above, the resistance value in the state where the non-conducting potential is supplied to the gate cannot be secured sufficiently, and even when it is desired to be non-conductive, the carrier of the selection TFT is The countermeasure against so-called off-leakage that cannot completely prevent the movement is not sufficient. Therefore, the signal output from the pixel supplied with the non-conducting potential to the gate of the selection TFT is superimposed on the signal output from the pixel supplied with the conducting potential to the gate of the selection TFT. In other words, so-called crosstalk may occur.

本発明は、このような従来の構成が有していた問題を解決しようとするものであり、増幅用TFTと選択用TFTとを含む画素を有する検出装置において選択用TFTのオフリーク対策が向上された検出装置を提供することを目的とする。   The present invention is intended to solve the problem of such a conventional configuration, and in the detection device having a pixel including an amplification TFT and a selection TFT, the countermeasure against off-leakage of the selection TFT is improved. An object of the present invention is to provide a detection device.

本発明の検出装置は、放射線又は光を電荷に変換する変換素子と、ゲートが前記変換素子に接続された第1薄膜トランジスタと、ゲートが駆動配線に接続され、第1領域と、第2領域と、前記第1領域及び前記第2領域より不純物の濃度が低い真性半導体領域であり前記第1領域と前記第2領域との間で当該ゲートの正射影が位置する第3領域と、を有する多結晶半導体層を含み、前記第1領域及び前記第2領域の一方が前記第1薄膜トランジスタのソース及びドレインの一方に接続された第2薄膜トランジスタと、を有する検出装置であって、前記多結晶半導体層は、前記第1領域と前記第3領域との間に前記第1領域及び前記第2領域よりも前記不純物の濃度が低い第4領域と、前記第2領域と前記第3領域との間に前記第1領域及び前記第2領域よりも前記不純物の濃度が低い第5領域と、を含む   The detection device of the present invention includes a conversion element that converts radiation or light into electric charge, a first thin film transistor having a gate connected to the conversion element, a gate connected to a drive wiring, a first region, a second region, An intrinsic semiconductor region having a lower impurity concentration than the first region and the second region, and a third region in which an orthogonal projection of the gate is located between the first region and the second region. And a second thin film transistor including a crystalline semiconductor layer, wherein one of the first region and the second region is connected to one of a source and a drain of the first thin film transistor, and the polycrystalline semiconductor layer Is between the first region and the third region, and between the second region and the third region, the fourth region having a lower impurity concentration than the first region and the second region. The first region and the front Containing a lower concentration fifth region of the impurity than the second region

本発明により、増幅用TFTと選択用TFTとを含む画素を有する検出装置において選択用TFTのオフリーク対策が向上された検出装置を提供することが可能となる。   According to the present invention, it is possible to provide a detection device having an improved countermeasure against off-leakage of a selection TFT in a detection device having a pixel including an amplification TFT and a selection TFT.

本発明の第1の実施形態に係る検出装置の1画素あたりの平面図である。It is a top view per pixel of the detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検出装置の断面図である。It is sectional drawing of the detection apparatus which concerns on the 1st Embodiment of this invention. 本発明に係る検出装置の概略的等価回路である。It is a schematic equivalent circuit of the detection apparatus which concerns on this invention. 本発明の第2の実施形態に係る検出装置の1画素あたりの平面図である。It is a top view per pixel of the detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る検出装置の断面図である。It is sectional drawing of the detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の検出装置を用いた放射線検出システムの概念図である。It is a conceptual diagram of the radiation detection system using the detection apparatus of this invention.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。なお、本願明細書において放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In addition, in this specification, radiation is a beam having energy of the same degree or more, for example, X-rays, β-rays, γ-rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X Lines, particle beams, cosmic rays, etc. are also included.

(第1の実施形態)
先ず、図1及び図2(a),(b)を用いて本発明の第1の実施形態に係る検出装置の一画素の構成について説明する。図1は1画素あたりの平面図である。なお、図1では、簡便化の為、変換素子100については第1電極101のみを示している。図2(a)は図1のA−A’での断面図であり、図2(b)は図1のB−B’での断面図である。
本発明の検出装置における1つの画素は、放射線又は光を電荷に変換する変換素子100と、変換素子100の電荷に応じた信号を増幅する第1薄膜トランジスタ(TFT)110と、を含む。また、画素は、電荷に応じて増幅された信号を選択的に出力する第2薄膜トランジスタ(TFT)120と、変換素子100及び第1TFT110のゲートをリセットするための第3薄膜トランジスタ(TFT)130と、を含む。
(First embodiment)
First, the configuration of one pixel of the detection apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2A and 2B. FIG. 1 is a plan view of one pixel. In FIG. 1, only the first electrode 101 is shown for the conversion element 100 for simplification. 2A is a cross-sectional view taken along line AA ′ in FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB ′ in FIG.
One pixel in the detection device of the present invention includes a conversion element 100 that converts radiation or light into electric charge, and a first thin film transistor (TFT) 110 that amplifies a signal corresponding to the electric charge of the conversion element 100. In addition, the pixel includes a second thin film transistor (TFT) 120 that selectively outputs a signal amplified according to the charge, a third thin film transistor (TFT) 130 for resetting the gates of the conversion element 100 and the first TFT 110, including.

