JP2013029059A - Rotary two stage compressor - Google Patents

Rotary two stage compressor Download PDF

Info

Publication number
JP2013029059A
JP2013029059A JP2011165094A JP2011165094A JP2013029059A JP 2013029059 A JP2013029059 A JP 2013029059A JP 2011165094 A JP2011165094 A JP 2011165094A JP 2011165094 A JP2011165094 A JP 2011165094A JP 2013029059 A JP2013029059 A JP 2013029059A
Authority
JP
Japan
Prior art keywords
stage
low
compression chamber
space
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011165094A
Other languages
Japanese (ja)
Other versions
JP5586537B2 (en
Inventor
Tokuyoshi Fukaya
篤義 深谷
Masao Tani
谷  真男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011165094A priority Critical patent/JP5586537B2/en
Priority to EP12167431.1A priority patent/EP2551526B1/en
Priority to KR1020120052277A priority patent/KR101376872B1/en
Priority to RU2012122456/06A priority patent/RU2501978C1/en
Priority to CN201210176442.2A priority patent/CN102900669B/en
Publication of JP2013029059A publication Critical patent/JP2013029059A/en
Application granted granted Critical
Publication of JP5586537B2 publication Critical patent/JP5586537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Abstract

PROBLEM TO BE SOLVED: To provide a rotary two stage compressor capable of suppressing pressure pulsation in an intermediate flow path by improving followability of a refrigerant introduced into a high stage compression part, and capable of preventing a drop of operation efficiency during low load operation.SOLUTION: A two stage compressor 100 as the rotary two-stage compressor of internal high-pressure type includes a low stage cover 19 that covers a low stage outlet port 16 and forms a low stage discharge space 20 therein. Further, in the two stage compressor 100, an intermediate passage 51 that connects the low stage discharge space 20 and the high stage compression chamber 35 are formed in a compression mechanism 3. Further, the two-stage compressor 100 includes a bypass mechanism (bypass port 23, a bypass valve 24, and a bypass valve guard 25) in the low stage cover 19, which opens when a load is smaller than a predetermined load and which connects the low stage discharge space 20 and a discharge pressure space 53.

Description

本発明は、2つの圧縮部を有するロータリ二段圧縮機に関するものである。   The present invention relates to a rotary two-stage compressor having two compression sections.

圧縮機構部に2つの圧縮部(低段圧縮部及び高段圧縮部)を設け、これら低段圧縮部及び高段圧縮部を直列に接続したロータリ二段圧縮機が従来より存在する。このようなロータリ二段圧縮機では、低段圧縮部は、所定の圧力(到達圧力)まで、ヒートポンプサイクルから吸入した冷媒を圧縮する。この到達圧力は、低段圧縮部の圧縮室容積と高段圧縮部の圧縮室容積との設定により決定される。高段圧縮部は、低段圧縮部で圧縮された冷媒を、さらに圧縮する。そして、内部高圧型のロータリ二段圧縮機の場合、高段圧縮部で圧縮された冷媒は、高段圧縮部から密閉容器の内部空間へ吐出され、密閉容器の内部空間からヒートポンプサイクルへ吐出される。   Conventionally, there is a rotary two-stage compressor in which two compression sections (a low-stage compression section and a high-stage compression section) are provided in the compression mechanism section, and these low-stage compression section and high-stage compression section are connected in series. In such a rotary two-stage compressor, the low-stage compressor compresses the refrigerant sucked from the heat pump cycle up to a predetermined pressure (attainment pressure). This ultimate pressure is determined by setting the compression chamber volume of the low-stage compression unit and the compression chamber volume of the high-stage compression unit. The high stage compression unit further compresses the refrigerant compressed by the low stage compression unit. In the case of an internal high-pressure rotary two-stage compressor, the refrigerant compressed in the high-stage compression unit is discharged from the high-stage compression unit to the internal space of the sealed container and is discharged from the internal space of the closed container to the heat pump cycle. The

従来、内部高圧型のロータリ二段圧縮機では、低段圧縮部で圧縮された中間圧の冷媒を高段圧縮部に導入するための中間流路が密閉容器の外部を通過するように形成されていた。   Conventionally, in an internal high-pressure rotary two-stage compressor, an intermediate flow path for introducing an intermediate-pressure refrigerant compressed in a low-stage compression section into the high-stage compression section is formed so as to pass outside the sealed container. It was.

しかしながら、密閉容器の外部を通過するように中間流路が形成された従来のロータリ二段圧縮機は、中間連流路が極めて長くなる。その結果、中間流路内の冷媒が高段圧縮部に導入される際の追従性が悪くなり、中間流路内の圧力脈動を招き、十分な圧力脈動を抑制する効果が得られないという課題があった。   However, in the conventional rotary two-stage compressor in which the intermediate flow path is formed so as to pass outside the sealed container, the intermediate communication flow path becomes extremely long. As a result, the followability when the refrigerant in the intermediate flow path is introduced into the high-stage compression section is deteriorated, causing pressure pulsation in the intermediate flow path, and the effect of suppressing sufficient pressure pulsation cannot be obtained. was there.

そこで、従来の内部高圧型のロータリ二段圧縮機には、中間流路を密閉容器の内部に形成したものが提案されている。
このような従来のロータリ二段圧縮機としては、低段圧縮部と高段圧縮部とを仕切る中間仕切板に中間流路を構成する吐出空間を形成し、当該吐出空間内に中間圧冷媒(低段圧縮部から吐出された冷媒)を吐出し、中間圧冷媒が高段圧縮部へ過剰流出することを防止したものが提案されている(例えば、特許文献1参照)。
また、このような従来のロータリ二段圧縮機としては、高段圧縮部の吸入口の位相を低段圧縮部の吸入口の位相とずらすことで、中間流路を圧縮機構部内に設けたものも提案されている(例えば、特許文献2参照)。
また、このような従来のロータリ二段圧縮機としては、ベーン溝と低段、高段の吸入流路間に中間流路を配置し、圧縮機構部内を貫通させて中間流路を設けたものも提案されている(例えば、特許文献3参照)。
Thus, a conventional internal high-pressure rotary two-stage compressor has been proposed in which an intermediate flow path is formed inside a sealed container.
As such a conventional rotary two-stage compressor, a discharge space that constitutes an intermediate flow path is formed in an intermediate partition plate that partitions a low-stage compression section and a high-stage compression section, and an intermediate pressure refrigerant ( A refrigerant that discharges the refrigerant (from the low-stage compression section) and prevents the intermediate-pressure refrigerant from excessively flowing out to the high-stage compression section has been proposed (see, for example, Patent Document 1).
Also, in such a conventional rotary two-stage compressor, the intermediate flow path is provided in the compression mechanism section by shifting the phase of the suction port of the high-stage compression unit from the phase of the suction port of the low-stage compression unit. Has also been proposed (see, for example, Patent Document 2).
In addition, as such a conventional rotary two-stage compressor, an intermediate flow path is disposed between the vane groove and the low-stage and high-stage intake flow paths, and the intermediate flow path is provided through the compression mechanism section. Has also been proposed (see, for example, Patent Document 3).

特開2000−87892号公報JP 2000-87892 A 特開2007−113542号公報JP 2007-113542 A 特開2010−156226号公報JP 2010-156226 A

圧縮機を用いたヒートポンプ装置(ヒートポンプサイクル)においては、負荷が小さい場合等、圧縮機が吐出する冷媒の圧力(換言すると、凝縮器に流入する冷媒の圧力)が低くてもよい場合がある。しかしながら、中間流路を圧縮機構部内に形成した従来のロータリ二段圧縮機(例えば、特許文献1〜特許文献3参照)は、このような低負荷運転時を考慮していないため、ロータリ二段圧縮機から吐出される冷媒の圧力が所望の圧力よりも高くなってしまい、過圧縮状態になってしまうことがあった。このため、中間流路を圧縮機構部内に形成した従来のロータリ二段圧縮機は、低負荷運転時の運転効率が低下してしまうという問題点があった。   In a heat pump device (heat pump cycle) using a compressor, the pressure of the refrigerant discharged from the compressor (in other words, the pressure of the refrigerant flowing into the condenser) may be low, such as when the load is small. However, since the conventional rotary two-stage compressor (for example, see Patent Documents 1 to 3) in which the intermediate flow path is formed in the compression mechanism section does not consider such low load operation, the rotary two-stage compressor In some cases, the pressure of the refrigerant discharged from the compressor becomes higher than a desired pressure, resulting in an overcompressed state. For this reason, the conventional rotary two-stage compressor in which the intermediate flow path is formed in the compression mechanism section has a problem that the operation efficiency at the time of low load operation is lowered.

また、特許文献1に記載のロータリ二段圧縮機は、中間仕切板に中間圧冷媒が吐出される吐出空間を形成しているので、圧縮機構の軸受間距離(圧縮機構の上下端に設けられ、駆動軸を回転自在に支持する軸受同士の距離)が大きくなってしまう。このため、特許文献1に記載のロータリ二段圧縮機は、圧縮室内に冷媒の負荷が作用した際の駆動軸の撓みが増加し、軸受の信頼性を低下させるという問題点もあった。   Moreover, since the rotary two-stage compressor described in Patent Document 1 forms a discharge space in which the intermediate pressure refrigerant is discharged in the intermediate partition plate, the distance between the bearings of the compression mechanism (the upper and lower ends of the compression mechanism are provided). , The distance between the bearings that rotatably support the drive shaft is increased. For this reason, the rotary two-stage compressor described in Patent Document 1 has a problem in that the drive shaft bends when a refrigerant load is applied to the compression chamber, and the reliability of the bearing is lowered.

また、特許文献2に記載のロータリ二段圧縮機においては、高段圧縮部の吸入口の位相を低段圧縮部の吸入口の位相とずらしているので、高段圧縮部の圧縮室内に死容積が増大し、圧縮効率の低下を招いてしまうという問題点もあった。   In the rotary two-stage compressor described in Patent Document 2, the phase of the suction port of the high-stage compression unit is shifted from the phase of the suction port of the low-stage compression unit. There was also a problem that the volume increased and the compression efficiency was lowered.

また、特許文献3に記載のロータリ二段圧縮機においては、中間流路の設置領域が狭いため、中間流路の流路面積に制約が生じ、圧損による効率の低下を招いてしまうという問題点もあった。   Further, in the rotary two-stage compressor described in Patent Document 3, since the installation area of the intermediate flow path is narrow, the flow area of the intermediate flow path is restricted, and the efficiency is reduced due to pressure loss. There was also.

