JP2003148366A - Multiple stage gas compressor - Google Patents

Multiple stage gas compressor

Info

Publication number
JP2003148366A
JP2003148366A JP2001342909A JP2001342909A JP2003148366A JP 2003148366 A JP2003148366 A JP 2003148366A JP 2001342909 A JP2001342909 A JP 2001342909A JP 2001342909 A JP2001342909 A JP 2001342909A JP 2003148366 A JP2003148366 A JP 2003148366A
Authority
JP
Japan
Prior art keywords
stage
compression
low
stage compression
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001342909A
Other languages
Japanese (ja)
Inventor
Katsuharu Fujio
勝晴 藤尾
Kiyoshi Sawai
澤井  清
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2001342909A priority Critical patent/JP2003148366A/en
Publication of JP2003148366A publication Critical patent/JP2003148366A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce pressure pulsation generated in a communication passage between a low stage compression element t and a high stage compression element in a multiple stage gas compressor. SOLUTION: In order to shorten passage length of the communication passage 79 between the low stage compression element 5 and the high stage compression element 4, plane disposition angles are deflected from each other. Follow-up performance of gas discharged from the low stage compression element 5 to be sucked into the high stage compression element 4 is thus improved to reduce pressure pulsation generated in the communication passage 79, thereby compression efficiency can be improved, and noise and vibration reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は回転式気体圧縮機の
気体通路の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas passage structure of a rotary gas compressor.
【0002】[0002]
【従来の技術】昨今の地球環境保護問題に端を発して、
従来から継続使用されているフロン冷媒に替わり自然冷
媒、特に、二酸化炭素(CO2)冷媒を用いたヒートポ
ンプシステムの研究開発が各分野で盛んに行われてい
る。
2. Description of the Related Art In light of recent global environmental protection problems,
Research and development of a heat pump system using a natural refrigerant, in particular, a carbon dioxide (CO 2 ) refrigerant in place of a CFC refrigerant which has been continuously used in the past has been actively conducted in various fields.
【0003】しかしながら、従来のフロン冷媒を用いた
冷凍サイクルでは、高圧側が3MPa以下であるのに対
して、二酸化炭素(CO2)冷媒を用いた冷凍サイクル
では、低圧側が2.5〜5MPa,高圧側が12〜15
MPaにも達して高低圧力差が極めて大きく、圧縮機構
部での高圧側から低圧側への気体漏れ損失の過大が懸念
されている。
However, in the refrigeration cycle using the conventional CFC refrigerant, the high pressure side is 3 MPa or less, whereas in the refrigeration cycle using the carbon dioxide (CO 2 ) refrigerant, the low pressure side is 2.5 to 5 MPa and the high pressure side is high. Side is 12-15
The pressure difference between the high pressure and the low pressure is extremely large, and it is feared that the gas leakage loss from the high pressure side to the low pressure side in the compression mechanism is excessive.
【0004】このような理由から、二酸化炭素(C
2)冷媒を用いた圧縮機として、多段圧縮機の改良検
討が進められている。
For these reasons, carbon dioxide (C
As a compressor using O 2 ) refrigerant, improvement studies of a multi-stage compressor are under way.
【0005】特に、家庭用ヒートポンプシステムに搭載
される圧縮機としては、生産性と耐久性および高性能・
小型化の観点から多段圧縮機としては、ローリングピス
トン型ロータリ式2段圧縮機が注目を浴びている。
Particularly, as a compressor installed in a home heat pump system, productivity, durability and high performance
From the viewpoint of downsizing, a rolling piston type rotary two-stage compressor has been attracting attention as a multi-stage compressor.
【0006】図6は、特開平1−277695号公報に
記載されている周知のローリングピストン型ロータリ式
2段圧縮機の部分縦断面図を示す。
FIG. 6 is a partial vertical sectional view of a well-known rolling piston type rotary two-stage compressor disclosed in Japanese Patent Laid-Open No. 1-277695.
【0007】同図において、1001は上側に配置され
た低段側圧縮機構部、1002は下側に配置された高段
側圧縮機構部である。これら圧縮機構部1001,10
02間には仕切板1003が設けられている。そして、
主軸受1004と仕切板1003との間に低段側圧縮機
構部1001の低圧側シリンダ1005が設けられ、低
圧側圧縮室1006が形成されている。また、副軸受1
007と仕切板1003との間に高段側圧縮機構部10
02の高圧側シリンダ1008が設けられ、高圧側圧縮
室1009が形成されている。さらに、低圧側シリンダ
1005には低圧側ブレード1010が設けられ、これ
はブレードスプリング1011によって低圧側ローラ1
012に押付けられている。また、高圧側シリンダ10
08には高圧側ブレード1013が設けられ、これはブ
レードスプリング1014によって高圧側ローラ15に
押付けられている。なお、低圧側圧縮室1006の排除
容積は高圧側圧縮室1009の排除容積よりも大きくな
っている。
In the figure, reference numeral 1001 is a low-stage compression mechanism portion arranged on the upper side, and 1002 is a high-stage compression mechanism portion arranged on the lower side. These compression mechanism units 1001, 10
A partition plate 1003 is provided between 02. And
A low pressure side cylinder 1005 of the low stage side compression mechanism portion 1001 is provided between the main bearing 1004 and the partition plate 1003, and a low pressure side compression chamber 1006 is formed. In addition, the auxiliary bearing 1
The high-stage compression mechanism unit 10 is provided between the 007 and the partition plate 1003.
No. 02 high pressure side cylinder 1008 is provided, and a high pressure side compression chamber 1009 is formed. Further, the low pressure side cylinder 1005 is provided with a low pressure side blade 1010, which is provided by a blade spring 1011.
It is pressed against 012. Also, the high pressure side cylinder 10
A high pressure side blade 1013 is provided at 08, which is pressed against the high pressure side roller 15 by a blade spring 1014. The excluded volume of the low pressure side compression chamber 1006 is larger than the excluded volume of the high pressure side compression chamber 1009.
【0008】また、低圧側ローラ1012は主軸101
6の低圧側クランク部1017に嵌着され、偏心回転す
るようになっている。さらに、高圧側ローラ1015は
主軸1016の高圧側クランク部1018に嵌着され、
偏心回転するようになっている。
The low pressure side roller 1012 is a main shaft 101.
6 is fitted in the low-pressure side crank portion 1017 and eccentrically rotates. Further, the high pressure side roller 1015 is fitted to the high pressure side crank portion 1018 of the main shaft 1016,
It is designed to rotate eccentrically.
【0009】さらに、主軸受1004には低段側圧縮機
構部1001の低圧側吐出弁1019が設けられている
と共に、この吐出弁1019を覆う低圧側バルブカバー
1020が設けられている。また、副軸受1007には
高段側圧縮機構部1002の高圧側吐出弁1021が設
けられていると共に、この吐出弁1021を覆う高圧側
バルブカバー1022が設けられている。これらバルブ
カバー1020,1022の内面にはゴムなどの弾性材
からなる防音材1023,1024が貼着され、軸受面
とカバー面との間の隙間をシールすると共に、吐出ガス
の脈動成分を取除く役目をしている。
Further, the main bearing 1004 is provided with a low pressure side discharge valve 1019 of the low stage side compression mechanism portion 1001 and a low pressure side valve cover 1020 for covering the discharge valve 1019. Further, the auxiliary bearing 1007 is provided with a high pressure side discharge valve 1021 of the high stage side compression mechanism portion 1002 and a high pressure side valve cover 1022 for covering the discharge valve 1021. Soundproofing materials 1023 and 1024 made of an elastic material such as rubber are adhered to the inner surfaces of the valve covers 1020 and 1022 to seal the gap between the bearing surface and the cover surface and remove the pulsating component of the discharge gas. Playing a role.
【0010】そして、被圧縮ガスは低段側圧縮機構部1
001の低圧側圧縮室1006で一旦圧縮された後、低
圧側吐出弁1019および図示しない連通路を介して高
段側圧縮機構部1002の高圧側圧縮室1009に吸い
込まれる。ついで、この圧縮室1009でさらに高圧状
態に圧縮され、高圧側吐出弁1021から吐出されるよ
うになっている。したがって、被圧縮ガスは吸入圧から
中間圧、中間圧から吐出圧となるように2段圧縮される
ようになっている。
The gas to be compressed is the low-stage compression mechanism 1
After being once compressed in the low pressure side compression chamber 1006 of 001, it is sucked into the high pressure side compression chamber 1009 of the high pressure side compression mechanism portion 1002 via the low pressure side discharge valve 1019 and a communication passage (not shown). Then, it is further compressed to a high pressure state in the compression chamber 1009 and discharged from the high pressure side discharge valve 1021. Therefore, the gas to be compressed is compressed in two stages from the suction pressure to the intermediate pressure and from the intermediate pressure to the discharge pressure.
【0011】[0011]
【発明が解決しょうとする課題】このような従来の構成
は、主軸1016の低圧側クランク部1017と高圧側
クランク部1018との配置角度が主軸1016の回転
方向に沿って180°ずらされていると共に、低圧側シ
リンダ1005と高圧側シリンダ1008、つまり低圧
側ブレード1010と高圧側シリンダ1008、つまり
低圧側ブレード1010と高圧側ブレード1013とが
主軸1016の回転方向に沿って略同一の位置に配置さ
れている。このために、低圧側シリンダ1005から圧
縮ガスが吐出されるタイミングと、高圧側シリンダ10
08に導入される吸入ガスの流入タイミングとが一致せ
ず、各シリンダ内の中間圧部のガス容積の間に過不足現
象が生じる。その結果、中間圧部に圧力脈動が生じ、圧
縮損失を招くという課題があった。
In such a conventional structure, the arrangement angle between the low pressure side crank portion 1017 and the high pressure side crank portion 1018 of the main shaft 1016 is shifted by 180 ° along the rotation direction of the main shaft 1016. In addition, the low-pressure side cylinder 1005 and the high-pressure side cylinder 1008, that is, the low-pressure side blade 1010 and the high-pressure side cylinder 1008, that is, the low-pressure side blade 1010 and the high-pressure side blade 1013 are arranged at substantially the same position along the rotation direction of the main shaft 1016. ing. Therefore, the timing at which the compressed gas is discharged from the low pressure side cylinder 1005 and the high pressure side cylinder 10
The inflow timing of the intake gas introduced into 08 does not coincide, and an excess / deficiency phenomenon occurs between the gas volumes of the intermediate pressure portions in each cylinder. As a result, there is a problem that pressure pulsation occurs in the intermediate pressure portion, which causes compression loss.
【0012】なお、図7に示す各シリンダにおける圧縮
タイミングのモデル解説図を用いて圧力脈動発生の仕組
みを詳細に説明する。
The mechanism of pressure pulsation generation will be described in detail with reference to the model explanatory diagram of the compression timing in each cylinder shown in FIG.
