JP2013030408A - 集電体、電極構造体、非水電解質電池及び蓄電部品 - Google Patents

集電体、電極構造体、非水電解質電池及び蓄電部品 Download PDF

Info

Publication number
JP2013030408A
JP2013030408A JP2011166718A JP2011166718A JP2013030408A JP 2013030408 A JP2013030408 A JP 2013030408A JP 2011166718 A JP2011166718 A JP 2011166718A JP 2011166718 A JP2011166718 A JP 2011166718A JP 2013030408 A JP2013030408 A JP 2013030408A
Authority
JP
Japan
Prior art keywords
resin
contact angle
active material
paste
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011166718A
Other languages
English (en)
Other versions
JP5780871B2 (ja
Inventor
Osamu Kato
治 加藤
Sohei Saito
聡平 斉藤
Sachio Motokawa
幸翁 本川
Mitsuyuki Wasamoto
充幸 和佐本
Kenichi Kadowaki
賢一 角脇
Tsugio Kataoka
次雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Original Assignee
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd, Furukawa Sky KK filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2011166718A priority Critical patent/JP5780871B2/ja
Publication of JP2013030408A publication Critical patent/JP2013030408A/ja
Application granted granted Critical
Publication of JP5780871B2 publication Critical patent/JP5780871B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させ、長寿命化を達成ることができる集電体を提供する。
【解決手段】導電性基材3の少なくとも片面に導電性を有する樹脂層5を有する集電体1であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系ペースト接触角が20度以上80度以下であり、及び/又は、水系モデル活物質ペーストの接触角が80度以上120度以下であることを特徴とする集電体、および、この集電体を具備した電極構造体、非水電解質電池、蓄電部品。
【選択図】図1