本実施形態では、変換素子100は、光電変換素子であるPIN型のフォトダイオードを用いている。変換素子100は、ガラス基板等の絶縁性の基板190の上に設けられた第1〜第3TFTの上に層間絶縁層195を挟んで積層されて配置されている。変換素子100は、層間絶縁層195の上に、層間絶縁層側から順に設けられた、第1電極101と、第1導電型の不純物半導体層102と、半導体層103と、第2導電型の不純物半導体層104と、第2電極105と、を含む。ここで、第1導電型の不純物半導体層102は、半導体層103及び第2導電型の不純物半導体層104よりも第1導電型の不純物の濃度が高いものである。また、第2導電型の不純物半導体層104は、第1導電型の不純物半導体層102及び半導体層103よりも第2導電型の不純物の濃度が高いものである。第1導電型と第2導電型とは互いに異なる導電型であり、例えば第1導電型がn型であれば第2導電型はp型である。第2電極105には電極配線(不図示)が電気的に接続される。第1電極101は、第1パッシベーション層193、第2パッシベーション層194、及び、層間絶縁層195に設けられたコンタクトホールCH1において、第1TFT110のゲート114に電気的に接続される。また、第1電極101は、第1パッシベーション層193、第2パッシベーション層194、及び、層間絶縁層195に設けられたコンタクトホールCH2において、第3TFT130のソース及びドレインの一方である不純物半導体領域133に電気的に接続される。なお、本実施形態では、非晶質シリコンを主材料とした第1導電型の不純物半導体層102、半導体層103、第2導電型の不純物半導体層104を用いたフォトダイオードを用いたが、本発明はこれに限定されるものではない。例えば非晶質セレンを主材料とした第1導電型の不純物半導体層102、半導体層103、第2導電型の不純物半導体層104を用いた、放射線を直接電荷に変換する素子も用いることができる。   In the present embodiment, the conversion element 100 uses a PIN photodiode that is a photoelectric conversion element. The conversion element 100 is laminated and disposed on first to third TFTs provided on an insulating substrate 190 such as a glass substrate with an interlayer insulating layer 195 interposed therebetween. The conversion element 100 includes a first electrode 101, a first conductivity type impurity semiconductor layer 102, a semiconductor layer 103, and a second conductivity type, which are provided on the interlayer insulation layer 195 in this order from the interlayer insulation layer side. The impurity semiconductor layer 104 and the second electrode 105 are included. Here, the first conductivity type impurity semiconductor layer 102 has a higher concentration of the first conductivity type impurity than the semiconductor layer 103 and the second conductivity type impurity semiconductor layer 104. The second conductivity type impurity semiconductor layer 104 has a higher concentration of second conductivity type impurities than the first conductivity type impurity semiconductor layer 102 and the semiconductor layer 103. The first conductivity type and the second conductivity type are different from each other. For example, if the first conductivity type is n-type, the second conductivity type is p-type. An electrode wiring (not shown) is electrically connected to the second electrode 105. The first electrode 101 is electrically connected to the gate 114 of the first TFT 110 in a contact hole CH1 provided in the first passivation layer 193, the second passivation layer 194, and the interlayer insulating layer 195. In addition, the first electrode 101 is formed in the impurity semiconductor region 133 that is one of the source and the drain of the third TFT 130 in the contact hole CH2 provided in the first passivation layer 193, the second passivation layer 194, and the interlayer insulating layer 195. Electrically connected. In the present embodiment, the photodiode using the first conductivity type impurity semiconductor layer 102, the semiconductor layer 103, and the second conductivity type impurity semiconductor layer 104, which is mainly made of amorphous silicon, is used. The invention is not limited to this. For example, an element that directly converts radiation into electric charges using the first conductivity type impurity semiconductor layer 102, the semiconductor layer 103, and the second conductivity type impurity semiconductor layer 104 mainly containing amorphous selenium can be used. .

第1TFT110は、基板190の上に設けられた第1絶縁層191の上に、基板側から順に、多結晶半導体層としての多結晶シリコン層と、ゲート絶縁層192と、ゲート114と、を含む。第1TFT110の多結晶半導体層は、チャネル領域111と、チャネル領域111よりも不純物の濃度が高い不純物領域112と、チャネル領域111よりも不純物の濃度が高い不純物領域113と、を含む。チャネル領域111は真性半導体領域であり、チャネル領域111となる多結晶半導体層の真性半導体領域には、ゲート114の正射影が位置する。不純物領域112と不純物領域113は同じ導電型の不純物がドープされたものであり、一方がソースとなり他方がドレインとなる。ゲート114は、第1パッシベーション層193、第2パッシベーション層194、及び、層間絶縁層195に設けられたコンタクトホールCH1において、変換素子100の第1電極101と電気的に接続されている。本実施形態では、不純物領域112は第1電源配線140と電気的に接続されている。   The first TFT 110 includes, on the first insulating layer 191 provided on the substrate 190, a polycrystalline silicon layer as a polycrystalline semiconductor layer, a gate insulating layer 192, and a gate 114 in order from the substrate side. . The polycrystalline semiconductor layer of the first TFT 110 includes a channel region 111, an impurity region 112 having a higher impurity concentration than the channel region 111, and an impurity region 113 having a higher impurity concentration than the channel region 111. The channel region 111 is an intrinsic semiconductor region, and the orthogonal projection of the gate 114 is located in the intrinsic semiconductor region of the polycrystalline semiconductor layer that becomes the channel region 111. The impurity region 112 and the impurity region 113 are doped with impurities of the same conductivity type, and one is a source and the other is a drain. The gate 114 is electrically connected to the first electrode 101 of the conversion element 100 in a contact hole CH1 provided in the first passivation layer 193, the second passivation layer 194, and the interlayer insulating layer 195. In the present embodiment, the impurity region 112 is electrically connected to the first power supply wiring 140.