【0013】すなわち、低段側シリンダでは主軸101
6の低圧側クランク部1017の頂部が低圧側ブレード
1010から180°進行した頃に低圧側吐出弁101
9(図示なし)が開口して圧縮ガスが高段側シリンダ1
008の吸入側に送出され始める。
That is, in the low-stage side cylinder, the main shaft 101
When the top of the low pressure side crank portion 1017 of No. 6 has advanced 180 ° from the low pressure side blade 1010, the low pressure side discharge valve 101
9 (not shown) opens and compressed gas is in the high-stage cylinder 1
It begins to be delivered to the suction side of 008.
【0014】一方、高圧側シリンダ1008では、高圧
側クランク部1018の頂部が高圧側ブレード1013
の位置に進行している。すなわち、高圧側シリンダ10
08の吸入行程が完了し、高圧側クランク部1018の
頂部が吸入口を塞ぐまでのしばらくの間は吸入開始しな
い状態である。換言すれば、高圧側クランク部1018
の頂部が吸入口を塞ぐまでのしばらくの間は低段側シリ
ンダ1005から排出されるガス量が過剰となり、中間
圧部の圧力が上昇する。
On the other hand, in the high pressure side cylinder 1008, the top of the high pressure side crank portion 1018 is the high pressure side blade 1013.
Is progressing to the position. That is, the high pressure side cylinder 10
The suction stroke of 08 is completed, and the suction is not started for a while until the top of the high pressure side crank portion 1018 closes the suction port. In other words, the high pressure side crank portion 1018
The gas amount discharged from the low-stage side cylinder 1005 becomes excessive for a while until the top portion of the cylinder closes the suction port, and the pressure of the intermediate pressure portion rises.
【0015】また、主軸1016が更に180°進行す
る間に、低段側シリンダ1005では圧縮ガスの全排出
が完了するが、高段側シリンダ1008では全吸入容積
の約半分の吸入容積しか吸入進行しておらず、この時点
でも、低段側シリンダ1005から排出されるガス量が
過剰となり、中間圧部の圧力が更に上昇する。
While the main shaft 1016 further advances 180 °, the low-pressure side cylinder 1005 completes the discharge of the compressed gas, but the high-pressure side cylinder 1008 only advances the intake volume of about half the total intake volume. However, even at this point, the amount of gas discharged from the low-stage cylinder 1005 becomes excessive, and the pressure in the intermediate pressure section further rises.
【0016】更に主軸1016が180°進行する間、
すなわち、低段側シリンダ1005の低圧側クランク部
1017の頂部が低圧側ブレード1010から反時計回
り方向に180°進行する間、低段側シリンダ1005
の圧縮行程が進行するが、低圧側吐出弁1019(図示
なし)が開口せずに排出されない。一方、高圧側シリン
ダ1008では残り半分の吸入行程が進行して吸入完了
して、低圧側シリンダ1005から排出される圧縮ガス
の総量と高圧側シリンダ1008に導入される吸入ガス
の総容積とが最終的に合致するが、主軸1016の18
0°進行過程で中間圧部の圧力が急下降する。このよう
な仕組みで中間圧部に圧力脈動が生じる。この圧力脈動
のエネルギーは圧縮損失となる。
Further, while the main shaft 1016 advances 180 °,
That is, while the top of the low pressure side crank portion 1017 of the low pressure side cylinder 1005 advances 180 degrees counterclockwise from the low pressure side blade 1010, the low pressure side cylinder 1005.
However, the low pressure side discharge valve 1019 (not shown) does not open and is not discharged. On the other hand, in the high-pressure side cylinder 1008, the remaining half of the suction stroke proceeds to complete the suction, and the total amount of compressed gas discharged from the low-pressure side cylinder 1005 and the total volume of suction gas introduced into the high-pressure side cylinder 1008 are final. 18 of the main shaft 1016
The pressure in the intermediate pressure portion sharply drops in the course of 0 °. With such a mechanism, pressure pulsation occurs in the intermediate pressure portion. The energy of this pressure pulsation becomes a compression loss.
【0017】なお、上記の圧力脈動を低減して圧縮損失
を小さくする2段圧縮機構の方策が特開昭63−138
189号公報で提案されている。
A two-stage compression mechanism for reducing the above-mentioned pressure pulsation and compression loss is disclosed in Japanese Patent Laid-Open No. 63-138.
189 publication.
【0018】すなわち、図8は同公報で提案されている
圧縮機の縦断面図である。同図において、2段圧縮機構
2002は低圧側圧縮機構2005の圧縮室から出たガ
スを高圧側圧縮機構2006の圧縮室へ案内する連絡通
路(吸込み管2023、緩衝容器2024,配管202
5,吐出ポート2016からなる通路)の容積が高圧側
圧縮機構2006の圧縮室の排除容積より大に設定する
構成である。
That is, FIG. 8 is a longitudinal sectional view of the compressor proposed in the publication. In the figure, the two-stage compression mechanism 2002 is a communication passage (suction pipe 2023, buffer container 2024, pipe 202) for guiding the gas discharged from the compression chamber of the low pressure side compression mechanism 2005 to the compression chamber of the high pressure side compression mechanism 2006.
5, the volume of the passage including the discharge port 2016) is set to be larger than the excluded volume of the compression chamber of the high-pressure side compression mechanism 2006.
【0019】この構成によって、低圧側圧縮機構200
5の圧縮室のガス吐出タイミングと高圧側圧縮機構20
06の圧縮室のガス吸込みタイミングとがずれている場
合でも、上述の連絡通路の緩衝作用でタイミングのずれ
からくる脈動の発生を抑制する構成である。
With this configuration, the low pressure side compression mechanism 200
5, the gas discharge timing of the compression chamber and the high-pressure side compression mechanism 20.
Even if the gas suction timing of the compression chamber of 06 is deviated, the pulsation caused by the timing deviation is suppressed by the buffering action of the communication passage.
【0020】しかしながら、上述の連絡通路が圧縮機内
部と圧縮機外部との通路で構成されているために、連絡
通路が長くなる。この結果、連絡通路内のガスが高圧側
圧縮機構2006に導入される際の追従性が悪くなり、
連絡通路内の圧力脈動を招き、十分な圧力脈動抑制の効
果が得られないという課題があった。
However, since the above-mentioned communication passage is composed of a passage inside the compressor and a passage outside the compressor, the communication passage becomes long. As a result, the followability when the gas in the communication passage is introduced into the high-pressure side compression mechanism 2006 becomes poor,
There has been a problem that pressure pulsation in the communication passage is caused, and a sufficient effect of suppressing pressure pulsation cannot be obtained.
【0021】本発明はこのような従来の課題を解決する
ものであり、高圧側圧縮機構に導入される吸入ガスの追
従性を良くして連絡通路に生じる圧力脈動の一層の低減
を目的とするものである。
The present invention is intended to solve such a conventional problem, and an object thereof is to improve the followability of the suction gas introduced into the high-pressure side compression mechanism to further reduce the pressure pulsation generated in the communication passage. It is a thing.
【0022】[0022]
【課題を解決するための手段】上記課題を解決するため
に本発明は、低圧側圧縮機構と高圧側圧縮機構との間の
連絡通路を短縮すべく、低圧側圧縮機構と高圧側圧縮機
構の配置を構成したものである。
In order to solve the above problems, the present invention provides a low pressure side compression mechanism and a high pressure side compression mechanism in order to shorten a communication passage between the low pressure side compression mechanism and the high pressure side compression mechanism. The arrangement is configured.
【0023】上記配置構成によって高圧側圧縮機構に導
入される連絡通路内の吸入ガスの追従性を良くし、連絡
通路で生じる圧力脈動を抑制し、圧縮損失の低減を図る
ことができる。
With the above arrangement, the followability of the suction gas in the communication passage introduced into the high pressure side compression mechanism can be improved, the pressure pulsation generated in the communication passage can be suppressed, and the compression loss can be reduced.
【0024】[0024]
【発明の実施の形態】請求項1に記載の発明は、複数の
圧縮要素の内の低段圧縮要素の吐出側と高段圧縮要素の
吸入側とを、順次、連通路を介して直列接続した多段圧
縮機構を構成し、その連通路の通路長さが最短通路長さ
を形成されるべく、低段圧縮要素と高段圧縮要素との平
面配置をずらせて構成したものである。そしてこの構成
によれば、高段圧縮要素に導入される連通路内の吸入ガ
スの追従性が良くなり、連通路で生じる圧力脈動が抑制
される。
According to a first aspect of the present invention, a discharge side of a low-stage compression element and a suction side of a high-stage compression element among a plurality of compression elements are sequentially connected in series via a communication passage. The multi-stage compression mechanism is configured such that the low-stage compression element and the high-stage compression element are displaced in plane so that the passage length of the communication passage forms the shortest passage length. According to this structure, the followability of the suction gas in the communication passage introduced into the high-stage compression element is improved, and the pressure pulsation generated in the communication passage is suppressed.
【0025】請求項2に記載の発明は、圧縮要素の各シ
リンダ内を前進・後退しつつ吸入室と圧縮室とに区画す
るベーンの背面室に、圧縮要素から気体と共に排出され
た潤滑油をベーンの背面室に導入してベーンを背圧付勢
させる回転式圧縮機構において、低段圧縮要素のベーン
の背面室を、連通路の途中に配置したものである。そし
てこの構成によれば、連通路の通路長さの最短距離形成
が容易になり圧力脈動が抑制されると共に、低段圧縮要
素から排出された吐出気体がベーンの背面室を通過する
ことによってベーンの摺動部が冷却され、耐久性が向上
する。
According to the second aspect of the present invention, the lubricating oil discharged together with the gas from the compression element is fed to the back chamber of the vane which is divided into the suction chamber and the compression chamber while advancing and retracting in each cylinder of the compression element. In the rotary compression mechanism that is introduced into the back chamber of the vane to urge the back pressure of the vane, the back chamber of the vane of the low-stage compression element is arranged in the middle of the communication passage. Further, according to this configuration, it is easy to form the shortest distance of the passage length of the communication passage, the pressure pulsation is suppressed, and the discharge gas discharged from the low-stage compression element passes through the back chamber of the vane, so that the vane is discharged. The sliding part of is cooled, and the durability is improved.