Description

本発明は、大電流密度での充放電に適した集電体、電極構造体、非水電解質電池、及び蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)に関する。
従来、リチウムイオン電池に代表される非水電解質電池に対しては充電時間の短縮の要求があり、そのためには大電流密度で高速に充電できる必要がある。また、自動車用の非水電解質電池に対しては十分な自動車の加速性能を得るために、大電流密度の高出力放電ができることが要求されている。このように大電流密度で充放電する場合において、電池容量が低下しない特性(ハイレート特性)を向上させるためには電池の内部抵抗の低減が重要である。電気二重層キャパシタ・リチウムイオンキャパシタ等の他の非水電解質電池や帯電部品についても全く同様なことがいえる。
一般に内部抵抗の原因は、構成材料の電気抵抗、構成要素間の界面抵抗、電解液中の荷電粒子であるイオンの伝導抵抗、電極反応抵抗等があり、内部抵抗の低減にはそれぞれの抵抗を低減する必要がある。この中で特に重要な内部抵抗のひとつがアルミニウム箔や銅箔等の金属箔からなる導電性基材と活物質層との間に生じる界面抵抗であり、この界面抵抗を低減させる方法のひとつとしてこの界面の密着性を向上させることが効果的であることが知られている。
集電体と活物質層の密着性を向上させる方法として、例えば、導電性樹脂で集電体を被覆し、その上に活物質層形成用のペーストを塗工することが従来提案されている。特許文献1には導電性フィラーと結着剤としてビニルブチラールと可塑剤としてフタル酸ジブチルを含む導電性塗料を正極集電体に塗布して導電性塗膜を形成させる技術が開示されている。特許文献2には正極集電体の上にポリアクリル酸またはアクリル酸とアクリル酸エステルとの共重合体を主結着剤とし、炭素粉を導電フィラーとして含む導電性塗膜を形成する技術が開示されている。
特開平2−109256号公報 特開昭62−160656号公報
しかしながら、これらの技術では必ずしも十分なハイレート特性が得られず電極寿命も満足できないものであった。導電性基材と導電性樹脂とを具備した集電体と活物質層の界面抵抗を低減させる場合、この集電体の導電性樹脂層と活物質層との高い密着性だけでなく導電性樹脂層そのものの体積固有抵抗が低いことも重要である。ここでいう密着性とは導電性樹脂層と活物質層の界面抵抗や電極寿命に直接関与するものであり、電解液がこの界面に浸潤した状態においても剥離がなく、強固に密着する性質を意味する。さらに非水電解質電池やリチウムイオンキャパシタの正・負極では充放電によって活物質層中の活物質の体積が変化することから活物質が活物質層から剥離しやすくなり、更に活物質層と接着する集電体のとの界面で剥離が起こりやすい。特にハイレートの充放電では活物質の体積変化が急激であることから、集電体の導電性樹脂層と活物質層とは特に強固な密着性が必要であるが、従来の技術では導電性樹脂層と活物質層との密着性が低く、電池寿命において満足できるものではなく、また導電性樹脂層そのものの体積固有抵抗の低減が必ずしも十分ではなかった。
本発明の目的は非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させることができ、電池寿命を延ばすことができる集電体を提供することである。本発明の集電体は更に活物質層又は電極材層を形成することにより、活物質層又は電極材層との密着性が良好な電極構造体になり得る。また、本発明の集電体に活物質層を形成sした電極構造体を用いた非水電解質電池は、上記特性を有する集電体を有するので、内部抵抗を低減してハイレート特性を向上させることができる。更に、本発明はコピー機や自動車などに用いられる大電流の高速充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を提供する。
以下のような集電体を用いることにより、ハイレート特性に優れる非水電解質電池や、電気二重層キャパシタやリチウムイオンキャパシタ等の帯電部品を得ることができる。
すなわち、本発明によれば、
(1)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が20度以上80度以下であることを特徴とする集電体、
(2)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水系モデル活物質ペーストの接触角が80度以上120度以下であることを特徴とする集電体、
(3)導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が20度以上80度以下であり且つ水系モデル活物質ペーストの接触角が80度以上120度以下であることを特徴とする集電体と、この集電体を具備した電極構造体、非水電解質電池、蓄電部品(例:電気二重層キャパシタ又はリチウムイオンキャパシタ)が提供される。
本発明は、樹脂層の状態をモデル活物質ペーストの接触角(以下、「ペースト接触角」と称する)で規定している点に特徴を有している。「モデル活物質ペースト」とは、実際に活物質層を形成する際に使用される活物質ペーストをモデル化したものである。活物質ペーストには、溶剤を用いて活物質をペースト化した溶剤系活物質ペーストと、水を用いて活物質をペースト化した水系活物質ペーストがあるので、モデル活物質ペーストにも溶剤系モデル活物質ペーストと水系モデル活物質ペーストがある。溶剤系活物質ペーストは、具体的には、「LiMn粉末(Yunan Yuxihuilong technology製)を17.9質量部、バインダ樹脂にPVDF(キシダ化学製#1100)を1.1質量部(固形分として)、導電材にアセチレンブラック(電気化学製デンカブラックHS−100)を1.0質量部、溶剤にNMPを20質量部用いて、脱泡撹拌機にて3分撹拌して得られたペースト」と定義される。水系モデル活物質ペーストは、具体的には、「活物質にLiMn粉末(Yunan Yuxihuilong technology製)を24質量部、バインダ樹脂に水分散型PTFE(ダイキン製ポリフロンD−1E)を0.28質量部(固形分として)、導電材にアセチレンブラック(電気化学製デンカブラックHS−100)を2.5質量部、水33質量部を用いて、ディスパにて2000rpm×1分撹拌後、撹拌機(プライミクス製フィルミックス40−40型、周速30m/s)にて30秒撹拌して得られたペースト」と定義される。
本発明者らは、非水電解質電池等のハイレート特性を向上させるべく鋭意検討を行なった際に、樹脂層表面のペースト接触角がハイレート特性に強く相関していることを見出した。また、ハイレート特性が向上するかどうかは、使用される活物質ペーストが溶剤系であるか水系であるかにも依存していることを見出した。そして、溶剤系活物質ペーストのペースト接触角(以下、「溶剤系ペースト接触角」と称する。)が20度以上80度以下であれば、使用される活物質ペーストが溶剤系である場合にハイレート特性が良好になり、水系活物質ペーストのペースト接触角(以下、「水系ペースト接触角」と称する。)が80度以上120度以下であれば、使用される活物質ペーストが水系である場合にハイレート特性が良好になることを見出した。また、この知見により、溶剤系ペースト接触角と水系ペースト接触角の両方が上記範囲内である場合には、実際に使用する活物質ペーストが溶剤系であるか水系であるかに関わらず、優れたハイレート特性が良好になることが分かった。従来は、活物質ペーストが溶剤系であるか水系であるかに関わらず優れた特性を示す樹脂層を形成することは困難であったが、本発明により、活物質ペーストの種類に関わらずハイレート特性を向上させることができる樹脂層の形成が可能になった。