本発明は、上述のような課題の少なくとも1つを解決するためになされたものであり、高段圧縮部に導入される冷媒の追従性を向上させて中間流路での圧力脈動を抑制でき、低負荷運転時の運転効率の低下を防止することができるロータリ二段圧縮機を得ることを目的とする。   The present invention has been made to solve at least one of the above-described problems, and can improve the followability of the refrigerant introduced into the high-stage compression section and suppress pressure pulsation in the intermediate flow path. An object of the present invention is to obtain a rotary two-stage compressor that can prevent a decrease in operating efficiency during low-load operation.

本発明に係るロータリ二段圧縮機は、密閉容器と、該密閉容器の内部に配置された圧縮機構部と、前記密閉容器の内部に配置され、前記圧縮機構部の駆動源となる電動機と、該電動機の駆動力を前記圧縮機構部に伝達する駆動軸と、を備え、前記圧縮機構部は、低段フレームと、低段圧縮室となる第1貫通孔が形成され、前記低段フレームによって前記第1貫通孔の一方の開口部が閉塞された低段シリンダと、前記第1貫通孔の他方の開口部を閉塞する中間仕切板と、高段圧縮室となる第2貫通孔が形成され、前記中間仕切板によって前記第2貫通孔の一方の開口部が閉塞された高段シリンダと、前記第2貫通孔の他方の開口部を閉塞する高段フレームと、前記駆動軸の偏心部に設けられ、前記低段圧縮室の内部を偏心回転運動する低段ローリングピストンと、前記駆動軸の偏心部に設けられ、前記高段圧縮室の内部を偏心回転運動する高段ローリングピストンと、前記低段圧縮室の内部を吸入空間と圧縮空間とに区画する低圧ベーンと、前記高段圧縮室の内部を吸入空間と圧縮空間とに区画する高圧ベーンと、を有し、低段フレーム、低段シリンダ、中間仕切板、高段シリンダ及び高段フレームが順次積層されて、低段圧縮部及び高段圧縮部が形成されたものであり、前記低段圧縮部の低圧吸入口に接続された配管から吸入した冷媒を前記低段圧縮室で圧縮し、当該冷媒を中間流路を介して前記高段圧縮室に導入して再度圧縮し、前記高段圧縮室で圧縮された冷媒を前記密閉容器の内部空間である吐出圧空間に吐出するロータリ二段圧縮機であって、
前記低段圧縮室で圧縮された冷媒を吐出する低段吐出口が、前記低段フレームに形成され、当該低段吐出口を覆い、内部に低段吐出空間を形成する低段カバーを備え、前記中間流路は、前記低段フレーム、前記低段シリンダ及び前記中間仕切板を貫通して形成され、前記低段吐出空間と前記高段圧縮室とを連通しており、前記低段カバーには、負荷が所定の負荷よりも小さいときに開口し、前記低段吐出空間と前記吐出圧空間とを連通するバイパス機構を備えたものである。
A rotary two-stage compressor according to the present invention includes a hermetic container, a compression mechanism unit disposed inside the hermetic container, an electric motor disposed inside the hermetic container and serving as a drive source for the compression mechanism unit, A drive shaft that transmits the driving force of the electric motor to the compression mechanism, and the compression mechanism is formed with a low-stage frame and a first through-hole serving as a low-stage compression chamber. A low-stage cylinder in which one opening of the first through-hole is closed, an intermediate partition plate that closes the other opening of the first through-hole, and a second through-hole serving as a high-stage compression chamber are formed. A high stage cylinder in which one opening of the second through hole is closed by the intermediate partition plate, a high stage frame closing the other opening of the second through hole, and an eccentric part of the drive shaft. A low-stage row provided for eccentric rotational movement inside the low-stage compression chamber A low-pressure piston that is provided at an eccentric portion of the drive shaft and that eccentrically rotates inside the high-stage compression chamber; and a low-pressure that partitions the inside of the low-stage compression chamber into a suction space and a compression space A vane and a high-pressure vane that divides the inside of the high-stage compression chamber into a suction space and a compression space, and a low-stage frame, a low-stage cylinder, an intermediate partition plate, a high-stage cylinder, and a high-stage frame are sequentially stacked. The low-stage compression section and the high-stage compression section are formed, and the refrigerant sucked from the pipe connected to the low-pressure suction port of the low-stage compression section is compressed in the low-stage compression chamber, and the refrigerant A rotary two-stage compressor that introduces the refrigerant into the high-stage compression chamber via an intermediate flow path and compresses the refrigerant again, and discharges the refrigerant compressed in the high-stage compression chamber into a discharge pressure space that is an internal space of the sealed container Because
A low-stage discharge port for discharging the refrigerant compressed in the low-stage compression chamber is formed in the low-stage frame, and includes a low-stage cover that covers the low-stage discharge port and forms a low-stage discharge space therein, The intermediate flow path is formed through the low-stage frame, the low-stage cylinder, and the intermediate partition plate, and communicates the low-stage discharge space and the high-stage compression chamber to the low-stage cover. Is provided with a bypass mechanism that opens when the load is smaller than a predetermined load and communicates the low-stage discharge space and the discharge pressure space.

本発明に係るロータリ二段圧縮機においては、中間流路を密閉容器外に延出して形成すること無く圧縮機構部内に形成しているので、中間流路を短く形成できる。このため、高段圧縮部に導入される冷媒の追従性を向上させ、中間流路での圧力脈動を抑制できる。   In the rotary two-stage compressor according to the present invention, since the intermediate flow path is formed in the compression mechanism without being formed outside the sealed container, the intermediate flow path can be formed short. For this reason, the followability of the refrigerant introduced into the high-stage compression section can be improved, and pressure pulsation in the intermediate flow path can be suppressed.

また、本発明に係るロータリ二段圧縮機は、負荷が所定の負荷よりも小さいときに開口し、前記低段吐出空間と前記吐出圧空間とを連通するバイパス機構を備えている。このため、低負荷運転時には、低段圧縮部が圧縮した冷媒を高段圧縮部に圧縮させることなくバイパスしてヒートポンプサイクルへ吐出することができる。したがって、本発明に係るロータリ二段圧縮機は、低負荷運転時に発生する過圧縮損失を低減することができ、低負荷運転時の運転効率の低下を防止することができる。   The rotary two-stage compressor according to the present invention includes a bypass mechanism that opens when the load is smaller than a predetermined load and communicates the low-stage discharge space and the discharge pressure space. For this reason, at the time of low load operation, the refrigerant compressed by the low stage compression unit can be bypassed and discharged to the heat pump cycle without being compressed by the high stage compression unit. Therefore, the rotary two-stage compressor according to the present invention can reduce an overcompression loss that occurs during low-load operation, and can prevent a reduction in operating efficiency during low-load operation.

本発明の実施の形態に係る二段圧縮機を示す縦断面図である。It is a longitudinal section showing a two-stage compressor concerning an embodiment of the invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 図1のC−C断面図である。It is CC sectional drawing of FIG. 図1のD−D断面図である。It is DD sectional drawing of FIG. 図1のE−E断面図である。It is EE sectional drawing of FIG. 本実施の形態に係る二段圧縮機と従来のロータリ二段圧縮機との運転効率を比較した図である。It is the figure which compared the operating efficiency of the two-stage compressor which concerns on this Embodiment, and the conventional rotary two-stage compressor.

実施の形態.
以下、本発明に係るロータリ二段圧縮機の一例(二段圧縮機100)の構成について説明する。
Embodiment.
Hereinafter, the configuration of an example of the rotary two-stage compressor (two-stage compressor 100) according to the present invention will be described.

図1は、本発明の実施の形態に係る二段圧縮機を示す縦断面図である。また、図2は図1のA−A断面図を示し、図3は図1のB−B断面図を示し、図4は図1のC−C断面図を示し、図5は図1のD−D断面図を示し、図6は図1のE−E断面図を示す。なお、図1は、二段圧縮機100の構成の理解を容易にするために、複数の切断位置で切断された縦断面を組み合わせた図となっている。そのため、平面視又は底面視における各構成の正確な位置は、図2〜図6に示す位置となる。   FIG. 1 is a longitudinal sectional view showing a two-stage compressor according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB in FIG. 1, FIG. 4 is a cross-sectional view taken along the line CC in FIG. DD sectional drawing is shown, FIG. 6 shows EE sectional drawing of FIG. FIG. 1 is a diagram in which longitudinal sections cut at a plurality of cutting positions are combined to facilitate understanding of the configuration of the two-stage compressor 100. Therefore, the exact position of each component in plan view or bottom view is the position shown in FIGS.

本実施の形態に係る二段圧縮機100は、圧縮機構部3に2つの圧縮部(低段圧縮部10と高段圧縮部30)を備えるものである。この二段圧縮機100は、電動機2(モータ部)、低段圧縮部10、高段圧縮部30、低段カバー19、高段カバー39、低段フレーム14、高段フレーム34、中間仕切板50、及び、駆動軸4等を備えている。より詳しくは、密閉容器1の内部には、下部から上部にかけて、高段カバー39、高段フレーム34、高段圧縮部30、中間仕切板50、低段圧縮部10、低段フレーム14、低段カバー19、及び電動機2の順で配置されている。また、駆動軸4は、密閉容器1の上下方向に沿って設けられており、密閉容器1の下部(つまり、駆動軸4の下端部)には、潤滑油6aを貯留する潤滑油貯蔵部6が形成されている。この潤滑油6aは、圧縮機構部3や軸受け部等を潤滑するものである。   A two-stage compressor 100 according to the present embodiment includes two compression units (a low-stage compression unit 10 and a high-stage compression unit 30) in the compression mechanism unit 3. The two-stage compressor 100 includes an electric motor 2 (motor section), a low-stage compression section 10, a high-stage compression section 30, a low-stage cover 19, a high-stage cover 39, a low-stage frame 14, a high-stage frame 34, and an intermediate partition plate. 50, the drive shaft 4 and the like. More specifically, inside the sealed container 1 from the lower part to the upper part, the high stage cover 39, the high stage frame 34, the high stage compression part 30, the intermediate partition plate 50, the low stage compression part 10, the low stage frame 14, low The step cover 19 and the electric motor 2 are arranged in this order. Moreover, the drive shaft 4 is provided along the up-down direction of the airtight container 1, and the lubricating oil storage part 6 which stores the lubricating oil 6a in the lower part (namely, lower end part of the drive shaft 4) of the airtight container 1 is provided. Is formed. This lubricating oil 6a lubricates the compression mechanism 3 and the bearing.