【0026】請求項3に記載の発明は、高段圧縮要素か
ら気体と共に排出された潤滑油を低段圧縮要素のベーン
の背面室に供給する差圧給油通路を設けたものである。
そしてこの構成によれば、低段圧縮要素のベーンの摺動
面に供給される潤滑油の油膜が低段圧縮要素のベーンの
背面室とシリンダ内との間を密封し、低段圧縮要素から
排出された圧縮気体がベーンの摺動隙間を介して低段圧
縮要素のシリンダ内に漏洩するのを防ぐ。
According to the third aspect of the invention, there is provided a differential pressure oil supply passage for supplying the lubricating oil discharged together with the gas from the high-stage compression element to the back chamber of the vane of the low-stage compression element.
According to this configuration, the oil film of the lubricating oil supplied to the sliding surface of the vane of the low-stage compression element seals between the back chamber of the vane of the low-stage compression element and the inside of the cylinder, and It prevents the discharged compressed gas from leaking into the cylinder of the low-stage compression element through the sliding gap of the vane.
【0027】請求項4に記載の発明は、差圧給油通路の
上流側通路途中に、潤滑油に混入する気体を高段圧縮要
素の吐出側に放出するためのガス抜き手段を設けたもの
である。そしてこの構成によれば、圧縮ガスの混入の少
ない潤滑油が低段圧縮要素のベーンの背面室に供給さ
れ、ベーンの摺動面の油膜形成が向上すると共に、高段
圧縮要素における圧縮ガスの再圧縮作用が防止される。
According to the invention described in claim 4, in the middle of the upstream side passage of the differential pressure oil supply passage, there is provided a degassing means for discharging the gas mixed in the lubricating oil to the discharge side of the high-stage compression element. is there. According to this structure, the lubricating oil containing less compressed gas is supplied to the back chamber of the vane of the low-stage compression element, the oil film formation on the sliding surface of the vane is improved, and the compressed gas of the high-stage compression element is reduced. The recompression effect is prevented.
【0028】請求項5に記載の発明は、ガス抜き手段と
して、駆動軸の摺動部に給油すべく駆動軸の軸芯を貫通
して高段圧縮要素の吐出側に開通して設けた油穴を併用
したものである。そしてこの構成によれば、新たなガス
抜き通路を設けることなく、差圧給油される潤滑油が効
果的にガス抜きされる。
According to a fifth aspect of the present invention, as the gas venting means, an oil is provided which penetrates the shaft core of the drive shaft to supply oil to the sliding portion of the drive shaft and is opened to the discharge side of the high-stage compression element. It is a combination of holes. According to this configuration, the lubricating oil that is differentially pressure-fed is effectively degassed without providing a new gas vent passage.
【0029】請求項6に記載の発明は、低段圧縮要素の
ベーンの背面室と、高段圧縮要素の吸入口とが概同じ配
置角度を以って平面配置されるべく、低段圧縮要素と高
段圧縮要素との平面配置角度をずらせたものである。そ
してこの構成によれば、低段圧縮要素のベーンの背面室
が高段圧縮要素の吸入口に隣接する構成となり、連通路
の通路長さが一層短縮され、連通路内の圧力脈動の発生
が更に抑制される。
According to a sixth aspect of the invention, the back chamber of the vane of the low-stage compression element and the suction port of the high-stage compression element are arranged in a plane at substantially the same arrangement angle so that the low-stage compression element is arranged in a plane. The plane arrangement angle between the high-stage compression element and the high-stage compression element is shifted. According to this configuration, the back chamber of the vane of the low-stage compression element is adjacent to the suction port of the high-stage compression element, the passage length of the communication passage is further shortened, and the pressure pulsation in the communication passage is prevented. Further suppressed.
【0030】請求項7に記載の発明は、低段圧縮要素と
高段圧縮要素をローリングピストン型ロータリ圧縮機構
とし、低段圧縮要素と高段圧縮要素に連結する駆動軸の
各クランク部の角度位相を180度に設定し、高段圧縮
要素から圧縮気体が排出されるタイミングと、低段圧縮
要素の吸入行程が開始するタイミングとを略同一にした
ものである。そしてこの構成によれば、低段圧縮要素か
ら排出される圧縮気体の容積の余剰が少なくなり、連通
路内での圧力脈動の発生が抑制される。
According to a seventh aspect of the present invention, the low-stage compression element and the high-stage compression element are a rolling piston type rotary compression mechanism, and the angle of each crank portion of the drive shaft connected to the low-stage compression element and the high-stage compression element. The phase is set to 180 degrees, and the timing at which the compressed gas is discharged from the high-stage compression element and the timing at which the suction stroke of the low-stage compression element starts are substantially the same. Further, according to this configuration, the surplus of the volume of the compressed gas discharged from the low-stage compression element is reduced, and the occurrence of pressure pulsation in the communication passage is suppressed.
【0031】請求項8に記載の発明は、ローリングピス
トン型ロータリ式多段圧縮機の高段圧縮要素の吸入容積
を低段圧縮容積」の吸入容積の40〜70%に設定した
構成において、高段圧縮要素を低段圧縮要素に対してそ
の平面配置角度を反圧縮進行方向に15〜30度ずらせ
たものである。そしてこの構成によれば、低段圧縮要素
からの圧縮ガス排出タイミングと、高段圧縮要素の吸入
行程の開始タイミングとを略同時期に設定することがで
きる。
The invention described in claim 8 is the structure in which the suction volume of the high-stage compression element of the rolling piston type rotary multi-stage compressor is set to 40 to 70% of the suction volume of the "low-stage compression volume". The plane arrangement angle of the compression element is shifted by 15 to 30 degrees in the anti-compression advancing direction with respect to the low-stage compression element. According to this configuration, the timing of discharging the compressed gas from the low-stage compression element and the timing of starting the suction stroke of the high-stage compression element can be set at substantially the same timing.
【0032】請求項9に記載の発明は、高段圧縮要素の
吸入側に、その吸入側のみに通じるダンパー室を連通さ
せたものである。そしてこの構成によれば、連通路の通
路長さを短縮させながら高段圧縮要素に導入する吸入気
体容量が確保され、連通路内に生じる圧力脈動が緩和す
る。
According to a ninth aspect of the present invention, a damper chamber communicating only with the suction side of the high-stage compression element is connected to the suction side. Further, according to this configuration, the suction gas capacity introduced into the high-stage compression element is secured while shortening the passage length of the communication passage, and the pressure pulsation generated in the communication passage is relaxed.
【0033】[0033]
【実施例】以下本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.
【0034】(実施例1)図1は二酸化炭素(CO2)
冷媒を使用したローリングピストン型ロータリ式2段圧
縮機の縦断面を表し、図2は同圧縮機の部分縦断面を表
し、図3は同圧縮機のX−X線に沿った横断面を表し、
図4は同圧縮機のY−Y線に沿った横断面を表す。
Example 1 FIG. 1 shows carbon dioxide (CO2)
FIG. 2 shows a vertical cross section of a rolling piston type rotary two-stage compressor using a refrigerant, FIG. 2 shows a partial vertical cross section of the same compressor, and FIG. 3 shows a horizontal cross section of the same compressor taken along line XX. ,
FIG. 4 shows a cross section taken along line YY of the compressor.
【0035】密閉容器1の内部に、電動機2とその下部
に2段圧縮機構3が配置されている。2段圧縮機構3
は、高段圧縮要素4と、その下部に配置された低段圧縮
要素5と、高段圧縮要素4および低段圧縮要素5の間に
配置された中板6と、高段圧縮要素4および低段圧縮要
素5を駆動すべく電動機2の回転子2aに連結された駆
動軸7と、駆動軸7を支持すべく高段圧縮要素4の高段
シリンダブロック8に固定された主軸受9および低段圧
縮要素5の低段シリンダブロック10に固定された副軸
受11とから成る。
Inside the closed container 1, an electric motor 2 and a two-stage compression mechanism 3 below it are arranged. Two-stage compression mechanism 3
Is a high-stage compression element 4, a low-stage compression element 5 arranged below the high-stage compression element 4, an intermediate plate 6 arranged between the high-stage compression element 4 and the low-stage compression element 5, a high-stage compression element 4 and A drive shaft 7 connected to the rotor 2a of the electric motor 2 to drive the low-stage compression element 5, and a main bearing 9 fixed to the high-stage cylinder block 8 of the high-stage compression element 4 to support the drive shaft 7. The low-stage compression element 5 comprises a sub-bearing 11 fixed to the low-stage cylinder block 10.
【0036】高段シリンダブロック8は密閉容器1に溶
接固定され、その高段シリンダブロック8に中板6と低
段シリンダブロック10が固定されている。
The high-stage cylinder block 8 is welded and fixed to the closed container 1, and the middle plate 6 and the low-stage cylinder block 10 are fixed to the high-stage cylinder block 8.
【0037】主軸受9に取付られた高段吐出カバー12
は、主軸受9と共に高段吐出室13を形成している。
A high-stage discharge cover 12 attached to the main bearing 9.
Together with the main bearing 9 form a high-stage discharge chamber 13.
【0038】中板6,低段シリンダブロック10,副軸
受11の外周部を囲み且つシール部材98を介して高段
シリンダブロック8に取付られた低段吐出カバー26の
内部は低段吐出室27を形成している。低段吐出カバー
26と副軸受11との間にO―リング97が介装され、
密閉容器1内の油溜32と低段吐出室27との間が圧力
的に隔離されている。
The inside of the low-stage discharge cover 26 that surrounds the outer periphery of the middle plate 6, the low-stage cylinder block 10 and the auxiliary bearing 11 and is attached to the high-stage cylinder block 8 via the seal member 98 is inside the low-stage discharge chamber 27. Is formed. An O-ring 97 is interposed between the low-stage discharge cover 26 and the auxiliary bearing 11,
The oil reservoir 32 in the closed container 1 and the low-stage discharge chamber 27 are pressure-isolated from each other.
【0039】低段吐出室27と高段吐出室13との間
は、副軸受11,低段シリンダブロック10,中板6,
高段シリンダブロック8,主軸受9を貫通して設けられ
たバイパス通路96で連通されている。バイパス通路9
6の端部は、バイパス通路96を開閉する弁体95と、
弁体95を付勢するバネ手段94が配置されており、低
段吐出室27から高段吐出室13への冷媒ガスの流入の
み許容する逆止弁機構を形成している。
Between the low-stage discharge chamber 27 and the high-stage discharge chamber 13, the auxiliary bearing 11, the low-stage cylinder block 10, the middle plate 6,
The high-speed cylinder block 8 and the main bearing 9 are communicated with each other by a bypass passage 96 provided. Bypass passage 9
The end of 6 has a valve body 95 for opening and closing the bypass passage 96,
Spring means 94 for urging the valve body 95 is arranged to form a check valve mechanism that allows only the inflow of the refrigerant gas from the low-stage discharge chamber 27 to the high-stage discharge chamber 13.