本発明は2つの知見によって成立している。1つ目の知見は、ペースト接触角が特定の上限値以下である場合にハイレート特性が良好であるということである。接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであり、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。従って、接触角が上記上限値以下の場合に、導電性基材と樹脂層、及び樹脂層と活物質層との密着性が高くなり、ハイレート特性が良好になる。
もう一つの知見はペースト接触角が特定の下限値以上である場合にハイレート特性が良好であるということである。上記のように、接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであるので、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。本発明者らは、当初、好ましいペースト接触角の範囲には下限が無く、ペースト接触角が小さければ小さいほど、異なる材料間での密着性が向上してハイレート特性が向上するものと考えていたが、意外にもペースト接触角が上記下限値未満の場合に、ハイレート特性が悪化することを知見した。このような結果が得られた理由にはついては現在検討中であり必ずしも明らかではないが、ペースト接触角が小さすぎると、導電性基材と樹脂層との間の密着性が悪化することが原因ではないかと推測している。
ところで、樹脂層のペースト接触角は、樹脂層の材料組成によって一意的に定まるものではなく、樹脂層の形成方法が変わると大きく変化するものである。本発明者らが実際に実験を行ったところ、同じ組成の樹脂材であっても、乾燥温度・乾燥時間・乾燥方法を変化させることによって、樹脂層のペースト接触角が大きく変化し、例えば樹脂組成と乾燥温度が分かっていても、乾燥時間等の製造条件を変えるだけでペースト接触角は変化するので、本発明においてはペースト接触角を定めることが極めて重要であることを知見した。
図1は、本発明の一実施形態の集電体の構成を示す断面図である。 図2は、本発明の一実施形態の集電体を用いて形成された電極構造体の構成を示す断面図である。
以下、図1を用いて、本発明の一実施形態の集電体について説明する。
図1に示すように、本発明の集電体1は、導電性基材3の少なくとも片面に導電性を有する樹脂層(集電体用樹脂層)5を有する集電体1であり、導電性樹脂層5は、硝化綿系樹脂と導電材を含み、樹脂層5表面の23℃の恒温室内でθ/2法によって測定した溶剤系ペースト接触角が20度以上80度以下であり、及び/又は、水系モデル活物質ペーストの接触角が80度以上120度以下である。
また、図2に示すように、集電体1の樹脂層5上に活物質層又は電極材層9を形成することによって、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体7を形成することができる。
以下、各構成要素について詳細に説明する。
(1)導電性基材
本発明の導電性基材としては、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔が使用可能である。具体的には、アルミニウム、アルミニウム合金、負極用として銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。正極としてアルミニウム箔を用いる場合、本発明はハイレート特性の向上を目的としていることから、導電性の高いJIS A1085などの純アルミニウム系を用いることが好ましい。導電性基材の厚さとしては、特に制限されるものではないが、0.5μm以上、50μm以下であることが好ましい。厚さが0.5μmより薄いと箔の強度が不足して樹脂層等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極材層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、十分な容量が得られなくなる場合がある。
(2)導電性樹脂層
本発明では導電性基材の上に導電材を添加した樹脂層を形成する。導電性樹脂層の形成方法は特に限定されないが、樹脂の溶液や分散液、ペースト等を上記導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能であるが、特に制限されるものではない。本発明に用いる導電性樹脂層は、硝化綿系樹脂でなければならない。ここで、硝化綿系樹脂とは、樹脂成分として硝化綿を必ず含む樹脂をいい、樹脂成分全てが硝化綿である場合も含むものとする。これは種々の樹脂に導電材を添加して樹脂層の体積固有抵抗を調査した結果、ペースト接触角を規定したこれらの樹脂を用いると意外にも十分に低い抵抗が得られるという本発明者の知見に基づくものである。なお、この抵抗の違いは、同じ導電材を添加しても樹脂によって樹脂層中での分布状態が異なり、後述するペースト接触角の規定と相まって抵抗に差が出るためと推定される。
<硝化綿系樹脂>
本発明において、上述したように硝化綿系樹脂は、樹脂成分として硝化綿を含む樹脂であり、硝化綿のみからなるものであってもよく、硝化綿と別の樹脂とを含有するものであってもよい。硝化綿はニトロ基を有するセルロースであるが、カルボキシメチルセルロース(CMC)等の他のセルロース類と比較して、電極に使用する用途としては例示される場合があっても、最適化に対する提案は行われておらず、積極的に使用するための最適化は従来なされていなかった。
本発明者らは、この硝化綿に導電材を分散して硝化綿系樹脂組成物を得て、導電性基材上に硝化綿系樹脂と導電材を含有する導電性を有する樹脂層を形成することにより、非水電解質電池のハイレート特性を飛躍的に向上させることができることを知見した。本発明に用いる硝化綿の窒素濃度は10〜13%、特に10.5〜12.5%が好ましい。窒素濃度が低すぎると、導電材の種類によっては十分分散できない場合があり、窒素濃度が高すぎると、硝化綿が化学的に不安定になり、電池に用いるには危険だからである。窒素濃度はニトロ基の数に依存するため、窒素濃度の調整はニトロ基数を調整することによって行うことができる。また、上記硝化綿の粘度は、JIS K−6703に基づく測定値が、通常1〜6.5秒、特に1.0〜6秒、酸分は0.006%以下、特に0.005%以下であることが推奨される。これらの範囲を逸脱すると、導電材の分散性、電池特性が低下する場合がある。
本発明の硝化綿系樹脂は、樹脂成分全体を100質量%とした場合、硝化綿を100質量%使用できるが、他の樹脂成分と併用して使用することもでき、併用する場合には少なくとも硝化綿を全樹脂成分に対して通常40質量%以上、好ましくは50質量%以上、90質量%以下、特に80質量%以下含むことが好ましい。硝化綿の割合は、具体的には例えば、40,45,50,55,60,65,70,75,80,85,90質量%であり、ここで例示した何れか2つの数値の範囲内であってもよい。種々の樹脂に導電材を添加して製造した導電性樹脂層の内部抵抗を調査した結果、硝化綿を50質量%以上含むと樹脂層の抵抗が飛躍的に低減化でき、十分なハイレート特性が得られる上、密着性に優れ、長寿命化が計れることがわかった。一方、硝化綿の配合量が少なすぎると導電材の分散に対する硝化綿の配合による改善効果が得られない場合があり、40質量%以上の硝化綿を添加することにより、樹脂層の抵抗を十分低くできるためと推定される。