圧縮機構部3の低段圧縮部10は、低段シリンダ11、低段ローリングピストン12及び低段ベーン26(図4参照)等で構成されている。低段シリンダ11は、略平板形状をしており、略中心部には低段圧縮室15となる略円筒形状の貫通孔が形成されている。この貫通孔は、上部開口が低段フレーム14によって閉塞され、下部開口が中間仕切板50によって閉塞され、低段圧縮室15が形成されている。また、低段圧縮室15には、低段吸入口21と、低段フレーム14に形成された低段吐出口16が連通している。低段吸入口21は、密閉容器1の外部に設けられた連結管9及び吸入マフラ7を介して、吸入管8と接続されている。つまり、低段吸入口21は、ヒートポンプサイクルの低圧側と接続されることとなる。また、低段吐出口16には、板状の低段吐出弁17と低段弁押え18とがリベット18aにより取り付けられたリード弁が設けられている(図3参照)。このリード弁の低段吐出弁17を押し上げて低段吐出口16を開くことにより、低段圧縮室15が後述する低段吐出空間20に連通することとなる。   The low-stage compression unit 10 of the compression mechanism unit 3 includes a low-stage cylinder 11, a low-stage rolling piston 12, a low-stage vane 26 (see FIG. 4), and the like. The low-stage cylinder 11 has a substantially flat plate shape, and a substantially cylindrical through hole serving as the low-stage compression chamber 15 is formed in a substantially central part. The through hole has an upper opening closed by the low-stage frame 14 and a lower opening closed by the intermediate partition plate 50 to form a low-stage compression chamber 15. The low-stage compression chamber 15 communicates with a low-stage suction port 21 and a low-stage discharge port 16 formed in the low-stage frame 14. The low-stage suction port 21 is connected to the suction pipe 8 via a connecting pipe 9 and a suction muffler 7 provided outside the sealed container 1. That is, the low stage suction port 21 is connected to the low pressure side of the heat pump cycle. The low-stage discharge port 16 is provided with a reed valve in which a plate-like low-stage discharge valve 17 and a low-stage valve presser 18 are attached by rivets 18a (see FIG. 3). By pushing up the low-stage discharge valve 17 of the reed valve and opening the low-stage discharge port 16, the low-stage compression chamber 15 communicates with a low-stage discharge space 20 described later.

低段圧縮室15には、低段ローリングピストン12と低段ベーン26が設けられている。低段ローリングピストン12は、略円筒形状をしており、駆動軸4の偏心部に設けられている。低段ベーン26は、低段シリンダ11に形成された低段ベーン溝27に摺動自在に設けられている。また、低段ベーン26は、バネ等の付勢部材によって駆動軸4方向に付勢されており、その先端部が低段ローリングピストン12の外周部に追従自在となっている。これにより、低段圧縮室15は、低段吸入口21が連通する吸入空間と、低段吐出口16が連通する圧縮空間とに区画される。図3及び図4からわかるように、低段圧縮室15の低段吸入口21は、平面視において、低段ベーン26の左側近傍で低段圧縮室15と連通している。また、低段吐出口16は、平面視において、低段ベーン26の右側近傍で低段圧縮室15と連通している。   The low-stage compression chamber 15 is provided with a low-stage rolling piston 12 and a low-stage vane 26. The low-stage rolling piston 12 has a substantially cylindrical shape and is provided at the eccentric portion of the drive shaft 4. The low stage vane 26 is slidably provided in a low stage vane groove 27 formed in the low stage cylinder 11. Further, the low stage vane 26 is biased in the direction of the drive shaft 4 by a biasing member such as a spring, and the tip part thereof can follow the outer peripheral part of the low stage rolling piston 12. Thus, the low-stage compression chamber 15 is partitioned into a suction space that communicates with the low-stage suction port 21 and a compression space that communicates with the low-stage discharge port 16. As can be seen from FIGS. 3 and 4, the low-stage suction port 21 of the low-stage compression chamber 15 communicates with the low-stage compression chamber 15 in the vicinity of the left side of the low-stage vane 26 in plan view. Further, the low stage discharge port 16 communicates with the low stage compression chamber 15 in the vicinity of the right side of the low stage vane 26 in a plan view.

高段圧縮部30は、高段シリンダ31、高段ローリングピストン32及び高段ベーン42(図5参照)等で構成されている。高段シリンダ31は、略平板形状をしており、略中心部には高段圧縮室35となる略円筒形状の貫通孔が形成されている。この貫通孔は、上部開口が中間仕切板50によって閉塞され、下部開口が高段フレーム34によって閉塞され、高段圧縮室35が形成されている。高段圧縮室35は、低段圧縮室15よりも容積が小さくなるように形成されている。また、高段圧縮室35には、高段シリンダ31に形成された高段吸入口41と、高段フレーム34に形成された高段吐出口36が連通している。高段圧縮部30の高段吸入口41は、後述する低段吐出空間20及び中間流路51を介して、低段圧縮部10の低段吐出口16と連通可能となっている。また、高段吐出口36には、板状の高段吐出弁37と高段弁押え38とがリベット38aにより取り付けられたリード弁が設けられている(図6参照)。このリード弁の高段吐出弁37を押し上げて高段吐出口36を開くことにより、高段圧縮室35が後述する高段吐出空間40に連通することとなる。   The high stage compression unit 30 includes a high stage cylinder 31, a high stage rolling piston 32, a high stage vane 42 (see FIG. 5), and the like. The high-stage cylinder 31 has a substantially flat plate shape, and a substantially cylindrical through hole serving as the high-stage compression chamber 35 is formed in a substantially central part. The through hole has an upper opening closed by an intermediate partition plate 50 and a lower opening closed by a high frame 34 to form a high compression chamber 35. The high-stage compression chamber 35 is formed to have a smaller volume than the low-stage compression chamber 15. The high-stage compression chamber 35 communicates with a high-stage suction port 41 formed in the high-stage cylinder 31 and a high-stage discharge port 36 formed in the high-stage frame 34. The high-stage suction port 41 of the high-stage compression unit 30 can communicate with the low-stage discharge port 16 of the low-stage compression unit 10 via a low-stage discharge space 20 and an intermediate flow path 51 described later. The high-stage discharge port 36 is provided with a reed valve in which a plate-like high-stage discharge valve 37 and a high-stage valve presser 38 are attached by rivets 38a (see FIG. 6). By pushing up the high-stage discharge valve 37 of the reed valve to open the high-stage discharge port 36, the high-stage compression chamber 35 communicates with a high-stage discharge space 40 described later.

高段圧縮室35には、高段ローリングピストン32と高段ベーン42が設けられている。高段ローリングピストン32は、略円筒形状をしており、駆動軸4の偏心部に設けられている。本実施の形態では、高段ローリングピストン32は、平面視において、低段ローリングピストン12と略逆位相(駆動軸4の回転軸を中心として略180°回転した位置)となっている。高段ベーン42は、高段シリンダ31に形成された高段ベーン溝43に摺動自在に設けられている。また、高段ベーン42は、バネ等の付勢部材によって駆動軸4方向に付勢されており、その先端部が高段ローリングピストン32の外周部に追従自在となっている。これにより、高段圧縮室35は、高段吸入口41が連通する吸入空間と、高段吐出口36が連通する圧縮空間とに区画される。図5及び図6からわかるように、高段吸入口41は、平面視において、高段ベーン42の左側近傍で高段圧縮室35と連通している。なお、高段吐出口36は、平面視において、高段ベーン42の右側近傍で高段圧縮室35と連通している。   The high stage compression chamber 35 is provided with a high stage rolling piston 32 and a high stage vane 42. The high-stage rolling piston 32 has a substantially cylindrical shape and is provided at the eccentric portion of the drive shaft 4. In the present embodiment, the high-stage rolling piston 32 has a phase substantially opposite to that of the low-stage rolling piston 12 (a position rotated about 180 ° about the rotation axis of the drive shaft 4) in plan view. The high stage vane 42 is slidably provided in a high stage vane groove 43 formed in the high stage cylinder 31. Further, the high stage vane 42 is biased in the direction of the drive shaft 4 by a biasing member such as a spring, and the tip part thereof can follow the outer peripheral part of the high stage rolling piston 32. Thereby, the high-stage compression chamber 35 is partitioned into a suction space in which the high-stage suction port 41 communicates and a compression space in which the high-stage discharge port 36 communicates. As can be seen from FIGS. 5 and 6, the high stage suction port 41 communicates with the high stage compression chamber 35 in the vicinity of the left side of the high stage vane 42 in plan view. The high stage discharge port 36 communicates with the high stage compression chamber 35 in the vicinity of the right side of the high stage vane 42 in plan view.

また、図3〜図6からわかるように、低段圧縮室15の低段吸入口21と高段圧縮室35の高段吸入口41は、平面視において、略同位相となっている。低段吐出口16と高段吐出口36は、平面視において、略同位相となっている。このため、本実施の形態に係る二段圧縮機100は、特許文献2に示したロータリ二段圧縮機と異なり、高段圧縮室35の死容積が増大せず、圧縮効率が低下することがない。   As can be seen from FIGS. 3 to 6, the low-stage suction port 21 of the low-stage compression chamber 15 and the high-stage suction port 41 of the high-stage compression chamber 35 have substantially the same phase in plan view. The low stage discharge port 16 and the high stage discharge port 36 have substantially the same phase in plan view. For this reason, unlike the rotary two-stage compressor shown in Patent Document 2, the two-stage compressor 100 according to the present embodiment does not increase the dead volume of the high-stage compression chamber 35 and may reduce the compression efficiency. Absent.

低段フレーム14は、上部軸受け部を備え、駆動軸4の略中間部を回転自在に支持する。低段フレーム14には、上述のように低段圧縮部10の低段吐出口16が形成されている。低段カバー19は、下部が開口したカップ形状の容器となっている。この低段カバー19は、低段吐出口16を上方から覆うように設けられ、内部に、低段吐出空間20を形成している。   The low-stage frame 14 includes an upper bearing portion and rotatably supports a substantially intermediate portion of the drive shaft 4. As described above, the low-stage discharge port 16 of the low-stage compression unit 10 is formed in the low-stage frame 14. The low-stage cover 19 is a cup-shaped container having an open bottom. The low stage cover 19 is provided so as to cover the low stage discharge port 16 from above, and a low stage discharge space 20 is formed therein.