【0040】駆動軸7を貫通する油穴7aの下端部に
は、遠心ポンプ手段93が装着されており、遠心ポンプ
手段93によって、副軸受11、低段圧縮要素5の低段
ピストン70の内側、高段圧縮要素4の高段ピストン6
5の内側、主軸受9の各摺動面に油溜32の潤滑油が給
油される経路が形成されている。
Centrifugal pump means 93 is attached to the lower end of the oil hole 7a penetrating the drive shaft 7. The centrifugal pump means 93 allows the sub-bearing 11 and the inside of the low-stage piston 70 of the low-stage compression element 5 to be mounted. , High-stage piston 6 of high-stage compression element 4
A passage through which the lubricating oil in the oil sump 32 is supplied is formed on the inner side of 5 and on each sliding surface of the main bearing 9.
【0041】高段圧縮要素4のシリンダ内で高段ピスト
ン65の外周面に接してシリンダ内を吸入室と圧縮室と
に区画すべく配置された高段ベーン15の反シリンダ側
の高段ベーン背面室16は、油溜32に連通している
(図4参照)。
In the cylinder of the high-stage compression element 4, a high-stage vane on the side opposite to the cylinder of the high-stage vane 15 arranged to contact the outer peripheral surface of the high-stage piston 65 to partition the inside of the cylinder into an intake chamber and a compression chamber. The back chamber 16 communicates with the oil sump 32 (see FIG. 4).
【0042】上記と同様に、低段圧縮要素5の低段ベー
ン92の反シリンダ側に配置された低段ベーン背面室3
3は低段吐出室27と、中板6に設けた貫通穴80を介
して高段圧縮要素4の吸入口81にも通じている。従っ
て、低段吐出室27と高段圧縮要素の吸入口81とは、
低段ベーン背面室33と貫通穴80とで構成される中間
連通路79によって連通している。
Similarly to the above, the low-stage vane rear chamber 3 arranged on the side opposite to the cylinder of the low-stage vane 92 of the low-stage compression element 5.
3 also communicates with the low-stage discharge chamber 27 and the suction port 81 of the high-stage compression element 4 through a through hole 80 provided in the middle plate 6. Therefore, the low-stage discharge chamber 27 and the suction port 81 of the high-stage compression element are
The lower vane back chamber 33 and the through hole 80 communicate with each other through an intermediate communication passage 79.
【0043】更に、低段ベーン背面室33にはバネ手段
(コイルバネ)91が配置され、低段ベーン92の先端
を低段ピストン70に押圧付勢している。バネ手段(コ
イルバネ)91を装着すべく低段ベーン背面室33に設
けられたバネ装着穴34は、以下に述べる経路を経て密
閉容器1内の油溜32に連通している。
Further, spring means (coil spring) 91 is arranged in the rear chamber 33 of the low-stage vane to press and urge the tip of the low-stage vane 92 against the low-stage piston 70. The spring mounting hole 34 provided in the low-stage vane rear chamber 33 for mounting the spring means (coil spring) 91 communicates with the oil sump 32 in the closed container 1 through a path described below.
【0044】すなわち、バネ装着穴34は、低段シリン
ダブロック10と中板6の外周部と低段吐出カバー26
との間の間隙通路90、中板6に設けられて絞り部を有
する油穴68、駆動軸7の油穴7aに直交して設けられ
た半径方向油穴7bを順次経由して連通している。
That is, the spring mounting hole 34 is provided in the low-stage cylinder block 10, the outer peripheral portion of the middle plate 6, and the low-stage discharge cover 26.
Through a gap passage 90 between the oil passage 68, an oil hole 68 provided in the middle plate 6 and having a throttle portion, and a radial oil hole 7b provided orthogonally to the oil hole 7a of the drive shaft 7 There is.
【0045】また、駆動軸7の低段クランク軸78aと
78bとは180°の角度位相をなして構成されてい
る。更に、図3、図4に示す如く、高段圧縮要素4の高
段ベーン15は、低段圧縮要素5の低段ベーン92に対
して高段圧縮要素4の圧縮進行が早まる方向に所要角度
ずれて配置されている。すなわち、低段クランク軸78
aの頂部が低段ベーン92と反対位置に角度進行した
時、高段クランク軸78bの頂部が高段圧縮要素4の吸
入口81を略閉塞できる位置に角度進行すべく配置構成
されている。
Further, the low-stage crankshafts 78a and 78b of the drive shaft 7 are constructed so as to form an angular phase of 180 °. Further, as shown in FIGS. 3 and 4, the high-stage vanes 15 of the high-stage compression element 4 have a required angle in a direction in which the high-stage compression element 4 accelerates the compression progress with respect to the low-stage vanes 92 of the low-stage compression element 5. They are arranged offset. That is, the low stage crankshaft 78
It is arranged so that when the apex of a is advanced to the position opposite to the low vane 92, the apex of the high crankshaft 78b is advanced to a position where it can substantially close the suction port 81 of the high compression element 4.
【0046】この配置構成によって、低段ベーン背面室
33の角度位置に高段圧縮要素4の吸入口が角度配置さ
れる。
With this arrangement, the suction port of the high-stage compression element 4 is angularly arranged at the angular position of the low-stage vane back chamber 33.
【0047】換言すれば、低段ベーン背面室33の真上
に吸入口81が配置されている。したがって、低段吐出
室27と吸入口81との間は最短距離を以て構成されて
いる。
In other words, the suction port 81 is arranged directly above the low-stage vane rear chamber 33. Therefore, the shortest distance between the low-stage discharge chamber 27 and the suction port 81 is formed.
【0048】一方、密閉容器1の上壁中央部の平坦部に
は電動機2に接続する電気接続端子86が配置され、そ
の外部接続端子86aには、絶縁樹脂材で結束した外部
接続クラスター85が挿入されている。その外部接続ク
ラスター85を囲むターミナルカバー84の内形状は、
例えば、電気接続端子86を構成する端子が密閉容器1
内の高圧CO2ガス圧力によって部分的に抜けようとす
る場合でも、外部接続クラスター85が外部接続端子8
6aから外れることがない寸法配置構成で設定されてい
る。
On the other hand, an electric connection terminal 86 for connecting to the electric motor 2 is arranged on the flat portion of the central portion of the upper wall of the closed container 1, and an external connection cluster 85 bound by an insulating resin material is provided on the external connection terminal 86a. Has been inserted. The inner shape of the terminal cover 84 surrounding the external connection cluster 85 is
For example, the terminal forming the electrical connection terminal 86 is the closed container 1.
Even when the high pressure CO2 gas pressure in the inside tries to partially escape, the external connection cluster 85 is
6a is set so that it does not come off from 6a.
【0049】密閉容器1の上壁に配置された吐出管83
の電動機室29側開口端の近傍には、密閉容器1の内壁
側に開口した遮蔽板82が配置されており、電気接続端
子86の側から吐出管83への直接的なガス流出を防で
いる。
Discharge pipe 83 arranged on the upper wall of the closed container 1.
A shield plate 82 that is open to the inner wall side of the closed container 1 is disposed in the vicinity of the opening end of the electric motor chamber 29 side to prevent direct gas outflow from the electric connection terminal 86 side to the discharge pipe 83. There is.
【0050】以上のように構成された二酸化炭素(CO
2)冷媒ガスを使用したローリングピストン型ロータリ
式2段圧縮機について、図1〜図4を参照しながらその
動作を説明する。
The carbon dioxide (CO
2) The operation of the rolling piston type rotary two-stage compressor using the refrigerant gas will be described with reference to FIGS.
【0051】低段圧縮要素5のシリンダ内に取り込まれ
た吸入冷媒ガスは、圧縮された後、低段吐出室27に吐
出される。低段吐出室27の吐出冷媒ガスは、背面室3
3と貫通穴80を順次を経由して高段圧縮要素4の吸入
室に取り込まれ、圧縮の後、高段吐出室13に吐出さ
れ、電動機室9に排出される。電動機室9に排出された
冷媒ガスに混入する潤滑油の一部は分離され、油溜32
に収集される。潤滑油の一部が分離された高圧の吐出冷
媒ガスは、吐出管83を経て圧縮機外部配管系に送出さ
れる。
The suction refrigerant gas taken into the cylinder of the low-stage compression element 5 is compressed and then discharged into the low-stage discharge chamber 27. The refrigerant gas discharged from the low-stage discharge chamber 27 is the back chamber 3
3 and the through hole 80 are sequentially taken into the suction chamber of the high-stage compression element 4, and after being compressed, are discharged into the high-stage discharge chamber 13 and discharged into the electric motor chamber 9. A part of the lubricating oil mixed in the refrigerant gas discharged into the electric motor chamber 9 is separated, and the oil sump 32
To be collected. The high-pressure discharged refrigerant gas from which a part of the lubricating oil has been separated is delivered to the compressor external piping system via the discharge pipe 83.
【0052】高段圧縮要素4の吐出冷媒ガス圧力が作用
する油溜32の潤滑油は、駆動軸7の下端部に配置され
た遠心ポンプ手段93によって駆動軸7内の油穴7a,
半径方向油穴7b,低段ピストン70の内径側空間,高
段ピストン65の内径側空間,主軸受9の軸受摺動面を
順次経由して電動機室29に排出され、再び、油溜32
に帰還する。
The lubricating oil in the oil sump 32, which is acted on by the pressure of the refrigerant gas discharged from the high-stage compression element 4, is rotated by the centrifugal pump means 93 arranged at the lower end of the drive shaft 7 into the oil hole 7a in the drive shaft 7.
The oil is discharged into the electric motor chamber 29 through the radial oil hole 7b, the inner diameter space of the low-stage piston 70, the inner diameter space of the high-stage piston 65, and the bearing sliding surface of the main bearing 9 in order, and the oil sump 32 is again provided.
Return to.
【0053】なお、遠心ポンプ手段93から駆動軸7内
の油穴7aに排出された潤滑油に混入する冷媒ガスが油
穴7aの上部開口端から電動機室29へ放出される。そ
れによって、油穴7aの潤滑油がガス抜きされるので、
低段ピストン70の内径摺動面,高段ピストン65の内
径摺動面,主軸受9の軸受摺動面にはガス噛み込みのな
い良好な油膜が形成される。
Refrigerant gas mixed with the lubricating oil discharged from the centrifugal pump means 93 into the oil hole 7a in the drive shaft 7 is discharged into the electric motor chamber 29 from the upper open end of the oil hole 7a. As a result, the lubricating oil in the oil hole 7a is degassed,
A good oil film without gas entrapment is formed on the inner diameter sliding surface of the low-stage piston 70, the inner diameter sliding surface of the high-stage piston 65, and the bearing sliding surface of the main bearing 9.