本発明の硝化綿系樹脂は、上述した硝化綿と併用して種々の樹脂を添加することが可能である。本発明においては、電池性能(キャパシタ性能を含む。以下同じ)を調査した結果、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂を併用添加することが好適であり、樹脂成分として硝化綿を100質量%を使用した場合と同様かそれ以上に電池性能を向上させることができる。以下にそれぞれの樹脂成分について説明する。
上記メラミン系樹脂は硝化綿と硬化反応を起こすため、樹脂の硬化性が向上し、導電性基材との密着性も向上することにより、電池性能が向上するものと推定される。添加量は、樹脂成分としての硝化綿を100質量%としたときの割合が5〜200質量%、より好ましくは10〜150質量%である。5質量%未満では添加する効果が低く、200質量%を超えると硬化が進みすぎて樹脂層が硬くなりすぎ、電池の製造時に剥離しやすくなり、放電レート特性が低下する場合がある。メラミン系樹脂としては、例えば、ブチル化メラミン、イソブチル化メラミン、メチル化メラミンなどを好適に用いることができる。メラミン系樹脂の数平均分子量は、例えば、500〜5万であり、具体的には例えば500,1000,2000,2500,3000,4000,5000,1万,2万,5万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。数平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
上記アクリル系樹脂は導電性基材、特にアルミニウム、銅との密着性に優れることから、添加することによりさらに硝化綿系樹脂の導電性基材との密着性が向上させることができる。添加量は、硝化綿を100質量%としたときの割合が5〜200質量%、特に10〜150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。アクリル系樹脂としてはアクリル酸あるいはメタクリル酸およびそれらの誘導体を主成分とする樹脂、また、これらのモノマを含むアクリル共重合体を好適に用いることができる。具体的にはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸イソプロピルなどやその共重合体である。また、アクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどの極性基含有アクリル系化合物やその共重合体を好適に用いることもできる。アクリル系樹脂の重量平均分子量は、例えば、3万〜100万であり、具体的には例えば3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,30万,40万,50万,60万,70万,80万,90万,100万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
上記ポリアセタール系樹脂は可撓性、硝化綿との相溶性に優れていることから、樹脂層に適度な柔軟性を与え、活物質層との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5〜200質量%、特に20〜150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。ポリアセタール系樹脂としては、ポリビニルブチラール、ポリアセトアセタール、ポリビニルアセトアセタールなどが好適に使用可能である。ポリアセタール系樹脂の重量平均分子量は、例えば、1万〜50万であり、具体的には例えば1万,2万,3万,4万,5万,6万,7万,8万,9万,10万,15万,20万,50万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
上記エポキシ系樹脂は導電性基材との密着性に優れることから、添加することによりさらに導電性基材との密着性が向上する。添加量は、硝化綿を100質量%としたときの割合が5〜200質量%、特に10〜150質量%が好ましい。5質量%未満では添加する効果が低く、200質量%を超えると導電材の分散に悪影響を及ぼして放電レート特性が低下する場合がある。エポキシ系樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェニル型といったグリシジルエーテル型樹脂が好ましい。エポキシ系樹脂の重量平均分子量は、例えば、300〜5万であり、具体的には例えば300,500,1000,2000,3000,4000,5000,1万,2万,5万であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量は、GPC(ゲル排除クロマトグラフ)によって測定したものを意味する。
本発明において、硝化綿系樹脂は、上述したように硝化綿を樹脂成分として100%含むものであってもよいが、上述したアクリル系樹脂とポリアセタール系樹脂のうちの少なくとも一種と、メラミン系樹脂と、硝化綿とを含むことがさらに好ましい。このような組み合わせの場合に、放電レート特性、電池長寿命化特性が特に良好になるからである。
また、本発明において、特にアクリル系樹脂、ポリアセタール系樹脂、メラミン系樹脂、及び硝化綿の合計を100質量%としたとき、メラミン系樹脂が5〜55質量%であり、硝化綿が40〜90質量%であることがさらに好ましい。100質量%からメラミン系樹脂と硝化綿の配合量を引いた残りが、アクリル系樹脂又はポリアセタール系樹脂の配合量である。この場合に、放電レート特性、電池長寿命化特性がさらに良好になるからである。メラミン系樹脂の含有量は、具体的には例えば5,10,15,20,25,30,35,40,45,50,55質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。硝化綿の含有量は、40,45,50,55,60,65,70,75,80,85,90質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<導電材>
本発明の導電性樹脂層は、導電性基材と活物質層又は電極材層との間に設けられ、この間を移動する電子の通路となるので、この樹脂層にも電子導電性が必要である。樹脂は絶縁性が高いので、電子伝導性を付与するために導電材を配合しなければならない。本発明に用いる導電材としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。導電材の添加量は、樹脂層の樹脂成分100質量%に対して30〜100質量%が好ましく、40〜80質量%がさらに好まし、50〜70質量%がさらに好ましい。30質量%未満では樹脂層の体積固有抵抗が高くなり、100質量%を超えると導電性基材との密着性が低下するからである。導電材を樹脂成分液に分散するには公知の方法を用いることができ、例えば、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。