第2TFT120は、基板190の上に設けられた第1絶縁層191の上に、基板側から順に設けられた、多結晶半導体層としての多結晶シリコン層と、ゲート絶縁層192と、ゲート124と、を含む。第2TFT120の多結晶半導体層は、チャネル領域121と、チャネル領域121よりも不純物の濃度が高い不純物領域122と、チャネル領域121よりも不純物の濃度が高い不純物領域123と、を含む。本発明の第3領域に相当するチャネル領域121は真性半導体領域であり、チャネル領域111となる多結晶半導体層の真性半導体領域には、ゲート124の正射影が位置する。不純物領域122及び123は本発明の第1領域及び第2領域に相当する。ここで、不純物領域122にドープされた不純物と不純物領域123にドープされた不純物とは、同じ導電型の不純物である。なお、本実施形態では、第1TFT110の不純物領域113と第2TFTの不純物領域122とが共有化されている。   The second TFT 120 includes a polycrystalline silicon layer as a polycrystalline semiconductor layer, a gate insulating layer 192, a gate 124, and a first semiconductor layer 191 provided on the substrate 190. ,including. The polycrystalline semiconductor layer of the second TFT 120 includes a channel region 121, an impurity region 122 having a higher impurity concentration than the channel region 121, and an impurity region 123 having a higher impurity concentration than the channel region 121. The channel region 121 corresponding to the third region of the present invention is an intrinsic semiconductor region, and the orthographic projection of the gate 124 is located in the intrinsic semiconductor region of the polycrystalline semiconductor layer that becomes the channel region 111. The impurity regions 122 and 123 correspond to the first region and the second region of the present invention. Here, the impurity doped in the impurity region 122 and the impurity doped in the impurity region 123 are impurities of the same conductivity type. In the present embodiment, the impurity region 113 of the first TFT 110 and the impurity region 122 of the second TFT are shared.

ただし、本発明はそれに限定されるものではなく、不純物領域113と不純物領域122とが分離されていてもよく、不純物領域113と不純物領域122とが電気的に接続されていればよい。ここで、本実施形態の多結晶半導体層は、チャネル領域121と不純物領域122との間に、不純物領域122及び123と同じ導電型で不純物領域122及び123よりも不純物の濃度が低い第4領域125を有する。この第4領域125は、チャネル領域121よりも不純物の濃度が高い。また、本実施形態の多結晶半導体層は、チャネル領域121と不純物領域123との間に、不純物領域122及び123と同じ導電型で不純物領域122及び123よりも不純物の濃度が低い第5領域126を有する。この第5領域126は、チャネル領域121よりも不純物の濃度が高い。第4領域125及び第5領域126は、所謂LDD(Lightly−Doped Drain)領域である。本実施形態の第2TFT120は、このようなLDD構造を有するため、ゲート124に非導通用の電位を供給した状態での抵抗値(オフ抵抗)が十分確保できる。それにより他の画素の変換素子とのクロストークを低減することが可能となる。これらの各領域の不純物の濃度は、第2TFT120の移動度が、10〜600(cm/Vs)となるように、設定されることが望ましい。ここで、第2TFT120の移動度μ(cm/Vs)は、以下の式(1)で規定される。 Note that the present invention is not limited thereto, and the impurity region 113 and the impurity region 122 may be separated from each other as long as the impurity region 113 and the impurity region 122 are electrically connected. Here, in the polycrystalline semiconductor layer of the present embodiment, the fourth region between the channel region 121 and the impurity region 122 has the same conductivity type as the impurity regions 122 and 123 and has a lower impurity concentration than the impurity regions 122 and 123. 125. The fourth region 125 has a higher impurity concentration than the channel region 121. In the polycrystalline semiconductor layer of this embodiment, the fifth region 126 between the channel region 121 and the impurity region 123 has the same conductivity type as the impurity regions 122 and 123 and has a lower impurity concentration than the impurity regions 122 and 123. Have The fifth region 126 has a higher impurity concentration than the channel region 121. The fourth region 125 and the fifth region 126 are so-called LDD (Lightly-Doped Drain) regions. Since the second TFT 120 of this embodiment has such an LDD structure, a sufficient resistance value (off resistance) in a state where a non-conducting potential is supplied to the gate 124 can be secured. As a result, crosstalk with the conversion elements of other pixels can be reduced. The concentration of the impurity in each of these regions is desirably set so that the mobility of the second TFT 120 is 10 to 600 (cm 2 / Vs). Here, the mobility μ (cm 2 / Vs) of the second TFT 120 is defined by the following equation (1).

Ids=μ×Ci×(Vgs−Vth)×Vds×W/L (1)
ここで、W(cm)はチャネル幅、L(cm)はチャネル長、Ci(F)はチャネルの単位面積当たりの容量、Vgs(v)は第2TFT120全体のゲート−ドレイン間電圧、Vth(v)は閾値電圧である。また、Vds(v)は第2TFT120全体のドレイン−ソース間電圧、Ids(A)は第2TFT120全体のドレイン−ソース間電流である。
Ids = μ × Ci × (Vgs−Vth) × Vds × W / L (1)
Here, W (cm) is the channel width, L (cm) is the channel length, Ci (F) is the capacitance per unit area of the channel, Vgs (v) is the gate-drain voltage of the entire second TFT 120, and Vth (v ) Is a threshold voltage. Vds (v) is the drain-source voltage of the entire second TFT 120, and Ids (A) is the drain-source current of the entire second TFT 120.

また、第2TFT120のチャネル領域121の移動度μc(cm/Vs)は、以下の式(2)で規定される。 The mobility μc (cm 2 / Vs) of the channel region 121 of the second TFT 120 is defined by the following formula (2).

Ids=μc×Ci×(vgs−Vth)×vds×W/L (2)
ここで、vgs(v)は第2TFT120のチャネルのゲート−ドレイン間電圧、vds(v)は第2TFT120のチャネルのドレイン−ソース間電圧である。
Ids = μc × Ci × (vgs−Vth) × vds × W / L (2)
Here, vgs (v) is a gate-drain voltage of the channel of the second TFT 120, and vds (v) is a drain-source voltage of the channel of the second TFT 120.

また、Vgsとvgs、Vdsとvdsは、以下の式(3)及び(4)で規定される。   Further, Vgs and vgs, and Vds and vds are defined by the following equations (3) and (4).

Vgs=vgs+Ids×RLDD (3)
Vds=vds+2×Ids×RLDD (4)
ここで、RLDD(Ω)はLDD領域の抵抗値である。
Vgs = vgs + Ids × R LDD (3)
Vds = vds + 2 × Ids × R LDD (4)
Here, R LDD (Ω) is the resistance value of the LDD region.

また、RLDDは、以下の式(5)で規定される。 R LDD is defined by the following equation (5).

LDD=R×LLDD/W (5)
ここで、R(Ω/sq)はLDD領域のシート抵抗、LLDD(cm)はLDD領域の長さ(LDD長)である。
R LDD = R × L LDD / W (5)
Here, R (Ω / sq) is the sheet resistance of the LDD region, and L LDD (cm) is the length of the LDD region (LDD length).

また、第2TFT120全体のオン抵抗Ron(Ω)は、以下の式(6)で規定される。   Further, the on-resistance Ron (Ω) of the entire second TFT 120 is defined by the following formula (6).

Ron=Vds/Ids (6)
以上の式(1)〜(6)により、以下の式(7)及び(8)が導出される。
Ron = Vds / Ids (6)
The following formulas (7) and (8) are derived from the above formulas (1) to (6).

μ=μc×{(Vgs‐Vth−Ids×R×LLDD/W)×(Ron−2×R×LLDD/W)}/{(Vgs−Vth)×Ron} (7)
μc=1/{Ci×(Vgs−Ids×R×LLDD/W)×(Ron−2×R×LLDD/W)×W/L} (8)
式(7)及び(8)を満たすように、第2TFT120のチャネル幅W、チャネル長L、LDD領域のシート抵抗R、LDD領域の長さ(LDD長)LLDDを適宜設定することが好ましい。また、LDD領域のシート抵抗Rを得るために、LDD領域の不純物濃度や厚さを適宜設定することがより望ましい。ゲート124は選択用駆動配線150に電気的に接続されており、不純物領域123は信号配線160と電気的に接続されている。なお、本実施形態では、第1TFT110の不純物領域112に第1電源配線140が、第2TFT120の不純物領域123に信号配線160が、それぞれ接続されている形態を説明したが、本発明はそれに限定されるものではない。第1TFT110の不純物領域112に信号配線160が、第2TFT120の不純物領域123に第1電源配線140が、それぞれ接続されている形態でもよい。
μ = μc × {(Vgs−Vth−Ids × R × L LDD / W) × (Ron−2 × R × L LDD / W)} / {(Vgs−Vth) × Ron} (7)
μc = 1 / {Ci × (Vgs−Ids × R × L LDD / W) × (Ron−2 × R × L LDD / W) × W / L} (8)
It is preferable to appropriately set the channel width W, the channel length L, the sheet resistance R □ of the LDD region, and the LDD region length (LDD length) L LDD so as to satisfy the expressions (7) and (8). . Further, in order to obtain the sheet resistance R of the LDD region, it is more desirable to appropriately set the impurity concentration and thickness of the LDD region. The gate 124 is electrically connected to the selection drive wiring 150, and the impurity region 123 is electrically connected to the signal wiring 160. In the present embodiment, the first power supply wiring 140 is connected to the impurity region 112 of the first TFT 110 and the signal wiring 160 is connected to the impurity region 123 of the second TFT 120. However, the present invention is not limited to this. It is not something. The signal wiring 160 may be connected to the impurity region 112 of the first TFT 110, and the first power supply wiring 140 may be connected to the impurity region 123 of the second TFT 120.

第3TFT130は、基板190の上に設けられた第1絶縁層191の上に、基板側から順に設けられた、多結晶半導体層としての多結晶シリコン層と、ゲート絶縁層192と、ゲート134と、を含む。第3TFT130の多結晶半導体層は、チャネル領域131と、チャネル領域131よりも不純物の濃度が高い不純物領域132と、チャネル領域131よりも不純物の濃度が高い不純物領域133と、を含む。チャネル領域131は多結晶半導体層のゲート134の正投影が位置する真性半導体領域であり、不純物領域132にドープされた不純物と不純物領域133にドープされた不純物とは、同じ導電型の不純物である。ここで、第3TFT130の多結晶半導体層は、チャネル領域131と不純物領域132との間に、不純物領域132及び133と同じ導電型で不純物領域132及び133よりも不純物の濃度が低いLDD領域135を有する。このLDD領域135は、チャネル領域131よりも不純物の濃度が高い。また、第3TFT130の多結晶半導体層は、チャネル領域131と不純物領域133との間に、不純物領域132及び133と同じ導電型で不純物領域132及び133よりも不純物の濃度が低いLDD領域136を有する。このLDD領域136は、チャネル領域131よりも不純物の濃度が高い。本実施形態の第3TFT130は、このようなLDD構造を有するため、ゲート134に非導通用の電位を供給した状態での抵抗値(オフ抵抗)が十分確保できる。それにより変換素子100の第1電極101の電位の保持の確実性が向上する。ゲート134はリセット用駆動配線170に電気的に接続されており、不純物領域133は第2電源配線180と電気的に接続されている。また、不純物領域132は、第1パッシベーション層193、第2パッシベーション層194、及び、層間絶縁層195に設けられたコンタクトホールCH2において、変換素子100の第1電極101と電気的に接続されている。なお、第3TFT130のオフ抵抗は、第2TFT120のオフ抵抗よりも高いことが望ましい。第2TFT120では信号出力に相応の速度が要求されるが、第3TFT130では速度よりも電位保持の確実性が要求されるためである。そのため、第3TFT130のLDD領域135及び136の不純物の濃度を、第2TFT120の第4領域125及び第5領域126の不純物の濃度よりも低くすることが有効である。また、第3TFT130のチャネル領域131のW/Lを第2TFT120のチャネル領域のW/Lよりも大きくしたり、第3TFTのゲート134を第2TFTのゲート124よりも多く設けたりすることが好ましい。また、第3TFT130を第2TFT120とは別に形成された非晶質シリコン等の非晶質半導体層を有するTFTで形成してもよい。   The third TFT 130 includes a polycrystalline silicon layer as a polycrystalline semiconductor layer, a gate insulating layer 192, a gate 134, and a first semiconductor layer 191 provided on the substrate 190. ,including. The polycrystalline semiconductor layer of the third TFT 130 includes a channel region 131, an impurity region 132 having a higher impurity concentration than the channel region 131, and an impurity region 133 having a higher impurity concentration than the channel region 131. The channel region 131 is an intrinsic semiconductor region where the orthographic projection of the gate 134 of the polycrystalline semiconductor layer is located. The impurity doped in the impurity region 132 and the impurity doped in the impurity region 133 are impurities of the same conductivity type. . Here, the polycrystalline semiconductor layer of the third TFT 130 includes an LDD region 135 having the same conductivity type as the impurity regions 132 and 133 and having a lower impurity concentration than the impurity regions 132 and 133 between the channel region 131 and the impurity region 132. Have. The LDD region 135 has a higher impurity concentration than the channel region 131. The polycrystalline semiconductor layer of the third TFT 130 has an LDD region 136 having the same conductivity type as the impurity regions 132 and 133 and having a lower impurity concentration than the impurity regions 132 and 133 between the channel region 131 and the impurity region 133. . The LDD region 136 has a higher impurity concentration than the channel region 131. Since the third TFT 130 of this embodiment has such an LDD structure, a sufficient resistance value (off resistance) in a state where a non-conducting potential is supplied to the gate 134 can be secured. Thereby, the certainty of holding the potential of the first electrode 101 of the conversion element 100 is improved. The gate 134 is electrically connected to the reset driving wiring 170, and the impurity region 133 is electrically connected to the second power supply wiring 180. The impurity region 132 is electrically connected to the first electrode 101 of the conversion element 100 in the contact hole CH2 provided in the first passivation layer 193, the second passivation layer 194, and the interlayer insulating layer 195. . Note that the off-resistance of the third TFT 130 is preferably higher than the off-resistance of the second TFT 120. This is because the second TFT 120 requires a speed corresponding to the signal output, but the third TFT 130 requires the certainty of holding the potential rather than the speed. Therefore, it is effective to make the impurity concentrations of the LDD regions 135 and 136 of the third TFT 130 lower than the impurity concentrations of the fourth region 125 and the fifth region 126 of the second TFT 120. Further, it is preferable that the W / L of the channel region 131 of the third TFT 130 is made larger than the W / L of the channel region of the second TFT 120, or the gates 134 of the third TFT are provided more than the gates 124 of the second TFT. The third TFT 130 may be formed of a TFT having an amorphous semiconductor layer such as amorphous silicon formed separately from the second TFT 120.