【0054】このような駆動軸7の摺動部給油過程途中
の潤滑油は、中板6の絞り部を有する油穴68を介して
中間圧力に減圧の後、間隙通路90,バネ装着穴34を
経由して低段吐出室27に開通する低段ベーン背面室3
3に供給される。低段吐出室27と同圧力状態の潤滑油
は,低段ベーン92の摺動部隙間の油膜密封作用と、低
段ベーン92を低段ピストンに押圧させる。
The lubricating oil in the course of the lubrication process of the sliding portion of the drive shaft 7 is depressurized to an intermediate pressure through the oil hole 68 having the throttle portion of the intermediate plate 6, and then the clearance passage 90 and the spring mounting hole 34. Low-stage vane rear chamber 3 opened to the low-stage discharge chamber 27 via
3 is supplied. The lubricating oil having the same pressure as the low-stage discharge chamber 27 seals the oil film in the sliding portion gap of the low-stage vane 92 and presses the low-stage vane 92 against the low-stage piston.
【0055】この押圧力は、低段ベーン背面室33に油
溜32の潤滑油が減圧されることなく導入される場合に
比較して半減しており、低段ピストン70の外周面と低
段ベーン92の先端との摺動摩擦損失が小さく、摺動部
摩耗も少ない特徴を有している。
This pressing force is halved compared to the case where the lubricating oil in the oil sump 32 is introduced into the low-stage vane back chamber 33 without being decompressed, and the outer peripheral surface of the low-stage piston 70 and the low-stage piston 70 are reduced. The sliding friction loss with the tip of the vane 92 is small, and the sliding part is also less worn.
【0056】また、高段シリンダブロック8と低段吐出
カバー26の間に介在するシール部材によって、低段ベ
ーン背面室33が密閉容器1内と圧力的に隔離されてお
り、例え、油溜32の油面が低下する場合でも、密閉容
器1内の吐出冷媒ガスが低段ベーン背面室33に漏洩す
ることはない。また、密閉容器1内の吐出冷媒ガスや吐
出圧力が作用する潤滑油が中板6と高段シリンダブロッ
ク8との接触結合面、中板6と低段シリンダブロック1
0との接触結合面を介して高段圧縮要素4の圧縮室およ
び低段圧縮要素5の圧縮室に直接的に漏洩流入すること
はない。
Further, the low-stage vane rear chamber 33 is pressure-isolated from the inside of the closed container 1 by the seal member interposed between the high-stage cylinder block 8 and the low-stage discharge cover 26, for example, the oil sump 32. Even if the oil level of No. 2 decreases, the discharged refrigerant gas in the closed container 1 does not leak to the low-stage vane back chamber 33. Further, the discharge refrigerant gas in the closed container 1 and the lubricating oil under the discharge pressure act on the contact coupling surface between the middle plate 6 and the high stage cylinder block 8, the middle plate 6 and the low stage cylinder block 1.
It does not leak and flow directly into the compression chamber of the high-stage compression element 4 and the compression chamber of the low-stage compression element 5 via the contact coupling surface with 0.
【0057】低段ベーン92の摺動面の良好な油膜形成
によって、背面室33を通過する気体が低段圧縮要素5
のシリンダ内へ漏洩するのを阻止される。その一方、低
段吐出室27の気体に混入して高段圧縮要素5の吸入口
81に流入する。
Due to the formation of a good oil film on the sliding surface of the low-stage vane 92, the gas passing through the rear chamber 33 is prevented from passing through the low-stage compression element 5.
Is prevented from leaking into the cylinder. On the other hand, it mixes with the gas in the low-stage discharge chamber 27 and flows into the suction port 81 of the high-stage compression element 5.
【0058】なお、低段ベーン背面室33から低段吐出
室27を経由して高段圧縮要素4の吸入室に導入された
適量の潤滑油は、高段圧縮要素4の圧縮室隙間の油膜密
封作用に供され、圧縮効率を向上させる。
An appropriate amount of lubricating oil introduced from the low-stage vane back chamber 33 into the suction chamber of the high-stage compression element 4 via the low-stage discharge chamber 27 is an oil film in the compression chamber gap of the high-stage compression element 4. It is used for sealing action and improves compression efficiency.
【0059】なお、図3に示す如く、低段圧縮要素5に
おいては、駆動軸7の低段クランク部78aの頂部が低
段ベーン92の反対位置まで角度進行した時(低段ベー
ン92から180°圧縮行程が進行した時)、吐出口7
7を開閉する低段吐出弁装置(図示なし)から圧縮気体
が排出され始める。その時、高段圧縮要素4において
は、図4に示す高段jクランク部78bの頂部が吸入口
81を閉塞し始め、シリンダ内における吸入行程と圧縮
行程が開始する圧縮タイミングに設定されている。この
ために、低段圧縮要素5から圧縮気体の排出が始まると
同時に高段圧縮要素4の吸入行程が始まるので、低段吐
出室27および低段ベーン背面室33での過不足気体容
積が少なくなり、低段吐出室27や連通路79内で圧力
脈動の発生が抑制され、圧縮効率の低下が抑制される。
As shown in FIG. 3, in the low-stage compression element 5, when the top of the low-stage crank portion 78a of the drive shaft 7 angularly advances to a position opposite to the low-stage vane 92 (from the low-stage vanes 92 to 180). ° When the compression stroke proceeds), discharge port 7
Compressed gas begins to be discharged from a low-stage discharge valve device (not shown) that opens and closes 7. At that time, in the high-stage compression element 4, the top portion of the high-stage j crank portion 78b shown in FIG. 4 starts to close the suction port 81, and the suction timing in the cylinder and the compression timing at which the compression stroke starts are set. For this reason, since the compressed gas is discharged from the low-stage compression element 5 and the suction stroke of the high-stage compression element 4 starts at the same time, the excess / deficiency gas volume in the low-stage discharge chamber 27 and the low-stage vane back chamber 33 is small. Therefore, the occurrence of pressure pulsation in the low-stage discharge chamber 27 and the communication passage 79 is suppressed, and the decrease in compression efficiency is suppressed.
【0060】また、連通路79が最短距離となる通路構
成のために、低段吐出室27から排出された吐出気体が
高段圧縮要素4へ導入される際の吐出気体の追従性が良
く、連通路79内での圧力脈動変化が小さくなる。この
圧力脈動変動の抑制によって、圧縮機の振動や騒音発生
も抑制される。
Further, since the communication passage 79 has the shortest distance, the discharge gas discharged from the low-stage discharge chamber 27 has a good followability when being introduced into the high-stage compression element 4. The pressure pulsation change in the communication passage 79 becomes small. By suppressing the pressure pulsation fluctuation, vibration of the compressor and noise generation are also suppressed.
【0061】以上のように上記実施例によれば、複数の
圧縮要素の内の低段圧縮要素5の吐出側と高段圧縮要素
4の吸入側とを、順次、連通路79を介して直列接続し
た2段圧縮機構3を構成し、その連通路79の通路長さ
が最短通路長さを形成されるべく、低段圧縮要素5と高
段圧縮要素4との平面配置角度をずらせて構成したこと
により、高段圧縮要素4に導入される連通路79内の吸
入ガスの追従性が良くなり、連通路79で生じる圧力脈
動を抑制し、圧縮効率の低下を防止できる。また、高段
圧縮要素4での気体流れの変動が抑制され、2段圧縮機
構部3で生じる騒音や振動を軽減することができる。
As described above, according to the above embodiment, the discharge side of the low-stage compression element 5 and the suction side of the high-stage compression element 4 among the plurality of compression elements are sequentially connected in series via the communication passage 79. The connected two-stage compression mechanism 3 is formed, and the plane arrangement angles of the low-stage compression element 5 and the high-stage compression element 4 are shifted so that the passage length of the communication passage 79 thereof is the shortest passage length. By doing so, the followability of the suction gas in the communication passage 79 introduced into the high-stage compression element 4 is improved, the pressure pulsation generated in the communication passage 79 is suppressed, and the reduction in compression efficiency can be prevented. Further, the fluctuation of the gas flow in the high-stage compression element 4 is suppressed, and the noise and vibration generated in the second-stage compression mechanism section 3 can be reduced.
【0062】また上記実施例によれば、圧縮要素の各シ
リンダ内を前進・後退しつつ吸入室と圧縮室とに区画す
るベーン(15,92)の背面室(33,16)に、圧
縮要素から気体と共に排出された潤滑油を導入してベー
ン(15,92)を背圧付勢させるロータリ式2段圧縮
機構3において、低段圧縮要素5のベーン92の背面室
33を、連通路79の途中に配置したことにより、連通
路79の通路長さの最短距離形成が容易になり圧力脈動
を抑制すると共に、低段圧縮要素5から排出された吐出
気体をベーン92の背面室33を通過させることによっ
てベーン92の摺動部を冷却し、耐久性を向上すること
ができる。
Further, according to the above-mentioned embodiment, the compression element is provided in the back chamber (33, 16) of the vane (15, 92) which is divided into the suction chamber and the compression chamber while advancing and retracting in each cylinder of the compression element. In the rotary two-stage compression mechanism 3 that introduces the lubricating oil discharged together with the gas from the vane (15, 92) to urge the back pressure, the rear chamber 33 of the vane 92 of the low-stage compression element 5 is connected to the communication passage 79. By arranging in the middle of, the shortest distance of the passage length of the communication passage 79 is easily formed, the pressure pulsation is suppressed, and the discharge gas discharged from the low-stage compression element 5 passes through the back chamber 33 of the vane 92. By doing so, the sliding portion of the vane 92 can be cooled and the durability can be improved.
【0063】また上記実施例によれば、高段圧縮要素4
から気体と共に排出された潤滑油を低段圧縮要素5のベ
ーン92の背面室に供給する差圧給油通路を設けたこと
により、低段圧縮要素5のベーン92の摺動面に供給さ
れる潤滑油の油膜が低段圧縮要素5のベーン92の背面
室33とシリンダ内との間を密封するので、低段圧縮要
素5から排出された圧縮気体がベーン92の摺動隙間を
介して低段圧縮要素5のシリンダ内に漏洩流入するのを
防いで、圧縮効率の向上を図ることができる。
Further, according to the above embodiment, the high-stage compression element 4
The lubricating oil supplied to the sliding surface of the vane 92 of the low stage compression element 5 is provided by providing the differential pressure oil supply passage for supplying the lubricating oil discharged together with the gas from the back chamber of the vane 92 of the low stage compression element 5. Since the oil film of oil seals between the rear chamber 33 of the vane 92 of the low-stage compression element 5 and the inside of the cylinder, the compressed gas discharged from the low-stage compression element 5 passes through the sliding gap of the vane 92 to the low stage. Leakage and inflow into the cylinder of the compression element 5 can be prevented, and the compression efficiency can be improved.