<接触角>
本発明の樹脂層表面のペースト接触角は、溶剤系ペースト接触角が20度以上80度以下であり、及び/又は、水系モデル活物質ペーストの接触角が80度以上120度以下であることが必要である。単に樹脂に導電材を添加して樹脂層を形成しても、導電性基材と樹脂層の界面および樹脂層と活物質層の界面あるいは樹脂層と電極材層の界面に十分な密着性が得られない場合がある。これは硝化綿系樹脂であっても樹脂の種類や形成条件によって、樹脂層の状態が変化するためである。特に密着性に影響が大きい表面性状として液体の濡れ性を示す接触角があり、実際に活物質層を形成する際に使用される活物質ペーストをモデル化したモデル活物質ペーストの接触角を測定することにより、集電体とその上に形成する活物質層や電極材層の密着性を評価することができる。この場合、樹脂層とペースト接触角について一見、ペースト接触角が小さいほど密着性が向上し、放電レートの向上が図れるように見えるが、接触角が小さすぎると、導電性基材との密着性や放電レート特性に悪影響を及ぼす可能性がでてくるため、本発明においてはペースト接触角を規定することが必要になる。なお、この点については後にも述べる。
本明細書において、ペースト接触角は、23℃の恒温室内でθ/2法によって測定して得られた値を意味する。ペースト接触角は接触角計を用いて測定することができる。集電体に樹脂層を形成した後、その表面にモデル活物質ペーストを数μリットル付着させて接触角を測定する。温度によってモデル活物質ペーストの表面張力が変化するので、ペースト接触角は、23℃の恒温室内で測定する。
種々の条件にて樹脂層を形成してペースト接触角を測定した結果、上記上限値以下であれば、活物質層や電極材層と十分な密着性が得られることがわかった。また、ペースト接触角の異なる樹脂層を形成して、導電性基材と樹脂層の密着性の関係を調査した結果、樹脂層の表面のペースト接触角が上記下限値未満であるとハイレート特性が劣ることがわかった。原因は明らかではないが、導電性基材と樹脂層の微妙な密着状態の差を検出しているものと推定される。従って、ペースト接触角は、上記下限値以上であることが必要である。
このように、本発明のペースト接触角の規定は、樹脂と活物質層又は電極材層との密着性だけでなく、導電性基材と樹脂層との密着性についても考慮したものであり、このようにペースト接触角の規定された本発明の集電体は、特に電極構造体として電池や帯電部品に用いるとハイレート特性を良好に付与できる。
本発明の集電体を得るには、先に述べたアルミニウム箔等の導電性基材の少なくとも片面に樹脂層を公知の方法で形成して得ることができるが、上記ペースト接触角を有するものにする必要がある。例えば、塗工にて樹脂層を形成する場合、焼付温度と焼付時間がペースト接触角に影響する。焼付温度は導電性基材の到達温度として100〜250℃、焼付時間は10〜60秒が好ましい。このような条件で樹脂層を形成した場合に、その表面でのペースト接触角を上記範囲内に調整するのに寄与するからである。また、100℃未満では硝化綿系樹脂が十分に硬化せず、250℃を超えると活物質層との密着性が低下する場合がある。但し、ペースト接触角は、樹脂組成、樹脂液中の樹脂濃度、焼付温度、焼付時間、焼付方法などの種々の因子によって総合的に決定されるものであるので、焼付温度と焼付時間が上記範囲内であっても、ペースト接触角は上記下限値になったり、上記上限値を超えたりする場合がある。また、逆に焼付温度と焼付時間が上記範囲外であっても、ペースト接触角が上記範囲内になる場合がある。
一般に焼付温度が高いほど、焼付時間が長いほど、ペースト接触角が大きくなる傾向がある。従って、ペースト接触角を上記範囲以下にするには、最初に、ある条件で樹脂層を形成し、形成した樹脂層においてペースト接触角を測定し、測定されたペースト接触角が上記下限値より小さければ、焼付温度を高くするか焼付時間を長くし、測定されたペースト接触角が上記上限値よりも大きければ焼付温度を低くするか焼付時間を短くする等の調整が必要である。従って、樹脂の組成や焼付温度のみではペースト接触角の値は決定されないが、上記の方法を用いれば、数回の試行錯誤を行うだけで、ペースト接触角を所望の値に設定することが可能である。
本発明の集電体を用いれば、活物質層又は電極材層を形成し電解液が浸潤した状態においても、樹脂層と活物質層あるいは樹脂層と電極材層の界面に十分な密着性が確保できるだけでなく、導電性基材との界面にも十分な密着性の確保を兼ね備えることができる。また、充放電を繰り返した後においても大きな剥離は認められず、十分な密着性と優れた放電レート特性が得られる。
樹脂層の厚さは0.1μm以上、5μm以下が好ましい。0.1μm未満では完全には被覆できない部分が発生して、十分な電池特性が得られない場合がある。5μmを超えると後述する電池や蓄電部品にする際、その分活物質層や電極材層を薄くせざるを得ない場合があることから十分な容量密度が得られない場合がある。また、リチウムイオン二次電池等の角型電池に用いる場合、電極構造体をセパレータと組み合わせて巻回した際、曲率半径が非常に小さい最内巻き部において、比較的硬い樹脂層に亀裂が入り、活物質層等と剥離する部分が発生する場合がある。さらに好ましくは0.3μm以上、3μm以下であることが好ましい。
本発明の集電体の製造方法は、特に制限されるものではないが、導電性基材に樹脂層を形成する際、導電性基材表面の密着性が向上するように導電性基材に公知の前処理を実施することも効果的である。特に圧延にて製造した金属箔を用いる場合、圧延油や磨耗粉が残留している場合があり、脱脂などによって除去することにより、密着性を向上させることができる。また、コロナ放電処理のような乾式活性化処理によっても密着性を向上させることができる。
電極構造体
本発明の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質溶液等を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体(電池用部品を含む)を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
ここで、本発明において電極構造体として形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウムを用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFや水分散型PTFEに分散したペーストを塗工・乾燥させることにより、本発明の正極構造体を得ることができる。
負極の電極構造体とする場合に、導電性基材として銅を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを活物質層形成用材料として塗工・乾燥させることにより、本発明の負極構造体を得ることができる。
非水電解質電池
本発明は非水電解質電池であってもよい。この場合、本発明の集電体を使用する以外には特に制限されるものではない。例えば、本発明の集電体を構成要素とする前記正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本発明の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