また、低段吐出空間20には、中間流路51も連通している。この中間流路51は、低段フレーム14、低段シリンダ11及び中間仕切板50を上下方向に貫通し、低段吐出空間20と高段吸入口41とを連通している。つまり、低段吐出空間20に流入した冷媒は、中間仕切板50を介して高段圧縮部30に吸入されることとなる。   Further, an intermediate flow path 51 is also communicated with the low stage discharge space 20. The intermediate flow path 51 penetrates the low-stage frame 14, the low-stage cylinder 11, and the intermediate partition plate 50 in the vertical direction, and communicates the low-stage discharge space 20 and the high-stage suction port 41. That is, the refrigerant flowing into the low stage discharge space 20 is sucked into the high stage compression unit 30 through the intermediate partition plate 50.

なお、平面視において、この中間流路51は、低段シリンダ11を貫通する際、低段ベーン26の左側であって、低段吸入口21よりも低段ベーン26(つまり、低段ベーン溝27)から離れた位置を貫通している。換言すると、駆動軸4の中心軸を基準とし、低段ベーン26から低段吸入口21までの距離が近い側の回転方向を正方向とした場合(図4に示す矢印方向)、中間流路51は、正方向において、低段吸入口21よりも下流側に形成されている。   In plan view, the intermediate flow path 51 is on the left side of the low-stage vane 26 when passing through the low-stage cylinder 11 and is lower than the low-stage intake port 21 (that is, the low-stage vane groove). It penetrates a position away from 27). In other words, when the rotation direction on the side closer to the distance from the low stage vane 26 to the low stage suction port 21 is set as the positive direction with respect to the central axis of the drive shaft 4 (the arrow direction shown in FIG. 4), the intermediate flow path 51 is formed downstream of the low-stage inlet 21 in the positive direction.

高段フレーム34は、下部軸受け部を備え、駆動軸4の下端部を回転自在に支持する。高段フレーム34には、上述のように高段圧縮部30の高段吐出口36が形成されている。高段カバー39は、上部が開口したカップ形状の容器となっている。この高段カバー39は、高段吐出口36を下方から覆うように設けられ、内部に、高段吐出空間40を形成している。   The high stage frame 34 includes a lower bearing portion and rotatably supports the lower end portion of the drive shaft 4. As described above, the high stage discharge port 36 of the high stage compression unit 30 is formed in the high stage frame 34. The high stage cover 39 is a cup-shaped container having an upper opening. The high stage cover 39 is provided so as to cover the high stage discharge port 36 from below, and a high stage discharge space 40 is formed therein.

また、高段吐出空間40には、密閉容器1の内部空間と連通する吐出流路52が形成されている。この吐出流路52は、高段フレーム34、高段シリンダ31、中間仕切板50、低段シリンダ11及び低段フレーム14を上下方向に貫通し、高段吐出空間40と密閉容器1の内部空間とを連通している。つまり、本実施の形態に係る二段圧縮機100は、密閉容器1内が吐出圧空間53(定常運転時、高段圧縮部30から吐出された高圧冷媒の圧力となる空間)となる内部高圧型の圧縮機である。密閉容器1の例えば上部には吐出管5が設けられており、密閉容器1に吐出された高圧冷媒は、この吐出管5から外部へ吐出されることとなる。なお、平面視において、この吐出流路52は、中間流路51に対して、駆動軸4の中心軸を基準とした点対称な位置で貫通している。   Further, a discharge flow path 52 communicating with the internal space of the sealed container 1 is formed in the high-stage discharge space 40. The discharge passage 52 penetrates the high stage frame 34, the high stage cylinder 31, the intermediate partition plate 50, the low stage cylinder 11, and the low stage frame 14 in the vertical direction, and the high stage discharge space 40 and the internal space of the sealed container 1. And communicate with. That is, in the two-stage compressor 100 according to the present embodiment, the internal high pressure in which the sealed container 1 becomes the discharge pressure space 53 (the space that becomes the pressure of the high-pressure refrigerant discharged from the high-stage compressor 30 during steady operation). The type of compressor. For example, a discharge pipe 5 is provided in the upper part of the sealed container 1, and the high-pressure refrigerant discharged to the sealed container 1 is discharged from the discharge pipe 5 to the outside. In a plan view, the discharge flow path 52 penetrates the intermediate flow path 51 at a point-symmetrical position with respect to the central axis of the drive shaft 4.

電動機2は低段圧縮部10及び高段圧縮部30の駆動源となるものである。この電動機2は、固定子2a及び回転子2bを備えている。固定子2aは、略円筒形状をしており、密閉容器1の内周部に固定されている。回転子2bは、略円筒形状をしており、所定の間隙を介して固定子2aの内周部に配置されている。また、回転子2bの内周部には、駆動軸4の上端部が嵌挿されている。   The electric motor 2 serves as a drive source for the low-stage compression unit 10 and the high-stage compression unit 30. The electric motor 2 includes a stator 2a and a rotor 2b. The stator 2 a has a substantially cylindrical shape and is fixed to the inner peripheral portion of the sealed container 1. The rotor 2b has a substantially cylindrical shape, and is disposed on the inner peripheral portion of the stator 2a with a predetermined gap therebetween. Further, the upper end portion of the drive shaft 4 is fitted into the inner peripheral portion of the rotor 2b.

さらに、本実施の形態に係る二段圧縮機100は、低段カバー19にインジェクタ60が設けられている。このインジェクタ60は、一方の端部が低段吐出空間20に開口しており、他方の端部にはインジェクションパイプ61が接続されている。なお、インジェクタ60は、低段圧縮部10から吐出された冷媒に、二段圧縮機100以外となるヒートポンプサイクル内の冷媒をインジェクションするためのものである。このため、インジェクタ60の接続位置は、低段カバー19に限定されるものでなく、低段圧縮部10から吐出された冷媒が高段圧縮部30へ吸入されるまでの流路(低段吐出空間)であれば、任意の位置に接続することが可能である。   Further, in the two-stage compressor 100 according to the present embodiment, the injector 60 is provided in the low-stage cover 19. One end of the injector 60 opens into the low-stage discharge space 20, and an injection pipe 61 is connected to the other end. The injector 60 is for injecting the refrigerant in the heat pump cycle other than the two-stage compressor 100 into the refrigerant discharged from the low-stage compressor 10. For this reason, the connection position of the injector 60 is not limited to the low-stage cover 19, and the flow path (low-stage discharge) until the refrigerant discharged from the low-stage compression unit 10 is sucked into the high-stage compression unit 30. (Space), it is possible to connect to an arbitrary position.

さらに、本実施の形態に係る二段圧縮機100は、低段カバー19に、低段吐出空間20と密閉容器1の内部空間である吐出圧空間53とを連通するバイパス口23が形成されている。バイパス口23には、板状のバイパス弁24とバイパス弁押え25とがリベット29により取り付けられたリード弁が設けられている(図2参照)。これらをバイパス機構と呼ぶ。
なお、本実施の形態では、バイパス口23と中間流路51の位置関係が図2に示すようになっている。つまり、駆動軸4の中心軸を基準とし、低段吐出口16からバイパス口23までの距離が近い側の回転方向を正方向とした場合(図2に示す矢印方向)、中間流路51は、正方向において、バイパス口23よりも下流側に形成されている。
Further, in the two-stage compressor 100 according to the present embodiment, the low-stage cover 19 is formed with a bypass port 23 that communicates the low-stage discharge space 20 and the discharge pressure space 53 that is the internal space of the sealed container 1. Yes. The bypass port 23 is provided with a reed valve in which a plate-like bypass valve 24 and a bypass valve presser 25 are attached by a rivet 29 (see FIG. 2). These are called bypass mechanisms.
In the present embodiment, the positional relationship between the bypass port 23 and the intermediate flow path 51 is as shown in FIG. That is, when the rotation direction on the side closer to the distance from the low-stage discharge port 16 to the bypass port 23 is the positive direction with reference to the central axis of the drive shaft 4 (the arrow direction shown in FIG. 2), the intermediate flow path 51 is In the positive direction, it is formed downstream of the bypass port 23.

次に、二段圧縮機100の動作について説明する。
電力が供給されると、電動機2が動作する。電動機2と圧縮機構部3とは、駆動軸4により接続されており、電動機2で発生した動力が駆動軸4を介して圧縮機構部3へ伝達される。具体的には、電力の供給を受けると、電動機2の回転子2bが回転する。回転子2bが回転すると、回転子2bに嵌挿された駆動軸4も回転する。そして、駆動軸4が回転すると、駆動軸4が嵌挿された低段ローリングピストン12及び高段ローリングピストン32が、それぞれ低段圧縮室15及び高段圧縮室35と内部で偏心回転する。低段ローリングピストン12と高段ローリングピストン32とが偏心回転することにより、低段圧縮部10と高段圧縮部30とで冷媒が圧縮される。
Next, the operation of the two-stage compressor 100 will be described.
When electric power is supplied, the electric motor 2 operates. The electric motor 2 and the compression mechanism unit 3 are connected by a drive shaft 4, and power generated by the electric motor 2 is transmitted to the compression mechanism unit 3 through the drive shaft 4. Specifically, when supplied with electric power, the rotor 2b of the electric motor 2 rotates. When the rotor 2b rotates, the drive shaft 4 inserted into the rotor 2b also rotates. When the drive shaft 4 rotates, the low-stage rolling piston 12 and the high-stage rolling piston 32 into which the drive shaft 4 is inserted are eccentrically rotated inside the low-stage compression chamber 15 and the high-stage compression chamber 35, respectively. As the low stage rolling piston 12 and the high stage rolling piston 32 rotate eccentrically, the refrigerant is compressed by the low stage compression unit 10 and the high stage compression unit 30.

このように動作する二段圧縮機100内には、次のように冷媒が流れる。
まず、外部から吸入管8を介して、低圧の冷媒が吸入マフラ7へ流入する。吸入マフラ7へ流入した低圧の冷媒は、連結管9を介して低段圧縮室15へ吸入される。低段圧縮室15へ吸入された低圧の冷媒は、低段圧縮室15内で中間圧まで圧縮される。冷媒が中間圧まで圧縮されると、低段圧縮室15内の冷媒と低段吐出空間20内の冷媒との圧力差により低段吐出弁17が開き、低段圧縮室15内の冷媒が低段吐出口16から低段吐出空間20へ吐出される。ここで、中間圧は、低段圧縮室15の吸入室の容積と高段圧縮室35の吸入室の容積との比から決定される圧力である。
In the two-stage compressor 100 operating in this way, the refrigerant flows as follows.
First, low-pressure refrigerant flows into the suction muffler 7 from the outside through the suction pipe 8. The low-pressure refrigerant flowing into the suction muffler 7 is sucked into the low-stage compression chamber 15 through the connecting pipe 9. The low-pressure refrigerant sucked into the low stage compression chamber 15 is compressed to an intermediate pressure in the low stage compression chamber 15. When the refrigerant is compressed to an intermediate pressure, the low stage discharge valve 17 is opened due to the pressure difference between the refrigerant in the low stage compression chamber 15 and the refrigerant in the low stage discharge space 20, and the refrigerant in the low stage compression chamber 15 is low. The liquid is discharged from the stage discharge port 16 to the low stage discharge space 20. Here, the intermediate pressure is a pressure determined from the ratio between the volume of the suction chamber of the low-stage compression chamber 15 and the volume of the suction chamber of the high-stage compression chamber 35.

低段吐出空間20へ吐出した中間圧の冷媒は、中間流路51を介して高段圧縮室35へ吸入される。高段圧縮室35へ吸入された中間圧の冷媒は、高段圧縮室35内で吐出圧まで圧縮される。冷媒が吐出圧まで圧縮されると、高段圧縮室35内の冷媒と高段吐出空間40内の冷媒との圧力差により高段吐出弁37が開き、高段圧縮室35内の冷媒が高段吐出口36から高段吐出空間40へ吐出される。高段吐出空間40へ吐出した吐出圧の冷媒は、吐出流路52を介して低段圧縮部10の上方の吐出圧空間53へ吐出される。そして、吐出圧空間53へ吐出された吐出圧の冷媒は、吐出管5から外部へ吐出される。   The intermediate pressure refrigerant discharged to the low stage discharge space 20 is sucked into the high stage compression chamber 35 through the intermediate flow path 51. The intermediate-pressure refrigerant sucked into the high-stage compression chamber 35 is compressed to the discharge pressure in the high-stage compression chamber 35. When the refrigerant is compressed to the discharge pressure, the high stage discharge valve 37 is opened due to the pressure difference between the refrigerant in the high stage compression chamber 35 and the refrigerant in the high stage discharge space 40, and the refrigerant in the high stage compression chamber 35 becomes high. It is discharged from the stage discharge port 36 to the high stage discharge space 40. The refrigerant having the discharge pressure discharged to the high stage discharge space 40 is discharged to the discharge pressure space 53 above the low stage compression unit 10 via the discharge flow path 52. The refrigerant having the discharge pressure discharged into the discharge pressure space 53 is discharged from the discharge pipe 5 to the outside.

なお、二段圧縮機100を備えるヒートポンプ装置(二段圧縮機100を用いたヒートポンプサイクル)においてインジェクション運転がされている場合には、図1に示すインジェクションパイプ61からインジェクタ60を介して、インジェクション冷媒が低段吐出空間20へ注入される。インジェクション冷媒は、低段圧縮室15から吐出された中間圧の冷媒と低段吐出空間20で混合され、高段圧縮部30で圧縮される。   In addition, when the injection operation is performed in the heat pump apparatus (heat pump cycle using the two-stage compressor 100) provided with the two-stage compressor 100, the injection refrigerant is passed through the injector 60 from the injection pipe 61 shown in FIG. Is injected into the low-stage discharge space 20. The injection refrigerant is mixed with the intermediate-pressure refrigerant discharged from the low-stage compression chamber 15 in the low-stage discharge space 20 and compressed by the high-stage compression unit 30.

ヒートポンプ装置の負荷が小さい場合(以下、低負荷運転時ともいう)等、低段圧縮部10による圧縮だけで、吐出圧(換言すると、凝縮器に流入する冷媒の圧力)となってしまう過圧縮状態となる場合がある。つまり、上述した冷媒の中間圧が、必要な吐出圧より高い圧力となってしまう場合がある。このような場合、本実施の形態に係る二段圧縮機100では、低段吐出空間20の冷媒と吐出圧空間53の冷媒との圧力差によってバイパス弁24が開き、低段吐出空間20の冷媒がバイパス口23から吐出圧空間53へ吐出される構成にしている。換言すると、本実施の形態に係る二段圧縮機100は、低段吐出空間20内の圧力が吐出圧空間53の圧力よりも所定値以上大きくなった場合、バイパス弁24が変形してバイパス口23を開く構成となっている。つまり、低段圧縮部10から低段吐出空間20へ吐出された冷媒は、高段圧縮部30で圧縮されることなく、バイパスして吐出圧空間53へ吐出される。   When the load of the heat pump device is small (hereinafter also referred to as low load operation), overcompression that results in discharge pressure (in other words, pressure of refrigerant flowing into the condenser) only by compression by the low-stage compression unit 10. It may be in a state. That is, the intermediate pressure of the refrigerant described above may be higher than the required discharge pressure. In such a case, in the two-stage compressor 100 according to the present embodiment, the bypass valve 24 is opened by the pressure difference between the refrigerant in the low-stage discharge space 20 and the refrigerant in the discharge pressure space 53, and the refrigerant in the low-stage discharge space 20. Is discharged from the bypass port 23 to the discharge pressure space 53. In other words, in the two-stage compressor 100 according to the present embodiment, when the pressure in the low-stage discharge space 20 becomes larger than the pressure in the discharge pressure space 53 by a predetermined value or more, the bypass valve 24 is deformed and the bypass port 23 is opened. That is, the refrigerant discharged from the low stage compression unit 10 to the low stage discharge space 20 is bypassed and discharged to the discharge pressure space 53 without being compressed by the high stage compression unit 30.

過圧縮状態では、低段圧縮部10による圧縮だけで吐出圧となっているため、高段圧縮部30による圧縮は無駄であり、高段圧縮部30で圧縮を行うと効率が悪化する。しかし、二段圧縮機100では、過圧縮状態になった場合に、低段圧縮部10で圧縮した冷媒を高段圧縮部30をバイパスして吐出させる。そのため、過圧縮状態が発生した場合における損失(過圧縮損失)を抑制でき、低負荷運転時における運転効率を向上させることができる。   In the overcompressed state, only the compression by the low-stage compression unit 10 results in the discharge pressure. Therefore, the compression by the high-stage compression unit 30 is useless, and if the high-stage compression unit 30 performs compression, the efficiency deteriorates. However, in the two-stage compressor 100, the refrigerant compressed by the low-stage compression unit 10 is discharged by bypassing the high-stage compression unit 30 when the over-compression state occurs. Therefore, loss (overcompression loss) when an overcompressed state occurs can be suppressed, and operation efficiency during low-load operation can be improved.

特に、本実施の形態に係る二段圧縮機100は、低段カバー19にバイパス口23が形成されている。このため、バイパス口23から吐出圧空間53へ吐出される冷媒は、中間流路51を通ることなく、密閉容器1内の吐出圧空間53へ吐出される。つまり、バイパス口23から吐出圧空間53へ吐出される冷媒は、中間流路51を通ることによる圧縮損失が生じることなく、バイパス口23から吐出圧空間53へ吐出される。したがって、低負荷運転時において、効果的に過圧縮損失を抑制できる。   In particular, in the two-stage compressor 100 according to the present embodiment, the bypass port 23 is formed in the low-stage cover 19. For this reason, the refrigerant discharged from the bypass port 23 to the discharge pressure space 53 is discharged to the discharge pressure space 53 in the sealed container 1 without passing through the intermediate flow path 51. That is, the refrigerant discharged from the bypass port 23 to the discharge pressure space 53 is discharged from the bypass port 23 to the discharge pressure space 53 without causing a compression loss due to passing through the intermediate flow path 51. Therefore, over-compression loss can be effectively suppressed during low-load operation.

なお、上述したように、密閉容器1の下側は、潤滑油貯蔵部6を形成しており、潤滑油6aが封入されている。潤滑油6aは、圧縮機構部3の機械部分へ供給されるため、少なくとも上側に配置された圧縮部(図1では低段圧縮部10)まで浸る量が封入されている。一般的なロータリ二段圧縮機(特許文献1〜特許文献3参照)では、ロータリ二段圧縮機を縦置きする場合、低段圧縮部が高段圧縮部の下側に設けられる。このため、特許文献2及び特許文献3に記載されたロータリ二段圧縮機のように、低段圧縮部で圧縮した冷媒を低段カバー内(低段吐出空間)に吐出するロータリ二段圧縮機においては、低段吐出空間が低段圧縮部の下側に設けられることとなる。つまり、低段カバーは、低段圧縮部の下側に設けられることとなる。したがって、低段カバーは、潤滑油に浸った状態になる。この場合、低段カバーに本実施の形態に係るバイパス口23を形成しようとすると、潤滑油がバイパス口23から低段吐出空間へ侵入してしまう。また、バイパス口23から冷媒を吐出する際に潤滑油を巻き上げてしまい、ロータリ二段圧縮機からの潤滑油の流出を増加させてしまう。このため、一般的なロータリ二段圧縮機では、低段カバーに本実施の形態に係るバイパス口23を形成することができない。したがって、特許文献2及び特許文献3に記載されたロータリ二段圧縮機では、ロータリ二段圧縮機を縦置きする場合、低段吐出空間と高段圧縮部とを繋ぐ狭く細い流路にバイパス口23を設けるしかない。   In addition, as mentioned above, the lower side of the airtight container 1 forms the lubricating oil storage part 6, and the lubricating oil 6a is enclosed. Since the lubricating oil 6a is supplied to the mechanical portion of the compression mechanism unit 3, an amount of at least the compression unit disposed in the upper side (the low-stage compression unit 10 in FIG. 1) is enclosed. In a general rotary two-stage compressor (see Patent Documents 1 to 3), when a rotary two-stage compressor is installed vertically, a low-stage compression section is provided below the high-stage compression section. For this reason, the rotary two-stage compressor which discharges the refrigerant | coolant compressed by the low stage compression part in the low stage cover (low stage discharge space) like the rotary two stage compressor described in patent document 2 and patent document 3 In this case, the low stage discharge space is provided below the low stage compression section. That is, the low stage cover is provided below the low stage compression section. Therefore, the low stage cover is immersed in the lubricating oil. In this case, if the bypass port 23 according to the present embodiment is to be formed in the low-stage cover, the lubricating oil enters the low-stage discharge space from the bypass port 23. Moreover, when discharging a refrigerant | coolant from the bypass port 23, lubricating oil is wound up and the outflow of lubricating oil from a rotary two-stage compressor is increased. For this reason, in a general rotary two-stage compressor, the bypass port 23 according to the present embodiment cannot be formed in the low-stage cover. Therefore, in the rotary two-stage compressor described in Patent Document 2 and Patent Document 3, when the rotary two-stage compressor is installed vertically, a bypass port is provided in a narrow and narrow flow path connecting the low-stage discharge space and the high-stage compression section. 23 can only be provided.

しかしながら、本実施の形態に係る二段圧縮機100は、縦置きする場合、通常とは逆に、低段圧縮部10を高段圧縮部30の上側に設けている。このため、低段吐出空間20は低段圧縮部10の上側に設けられ、低段カバー19は潤滑油6aに浸ることのない高さとすることができる。その結果、低段カバー19にバイパス口23を設けることができる。   However, when the two-stage compressor 100 according to the present embodiment is installed vertically, the low-stage compressor 10 is provided on the upper side of the high-stage compressor 30, contrary to the normal case. For this reason, the low stage discharge space 20 is provided above the low stage compression part 10, and the low stage cover 19 can be made the height which is not immersed in the lubricating oil 6a. As a result, the bypass port 23 can be provided in the low stage cover 19.

また、本実施の形態に係る二段圧縮機100は、中間流路51ではなく、低段カバー19にバイパス口23を設けたため、バイパス弁24を簡単な構造のリード弁とすることができる。このため、バイパス弁24及びバイパス弁押え25を、低段吐出弁17及び低段弁押え18や高段吐出弁37及び高段弁押え38と同一の部品とすることが可能となる。部品を共通化することにより、コストを低く抑えることができる。また、バイパス弁24の構造が簡単となるため、組み立てにかかるコストを低く抑えることもできる。   Moreover, since the two-stage compressor 100 according to the present embodiment is provided with the bypass port 23 in the low-stage cover 19 instead of the intermediate flow path 51, the bypass valve 24 can be a reed valve having a simple structure. For this reason, the bypass valve 24 and the bypass valve presser 25 can be made the same components as the low stage discharge valve 17 and the low stage valve presser 18, the high stage discharge valve 37 and the high stage valve presser 38. Costs can be kept low by sharing parts. Further, since the structure of the bypass valve 24 is simplified, the cost for assembly can be reduced.

次に、本実施の形態に係る二段圧縮機100の中間流路51の特徴について説明する。   Next, features of the intermediate flow path 51 of the two-stage compressor 100 according to the present embodiment will be described.

上述のように、中間流路51は、低段フレーム14、低段シリンダ11及び中間仕切板50を上下方向に貫通し、低段吐出空間20と高段吸入口41とを連通している。つまり、低段圧縮部10で圧縮された冷媒は、低段吐出空間20に吐出された後に中間流路51へ流入する。このため、特許文献1に記載のロータリ二段圧縮機と異なり、中間仕切板50に低段圧縮部10の吐出空間を形成する必要がない。このため、本実施の形態に係る二段圧縮機100は、特許文献1に記載のロータリ二段圧縮機と異なり、駆動軸4の軸受部としても機能する低段フレーム14と高段フレーム34の距離を小さくすることができ、二段圧縮機100(より詳しくは、駆動軸4の軸受部としても機能する低段フレーム14と高段フレーム34)の信頼性を向上させることができる。   As described above, the intermediate flow path 51 penetrates the low-stage frame 14, the low-stage cylinder 11, and the intermediate partition plate 50 in the vertical direction, and communicates the low-stage discharge space 20 and the high-stage suction port 41. That is, the refrigerant compressed by the low stage compression unit 10 flows into the intermediate flow path 51 after being discharged into the low stage discharge space 20. For this reason, unlike the rotary two-stage compressor described in Patent Document 1, it is not necessary to form the discharge space of the low-stage compression unit 10 in the intermediate partition plate 50. For this reason, unlike the rotary two-stage compressor described in Patent Document 1, the two-stage compressor 100 according to the present embodiment includes a low-stage frame 14 and a high-stage frame 34 that also function as a bearing portion of the drive shaft 4. The distance can be reduced, and the reliability of the two-stage compressor 100 (more specifically, the low-stage frame 14 and the high-stage frame 34 that also function as a bearing portion of the drive shaft 4) can be improved.

また、中間流路51は、低段吸入口21よりも低段ベーン26(換言すると、低段ベーン溝27)から離れた位置、つまり、低段吸入口21と低段ベーン26(換言すると、低段ベーン溝27)との間ではない位置に形成されている。このため、本実施の形態に係る中間流路51は、特許文献3に記載の中間流路と異なり、流路面積を大きく確保することができ、圧力損失による効率低下の要因を排除できる。また、低段吸入口21と低段ベーン26(換言すると、低段ベーン溝27)に中間流路51が干渉しないため、流路の設置自由度が増す。なお、図4等では、開口部が略円形状をした中間流路51が示されているが、開口部が低段吐出口16の面積より大きく形成されていればどのような形状でもよい。   Further, the intermediate flow path 51 is located farther from the lower stage vane 26 (in other words, the lower stage vane groove 27) than the lower stage inlet 21, that is, the lower stage inlet 21 and the lower stage vane 26 (in other words, It is formed at a position not between the low-stage vane groove 27). For this reason, unlike the intermediate flow path described in Patent Document 3, the intermediate flow path 51 according to the present embodiment can ensure a large flow path area, and can eliminate the cause of efficiency reduction due to pressure loss. Further, since the intermediate flow path 51 does not interfere with the low-stage suction port 21 and the low-stage vane 26 (in other words, the low-stage vane groove 27), the degree of freedom of installation of the flow path is increased. 4 and the like, the intermediate flow path 51 whose opening is substantially circular is shown, but any shape may be used as long as the opening is formed larger than the area of the low-stage discharge port 16.

中間流路内は流入する冷媒量や密度の粗密によって、圧力脈動が発生している。特にインバーター制御のロータリ二段圧縮機では、回転数が増減するため圧力脈動が発生しやすい。中間流路が密閉容器の外部に配置された従来のロータリ二段圧縮機においては、高段圧縮部に導入される冷媒の追従性が悪いので、この中間流路内の圧力脈動を共鳴によって消散させるには、何種類もの流路管長の中間流路を設定しなければならない。しかしながら、本実施の形態に係る二段圧縮機100は、中間流路51を圧縮機構部3内に設けることにより流路長を短縮しているので、低段圧縮部10から高段圧縮部30へ導入される冷媒の追従性が改善し、圧力脈動を抑制できるので、運転効率を向上させることができる。   Pressure pulsation is generated in the intermediate flow path due to the amount of refrigerant flowing in and the density of the density. In particular, in an inverter-controlled rotary two-stage compressor, pressure pulsation is likely to occur because the rotational speed increases or decreases. In the conventional rotary two-stage compressor in which the intermediate flow path is arranged outside the sealed container, the followability of the refrigerant introduced into the high-stage compression section is poor, so that the pressure pulsation in the intermediate flow path is dissipated by resonance. In order to achieve this, it is necessary to set up various kinds of intermediate flow passages having flow passage pipe lengths. However, since the two-stage compressor 100 according to the present embodiment shortens the flow path length by providing the intermediate flow path 51 in the compression mechanism section 3, the low-stage compression section 10 to the high-stage compression section 30. Since the followability of the refrigerant introduced into the tank is improved and the pressure pulsation can be suppressed, the operation efficiency can be improved.

上述のように、駆動軸4の中心軸を基準とし、低段吐出口16からバイパス口23までの距離が近い側の回転方向を正方向とした場合(図2に示す矢印方向)、中間流路51は、正方向において、バイパス口23よりも下流側に形成されている。この正方向は、低段吐出口16からバイパス口23へ流れる冷媒の主流方向である。バイパス口23及び中間流路51をこのような位置関係で配置することにより、低段圧縮部10から吐出された過圧縮状態の冷媒は、バイパス機構(バイパス口23、バイパス弁24及びバイパス弁押え25)によって、中間流路51へ到達する前にバイパス口23から密閉容器1内へ吐出されることとなる。このため、吐出圧空間53へ吐出された冷媒は、より確実に中間流路51を通ることなく吐出圧空間53へ吐出されることとなり、前記バイパス機構の効果が大きくなる。一方、中間流路を密閉容器1の外部に配置した従来のロータリ二段圧縮機に本発明に係るバイパス機構(低圧カバーに設けられるバイパス機構)を設けても、中間流路の流路長が長くなるので、バイパス口23から過圧縮状態の冷媒を吐出しきれず、過圧縮状態の冷媒の一部が高段圧縮部へ流入して無駄な圧縮が発生するため、効率が悪化する。   As described above, when the rotation direction on the side closer to the distance from the low-stage discharge port 16 to the bypass port 23 is set to the positive direction with reference to the central axis of the drive shaft 4 (the arrow direction shown in FIG. 2), the intermediate flow The path 51 is formed downstream of the bypass port 23 in the positive direction. This positive direction is the main flow direction of the refrigerant flowing from the low stage discharge port 16 to the bypass port 23. By arranging the bypass port 23 and the intermediate flow path 51 in such a positional relationship, the refrigerant in an overcompressed state discharged from the low-stage compression unit 10 is bypassed (bypass mechanism 23, bypass valve 24 and bypass valve presser). 25), the air is discharged from the bypass port 23 into the sealed container 1 before reaching the intermediate flow path 51. For this reason, the refrigerant discharged to the discharge pressure space 53 is more reliably discharged to the discharge pressure space 53 without passing through the intermediate flow path 51, and the effect of the bypass mechanism is increased. On the other hand, even if the bypass mechanism (bypass mechanism provided in the low pressure cover) according to the present invention is provided in the conventional rotary two-stage compressor in which the intermediate channel is arranged outside the sealed container 1, the channel length of the intermediate channel is not increased. Since it becomes long, the refrigerant in the overcompressed state cannot be completely discharged from the bypass port 23, and a part of the refrigerant in the overcompressed state flows into the high-stage compression unit to cause useless compression, so that the efficiency is deteriorated.

最後に、本実施の形態に係る二段圧縮機100の運転効率の改善効果について述べる。   Finally, the improvement effect of the operation efficiency of the two-stage compressor 100 according to the present embodiment will be described.

図7は、本実施の形態に係る二段圧縮機と従来のロータリ二段圧縮機との運転効率を比較した図である。なお、図7に示す従来のロータリ二段圧縮機は、中間流路が密閉容器の外部に配置された内部高圧型のロータリ二段圧縮機であり、本実施の形態のようなバイパス機構を備えていないものとなっている。また、図7は、従来のロータリ二段圧縮機の運転効率を基準(100%)として、本実施の形態に係る二段圧縮機100の運転効率を示している。   FIG. 7 is a diagram comparing the operational efficiencies of the two-stage compressor according to the present embodiment and the conventional rotary two-stage compressor. Note that the conventional rotary two-stage compressor shown in FIG. 7 is an internal high-pressure rotary two-stage compressor in which an intermediate flow path is disposed outside a sealed container, and includes a bypass mechanism as in the present embodiment. It has not been. FIG. 7 shows the operation efficiency of the two-stage compressor 100 according to the present embodiment with the operation efficiency of the conventional rotary two-stage compressor as a reference (100%).

定常運転時(図7に示す定格条件)の運転効率を比較すると、本実施の形態に係る二段圧縮機100の運転効率は、約102%となり、従来のロータリ二段圧縮機よりも約2%運転効率が向上している。この結果から、中間流路51を圧縮機構部3内に形成することにより、高段圧縮部30に導入される冷媒の追従性を向上させて中間流路での圧力脈動を抑制でき、運転効率を向上させられることがわかる。   Comparing the operation efficiency at the time of steady operation (rated conditions shown in FIG. 7), the operation efficiency of the two-stage compressor 100 according to the present embodiment is about 102%, which is about 2 than the conventional rotary two-stage compressor. % Operating efficiency is improved. From this result, by forming the intermediate flow path 51 in the compression mechanism section 3, the followability of the refrigerant introduced into the high-stage compression section 30 can be improved, and pressure pulsations in the intermediate flow path can be suppressed, and the operating efficiency can be reduced. It can be seen that can be improved.

低負荷運転時(図7に示す低負荷条件)の運転効率を比較すると、本実施の形態に係る二段圧縮機100の運転効率は、約101.5%となり、従来のロータリ二段圧縮機よりも約1/5%運転効率が向上している。この結果から、本実施の形態に係る二段圧縮機100は、低段カバー19にバイパス機構(バイパス口23、バイパス弁24及びバイパス弁押え25)を設けることにより、過圧縮状態になった場合に低段圧縮部10で圧縮した冷媒を高段圧縮部30をバイパスして吐出させることができ、運転効率を向上させられることがわかる。   Comparing the operation efficiency at the time of low load operation (low load condition shown in FIG. 7), the operation efficiency of the two-stage compressor 100 according to the present embodiment is about 101.5%, which is a conventional rotary two-stage compressor. The operating efficiency is improved by about 1/5%. From this result, the two-stage compressor 100 according to the present embodiment is in an overcompressed state by providing the low-stage cover 19 with a bypass mechanism (bypass port 23, bypass valve 24 and bypass valve presser 25). In addition, it is understood that the refrigerant compressed by the low-stage compression unit 10 can be discharged by bypassing the high-stage compression unit 30, and the operation efficiency can be improved.

なお、中間流路51を圧縮機構部3内に形成した二段圧縮機100は、中間流路となる部材が密閉容器1から突出していないので、小型化、包装及び運搬の容易性、分解の容易性等の効果を得ることもできる。   In the two-stage compressor 100 in which the intermediate flow path 51 is formed in the compression mechanism section 3, since the member that becomes the intermediate flow path does not protrude from the sealed container 1, it is possible to reduce the size, ease of packaging and transportation, and disassembly. Effects such as ease can also be obtained.

1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 駆動軸、5 吐出管、6 潤滑油貯蔵部、6a 潤滑油、7 吸入マフラ、8 吸入管、9 連結管、10 低段圧縮部、11 低段シリンダ、12 低段ローリングピストン、14 低段フレーム、15 低段圧縮室、16 低段吐出口、17 低段吐出弁、18 低段弁押え、18a リベット、19 低段カバー、20 低段吐出空間、21 低段吸入口、23 バイパス口、24 バイパス弁、25 バイパス弁押え、26 低段ベーン、27 低段ベーン溝、29 リベット、30 高段圧縮部、31 高段シリンダ、32 高段ローリングピストン、34 高段フレーム、35 高段圧縮室、36 高段吐出口、37 高段吐出弁、38 高段弁押え、38a リベット、39 高段カバー、40 高段吐出空間、41 高段吸入口、42 高段ベーン、43 高段ベーン溝、50 中間仕切板、51 中間流路、52 吐出流路、53 吐出圧空間、60 インジェクタ、61 インジェクションパイプ、100 二段圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor, 2a Stator, 2b Rotor, 3 Compression mechanism part, 4 Drive shaft, 5 Discharge pipe, 6 Lubricating oil storage part, 6a Lubricating oil, 7 Suction muffler, 8 Suction pipe, 9 Connection pipe, 10 Low stage compression section, 11 Low stage cylinder, 12 Low stage rolling piston, 14 Low stage frame, 15 Low stage compression chamber, 16 Low stage discharge port, 17 Low stage discharge valve, 18 Low stage valve presser, 18a Rivet, 19 Low stage cover, 20 Low stage discharge space, 21 Low stage suction port, 23 Bypass port, 24 Bypass valve, 25 Bypass valve presser, 26 Low stage vane, 27 Low stage vane groove, 29 Rivet, 30 High stage compression part, 31 High stage cylinder, 32 High stage rolling piston, 34 High stage frame, 35 High stage compression chamber, 36 High stage discharge port, 37 High stage discharge valve, 38 High stage valve presser, 38a Rivet, 3 High-stage cover, 40 High-stage discharge space, 41 High-stage inlet, 42 High-stage vane, 43 High-stage vane groove, 50 Intermediate partition plate, 51 Intermediate flow path, 52 Discharge flow path, 53 Discharge pressure space, 60 Injector, 61 Injection pipe, 100 Two-stage compressor.

Claims (7)

密閉容器と、
該密閉容器の内部に配置された圧縮機構部と、
前記密閉容器の内部に配置され、前記圧縮機構部の駆動源となる電動機と、
該電動機の駆動力を前記圧縮機構部に伝達する駆動軸と、
を備え、
前記圧縮機構部は、
低段フレームと、
低段圧縮室となる第1貫通孔が形成され、前記低段フレームによって前記第1貫通孔の一方の開口部が閉塞された低段シリンダと、
前記第1貫通孔の他方の開口部を閉塞する中間仕切板と、
高段圧縮室となる第2貫通孔が形成され、前記中間仕切板によって前記第2貫通孔の一方の開口部が閉塞された高段シリンダと、
前記第2貫通孔の他方の開口部を閉塞する高段フレームと、
前記駆動軸の偏心部に設けられ、前記低段圧縮室の内部を偏心回転運動する低段ローリングピストンと、
前記駆動軸の偏心部に設けられ、前記高段圧縮室の内部を偏心回転運動する高段ローリングピストンと、
前記低段圧縮室の内部を吸入空間と圧縮空間とに区画する低圧ベーンと、
前記高段圧縮室の内部を吸入空間と圧縮空間とに区画する高圧ベーンと、
を有し、
低段フレーム、低段シリンダ、中間仕切板、高段シリンダ及び高段フレームが順次積層されて、低段圧縮部及び高段圧縮部が形成されたものであり、
前記低段圧縮部の前記低段圧縮室の低圧吸入口に接続された配管から吸入した冷媒を前記低段圧縮室で圧縮し、当該冷媒を中間流路を介して前記高段圧縮室に導入して再度圧縮し、前記高段圧縮室で圧縮された冷媒を前記密閉容器の内部空間である吐出圧空間に吐出するロータリ二段圧縮機であって、
前記低段圧縮室で圧縮された冷媒を吐出する低段吐出口が、前記低段フレームに形成され、
当該低段吐出口を覆い、内部に低段吐出空間を形成する低段カバーを備え、
前記中間流路は、前記低段フレーム、前記低段シリンダ及び前記中間仕切板を貫通して形成され、前記低段吐出空間と前記高段圧縮室とを連通しており、
前記低段カバーには、負荷が所定の負荷よりも小さいときに開口し、前記低段吐出空間と前記吐出圧空間とを連通するバイパス機構を備えたことを特徴とするロータリ二段圧縮機。
A sealed container;
A compression mechanism disposed inside the sealed container;
An electric motor disposed inside the sealed container and serving as a drive source for the compression mechanism;
A drive shaft for transmitting the driving force of the electric motor to the compression mechanism;
With
The compression mechanism is
A lower frame,
A low-stage cylinder in which a first through-hole serving as a low-stage compression chamber is formed, and one opening of the first through-hole is closed by the low-stage frame;
An intermediate partition plate for closing the other opening of the first through hole;
A high-stage cylinder in which a second through-hole serving as a high-stage compression chamber is formed, and one opening of the second through-hole is closed by the intermediate partition plate;
A high frame that closes the other opening of the second through hole;
A low-stage rolling piston provided in an eccentric portion of the drive shaft and performing an eccentric rotational movement inside the low-stage compression chamber;
A high-stage rolling piston provided in an eccentric portion of the drive shaft and performing an eccentric rotational movement in the high-stage compression chamber;
A low-pressure vane that divides the inside of the low-stage compression chamber into a suction space and a compression space;
A high-pressure vane that divides the interior of the high-stage compression chamber into a suction space and a compression space;
Have
A low-stage frame, a low-stage cylinder, an intermediate partition plate, a high-stage cylinder and a high-stage frame are sequentially laminated to form a low-stage compression section and a high-stage compression section.
The refrigerant sucked from the pipe connected to the low-pressure suction port of the low-stage compression chamber of the low-stage compression section is compressed in the low-stage compression chamber, and the refrigerant is introduced into the high-stage compression chamber via an intermediate flow path. A rotary two-stage compressor that compresses again and discharges the refrigerant compressed in the high-stage compression chamber into a discharge pressure space that is an internal space of the sealed container,
A low-stage discharge port for discharging the refrigerant compressed in the low-stage compression chamber is formed in the low-stage frame;
A low-stage cover that covers the low-stage discharge port and forms a low-stage discharge space therein,
The intermediate flow path is formed through the low-stage frame, the low-stage cylinder and the intermediate partition plate, and communicates the low-stage discharge space and the high-stage compression chamber.
The rotary two-stage compressor is provided with a bypass mechanism that opens when the load is smaller than a predetermined load, and connects the low-stage discharge space and the discharge pressure space to the low-stage cover.
前記バイパス機構は、前記低段吐出空間の圧力が前記吐出圧空間の圧力よりも所定値以上高くなったときに開口することを特徴とする請求項1に記載のロータリ二段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein the bypass mechanism opens when a pressure in the low-stage discharge space is higher than a pressure in the discharge pressure space by a predetermined value or more. 前記圧縮機構部は、前記低段圧縮部が前記高段圧縮部の上方に配置され、
前記バイパス機構は、
前記低段カバーに形成されたバイパス口と、
前記バイパス口を閉塞するように設けられ、所定値以上の圧力がかかると変形し、該バイパス口を開く弁と、
を備えたことを特徴とする請求項2に記載のロータリ二段圧縮機。
In the compression mechanism section, the low-stage compression section is disposed above the high-stage compression section,
The bypass mechanism is
A bypass port formed in the low stage cover;
A valve that is provided to close the bypass port, deforms when a pressure of a predetermined value or more is applied, and opens the bypass port;
The rotary two-stage compressor according to claim 2, further comprising:
前記駆動軸の中心軸を基準とし、前記低段吐出口から前記バイパス機構までの距離が近い側の回転方向を正方向とした場合、
前記中間流路の前記低段吐出空間への開口部は、前記正方向において、前記バイパス機構よりも下流側に形成されていることを特徴とする請求項1〜請求項3のいずれか一項に記載のロータリ二段圧縮機。
When the rotation direction on the side closer to the distance from the low-stage discharge port to the bypass mechanism is a positive direction, with the central axis of the drive shaft as a reference,
The opening to the low-stage discharge space of the intermediate flow path is formed downstream of the bypass mechanism in the positive direction. The rotary two-stage compressor described in 1.
当該低段吐出空間に冷媒をインジェクションする配管が接続されていることを特徴とする請求項1〜請求項4のいずれか一項に記載のロータリ二段圧縮機。   The rotary two-stage compressor according to any one of claims 1 to 4, wherein a pipe for injecting a refrigerant is connected to the low-stage discharge space. 前記低段圧縮室への冷媒の吸入位置は、前記高段圧縮室への冷媒の吸入位置と略同位相となっていることを特徴とする請求項1〜請求項5のいずれか一項に記載のロータリ二段圧縮機。   6. The refrigerant suction position into the low-stage compression chamber is in substantially the same phase as the refrigerant suction position into the high-stage compression chamber. The rotary two-stage compressor described. 前記駆動軸の中心軸を基準とし、前記低段ベーンから前記吸入口までの距離が近い側の回転方向を正方向とした場合、
前記中間流路は、前記正方向において、前記吸入口よりも下流側に形成されていることを特徴とする請求項1〜請求項6のいずれか一項に記載のロータリ二段圧縮機。
When the rotation direction on the side where the distance from the low-stage vane to the suction port is near is the positive direction with respect to the central axis of the drive shaft,
The rotary two-stage compressor according to any one of claims 1 to 6, wherein the intermediate flow path is formed downstream of the suction port in the positive direction.
JP2011165094A 2011-07-28 2011-07-28 Rotary two-stage compressor Active JP5586537B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011165094A JP5586537B2 (en) 2011-07-28 2011-07-28 Rotary two-stage compressor
EP12167431.1A EP2551526B1 (en) 2011-07-28 2012-05-10 Two stage rotary compressor
KR1020120052277A KR101376872B1 (en) 2011-07-28 2012-05-17 Two stage rotary compressor
RU2012122456/06A RU2501978C1 (en) 2011-07-28 2012-05-30 Double-staged rotary compressor
CN201210176442.2A CN102900669B (en) 2011-07-28 2012-05-31 Two stage rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165094A JP5586537B2 (en) 2011-07-28 2011-07-28 Rotary two-stage compressor

Publications (2)

Publication Number Publication Date
JP2013029059A true JP2013029059A (en) 2013-02-07
JP5586537B2 JP5586537B2 (en) 2014-09-10

Family

ID=46147292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165094A Active JP5586537B2 (en) 2011-07-28 2011-07-28 Rotary two-stage compressor

Country Status (5)

Country Link
EP (1) EP2551526B1 (en)
JP (1) JP5586537B2 (en)
KR (1) KR101376872B1 (en)
CN (1) CN102900669B (en)
RU (1) RU2501978C1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136979A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigeration cycle device
CN105020135A (en) * 2015-08-18 2015-11-04 武汉凌达压缩机有限公司 Refrigerating system and compressor thereof
CN106382227A (en) * 2016-11-18 2017-02-08 广东美芝制冷设备有限公司 Multi-stage compression type rotary compressor and refrigerating circulating device provided with same
US11067077B2 (en) 2016-06-29 2021-07-20 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotating cylinder enthalpy-adding piston compressor and air conditioning system having same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251206A (en) * 2013-06-28 2014-12-31 珠海格力节能环保制冷技术研究中心有限公司 Rotary double-stage compressor
CN103883533B (en) * 2014-03-14 2017-06-16 安徽美芝精密制造有限公司 Double-stage compressor
CN105332920B (en) * 2014-07-07 2018-02-09 珠海格力节能环保制冷技术研究中心有限公司 Baffle assembly and three cylinder double-stage compressors for three cylinder double-stage compressors
RU2637281C1 (en) * 2016-11-10 2017-12-01 Петр Андреевич Семчук Two-rotor pump
JP2018188986A (en) * 2017-04-28 2018-11-29 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type two-stage compression compressor
DE102017004361A1 (en) * 2017-05-05 2018-11-08 Wabco Gmbh Method for operating a pressure control system with a multi-stage compressor, and pressure control system
JP7364043B2 (en) * 2020-03-26 2023-10-18 三菱電機株式会社 Method for manufacturing a discharge valve mechanism for a compressor and a compressor equipped with the discharge valve mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182693A (en) * 1989-12-12 1991-08-08 Mitsubishi Heavy Ind Ltd Multiple stage rotary compressor
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
JP2000073974A (en) * 1998-08-26 2000-03-07 Daikin Ind Ltd Two stage compressor and air conditioner
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
WO2010143523A1 (en) * 2009-06-11 2010-12-16 三菱電機株式会社 Refrigerant compressor and heat pump device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211886A (en) * 1988-06-29 1990-01-16 Toshiba Corp Refrigerating cycle device
SU1756636A1 (en) * 1989-10-09 1992-08-23 Научно-производственный центр при Николаевском кораблестроительном институте им.адм.С.О.Макарова Rotary machine
JPH10141270A (en) * 1996-11-01 1998-05-26 Matsushita Electric Ind Co Ltd Two stage gas compressor
JP2000087892A (en) 1998-09-08 2000-03-28 Daikin Ind Ltd Two-stage compressor and air conditioner
JP4300726B2 (en) * 2001-09-21 2009-07-22 パナソニック株式会社 Rotary gas compressor
KR100585810B1 (en) 2004-12-28 2006-06-07 엘지전자 주식회사 Modulation type rotary compressor with double shell and operation method
JP2007113542A (en) 2005-10-24 2007-05-10 Hitachi Appliances Inc Hermetic two-stage rotary compressor
KR101381085B1 (en) * 2007-11-13 2014-04-10 엘지전자 주식회사 2 stage rotary compressor
JP4462352B2 (en) * 2008-01-10 2010-05-12 株式会社富士通ゼネラル 2-stage compression rotary compressor
JP5306478B2 (en) * 2009-11-06 2013-10-02 三菱電機株式会社 Heat pump device, two-stage compressor, and operation method of heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182693A (en) * 1989-12-12 1991-08-08 Mitsubishi Heavy Ind Ltd Multiple stage rotary compressor
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
JP2000073974A (en) * 1998-08-26 2000-03-07 Daikin Ind Ltd Two stage compressor and air conditioner
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
WO2010143523A1 (en) * 2009-06-11 2010-12-16 三菱電機株式会社 Refrigerant compressor and heat pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136979A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigeration cycle device
JPWO2015136979A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JP2018112396A (en) * 2014-03-14 2018-07-19 三菱電機株式会社 Refrigeration cycle device
CN105020135A (en) * 2015-08-18 2015-11-04 武汉凌达压缩机有限公司 Refrigerating system and compressor thereof
US11067077B2 (en) 2016-06-29 2021-07-20 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotating cylinder enthalpy-adding piston compressor and air conditioning system having same
CN106382227A (en) * 2016-11-18 2017-02-08 广东美芝制冷设备有限公司 Multi-stage compression type rotary compressor and refrigerating circulating device provided with same

Also Published As

Publication number Publication date
EP2551526A3 (en) 2017-08-09
KR101376872B1 (en) 2014-03-20
RU2012122456A (en) 2013-12-10
CN102900669A (en) 2013-01-30
EP2551526B1 (en) 2019-05-01
EP2551526A2 (en) 2013-01-30
RU2501978C1 (en) 2013-12-20
JP5586537B2 (en) 2014-09-10
KR20130014337A (en) 2013-02-07
CN102900669B (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5586537B2 (en) Rotary two-stage compressor
US9765780B2 (en) Compressor
US11131302B2 (en) Scroll compressor with improved valve installation
JP6300829B2 (en) Rotary compressor
JP4814167B2 (en) Multistage compressor
US9512842B2 (en) Rotary compressor
JP2013227873A (en) Scroll compressor
US9651049B2 (en) Compressor
EP2871366B1 (en) Rotary compressor
CN112055785A (en) Hermetic compressor and refrigeration cycle device
JP2003148366A (en) Multiple stage gas compressor
JP2018009565A (en) Multi-stage compressor
JP2014005825A (en) Rotary compressor
US20190242384A1 (en) Motor operated compressor
KR20200068938A (en) High-pressure type scroll compressor
KR101141427B1 (en) Scroll compressor
JPWO2019049226A1 (en) Hermetic compressor and refrigeration cycle device
WO2018003431A1 (en) Multi-stage compressor
JP2014070588A (en) Scroll compressor
EP3388675A1 (en) Oscillating piston-type compressor
JP2019138234A (en) Compressor
EP3985256A1 (en) Scroll compressor
CN111788391A (en) Rotary compressor
JP2013024209A (en) Variable volume ratio compressor
JP5701112B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250