【0064】また上記実施例によれば、差圧給油通路
(32,7a,68,90,91,33)の上流側通路
途中に、潤滑油に混入する気体を高段圧縮要素4」の吐
出側に放出するための油穴(ガス抜き手段)(7a)を
設けたことにより、圧縮ガスの混入の少ない潤滑油が低
段圧縮要素5のベーン92の背面室33に供給でき、ベ
ーン92の摺動面の油膜形成を向上してベーン92の摺
動面の潤滑性と摺動面隙間の密封性を向上することがで
きる。その結果、背面室33を通過する圧縮ガスがシリ
ンダ内に漏洩流入するのを阻止して低段圧縮要素5の圧
縮効率と、ベーン92の耐久性向上を図ることが出来
る。また、高段圧縮要素4に不要な圧縮気体が吸入され
ないので、高段圧縮要素4における再圧縮作用を防止し
て高段圧縮要素4の圧縮効率を向上できる。
Further, according to the above embodiment, the gas mixed with the lubricating oil is discharged to the high-stage compression element 4 "in the upstream passage of the differential pressure oil supply passage (32, 7a, 68, 90, 91, 33). By providing the oil hole (gas releasing means) (7a) for discharging to the side, the lubricating oil containing less compressed gas can be supplied to the back chamber 33 of the vane 92 of the low-stage compression element 5, and the vane 92 The formation of an oil film on the sliding surface can be improved to improve the lubricity of the sliding surface of the vane 92 and the sealing property of the sliding surface gap. As a result, it is possible to prevent the compressed gas passing through the back chamber 33 from leaking into the cylinder and improve the compression efficiency of the low-stage compression element 5 and the durability of the vanes 92. Further, since unnecessary compressed gas is not sucked into the high-stage compression element 4, it is possible to prevent the recompression action in the high-stage compression element 4 and improve the compression efficiency of the high-stage compression element 4.
【0065】また上記実施例によれば、ガス抜き手段と
して、駆動軸7の摺動部に給油すべく駆動軸7の軸芯を
貫通して高段圧縮要素4の吐出側に開通して設けた油穴
7aを併用したことにより、新たなガス抜き通路を設け
ることなく、差圧給油する潤滑油から効果的にガス抜き
することができ、低コストで潤滑油特性を改善すること
ができる。
Further, according to the above-mentioned embodiment, the gas venting means is provided so as to penetrate the shaft core of the drive shaft 7 to supply oil to the sliding portion of the drive shaft 7 and open to the discharge side of the high-stage compression element 4. By additionally using the oil hole 7a, it is possible to effectively degas the lubricating oil that is differentially pressure-fed without providing a new gas vent passage, and improve the lubricating oil characteristics at low cost.
【0066】また上記実施例によれば、ロータリ式2段
圧縮機構3の低段圧縮要素5のベーン92の背面室33
と、高段圧縮要素4の吸入口81とが概同じ配置角度を
以って平面配置されるべく、低段圧縮要素5と高段圧縮
要素4との平面配置角度をずらせたことにより、低段圧
縮要素5のベーン92の背面室33が高段圧縮要素4の
吸入口81に隣接して構成でき、連通路79の通路長さ
をより一層短縮することができ、連通路79内の圧力脈
動の発生を更に抑制して圧縮効率向上を図ることができ
る。
Further, according to the above-mentioned embodiment, the back chamber 33 of the vane 92 of the low-stage compression element 5 of the rotary type two-stage compression mechanism 3.
And the suction port 81 of the high-stage compression element 4 are arranged in a plane at substantially the same arrangement angle, the plane arrangement angle between the low-stage compression element 5 and the high-stage compression element 4 is shifted, so that The back chamber 33 of the vane 92 of the stage compression element 5 can be configured adjacent to the suction port 81 of the high stage compression element 4, and the passage length of the communication passage 79 can be further shortened. It is possible to further suppress the occurrence of pulsation and improve the compression efficiency.
【0067】また上記実施例によれば、低段圧縮要素5
と高段圧縮要素4をローリングピストン型ロータリ式圧
縮機構3とし、低段圧縮要素5と高段圧縮要素4に連結
する駆動軸7の各クランク部(78a,78b)の角度
位相を180度に設定し、高段圧縮要素4から圧縮気体
が排出されるタイミングと、低段圧縮要素5の吸入行程
が開始するタイミングとを略時期にしたことにより、低
段圧縮要素5から排出される圧縮気体容積の余剰を少な
くでき、連通路79内での圧力脈動の発生を抑制して圧
縮効率向上を図ることができる。
Further, according to the above embodiment, the low-stage compression element 5
And the high-stage compression element 4 as a rolling piston type rotary compression mechanism 3, and the angular phase of each crank portion (78a, 78b) of the drive shaft 7 connected to the low-stage compression element 5 and the high-stage compression element 4 is set to 180 degrees. The compressed gas discharged from the low-stage compression element 5 is set by setting the timing at which the compressed gas is discharged from the high-stage compression element 4 and the timing at which the suction stroke of the low-stage compression element 5 starts to be substantially the same. The surplus of the volume can be reduced, the pressure pulsation in the communication passage 79 can be suppressed, and the compression efficiency can be improved.
【0068】また上記実施例によれば、ローリングピス
トン型ロータリ式2段圧縮機構3の高段圧縮要素4の吸
入容積を低段圧縮容積5」の吸入容積の40〜70%に
設定した構成において、高段圧縮要素4を低段圧縮要素
5に対してその平面配置角度を反圧縮進行方向に15〜
30度ずらせたことにより、低段圧縮要素5からの圧縮
ガス排出タイミングと、高段圧縮要素4の吸入行程の開
始タイミングとを略同時期に設定することができるの
で、低段圧縮要素5から排出される圧縮気体を連通路7
9内に滞留させることなく高段圧縮要素4のシリンダ内
に流入させることができるので、低段吐出室27の吐出
圧力の上昇を低くでき、低段圧縮要素5の圧縮入力を低
減して圧縮効率向上を図ることができる。
Further, according to the above embodiment, in the structure in which the suction volume of the high stage compression element 4 of the rolling piston type rotary two-stage compression mechanism 3 is set to 40 to 70% of the suction volume of the low stage compression volume 5 ". , The high-stage compression element 4 with respect to the low-stage compression element 5 has a plane arrangement angle of 15 to 15
By shifting by 30 degrees, the compressed gas discharge timing from the low-stage compression element 5 and the start timing of the intake stroke of the high-stage compression element 4 can be set at substantially the same timing, so that the low-stage compression element 5 The discharged compressed gas is connected to the communication passage 7
Since it can be made to flow into the cylinder of the high-stage compression element 4 without being retained in 9, the rise of the discharge pressure of the low-stage discharge chamber 27 can be made low, and the compression input of the low-stage compression element 5 can be reduced to perform compression. It is possible to improve efficiency.
【0069】(実施例2)図5は、実施例1における高
段圧縮要素4aの吸入側に、その吸入側のみに通じるダ
ンパー室76を連通させたものである。そしてこの構成
によれば、連通路79aの通路長さを短縮させながら高
段圧縮要素4aに導入する吸入気体容量が確保され、連
通路79a内に生じる圧力脈動を緩和して圧縮効率の一
層の向上、騒音・振動の一層の低減を図ることができ
る。
(Embodiment 2) FIG. 5 shows the high-stage compression element 4a of Embodiment 1 in which the suction side is connected to a damper chamber 76 communicating only with the suction side. Further, according to this configuration, the suction gas capacity to be introduced into the high-stage compression element 4a is secured while shortening the passage length of the communication passage 79a, and the pressure pulsation generated in the communication passage 79a is relaxed to further improve the compression efficiency. It is possible to improve and further reduce noise and vibration.
【0070】なお、上記実施例では二酸化炭素冷媒を使
用したローリングピストン型ロータリ式2段圧縮機およ
びスクロール圧縮機について説明したが、他の気体(例
えば、酸素,窒素,ヘリウム,空気など)を圧縮する多
段圧縮機の場合も同様な作用・効果を生じるものであ
る。
Although the rolling piston type rotary two-stage compressor and the scroll compressor using the carbon dioxide refrigerant have been described in the above embodiments, other gases (for example, oxygen, nitrogen, helium, air, etc.) are compressed. In the case of the multi-stage compressor, the same action and effect are produced.
【0071】[0071]
【発明の効果】上記実施例から明かなように、請求項1
に記載の発明は、複数の圧縮要素の内の低段圧縮要素の
吐出側と高段圧縮要素の吸入側とを、順次、連通路を介
して直列接続した多段圧縮機構を構成し、連通路の通路
長さが最短通路長さを形成されるべく、低段圧縮要素と
高段圧縮要素との平面配置角度をずらせて構成したもの
である。そしてこの構成によれば、高段圧縮要素に導入
される連通路内の吸入ガスの追従性が良くなり、連通路
で生じる圧力脈動を抑制して圧縮入力損失や騒音・振動
を低減することができる。
As is apparent from the above embodiment, claim 1
The invention described in (1) constitutes a multi-stage compression mechanism in which the discharge side of the low-stage compression element and the suction side of the high-stage compression element of the plurality of compression elements are sequentially connected in series via the communication passage, and the communication passage is formed. In order to form the shortest passage length, the low-stage compression element and the high-stage compression element are arranged at different plane arrangement angles. According to this configuration, the followability of the suction gas in the communication passage introduced into the high-stage compression element is improved, and the pressure pulsation generated in the communication passage can be suppressed to reduce the compression input loss and noise / vibration. it can.
【0072】請求項2に記載の発明は、複数の圧縮要素
の内の低段圧縮要素の吐出側と高段圧縮要素の吸入側と
を、順次、連通路を介して直列接続した多段圧縮機構を
構成し、圧縮要素の各シリンダ内を前進・後退しつつ吸
入室と圧縮室とに区画するベーンの背面室に、圧縮要素
から気体と共に排出された潤滑油をベーンの背面室に導
入してベーンを背圧付勢させる回転式圧縮機構におい
て、低段圧縮要素のベーンの背面室を、連通路の途中に
配置したものである。そしてこの構成によれば、連通路
の通路長さの最短距離形成が容易になり圧力脈動を抑制
すると共に、低段圧縮要素から排出された吐出気体がベ
ーンの背面室を通過することによってベーンの摺動部を
冷却し、ベーンの耐久性を向上することができる。
According to a second aspect of the present invention, a multi-stage compression mechanism in which the discharge side of the low-stage compression element and the suction side of the high-stage compression element among the plurality of compression elements are sequentially connected in series via a communication passage. Introducing the lubricating oil discharged together with the gas from the compression element into the back chamber of the vane, while advancing and retreating the inside of each cylinder of the compression element while dividing the cylinder into the suction chamber and the compression chamber. In a rotary compression mechanism for biasing a back pressure of a vane, a back chamber of a vane of a low-stage compression element is arranged in the middle of a communication passage. According to this configuration, the shortest distance of the passage length of the communication passage is easily formed, the pressure pulsation is suppressed, and the discharge gas discharged from the low-stage compression element passes through the back chamber of the vane, so that The sliding part can be cooled and the durability of the vane can be improved.