本発明の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本発明の集電体を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本発明の蓄電部品用電極構造体は本発明の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本発明の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
電極材層は正極、負極共、電極材、導電材、バインダよりなるものとすることができる。本発明においては、本発明の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、水分散型PTFE等を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本発明の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。
以下、本発明の実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
<1.集電体の評価>
<集電体の作製>
実施例1〜29及び比較例1〜4では、表1に示す各種樹脂をMEK(メチルエチルケトン)に溶解した樹脂液に、アセチレンブラックを表1に示す配合量で混合し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、表1に示す条件にて焼き付けて集電体を作製した。表1の温度はいずれも基材到達温度である。
比較例5〜8では、表1に示す各種樹脂をNMP(Nメチル2ピロリドン)に溶解して樹脂液を作製した以外は、上記と同様の方法で集電体を作製した。
表1において、硝化綿の重量は固形分の重量である。また、表1で略称している樹脂詳細を表2に示す。
<樹脂層の厚さ測定>
樹脂層の厚さは、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、樹脂層形成部と未形成部(アルミ箔のみの部分)の厚みの差から樹脂層の厚さを算出した。
<樹脂層の電気抵抗>
樹脂層の上に1辺が20mmの立方体の銅製ブロック(樹脂に接触する面は鏡面仕上げ)を載せ、700gfの荷重をかけて、アルミ箔と銅製ブロックの間の電気抵抗を測定した。
<アルミニウム箔と樹脂層の密着性>
樹脂層の表面にセロハンテープを貼り付け、一気に引き剥がしたときの、樹脂層の剥離状況にて評価した。
A:剥離なし
B:1/4程度剥離
C:1/2程度剥離
D:3/4程度剥離
E:全面剥離
<ペースト接触角測定>
溶剤系又は水系ペースト接触角は接触角計(協和界面科学社製ドロップマスターDM−500)を用い、23℃の恒温室内にて2μリットルの溶剤系又は水系モデル活物質ペーストを樹脂層表面に付着させ、2秒後の接触角をθ/2法にて測定した。
<2.リチウムイオン電池の放電レート特性評価、電極寿命評価>
以下に示すように、溶媒系活物質ペーストを用いて活物質層を形成して形成したリチウムイオン電池の放電レート特性評価、電極寿命評価を測定した。
<リチウムイオン電池の製造方法>
正極には、活物質のLiCoOと導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて前記各集電体に塗工したものを用いた。負極には、活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工したものを用いた。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPFを添加した電解液を用いた。
<放電レート特性評価方法>
充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流レート1C、5C、10C、20Cの条件で、これらのリチウムイオン電池の放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)
<電極寿命の評価方法>
電解液温度40℃にて、上限電圧4.2V、充電電流20Cで充電した後、終了電圧2.8V、放電電流20Cで放電して、1サイクル目の放電容量に対して、放電容量が60%未満になる回数(最大500回)を測定し、以下の基準で評価した。
A:500回以上
B:450回以上500回未満
C:400回以上450回未満
D:400回未満
<3.電気二重層キャパシタの放電レート特性評価、電極寿命評価>
以下に示すように、、溶媒系電極材ペーストを用いて活物質層を形成して形成した電気二重層キャパシタの放電レート特性評価、電極寿命評価を測定した。
<電気二重層キャパシタの製造方法>
電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて前記集電体電極に塗工し、正極、負極共同じ電極構造体とした。この電極構造体2枚に電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
<放電レート特性評価方法>
充電上限電圧2.8V、充電電流1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電電流レート100C、300C、500Cの条件で、これらの電気二重層キャパシタの放電容量(1C基準、単位%)を測定した。
<電極寿命の評価方法>
電解液温度40℃にて、上限電圧2.8V、充電電流500Cで充電した後、放電電流500Cで終了電圧0Vまで放電して、1サイクル目の放電容量に対して、放電容量が80%未満になる回数(最大5000回)を測定し、以下の基準で評価した。
A:5000回以上
B:4500回以上5000回未満
C:4000回以上4500回未満
D:4000回未満
評価結果を表1に示す。表1において、硝化綿の重量はいずれも固形分の重量である。また、表1で略称している樹脂詳細を表2に示す。
表1によれば、樹脂層の樹脂が硝化綿系樹脂であり且つ樹脂層表面の溶剤系ペースト接触角が20度以上80度以下である全ての実施例では、溶剤系ペーストを用いて作製したリチウムイオン電池、電気二重層キャパシタの両方で、優れたハイレート特性、電池寿命を示した。これに対し、樹脂層の樹脂としてエチルセルロースを用いた比較例3〜10ではハイレート特性が良好でなかった。また、溶剤系ペースト接触角が大きすぎる比較例1や小さすぎる比較例2でも、ハイレート特性が良好でなかった。
また、表1の結果によれば、水系モデル活物質ペーストの接触角が80度以上120度以下であっても、溶剤系ペーストを用いて作製したリチウムイオン電池や電気二重層キャパシタにおいて、放電レート特性が良好ではない場合がある。しかし、本発明者らの予備実験の結果によれば、水系モデル活物質ペーストの接触角が80度以上120度以下の場合には、水系ペーストを用いて作製したリチウムイオン電池や電気二重層キャパシタにおいて特に良好な結果が得られた。また、溶剤系ペースト接触角と水系モデル活物質ペースト接触角の両方が上記範囲内である場合には、リチウムイオン電池又は電気二重層キャパシタの作製に用いたペーストが溶媒系であっても水系であっても良好な結果が得られた。
1:集電体
3:導電性基材
5:樹脂層(集電体用樹脂層)
7:電極構造体
9:活物質層又は電極材層