ゲート絶縁層192は、各TFTの多結晶半導体層を覆うように設けられており、第1パッシベーション層193はゲート絶縁層192及び各ゲートを覆うように設けられている。第2パッシベーション層194は各TFT、第1電源配線140、信号配線160、及び第2電源配線180を覆うように設けられており、層間絶縁層195は第2パッシベーション層194を覆うように設けられている。第3パッシベーション層196は変換素子110を覆うように設けられており、第4パッシベーション層197は第3パッシベーション層196を覆うように設けられている。ゲート絶縁層192、第1パッシベーション層193、第2パッシベーション層194、及び、第3パッシベーション層196は、窒化シリコン等の無機絶縁材料を用いることが好ましい。また、層間絶縁層195及び第4パッシベーション層197は、表面平坦性確保のために厚い膜厚での形成が容易な有機絶縁材料を用いることが好ましい。   The gate insulating layer 192 is provided so as to cover the polycrystalline semiconductor layer of each TFT, and the first passivation layer 193 is provided so as to cover the gate insulating layer 192 and each gate. The second passivation layer 194 is provided so as to cover each TFT, the first power supply wiring 140, the signal wiring 160, and the second power supply wiring 180, and the interlayer insulating layer 195 is provided so as to cover the second passivation layer 194. ing. The third passivation layer 196 is provided so as to cover the conversion element 110, and the fourth passivation layer 197 is provided so as to cover the third passivation layer 196. The gate insulating layer 192, the first passivation layer 193, the second passivation layer 194, and the third passivation layer 196 are preferably formed using an inorganic insulating material such as silicon nitride. The interlayer insulating layer 195 and the fourth passivation layer 197 are preferably formed using an organic insulating material that can be easily formed with a large thickness in order to ensure surface flatness.

次に、図3を用いて本発明に係る検出装置の概略的等価回路を説明する。なお、図3の検出装置はn行m列(n,mはいずれも2以上の自然数)の画素アレイを有する。本実施形態における検出装置は、基板190の上に、行方向及び列方向に配列された複数の画素301を画素アレイが設けられている。各画素301は、変換素子100と第1TFT110と第2TFT120と第3TFT130とを含む。変換素子の第2電極105側の表面に、放射線を可視光に波長変換するシンチレータ(不図示)が配置されてもよい。バイアス電源305は、複数の変換素子100の第2電極105に共通に接続され、変換素子100が逆バイアスとなる電位Vsを第2電極105に供給する。選択用駆動配線150は、行方向に配列された複数の第2TFT120のゲート124に共通に接続され、選択用駆動回路302に電気的に接続される。選択用駆動回路302が列方向に複数配列された選択用駆動配線150に、導通用と非導通用の電位を含む駆動パルスを順次に又は同時に供給することにより、増幅された信号が行単位で画素から、行方向に配列された複数の信号配線160に並列に出力される。信号配線160は、列方向に配列された複数の第2TFT120の第3領域121に共通に接続され、読出回路304に電気的に接続される。リセット用駆動配線170は、行方向に配列された複数の第3TFT130のゲート134に共通に接続され、リセット用駆動回路303に電気的に接続される。リセット用駆動回路303が列方向に複数配列されたリセット用駆動配線170に、導通用の電位と非導通用の電位とを含む駆動パルスを順次に又は同時に供給する。それにより、変換素子100の第1電極101に第2電源配線180を介して第2電源回路307から初期電位Vssが供給される。また、第1TFT110の第2領域112には、第1電源配線140を介して第1電源回路306から電位Vddが供給される。なお、電位Vssと電位Vddとが同じ電位である場合には、各電源及び各電源配線を共通化してもよい。   Next, a schematic equivalent circuit of the detection apparatus according to the present invention will be described with reference to FIG. 3 has a pixel array of n rows and m columns (n and m are natural numbers of 2 or more). In the detection apparatus according to the present embodiment, a pixel array includes a plurality of pixels 301 arranged in a row direction and a column direction on a substrate 190. Each pixel 301 includes a conversion element 100, a first TFT 110, a second TFT 120, and a third TFT 130. A scintillator (not shown) that converts the wavelength of radiation into visible light may be disposed on the surface of the conversion element on the second electrode 105 side. The bias power source 305 is connected in common to the second electrodes 105 of the plurality of conversion elements 100 and supplies the second electrode 105 with a potential Vs at which the conversion elements 100 are reversely biased. The selection drive wiring 150 is connected in common to the gates 124 of the plurality of second TFTs 120 arranged in the row direction, and is electrically connected to the selection drive circuit 302. By supplying drive pulses including conduction and non-conduction potentials sequentially or simultaneously to a plurality of selection drive wirings 150 in which a plurality of selection drive circuits 302 are arranged in the column direction, amplified signals are supplied in units of rows. The pixels are output in parallel to a plurality of signal lines 160 arranged in the row direction. The signal wiring 160 is commonly connected to the third region 121 of the plurality of second TFTs 120 arranged in the column direction, and is electrically connected to the readout circuit 304. The reset driving wiring 170 is connected in common to the gates 134 of the plurality of third TFTs 130 arranged in the row direction, and is electrically connected to the reset driving circuit 303. A driving pulse including a conduction potential and a non-conduction potential is sequentially or simultaneously supplied to a plurality of reset driving wirings 170 in which a plurality of reset driving circuits 303 are arranged in the column direction. Thereby, the initial potential Vss is supplied from the second power supply circuit 307 to the first electrode 101 of the conversion element 100 via the second power supply wiring 180. The potential Vdd is supplied from the first power supply circuit 306 to the second region 112 of the first TFT 110 via the first power supply wiring 140. Note that when the potential Vss and the potential Vdd are the same, each power supply and each power supply wiring may be shared.

(第2の実施形態)
次に、図4及び図5(a),(b)を用いて本発明の第2の実施形態に係る検出装置の一画素の構成について説明する。図4は1画素あたりの平面図である。なお、図4では、簡便化の為、変換素子100については第1電極101のみを示している。図5(a)は図4のA−A’での断面図であり、図5(b)は図4のB−B’での断面図である。また、第1の実施形態で説明したものと同じものは同じ番号を付与し、詳細な説明は割愛する。
(Second Embodiment)
Next, the configuration of one pixel of the detection apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 4 and 5A and 5B. FIG. 4 is a plan view per pixel. In FIG. 4, only the first electrode 101 is shown for the conversion element 100 for simplification. 5A is a cross-sectional view taken along the line AA ′ in FIG. 4, and FIG. 5B is a cross-sectional view taken along the line BB ′ in FIG. Moreover, the same thing as what was demonstrated in 1st Embodiment is provided with the same number, and detailed description is omitted.

第1の実施形態における第2TFT120の多結晶半導体層は、LDD領域である第4領域125とLDD領域である第5領域126とを有するものである。一方、本実施形態における第2TFT120’の多結晶半導体層は、チャネル領域121と不純物領域122との間に、不純物領域122及び123よりも不純物の濃度が低く、且つ、チャネル領域121と不純物の濃度が略同等の、第4領域‘127を有する。また、本実施形態における第2TFT120’の多結晶半導体層は、チャネル領域121と不純物領域123との間に、不純物領域122及び123よりも不純物の濃度が低く、且つ、チャネル領域121と不純物の濃度が略同等である、第5領域128を有する。つまり、第4領域125’と第5領域126’は、不純物領域122及び123と同じ導電型の不純物がドープされていない真性半導体領域であり、ゲート124の正射影が位置する領域の外側に存在する真性半導体領域である。一方、チャネル領域121は、ゲート124の正投影が位置する領域の内側に存在する真性半導体領域である。第4領域125’と第5領域126’は、LDD領域である第4領域125や第5領域126と比べてオフ抵抗を更に高くすることができる。それにより第1の実施形態に比べてよりクロストークを低減することが可能となる。   The polycrystalline semiconductor layer of the second TFT 120 in the first embodiment has a fourth region 125 that is an LDD region and a fifth region 126 that is an LDD region. On the other hand, the polycrystalline semiconductor layer of the second TFT 120 ′ in this embodiment has a lower impurity concentration than the impurity regions 122 and 123 between the channel region 121 and the impurity region 122, and the channel region 121 and the impurity concentration. Are substantially equivalent and have a fourth region '127. Further, the polycrystalline semiconductor layer of the second TFT 120 ′ in this embodiment has a lower impurity concentration than the impurity regions 122 and 123 between the channel region 121 and the impurity region 123, and the concentration of the channel region 121 and the impurity. Have fifth regions 128 that are substantially equivalent. That is, the fourth region 125 ′ and the fifth region 126 ′ are intrinsic semiconductor regions that are not doped with impurities of the same conductivity type as the impurity regions 122 and 123, and exist outside the region where the orthogonal projection of the gate 124 is located. It is an intrinsic semiconductor region. On the other hand, the channel region 121 is an intrinsic semiconductor region existing inside the region where the orthographic projection of the gate 124 is located. The fourth region 125 ′ and the fifth region 126 ′ can further have higher off resistance than the fourth region 125 and the fifth region 126, which are LDD regions. Thereby, crosstalk can be further reduced as compared with the first embodiment.

また、本実施形態の第3TFT130’の多結晶半導体層は、第2TFT120’と同様に、チャネル領域131と不純物領域132との間に真性半導体領域137’を、チャネル領域131と不純物領域133との間に真性半導体領域‘138を、それぞれ有する。それにより第1の実施形態に比べて、変換素子110の第1電極111の電位の保持の確実性がより向上する。   In addition, the polycrystalline semiconductor layer of the third TFT 130 ′ of this embodiment has an intrinsic semiconductor region 137 ′ between the channel region 131 and the impurity region 132, and the channel region 131 and the impurity region 133, as in the second TFT 120 ′. Intrinsic semiconductor regions' 138 are respectively provided therebetween. Thereby, the certainty of holding the potential of the first electrode 111 of the conversion element 110 is further improved as compared with the first embodiment.

(応用実施形態)
次に、図6を用いて、本発明の検出装置を用いた放射線検出システムを説明する。
(Application embodiment)
Next, a radiation detection system using the detection apparatus of the present invention will be described with reference to FIG.

放射線源であるX線チューブ6050で発生したX線6060は、患者あるいは被験者6061の胸部6062を透過し、放射線検出装置6040に含まれる変換部3の各変換素子12に入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応して変換部3で放射線を電荷に変換して、電気的情報を得る。この情報はデジタルデータに変換され信号処理手段となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。   X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through the chest 6062 of the patient or subject 6061 and enter each conversion element 12 of the conversion unit 3 included in the radiation detection apparatus 6040. This incident X-ray includes information inside the body of the patient 6061. Corresponding to the incidence of X-rays, the conversion unit 3 converts the radiation into electric charges to obtain electrical information. This information is converted into digital data, image-processed by an image processor 6070 as a signal processing means, and can be observed on a display 6080 as a display means in a control room.

また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。   Further, this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as a display means such as a doctor room in another place or stored in a recording means such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.

100 変換素子
101 第1電極
110 第1TFT(増幅用)
111 チャネル領域
112、113 不純物領域
114 ゲート
120 第2TFT(選択用)
121 第3領域
122 第1領域
123 第2領域
124 ゲート
125、125’ 第4領域
126、126’ 第5領域
130 第3TFT(リセット用)
100 conversion element 101 first electrode 110 first TFT (for amplification)
111 Channel region 112, 113 Impurity region 114 Gate 120 Second TFT (for selection)
121 3rd area 122 1st area | region 123 2nd area | region 124 Gate 125,125 '4th area | region 126,126' 5th area | region 130 3rd TFT (for reset)

Claims (10)

放射線又は光を電荷に変換する変換素子と、
ゲートが前記変換素子に接続された第1薄膜トランジスタと、
ゲートが駆動配線に接続され、第1領域と、第2領域と、前記第1領域及び前記第2領域より不純物の濃度が低い真性半導体領域であり前記第1領域と前記第2領域との間で当該ゲートの正射影が位置する第3領域と、を有する多結晶半導体層を含み、前記第1領域及び前記第2領域の一方が前記第1薄膜トランジスタのソース及びドレインの一方に接続された第2薄膜トランジスタと、
を有する検出装置であって、
前記多結晶半導体層は、前記第1領域と前記第3領域との間に前記第1領域及び前記第2領域よりも前記不純物の濃度が低い第4領域と、前記第2領域と前記第3領域との間に前記第1領域及び前記第2領域よりも前記不純物の濃度が低い第5領域と、を含む検出装置。
A conversion element for converting radiation or light into electric charge;
A first thin film transistor having a gate connected to the conversion element;
An intrinsic semiconductor region having a gate connected to a drive wiring and having a lower impurity concentration than the first region, the second region, and the first region and the second region, and between the first region and the second region And a third region in which the orthogonal projection of the gate is located, and one of the first region and the second region is connected to one of a source and a drain of the first thin film transistor. Two thin film transistors;
A detection device comprising:
The polycrystalline semiconductor layer includes a fourth region having a lower impurity concentration than the first region and the second region between the first region and the third region, the second region, and the third region. And a fifth region having a lower impurity concentration than the first region and the second region.
前記第4領域及び前記第5領域は、前記第3領域よりも前記不純物の濃度が高い請求項1に記載の検出装置。   The detection device according to claim 1, wherein the fourth region and the fifth region have a concentration of the impurity higher than that of the third region. 前記第4領域と前記第5領域は、前記多結晶半導体層の前記ゲートの正投影が位置する領域の外側に存在する真性半導体領域である請求項1に記載の検出装置。   2. The detection device according to claim 1, wherein the fourth region and the fifth region are intrinsic semiconductor regions existing outside a region where the orthographic projection of the gate of the polycrystalline semiconductor layer is located. ゲートが前記駆動配線とは異なる他の駆動配線に接続され、第1領域と第2領域との間で当該ゲートの正投影が位置する領域に当該第1領域及び当該第2領域より不純物の濃度が低い真性半導体領域であるチャネル領域を有する半導体層を含み、当該第1領域及び当該第2領域の一方が前記第1薄膜トランジスタのゲートに接続された第3薄膜トランジスタを、更に有する請求項1から3のいずれか1項に記載の検出装置。   The gate is connected to another drive wiring different from the drive wiring, and the impurity concentration from the first region and the second region is a region where the orthographic projection of the gate is located between the first region and the second region. The semiconductor device further includes a third thin film transistor including a semiconductor layer having a channel region which is a low intrinsic semiconductor region, and one of the first region and the second region is connected to a gate of the first thin film transistor. The detection device according to any one of the above. 前記第3薄膜トランジスタの半導体層は多結晶半導体層であり、当該多結晶半導体層は、前記第3薄膜トランジスタの第1領域と前記チャネル領域との間に、及び、前記第3薄膜トランジスタの第2領域と前記チャネル領域との間に、前記第3薄膜トランジスタの第1及び第2領域よりも前記不純物の濃度が低い領域を含む請求項4に記載の検出装置。   The semiconductor layer of the third thin film transistor is a polycrystalline semiconductor layer, and the polycrystalline semiconductor layer is disposed between the first region of the third thin film transistor and the channel region, and the second region of the third thin film transistor. The detection device according to claim 4, wherein a region having a lower concentration of the impurity than the first and second regions of the third thin film transistor is included between the channel region and the channel region. 前記第3薄膜トランジスタの第1及び第2領域よりも前記不純物の濃度が低い領域は、前記チャネル領域よりも前記不純物の濃度が高い請求項5に記載の検出装置。   The detection device according to claim 5, wherein a region where the impurity concentration is lower than the first and second regions of the third thin film transistor has a higher impurity concentration than the channel region. 前記第3薄膜トランジスタの第1及び第2領域よりも前記不純物の濃度が低い領域は、前記第3薄膜トランジスタの多結晶半導体層の前記第3薄膜トランジスタのゲートの正射影が位置する領域の外側に存在する真性半導体領域である請求項5に記載の検出装置。   The region where the impurity concentration is lower than the first and second regions of the third thin film transistor exists outside the region where the orthogonal projection of the gate of the third thin film transistor of the polycrystalline semiconductor layer of the third thin film transistor is located. The detection device according to claim 5, wherein the detection device is an intrinsic semiconductor region. 前記第3薄膜トランジスタの半導体層は非晶質半導体層である請求項4に記載の検出装置。   The detection device according to claim 4, wherein the semiconductor layer of the third thin film transistor is an amorphous semiconductor layer. 前記第3薄膜トランジスタは、前記第2薄膜トランジスタよりもオフ抵抗が高い請求項4から8のいずれか1項に記載の検出装置。   9. The detection device according to claim 4, wherein the third thin film transistor has an off-resistance higher than that of the second thin film transistor. 請求項1から9のいずれか1項に記載の検出装置と、
前記検出装置からの信号を処理する信号処理手段と、
前記信号処理手段からの信号を記録するための記録手段と、
前記信号処理手段からの信号を表示するための表示手段と、
前記信号処理手段からの信号を伝送するための伝送処理手段と、
を具備する検出システム。
The detection device according to any one of claims 1 to 9,
Signal processing means for processing a signal from the detection device;
Recording means for recording a signal from the signal processing means;
Display means for displaying a signal from the signal processing means;
Transmission processing means for transmitting a signal from the signal processing means;
A detection system comprising:
JP2012140740A 2011-06-28 2012-06-22 Detection device and detection system Pending JP2013033945A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012140740A JP2013033945A (en) 2011-06-28 2012-06-22 Detection device and detection system
PCT/JP2012/004090 WO2013001778A1 (en) 2011-06-28 2012-06-25 Detection apparatus and detection system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011142998 2011-06-28
JP2011142998 2011-06-28
JP2012140740A JP2013033945A (en) 2011-06-28 2012-06-22 Detection device and detection system

Publications (1)

Publication Number Publication Date
JP2013033945A true JP2013033945A (en) 2013-02-14

Family

ID=47423700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140740A Pending JP2013033945A (en) 2011-06-28 2012-06-22 Detection device and detection system

Country Status (2)

Country Link
JP (1) JP2013033945A (en)
WO (1) WO2013001778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095430A1 (en) * 2014-12-19 2016-06-23 京东方科技集团股份有限公司 Thin film transistor, manufacturing method therefor, thin film transistor assembly, array substrate, and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572555A (en) * 1991-09-13 1993-03-26 Seiko Epson Corp Thin-film transistor
JP3134910B2 (en) * 1993-09-07 2001-02-13 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device and method for manufacturing integrated circuit for liquid crystal display
JPH11307756A (en) * 1998-02-20 1999-11-05 Canon Inc Photoelectric converter and radiation beam reader
JP3421580B2 (en) * 1998-06-22 2003-06-30 株式会社東芝 Imaging device
JP2001298663A (en) * 2000-04-12 2001-10-26 Semiconductor Energy Lab Co Ltd Semiconductor device and its drive method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095430A1 (en) * 2014-12-19 2016-06-23 京东方科技集团股份有限公司 Thin film transistor, manufacturing method therefor, thin film transistor assembly, array substrate, and display device
US10186616B2 (en) 2014-12-19 2019-01-22 Boe Technology Group Co., Ltd. Thin film transistor and method for manufacturing the same, thin film transistor assembly, array substrate and display apparatus

Also Published As

Publication number Publication date
WO2013001778A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
US9521347B2 (en) Radiation imaging apparatus and radiation imaging system
JP5978625B2 (en) Radiation imaging apparatus, radiation imaging display system, and transistor
US8901562B2 (en) Radiation imaging device, radiation imaging display system, and transistor
US7638772B2 (en) Imaging apparatus and radiation imaging system
US9190437B2 (en) Semiconductor detection apparatus capable of switching capacitance among different levels, and detection system including the apparatus
JP5328169B2 (en) Imaging apparatus and radiation imaging system
JP2005175418A (en) Photoelectric conversion apparatus
JP5757096B2 (en) Radiation imaging apparatus and radiation imaging display system
TW200814309A (en) Radiation imaging apparatus and radiation imaging system
US20130299711A1 (en) Detection device, detection system, and method of manufacturing detection device
US8759785B2 (en) Detection apparatus and radiation detection system
JP6530600B2 (en) Radiation detection apparatus and radiation detection system
US8405039B2 (en) Detection apparatus and radiation detection system
JP6265655B2 (en) Detection device and detection system
JP2014225527A (en) Detection device and detection system
US20140367581A1 (en) Radiation image-pickup device and radiation image-pickup display system
US8481909B2 (en) Detection apparatus and radiation detection system
US9093347B2 (en) Detecting apparatus and detecting system
JP2013033945A (en) Detection device and detection system
JP6164924B2 (en) Detection device and detection system
JP2004303925A (en) Substrate for imaging
US20130075621A1 (en) Radiation detection apparatus and detection system including same
JP6282363B2 (en) Detection device and detection system
JP2005101138A (en) Radiation imager
JP2014225526A (en) Detection device and detection system