【0073】請求項3に記載の発明は、請求項2におい
て、高段圧縮要素から気体と共に排出された潤滑油を低
段圧縮要素のベーンの背面室に供給する差圧給油通路を
設けたものである。そしてこの構成によれば、低段圧縮
要素のベーンの摺動面に供給される潤滑油の油膜によっ
て低段圧縮要素のベーンの背面室とシリンダ内との間を
密封し、低段圧縮要素から排出された圧縮気体がベーン
の摺動隙間を介して低段圧縮要素のシリンダ内に漏洩す
るのを防ぎ、圧縮効率を向上することができる。
According to a third aspect of the invention, in the second aspect, a differential pressure oil supply passage is provided to supply the lubricating oil discharged together with the gas from the high-stage compression element to the back chamber of the vane of the low-stage compression element. Is. Further, according to this configuration, the oil film of the lubricating oil supplied to the sliding surface of the vane of the low-stage compression element seals between the back chamber of the vane of the low-stage compression element and the inside of the cylinder. It is possible to prevent the discharged compressed gas from leaking into the cylinder of the low-stage compression element through the sliding gap of the vane, and improve the compression efficiency.
【0074】請求項4に記載の発明は、請求項3におい
て、差圧給油通路の上流側通路途中に、潤滑油に混入す
る気体を高段圧縮要素の吐出側に放出するためのガス抜
き手段を設けたものである。そしてこの構成によれば、
圧縮ガスの混入の少ない潤滑油を低段圧縮要素のベーン
の背面室に供給し、ベーンの摺動面の油膜形成を向上し
て摺動面の耐久性を向上することができる。また、ベー
ンの背面室から低段圧縮要素のシリンダ内への気体漏洩
を防止することによって、高段圧縮要素においても漏洩
圧縮ガスを再圧縮するのを回避でき、高段圧縮要素の圧
縮効率を向上することができる。
According to a fourth aspect of the present invention, in the third aspect, a degassing means for discharging the gas mixed with the lubricating oil to the discharge side of the high-stage compression element in the middle of the upstream side passage of the differential pressure oil supply passage. Is provided. And according to this configuration,
Lubricating oil containing less compressed gas can be supplied to the back chamber of the vane of the low-stage compression element to improve the oil film formation on the sliding surface of the vane and improve the durability of the sliding surface. Further, by preventing gas leakage from the back chamber of the vane into the cylinder of the low-stage compression element, it is possible to avoid recompressing the leaked compressed gas even in the high-stage compression element, and improve the compression efficiency of the high-stage compression element. Can be improved.
【0075】請求項5に記載の発明は、請求項4におい
て、ガス抜き手段として、駆動軸の摺動部に給油すべく
駆動軸の軸芯を貫通して高段圧縮要素の吐出側に開通し
て設けた油穴を併用したものである。そしてこの構成に
よれば、新たなガス抜き通路を設けることなく、差圧給
油する潤滑油を効果的にガス抜きして、摺動面の耐久性
と油膜密封効果を得ることができる。
According to a fifth aspect of the present invention, in the fourth aspect, the gas venting means is opened to the discharge side of the high-stage compression element by penetrating the shaft core of the drive shaft to supply oil to the sliding portion of the drive shaft. The oil hole is also used. According to this structure, the lubricating oil for differential pressure supply can be effectively degassed without providing a new gas vent passage, and the durability of the sliding surface and the oil film sealing effect can be obtained.
【0076】請求項6に記載の発明は、請求項2におい
て、低段圧縮要素のベーンの背面室と、高段圧縮要素の
吸入口とが概同じ配置角度を以って平面配置されるべ
く、低段圧縮要素と高段圧縮要素との平面配置角度をず
らせたものである。そしてこの構成によれば、低段圧縮
要素のベーンの背面室が高段圧縮要素の吸入口に隣接す
る構成を実現できる結果、連通路の通路長さを一層短縮
でき、連通路内の圧力脈動の発生を更に抑制でき、圧縮
入力損失と騒音・振動を一層低減することができる。
According to a sixth aspect of the present invention, in the second aspect, the back chamber of the vane of the low-stage compression element and the suction port of the high-stage compression element are arranged in a plane at substantially the same arrangement angle. The plane arrangement angles of the low-stage compression element and the high-stage compression element are shifted. According to this configuration, the back chamber of the vane of the low-stage compression element can be provided adjacent to the suction port of the high-stage compression element, so that the passage length of the communication passage can be further shortened and the pressure pulsation in the communication passage can be further reduced. Can be further suppressed, and the compression input loss and noise / vibration can be further reduced.
【0077】請求項7に記載の発明は、低段圧縮要素と
高段圧縮要素をローリングピストン型ロータリ圧縮機構
とし、低段圧縮要素と高段圧縮要素に連結する駆動軸の
各クランク部の角度位相を180度に設定し、高段圧縮
要素から圧縮気体が排出されるタイミングと、低段圧縮
要素の吸入行程が開始するタイミングとを略同一にした
ものである。そしてこの構成によれば、低段圧縮要素か
ら排出される圧縮気体の容積の余剰を少なくして、連通
路内での圧力脈動の発生を抑制して、圧縮入力損失と騒
音・振動を低減することができる。
According to a seventh aspect of the present invention, the low-stage compression element and the high-stage compression element are a rolling piston type rotary compression mechanism, and the angle of each crank portion of the drive shaft connected to the low-stage compression element and the high-stage compression element. The phase is set to 180 degrees, and the timing at which the compressed gas is discharged from the high-stage compression element and the timing at which the suction stroke of the low-stage compression element starts are substantially the same. According to this configuration, the surplus of the volume of the compressed gas discharged from the low-stage compression element is reduced, the occurrence of pressure pulsation in the communication passage is suppressed, and the compression input loss and the noise / vibration are reduced. be able to.
【0078】請求項8に記載の発明は、ローリングピス
トン型ロータリ式多段圧縮機の高段圧縮要素の吸入容積
を低段圧縮要素の吸入容積の40〜70%に設定した構
成において、前記高段圧縮要素を前記低段圧縮要素に対
してその平面配置角度を反圧縮進行方向に15〜30度
ずらせたものである。そしてこの構成によれば、低段圧
縮要素からの圧縮ガス排出タイミングと、高段圧縮要素
の吸入行程の開始タイミングとを略同時期に設定して、
低段圧縮要素の吐出側および高段圧縮要素の吸入側に生
じる気体の過不足を少なくして圧力脈動の発生を抑制す
ることができる。その結果、圧縮入力損失と騒音・振動
を低減することができる。
According to an eighth aspect of the present invention, in the configuration in which the suction volume of the high stage compression element of the rolling piston type rotary multi-stage compressor is set to 40 to 70% of the suction volume of the low stage compression element, the high stage compression element is provided. The compression element is arranged such that the plane arrangement angle thereof is shifted by 15 to 30 degrees in the anti-compression advancing direction with respect to the low-stage compression element. According to this configuration, the timing of discharging the compressed gas from the low-stage compression element and the timing of starting the suction stroke of the high-stage compression element are set at substantially the same time,
The occurrence of pressure pulsation can be suppressed by reducing excess and shortage of gas generated on the discharge side of the low-stage compression element and on the suction side of the high-stage compression element. As a result, the compression input loss and noise / vibration can be reduced.
【0079】請求項9に記載の発明は、高段圧縮要素の
吸入側に、前記吸入側のみに通じるダンパー室を連通さ
せたものである。そしてこの構成によれば、連通路の通
路長さを短縮させながら高段圧縮要素に導入する吸入気
体容量が確保され、連通路内に生じる圧力脈動を緩和し
て、圧縮入力損失と騒音・振動を低減できるという効果
を奏する。
According to a ninth aspect of the present invention, a damper chamber communicating only with the suction side is connected to the suction side of the high-stage compression element. According to this configuration, the suction gas capacity introduced into the high-stage compression element is secured while shortening the passage length of the communication passage, and the pressure pulsation generated in the communication passage is relaxed to reduce the compression input loss and noise / vibration. The effect that can reduce.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の第1の実施例を示すローリングピスト
ン型ロータリ式2段圧縮機の縦断面図
FIG. 1 is a vertical sectional view of a rolling piston type rotary two-stage compressor showing a first embodiment of the present invention.
【図2】同圧縮機における圧縮機構部の部分断面図FIG. 2 is a partial sectional view of a compression mechanism portion of the compressor.
【図3】同圧縮機におけるX−X線に沿った横断面図FIG. 3 is a transverse sectional view taken along line XX in the compressor.
【図4】同圧縮機のY−Y線に沿った横断面図FIG. 4 is a cross-sectional view of the compressor taken along line YY.
【図5】本発明の第2の実施例を示すローリングピスト
ン型ロータリ式2段圧縮機の縦断面図
FIG. 5 is a longitudinal sectional view of a rolling piston type rotary two-stage compressor showing a second embodiment of the present invention.
【図6】従来のローリングピストン型ロータリ式2段圧
縮機の部分縦断面図
FIG. 6 is a partial vertical cross-sectional view of a conventional rolling piston type rotary two-stage compressor.
【図7】同圧縮機における従来の圧縮タイミングの解説
FIG. 7 is an explanatory diagram of conventional compression timing in the compressor.
【図8】従来の別のローリングピストン型ロータリ式2
段圧縮機の縦断面図
FIG. 8: Another conventional rolling piston type rotary type 2
Vertical sectional view of the stage compressor
【符号の説明】[Explanation of symbols]
3 2段圧縮機構 4 高段圧縮要素 4a 高段圧縮要素 5 低段圧縮要素 7 駆動軸 7a 油穴 15 ベーン 16 背面室 27 低段吐出室 33 背面室 76 ダンパー室 78a,78b クランク部 79 連通路 79a 連通路 81 吸入口 92 ベーン 3 2-stage compression mechanism 4 High-stage compression element 4a High-stage compression element 5 Low-stage compression element 7 drive shaft 7a Oil hole 15 vanes 16 Back room 27 Low-stage discharge chamber 33 Back room 76 damper room 78a, 78b Crank part 79 passages 79a communication passage 81 Inlet 92 vanes
フロントページの続き Fターム(参考) 3H029 AA04 AA11 AA12 AA13 AB03 BB21 BB43 BB52 BB58 CC23 CC24 CC25 Continued front page    F term (reference) 3H029 AA04 AA11 AA12 AA13 AB03                       BB21 BB43 BB52 BB58 CC23                       CC24 CC25

Claims (9)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 複数の圧縮要素の内の低段圧縮要素の吐
    出側と高段圧縮要素の吸入側とを、順次、連通路を介し
    て直列接続した多段圧縮機構を構成し、前記連通路の通
    路長さが最短通路長さを形成されるべく、前記低段圧縮
    要素と前記高段圧縮要素との平面配置角度をずらせて構
    成した多段気体圧縮機。
    1. A multi-stage compression mechanism in which a discharge side of a low-stage compression element and a suction side of a high-stage compression element among a plurality of compression elements are sequentially connected in series via a communication passage, and the communication passage is formed. The multi-stage gas compressor is configured such that the plane arrangement angles of the low-stage compression element and the high-stage compression element are shifted so that the passage length of the above can be the shortest passage length.