Claims (8)

  1. 導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が20度以上80度以下であることを特徴とする集電体。
  2. 導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した水系モデル活物質ペーストの接触角が80度以上120度以下であることを特徴とする集電体。
  3. 導電性基材の少なくとも片面に導電性を有する樹脂層を有する集電体であって、該樹脂層は硝化綿系樹脂と導電材を含み、該樹脂層表面の23℃の恒温室内でθ/2法によって測定した溶剤系モデル活物質ペーストの接触角が20度以上80度以下であり且つ水系モデル活物質ペーストの接触角が80度以上120度以下であることを特徴とする集電体。
  4. 前記硝化綿系樹脂は、メラミン系樹脂、アクリル系樹脂、ポリアセタール系樹脂、エポキシ系樹脂のうちの少なくとも一種と、硝化綿とを含む請求項1〜3の何れか1つに記載の集電体。
  5. 前記硝化綿系樹脂は、アクリル系樹脂とポリアセタール系樹脂のうちの少なくとも一種と、メラミン系樹脂と、硝化綿とを含む請求項1〜3の何れか1つに記載の集電体。
  6. アクリル系樹脂、ポリアセタール系樹脂、メラミン系樹脂、及び硝化綿の合計を100質量%としたとき、メラミン系樹脂は、5〜55質量%であり、硝化綿は、40〜90質量%である、請求項5に記載の集電体。
  7. 請求項1〜6の何れか1つに記載の集電体の前記樹脂層上に活物質層又は電極材層を備える、電極構造体。
  8. 請求項7に記載の電極構造体を備える、非水電解質電池又は蓄電部品。
JP2011166718A 2011-07-29 2011-07-29 集電体、電極構造体、非水電解質電池及び蓄電部品 Expired - Fee Related JP5780871B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166718A JP5780871B2 (ja) 2011-07-29 2011-07-29 集電体、電極構造体、非水電解質電池及び蓄電部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166718A JP5780871B2 (ja) 2011-07-29 2011-07-29 集電体、電極構造体、非水電解質電池及び蓄電部品