  2. 【請求項2】 複数の圧縮要素の内の低段圧縮要素の吐
    出側と高段圧縮要素の吸入側とを、順次、連通路を介し
    て直列接続した多段圧縮機構を構成し、前記圧縮要素の
    各シリンダ内を前進・後退しつつ吸入室と圧縮室とに区
    画するベーンの背面室に、圧縮要素から気体と共に排出
    された潤滑油を前記ベーンの前記背面室に導入して前記
    ベーンを背圧付勢させる回転式圧縮機構において、低段
    圧縮要素の前記ベーンの前記背面室を、前記連通路の途
    中に配置した多段気体圧縮機。
    2. A multi-stage compression mechanism in which a discharge side of a low-stage compression element and a suction side of a high-stage compression element among a plurality of compression elements are sequentially connected in series via a communication passage, and the compression element is formed. Into the back chamber of the vane that divides into the suction chamber and the compression chamber while advancing and retreating the inside of each cylinder of the In a rotary compression mechanism for urging pressure, a multi-stage gas compressor in which the back chamber of the vane of a low-stage compression element is arranged in the middle of the communication passage.
  3. 【請求項3】 高段圧縮要素から気体と共に排出された
    潤滑油を低段圧縮要素のベーンの背面室に供給する差圧
    給油通路を設けた請求項1と請求項2記載の多段気体圧
    縮機。
    3. The multi-stage gas compressor according to claim 1, further comprising a differential pressure oil supply passage for supplying the lubricating oil discharged together with the gas from the high-stage compression element to the back chamber of the vane of the low-stage compression element. .
  4. 【請求項4】 差圧給油通路の上流側通路途中に、潤滑
    油に混入する気体を高段圧縮要素の吐出側に放出するた
    めのガス抜き手段を設けた請求項3記載の多段気体圧縮
    機。
    4. The multi-stage gas compressor according to claim 3, further comprising a degassing means for discharging the gas mixed with the lubricating oil to the discharge side of the high-stage compression element in the middle of the upstream side passage of the differential pressure oil supply passage. .
  5. 【請求項5】 ガス抜き手段として、駆動軸の摺動部に
    給油すべく駆動軸の軸芯を貫通して高段圧縮要素の吐出
    側に開通して設けた油穴を併用した請求項4記載の多段
    気体圧縮機。
    5. The degassing means further comprises an oil hole provided through the shaft core of the drive shaft so as to supply oil to the sliding portion of the drive shaft and open to the discharge side of the high-stage compression element. The described multi-stage gas compressor.
  6. 【請求項6】 低段圧縮要素のベーンの背面室と、高段
    圧縮要素の吸入口とが概同じ配置角度を以って平面配置
    されるべく、前記低段圧縮要素と前記高段圧縮要素との
    平面配置角度をずらせた請求項1と請求項2記載の多段
    気体圧縮機。
    6. The low-stage compression element and the high-stage compression element are arranged so that the back chamber of the vane of the low-stage compression element and the suction port of the high-stage compression element are arranged in a plane at substantially the same arrangement angle. The multistage gas compressor according to claim 1 or 2, wherein the plane arrangement angle with respect to is shifted.
  7. 【請求項7】 低段圧縮要素と高段圧縮要素をローリン
    グピストン型ロータリ圧縮機構とし、前記低段圧縮要素
    と前記高段圧縮要素に連結する駆動軸の各クランク部の
    角度位相を180度に設定し、前記高段圧縮要素から圧
    縮気体が排出されるタイミングと、前記低段圧縮要素の
    吸入行程が開始するタイミングとを略同一にした請求項
    6記載の多段気体圧縮機。
    7. A low-stage compression element and a high-stage compression element are a rolling piston type rotary compression mechanism, and an angular phase of each crank portion of a drive shaft connected to the low-stage compression element and the high-stage compression element is set to 180 degrees. 7. The multi-stage gas compressor according to claim 6, wherein the timing is set such that the compressed gas is discharged from the high-stage compression element and the timing at which the suction stroke of the low-stage compression element starts is substantially the same.
  8. 【請求項8】 ローリングピストン型ロータリ式多段圧
    縮機の高段圧縮要素の吸入容積を低段圧縮要素の吸入容
    積の40〜70%に設定した構成において、前記高段圧
    縮要素を前記低段圧縮要素に対してその平面配置角度を
    反圧縮進行方向に15〜30度ずらせた請求項7記載の
    多段気体圧縮機。
    8. A rolling piston type rotary multi-stage compressor in which the suction volume of the high-stage compression element is set to 40 to 70% of the suction volume of the low-stage compression element, and the high-stage compression element is compressed to the low-stage compression element. 8. The multi-stage gas compressor according to claim 7, wherein the plane arrangement angle of the elements is shifted by 15 to 30 degrees in the anti-compression traveling direction.
  9. 【請求項9】 高段圧縮要素の吸入側に、前記吸入側の
    みに通じるダンパー室を連通させた請求項1と請求項2
    記載の多段気体圧縮機。
    9. The method according to claim 1, wherein a damper chamber communicating only with the suction side is connected to the suction side of the high-stage compression element.
    The described multi-stage gas compressor.
JP2001342909A 2001-11-08 2001-11-08 Multiple stage gas compressor Pending JP2003148366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342909A JP2003148366A (en) 2001-11-08 2001-11-08 Multiple stage gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342909A JP2003148366A (en) 2001-11-08 2001-11-08 Multiple stage gas compressor

Publications (1)

Publication Number Publication Date
JP2003148366A true JP2003148366A (en) 2003-05-21

Family

ID=19156689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342909A Pending JP2003148366A (en) 2001-11-08 2001-11-08 Multiple stage gas compressor

Country Status (1)

Country Link
JP (1) JP2003148366A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002586A (en) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp Closed type compressor
JP2006200504A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Rotary compressor
KR100873682B1 (en) * 2007-07-16 2008-12-12 엘지전자 주식회사 Multi-stage rotary compressor
JP2010007593A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Two-stage rotary compressor
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
KR101002555B1 (en) 2004-12-30 2010-12-17 엘지전자 주식회사 Multi-stage rotary compressor and refrigeration cycle having the same
KR101002472B1 (en) 2004-12-30 2010-12-17 엘지전자 주식회사 Multi-stage rotary compressor
CN103133349A (en) * 2011-11-23 2013-06-05 珠海格力节能环保制冷技术研究中心有限公司 Birotor compressor, and air conditioner and heat-pump water heater with the birotor compressor
KR101282226B1 (en) 2006-12-28 2013-07-09 엘지전자 주식회사 Hermetic compressor
JPWO2011148453A1 (en) * 2010-05-24 2013-07-25 三菱電機株式会社 Two-stage rotary compressor and heat pump device
CN103671120A (en) * 2012-09-25 2014-03-26 珠海格力节能环保制冷技术研究中心有限公司 Intermediate cooling medium flow passage and compressor comprising same
CN106837791A (en) * 2017-03-16 2017-06-13 广东美芝精密制造有限公司 Rotary compressor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002586A (en) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp Closed type compressor
KR101002555B1 (en) 2004-12-30 2010-12-17 엘지전자 주식회사 Multi-stage rotary compressor and refrigeration cycle having the same
KR101002472B1 (en) 2004-12-30 2010-12-17 엘지전자 주식회사 Multi-stage rotary compressor
JP2006200504A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Rotary compressor
KR101282226B1 (en) 2006-12-28 2013-07-09 엘지전자 주식회사 Hermetic compressor
KR100873682B1 (en) * 2007-07-16 2008-12-12 엘지전자 주식회사 Multi-stage rotary compressor
JP2010007593A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Two-stage rotary compressor
JP2010156226A (en) * 2008-12-26 2010-07-15 Sanyo Electric Co Ltd Rotary compressor
JPWO2011148453A1 (en) * 2010-05-24 2013-07-25 三菱電機株式会社 Two-stage rotary compressor and heat pump device
CN103133349A (en) * 2011-11-23 2013-06-05 珠海格力节能环保制冷技术研究中心有限公司 Birotor compressor, and air conditioner and heat-pump water heater with the birotor compressor
CN103133349B (en) * 2011-11-23 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 Two-spool compressor and there is its air conditioner and heat pump water heater
CN103671120A (en) * 2012-09-25 2014-03-26 珠海格力节能环保制冷技术研究中心有限公司 Intermediate cooling medium flow passage and compressor comprising same
CN106837791A (en) * 2017-03-16 2017-06-13 广东美芝精密制造有限公司 Rotary compressor

Similar Documents

Publication Publication Date Title
KR960001630B1 (en) Rotary type multi-stage compressor
JP2718295B2 (en) Scroll compressor
EP2243958B1 (en) Compressor and refrigerating apparatus having the same
US9243636B2 (en) Scroll compressor with differential pressure hole and communication hole
KR101480464B1 (en) Scoroll compressor and refrigerator having the same
KR20130034536A (en) Scroll compressor
JP2006009792A (en) Rotary compressor
JP5586537B2 (en) Rotary two-stage compressor
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
JPH11241682A (en) Compressor for co2
JP2007315261A (en) Hermetic compressor
JP2003148366A (en) Multiple stage gas compressor
KR101553953B1 (en) Scoroll compressor and refrigerator having the same
US20080031764A1 (en) Compressor
JPH07145785A (en) Trochoid type refrigerant compressor
JPH10141270A (en) Two stage gas compressor
KR101587171B1 (en) Scoroll compressor and refrigerator having the same
KR100679883B1 (en) A hermetic type orbiter compressor
JPWO2012042825A1 (en) Rotary compressor
KR100620999B1 (en) Apparatus for reducing oil discharge of high pressure scroll compressor
JP4258132B2 (en) Rotary multistage compressor
JP2002317784A (en) Rotary two-stage compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JPH08303364A (en) Scroll gas compressor
CN110573741A (en) Internal medium pressure type two-stage compression compressor