Publications (2)

Publication Number Publication Date
JP2013030408A true JP2013030408A (ja) 2013-02-07
JP5780871B2 JP5780871B2 (ja) 2015-09-16

Family

ID=47787247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166718A Expired - Fee Related JP5780871B2 (ja) 2011-07-29 2011-07-29 集電体、電極構造体、非水電解質電池及び蓄電部品

Country Status (1)

Country Link
JP (1) JP5780871B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154176A1 (ja) * 2012-04-13 2013-10-17 古河スカイ株式会社 集電体、電極構造体、非水電解質電池及び蓄電部品
JPWO2013018159A1 (ja) * 2011-07-29 2015-02-23 株式会社Uacj 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
CN110085865A (zh) * 2018-01-26 2019-08-02 财团法人工业技术研究院 水溶液锂离子电池及用于其中的电极

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186865A (ja) * 1997-09-02 1999-03-30 Denso Corp 二次電池およびその製造方法
JPH11162787A (ja) * 1997-11-28 1999-06-18 Asahi Glass Co Ltd 電気化学的蓄電素子用電極体製造法
JP2004186209A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体の製造方法
JP2010021203A (ja) * 2008-07-08 2010-01-28 Nissin Electric Co Ltd 電気二重層キャパシタ用電極の製造装置
JP2010278125A (ja) * 2009-05-27 2010-12-09 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法及び電気化学素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186865A (ja) * 1997-09-02 1999-03-30 Denso Corp 二次電池およびその製造方法
JPH11162787A (ja) * 1997-11-28 1999-06-18 Asahi Glass Co Ltd 電気化学的蓄電素子用電極体製造法
JP2004186209A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 電気二重層コンデンサ用電極体の製造方法
JP2010021203A (ja) * 2008-07-08 2010-01-28 Nissin Electric Co Ltd 電気二重層キャパシタ用電極の製造装置
JP2010278125A (ja) * 2009-05-27 2010-12-09 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法及び電気化学素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
化学大辞典5, vol. 縮刷版, JPN6014048977, 1963, pages 349, ISSN: 0003091972 *
化学大辞典6, vol. 縮刷版, JPN6014048978, 1963, pages 759 - 761, ISSN: 0003091973 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018159A1 (ja) * 2011-07-29 2015-02-23 株式会社Uacj 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
WO2013154176A1 (ja) * 2012-04-13 2013-10-17 古河スカイ株式会社 集電体、電極構造体、非水電解質電池及び蓄電部品
CN110085865A (zh) * 2018-01-26 2019-08-02 财团法人工业技术研究院 水溶液锂离子电池及用于其中的电极
CN110085865B (zh) * 2018-01-26 2021-07-23 财团法人工业技术研究院 水溶液锂离子电池及用于其中的电极
US11217786B2 (en) 2018-01-26 2022-01-04 Industrial Technology Research Institute Aqueous lithium-ion battery, electrode used therein, and electrode manufacturing method

Also Published As

Publication number Publication date
JP5780871B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6121325B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
WO2013018686A1 (ja) 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
KR20070100353A (ko) 이차전지용 집전기, 이차전지 양극, 이차전지 음극,이차전지 및 그들의 제조 방법
JP5600576B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
KR20110019419A (ko) 이차전지용 집전기, 이차전지 양극, 이차전지 음극, 이차전지 및 그들의 제조 방법
JP5985161B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6184552B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
TW201843870A (zh) 蓄電裝置用集電體、其製造方法,及用於其製造的塗覆液
TWI587563B (zh) A current collector, and an electrode structure using the current collector An electrolyte cell, an electric double layer capacitor, a lithium ion capacitor, or a storage member
JP6140073B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6529700B1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
WO2013154176A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5780871B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5788985B2 (ja) 集電体、電極構造体、非水電解質電池、蓄電部品、硝化綿系樹脂材料
JP6130018B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP5788730B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP6031223B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP2019133739A (ja) 蓄電デバイス用集電体および蓄電デバイス用集電体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5780871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees