JP2013028772A - Composition for forming layer to be plated, and method for producing laminate including metal layer - Google Patents
Composition for forming layer to be plated, and method for producing laminate including metal layer Download PDFInfo
- Publication number
- JP2013028772A JP2013028772A JP2011167600A JP2011167600A JP2013028772A JP 2013028772 A JP2013028772 A JP 2013028772A JP 2011167600 A JP2011167600 A JP 2011167600A JP 2011167600 A JP2011167600 A JP 2011167600A JP 2013028772 A JP2013028772 A JP 2013028772A
- Authority
- JP
- Japan
- Prior art keywords
- group
- layer
- plated
- plating
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1813—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
- C23C18/1817—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1813—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
- C23C18/182—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1837—Multistep pretreatment
- C23C18/1844—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1862—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
- C23C18/1865—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1862—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
- C23C18/1868—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1893—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/2033—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/204—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/48—Coating with alloys
- C23C18/50—Coating with alloys with alloys based on iron, cobalt or nickel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、被めっき層形成用組成物、当該組成物を用いた金属層を有する積層体の製造方法、および当該組成物に有用な新規ポリマーに関する。 The present invention relates to a composition for forming a layer to be plated, a method for producing a laminate having a metal layer using the composition, and a novel polymer useful for the composition.
従来から、絶縁性基板の表面に金属パターンによる配線を形成した金属配線基板が、電子部品や半導体素子に広く用いられている。
かかる金属配線基板の製造方法としては、主に、「サブトラクティブ法」が使用される。このサブトラクティブ法とは、基板表面に形成された金属層上に、活性光線の照射により感光する感光層を設け、この感光層をパターン露光し、その後現像してレジスト像を形成し、次いで、金属層をエッチングして金属パターンを形成し、最後にレジストを剥離する方法である。
2. Description of the Related Art Conventionally, a metal wiring board in which wiring with a metal pattern is formed on the surface of an insulating substrate has been widely used for electronic components and semiconductor elements.
A “subtractive method” is mainly used as a method for manufacturing such a metal wiring board. In this subtractive method, a photosensitive layer that is exposed to actinic rays is provided on a metal layer formed on the surface of the substrate, this photosensitive layer is subjected to pattern exposure, and then developed to form a resist image, In this method, the metal layer is etched to form a metal pattern, and finally the resist is removed.
この方法により得られる金属パターンにおいては、基板表面に凹凸を設けることにより生じるアンカー効果により、基板と金属層との間の密着性を発現させている。そのため、得られた金属パターンを金属配線として使用する際、金属パターンの基板界面部の凹凸に起因して、高周波特性が悪くなるという問題点があった。また、基板表面に凹凸化処理するためには、クロム酸などの強酸で基板表面を処理する必要があるため、基板との密着性に優れた金属パターンを得るためには、煩雑な工程が必要であるという問題点があった。 In the metal pattern obtained by this method, the adhesion between the substrate and the metal layer is expressed by an anchor effect generated by providing irregularities on the substrate surface. For this reason, when the obtained metal pattern is used as a metal wiring, there is a problem that high frequency characteristics are deteriorated due to the unevenness of the substrate interface portion of the metal pattern. In addition, in order to process the surface of the substrate, it is necessary to treat the surface of the substrate with a strong acid such as chromic acid, and thus a complicated process is required to obtain a metal pattern with excellent adhesion to the substrate. There was a problem that.
この問題を解決する手段として、特許文献1には、基板上に、架橋性基と相互作用性基を有するポリマーの層(被めっき層)を形成し、さらに該被めっき層をアルカリ水溶液で処理し、その後該被めっき層にめっきを施す方法が開示されている。特許文献1によれば、該方法によって、基板の表面を粗面化することなく、基板と金属層との間の密着性に優れ、かつ、めっきの均一性が高い金属層を形成することができる旨が開示されている。 As means for solving this problem, Patent Document 1 discloses that a polymer layer (layer to be plated) having a crosslinkable group and an interactive group is formed on a substrate, and the layer to be plated is treated with an alkaline aqueous solution. Then, a method for plating the layer to be plated is disclosed. According to Patent Document 1, the method can form a metal layer having excellent adhesion between the substrate and the metal layer and having high uniformity of plating without roughening the surface of the substrate. It is disclosed that it can be done.
一方、近年、電子機器の小型化、高機能化の要求に対応するため、プリント配線板などにおいては配線のより一層の微細化および高集積化が進んでいる。それに伴って、金属層を形成する際のめっき処理におけるめっきムラをより抑制することが重要な課題となってきている。金属層にめっきムラがある場合、該金属層をパターニングして微細配線を形成する際に、均一な厚みの微細配線などが得難く、プリント配線板自体の性能が低下するといった懸念が生じる。 On the other hand, in recent years, in order to meet the demand for miniaturization and high functionality of electronic devices, wirings are further miniaturized and highly integrated. Accordingly, it has become an important issue to further suppress plating unevenness in the plating process when forming the metal layer. When the metal layer has uneven plating, when forming the fine wiring by patterning the metal layer, it is difficult to obtain a fine wiring having a uniform thickness, and there is a concern that the performance of the printed wiring board itself is deteriorated.
本発明者らが、特許文献1に開示されているめっき方法について検討したところ、該方法で得られるめっき層(金属層)のめっき層厚の均一性は、必ずしも昨今要求されるレベルには達していないことが明らかになった。 When the present inventors examined the plating method disclosed in Patent Document 1, the uniformity of the plating layer thickness of the plating layer (metal layer) obtained by this method does not necessarily reach the level required recently. It became clear that it was not.
また、生産性などの観点から、通常、めっき処理の際に使用されるめっき液は、複数の被めっき層に対して連続して使用される。そのため、めっき液の使用時に、めっき液自体が汚染されずに長期間にわたって液安定性が保たれることが重要である。
一方、特許文献1に記載されているめっき方法を実施し、その際に使用されるめっき液の液安定性について検討を行ったところ、めっき液中に不溶物が発生し、その液安定性は必ずしも十分とは言えなかった。
From the viewpoint of productivity and the like, usually, the plating solution used in the plating process is continuously used for a plurality of layers to be plated. Therefore, when using the plating solution, it is important that the solution stability is maintained for a long time without being contaminated.
On the other hand, when the plating method described in Patent Document 1 was carried out and the liquid stability of the plating solution used at that time was examined, insoluble matter was generated in the plating solution, and the liquid stability was It was not always enough.
本発明者らは、上記の問題点についてさらに検討を行ったところ、被めっき層のアルカリ水溶液処理時に、被めっき層中のポリマー成分が分解・溶出し、これが原因でめっきムラの発生や、めっき液の液安定性の低下が引き起こされていることを見出した。 The present inventors have further studied the above-mentioned problems, and the polymer component in the layer to be plated is decomposed and eluted during the alkaline aqueous solution treatment of the layer to be plated. It was found that the liquid stability of the liquid was lowered.
本発明は、上記実情を鑑みて、アルカリ水溶液に対して十分な耐性を有し、めっき処理の際にめっきムラの発生およびめっき液の汚染が抑制される被めっき層を形成し得る被めっき層形成用組成物を提供することを目的とする。
また、本発明は、該被めっき層形成用組成物を用いた、めっきムラの発生およびめっき液の汚染が抑制され、密着性に優れる金属層を有する積層体の製造方法を提供することも目的とする。
In view of the above circumstances, the present invention has a layer to be plated that has sufficient resistance to an alkaline aqueous solution and that can form a layer to be plated in which plating unevenness and plating solution contamination are suppressed during plating. An object is to provide a forming composition.
Another object of the present invention is to provide a method for producing a laminate having a metal layer with excellent adhesion, in which generation of plating unevenness and contamination of the plating solution are suppressed, using the composition for forming a layer to be plated. And
本発明者らは、上記課題について鋭意検討した結果、親疎水性を変換することができる官能基およびアルカリ水溶液に対する耐性の高い架橋性基を有するポリマーを用いることで、アルカリ水溶液に対する耐性を向上させるとともに、めっき触媒に対する親和性を確保することができることを見出し、本発明を完成するに至った。 As a result of intensive studies on the above problems, the present inventors have improved the resistance to an aqueous alkali solution by using a polymer having a functional group capable of converting hydrophilicity and hydrophobicity and a crosslinkable group having a high resistance to an aqueous alkali solution. The inventors have found that the affinity for the plating catalyst can be ensured, and have completed the present invention.
つまり、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 熱、酸または輻射線により疎水性から親水性に変化する官能基と、カルボキシル基、ヒドロキシル基、イソシアネート基、アルコキシシリル基、アセトキシシリル基、クロロシリル基、1級アミノ基、2級アミノ基、3級アミノ基、エポキシ基、オキセタニル基、(メタ)アクリルアミド基、アリル基、スチリル基、マレイミド基、およびシンナモイル基からなる群より選択される少なくとも一種の架橋性基とを有するポリマーを含む被めっき層形成用組成物。
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1) Functional group that changes from hydrophobic to hydrophilic by heat, acid or radiation, carboxyl group, hydroxyl group, isocyanate group, alkoxysilyl group, acetoxysilyl group, chlorosilyl group, primary amino group, secondary amino group A polymer having at least one crosslinkable group selected from the group consisting of a group, a tertiary amino group, an epoxy group, an oxetanyl group, a (meth) acrylamide group, an allyl group, a styryl group, a maleimide group, and a cinnamoyl group A composition for forming a layer to be plated.
(2) 前記官能基が、加熱、酸の供給または輻射線の照射により、カルボン酸、スルホン酸またはスルフィン酸を生じる官能基である、(1)に記載の被めっき層形成用組成物。
(3) 前記官能基が、後述する一般式(1)〜(4)のいずれかで表される基を有する、(1)または(2)に記載の被めっき層形成用組成物。
(4) さらに、架橋剤を含む(1)〜(3)のいずれかに記載の被めっき層形成用組成物。
(2) The composition for forming a layer to be plated according to (1), wherein the functional group is a functional group that generates carboxylic acid, sulfonic acid, or sulfinic acid when heated, supplied with acid, or irradiated with radiation.
(3) The composition for forming a plated layer according to (1) or (2), wherein the functional group has a group represented by any one of the following general formulas (1) to (4).
(4) Furthermore, the composition for to-be-plated layer forming in any one of (1)-(3) containing a crosslinking agent.
(5) 基板、および、前記基板上に、(1)〜(4)のいずれかに記載の被めっき層形成用組成物を用いて形成される被めっき層、を有する積層体。
(6) (1)〜(4)のいずれかに記載の被めっき層形成用組成物を用いて、基板上に被めっき層を形成する工程(A)と、
前記工程(A)後に、前記被めっき層とアルカリ水溶液とを接触させる工程(B)と、
前記工程(B)後に、加熱、酸の供給または輻射線の照射を行い、前記官能基を疎水性から親水性に変換する工程(C)と、
前記工程(C)後に、前記被めっき層にめっき触媒またはその前駆体を付与する工程(D)と、
前記工程(D)後に、前記めっき触媒またはその前駆体が付与された被めっき層に対してめっき処理を行い、前記被めっき層上に金属層を形成する工程(E)と、
を含む金属層を有する積層体の製造方法。
(5) A laminate having a substrate and a layer to be plated formed on the substrate using the composition for forming a layer to be plated according to any one of (1) to (4).
(6) Step (A) of forming a layer to be plated on the substrate using the composition for forming a layer to be plated according to any one of (1) to (4);
After the step (A), the step (B) for bringing the layer to be plated into contact with the alkaline aqueous solution;
(C) after the step (B), heating, supplying acid or irradiating with radiation to convert the functional group from hydrophobic to hydrophilic;
A step (D) of applying a plating catalyst or a precursor thereof to the layer to be plated after the step (C);
After the step (D), a plating process is performed on the plating layer to which the plating catalyst or its precursor is applied, and a metal layer is formed on the plating layer (E),
The manufacturing method of the laminated body which has a metal layer containing this.
(7) 前記金属層をパターン状にエッチングして、パターン状金属層を形成する工程(H)をさらに備える、(6)に記載の金属層を有する積層体の製造方法。
(8) (6)または(7)に記載の製造方法より得られる金属層を有する積層体。
(9) (8)に記載の積層体を含む配線基板。
(10) 後述する一般式(D)で表されるユニット、および、後述する一般式(A)で表されるユニットを含むポリマー。
(7) The manufacturing method of the laminated body which has a metal layer as described in (6) further equipped with the process (H) which etches the said metal layer in a pattern shape, and forms a patterned metal layer.
(8) A laminate having a metal layer obtained from the production method according to (6) or (7).
(9) A wiring board comprising the laminate according to (8).
(10) A polymer containing a unit represented by the general formula (D) described later and a unit represented by the general formula (A) described later.
本発明によれば、アルカリ水溶液に対して十分な耐性を有し、めっき処理の際にめっきムラの発生およびめっき液の汚染が抑制される被めっき層を形成し得る被めっき層形成用組成物を提供できる。
また、本発明によれば、該被めっき層形成用組成物を用いた、めっきムラの発生およびめっき液の汚染が抑制され、密着性に優れる金属層を有する積層体の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the composition for to-be-plated layer formation which can form the to-be-plated layer which has sufficient tolerance with respect to alkaline aqueous solution, and the generation | occurrence | production of plating nonuniformity and the contamination of a plating solution is suppressed in the case of a plating process. Can provide.
Moreover, according to this invention, the manufacturing method of the laminated body which has generation | occurrence | production of plating nonuniformity and the contamination of a plating solution using this composition for to-be-plated layer formation, and which has a metal layer excellent in adhesiveness can be provided.
以下に、本発明の被めっき層形成用組成物、および金属層を有する積層体の製造方法について説明する。
まず、本発明の従来技術と比較した特徴点について詳述する。
Below, the composition for to-be-plated layer formation of this invention and the manufacturing method of the laminated body which has a metal layer are demonstrated.
First, the feature point compared with the prior art of this invention is explained in full detail.
本発明においては、被めっき層形成用組成物が、熱、酸または輻射線により疎水性から親水性に変化する官能基(以後、極性変換基とも称する)、およびアルカリ水溶液に対する耐性の高い特定の架橋性基(以後、単に、特定の架橋性基とも称する)を有するポリマーを含む点に特徴がある。また、金属層を有する積層体の製造方法において、アルカリ水溶液に接触させた後に該官能基の極性を変換する工程を設けた点に特徴がある。
上述したように、従来公知の被めっき層ではアルカリ水溶液に対する耐性が十分とはいえず、アルカリ水溶液に接触させた際に被めっき層中のポリマーの一部またはほとんどが分解・溶出しまう。また、仮に、アルカリ水溶液に対する耐性を高めるために、より疎水性の被めっき層を形成した場合、該被めっき層ではめっき触媒液やめっき液などに対する親和性が低く、十分な密着性を示す金属層を得ることができない。
In the present invention, the composition for forming a layer to be plated is a specific functional group (hereinafter also referred to as a polar conversion group) that changes from hydrophobic to hydrophilic by heat, acid or radiation, and a highly resistant to alkaline aqueous solution. It is characterized in that it contains a polymer having a crosslinkable group (hereinafter, also simply referred to as a specific crosslinkable group). Moreover, the manufacturing method of the laminated body which has a metal layer has the characteristics in the point which provided the process of converting the polarity of this functional group after making it contact with alkaline aqueous solution.
As described above, a conventionally known layer to be plated cannot be said to have sufficient resistance to an aqueous alkali solution, and part or most of the polymer in the layer to be plated is decomposed and eluted when brought into contact with the aqueous alkali solution. In addition, if a more hydrophobic layer to be plated is formed in order to increase the resistance to an alkaline aqueous solution, the layer to be plated has a low affinity for a plating catalyst solution or a plating solution and has sufficient adhesion. Can't get a layer.
それに対して、本発明では、アルカリ水溶液に対する耐性の高い特定の架橋性基を導入すると共に、アルカリ水溶液との接触を行う際には、被めっき層中の極性変換基の極性を疎水性にしておき、被めっき層の疎水性を高め、アルカリ水溶液に対する耐性を付与する。アルカリ水溶液との接触後には、極性変換基の極性を所定の処理により疎水性から親水性へ変換し、被めっき層をより親水性にして、その後のめっき触媒液やめっき液などに対する親和性を高める。結果として、めっき液の汚染を抑制しつつ、めっきムラの少ない金属層を有する積層体を得ることができる。
以下では、まず、被めっき層形成用組成物について詳述する。
In contrast, in the present invention, a specific crosslinkable group having high resistance to an aqueous alkali solution is introduced, and when the contact with the aqueous alkali solution is performed, the polarity of the polarity converting group in the layer to be plated is made hydrophobic. In addition, the hydrophobicity of the layer to be plated is increased, and resistance to an alkaline aqueous solution is imparted. After contact with the alkaline aqueous solution, the polarity of the polarity conversion group is changed from hydrophobic to hydrophilic by a predetermined treatment, and the layer to be plated is made more hydrophilic, and the affinity for subsequent plating catalyst solution and plating solution is increased. Increase. As a result, a laminate having a metal layer with little plating unevenness can be obtained while suppressing contamination of the plating solution.
Below, the composition for to-be-plated layer forming is explained in full detail first.
<被めっき層形成用組成物>
被めっき層形成用組成物は、極性変換基と特定の架橋性基とを有するポリマーを含有する。該組成物より形成される被めっき層は、後述するように、加熱、酸の供給または輻射線の照射によって、極性変換基の親疎水性が疎水性から親水性へと変化し、結果として被めっき層の親疎水性も親水性から疎水性へと変化する。つまり、被めっき層は、加熱、酸の供給または輻射線の照射によって、水との接触角が低下する濡れ性変化層である。
まず、該組成物中に含有されるポリマーの態様について詳述し、その後該組成物の態様について詳述する。
<Composition for plating layer formation>
The composition for forming a layer to be plated contains a polymer having a polarity converting group and a specific crosslinkable group. As will be described later, the layer to be plated formed from the composition changes the hydrophilicity / hydrophobicity of the polarity conversion group from hydrophobic to hydrophilic by heating, supply of acid, or irradiation of radiation, and as a result, the layer to be plated The hydrophilicity / hydrophobicity of the layer also changes from hydrophilic to hydrophobic. That is, the layer to be plated is a wettability changing layer in which the contact angle with water is reduced by heating, acid supply, or irradiation with radiation.
First, the aspect of the polymer contained in the composition will be described in detail, and then the aspect of the composition will be described in detail.
[極性変換基および架橋性基を有するポリマー]
ポリマーは、極性変換基と特定の架橋性基とを有する。
まず、極性変換基について詳述し、その後架橋性基について詳述する。
[Polymer having polar conversion group and crosslinkable group]
The polymer has a polarity converting group and a specific crosslinkable group.
First, the polar conversion group will be described in detail, and then the crosslinkable group will be described in detail.
(極性変換基)
極性変換基は、熱、酸または輻射線により疎水性から親水性に変化する官能基である。該基としては、公知の官能基を使用することができるが、めっきムラの発生やめっき液の汚染をより抑制できる点で、加熱、酸の供給または輻射線の照射により、カルボン酸基、スルホン酸基、またはスルフィン酸基を生じる官能基であることが好ましく、カルボン酸基またはスルホン酸基を生じる官能基であることがより好ましく、金属層の密着性がより優れる点で、カルボン酸基を生じる官能基であることがさらに好ましい。
極性変換基としては、(A)熱または酸により疎水性から親水性に変化する官能基(以後、極性変換基Aとも称する)と、(B)輻射線(光)により疎水性から親水性に変化する官能基(以後、極性変換基Bとも称する)が挙げられ、以下でそれぞれについて詳述する。
(Polarity conversion group)
The polarity converting group is a functional group that changes from hydrophobic to hydrophilic by heat, acid, or radiation. As the group, a known functional group can be used. However, in terms of being able to further suppress the occurrence of uneven plating and contamination of the plating solution, a carboxylic acid group or sulfone can be obtained by heating, supplying acid, or irradiating with radiation. It is preferably a functional group that generates an acid group or a sulfinic acid group, more preferably a functional group that generates a carboxylic acid group or a sulfonic acid group, and a carboxylic acid group that is superior in adhesion of the metal layer. More preferably, the resulting functional group.
The polar conversion group includes (A) a functional group that changes from hydrophobic to hydrophilic by heat or acid (hereinafter also referred to as polar conversion group A), and (B) from hydrophobic to hydrophilic by radiation (light). Examples thereof include functional groups that change (hereinafter, also referred to as polarity conversion groups B), which will be described in detail below.
(A)極性変換基A
極性変換基Aとしては、文献記載の公知の官能基を挙げることができる。例えば、アルキルスルホン酸エステル基、ジスルホン基、スルホンイミド基(特開平10−282672号公報に記載)、アルコキシアルキルエステル基(EP0652483、WO92/9934に記載)、t−ブチルエステル基、その他、シリルエステル基、ビニルエステル基などの文献記載の酸分解性基で保護されたカルボン酸エステル基(H.Itoら著、Macromolecules,vol.21,pp.1477に記載)などを挙げることができる。
(A) Polarity converting group A
Examples of the polarity converting group A include known functional groups described in literatures. For example, alkylsulfonic acid ester groups, disulfone groups, sulfonimide groups (described in JP-A-10-282672), alkoxyalkyl ester groups (described in EP0652483, WO92 / 9934), t-butyl ester groups, other silyl esters And carboxylic acid ester groups protected by acid-decomposable groups described in the literature such as vinyl groups and the like (described in H. Ito et al., Macromolecules, vol. 21, pp. 1477).
また、角岡正弘著、「表面」vol.133(1995),p.374に記載のイミノスルホネート基、角岡正弘著、Polymer preprints,Japan vol.46(1997),p.2045に記載のβケトンスルホン酸エステル類、特開昭63−257750号のニトロベンジルスルホネート化合物、特開2001−117223公報記載の官能基も挙げることができる。 Also, Masahiro Tsunooka, “Surface” vol. 133 (1995), p. 374, an iminosulfonate group described by Masahiro Tsunooka, Polymer preprints, Japan vol. 46 (1997), p. Examples thereof also include β ketone sulfonate esters described in 2045, nitrobenzyl sulfonate compounds described in JP-A No. 63-257750, and functional groups described in JP-A No. 2001-117223.
これらのなかでも、極性変換効率がより優れる点で、一般式(1)で表される基(例えば、3級のカルボン酸エステル基)、一般式(2)で表される基(例えば、アリールアルキルエステル基)、一般式(3)で表される基(例えば、アルコキシアルキルエステル基)、または一般式(4)で表される基(例えば、2級のアルキルスルホン酸エステル基)が好ましく挙げられる。なかでも、めっきムラがより抑制され、金属層との密着がより優れる点で、一般式(1)または一般式(2)で表される基がより好ましく、一般式(1)で表される基がさらに好ましい。
以下に、それぞれの基について詳述する。
Among these, a group represented by the general formula (1) (for example, a tertiary carboxylic acid ester group) and a group represented by the general formula (2) (for example, aryl) in that the polarity conversion efficiency is more excellent. Preferably an alkyl ester group), a group represented by the general formula (3) (for example, an alkoxyalkyl ester group), or a group represented by the general formula (4) (for example, a secondary alkyl sulfonate group). It is done. Especially, the group represented by General formula (1) or General formula (2) is more preferable at the point which plating unevenness is suppressed more and adhesion with a metal layer is more excellent, and it represents with General formula (1). More preferred are groups.
Below, each group is explained in full detail.
極性変換基Aの好ましい態様として、下記一般式(1)で表される基を有する態様が挙げられる。*は、結合位置を示す。 As a preferable aspect of the polarity conversion group A, an aspect having a group represented by the following general formula (1) is exemplified. * Indicates a binding position.
一般式(1)中、R1、R2、およびR3は、それぞれ独立に、置換基を有してもよいアルキル基、または、置換基を有してもよいアリール基を表す。
アルキル基の炭素数は、めっきムラの発生やめっき液の汚染をより抑制できる点で、炭素数1〜22個が好ましく、炭素数1〜8個がより好ましい。より具体的には、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。
アリール基としては、例えば、炭素環式アリール基(芳香族炭化水素基)と複素環式アリール基(芳香族複素環基)が含まれる。炭素環式アリール基としては、本発明の効果がより優れる点で、炭素数6〜19個(例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基)の基が好ましく挙げられる。また、複素環式アリール基としては、本発明の効果がより優れる点で、炭素数3〜20およびヘテロ原子数1〜5(例えば、ピリジル基、フリル基、ベンゼン環が縮環したキノリル基、ベンゾフリル基、チオキサントン基、カルバゾール基)の基が好ましく挙げられる。
In general formula (1), R 1 , R 2 , and R 3 each independently represent an alkyl group that may have a substituent or an aryl group that may have a substituent.
The number of carbon atoms of the alkyl group is preferably 1 to 22 carbon atoms, and more preferably 1 to 8 carbon atoms, from the viewpoint of further suppressing the occurrence of uneven plating and contamination of the plating solution. More specifically, a methyl group, an ethyl group, a propyl group, a butyl group, etc. are mentioned.
Examples of the aryl group include a carbocyclic aryl group (aromatic hydrocarbon group) and a heterocyclic aryl group (aromatic heterocyclic group). Preferred examples of the carbocyclic aryl group include groups having 6 to 19 carbon atoms (for example, a phenyl group, a naphthyl group, an anthracenyl group, and a pyrenyl group) from the viewpoint that the effects of the present invention are more excellent. Moreover, as a heterocyclic aryl group, in the point which the effect of this invention is more excellent, C3-C20 and heteroatoms 1-5 (for example, the quinolyl group which the benzene ring condensed, pyridyl group, a furyl group, Preferred examples include benzofuryl group, thioxanthone group, and carbazole group.
なお、R1、R2、およびR3のうち、2つまたはすべてが結合して環を形成してもよい。形成される環の種類は特に制限されないが、めっきムラの発生やめっき液の汚染をより抑制できる点で、脂肪族炭化水素環が好ましく、特に4〜6員環が好ましい。
さらに、形成される環は、−O−基、−S−基、−CO−基、または−NR4−基を介して環を形成してもよい。なお、R4は、水素原子またはアルキル基(好ましくは、炭素数8個以下。例えば、メチル基、エチル基、プロピル基など)を表す。
Two or all of R 1 , R 2 and R 3 may be bonded to form a ring. The type of ring formed is not particularly limited, but an aliphatic hydrocarbon ring is preferable and a 4- to 6-membered ring is particularly preferable in that the occurrence of uneven plating and contamination of the plating solution can be further suppressed.
Furthermore, the ring formed may form a ring via an —O— group, an —S— group, a —CO— group, or a —NR 4 — group. R 4 represents a hydrogen atom or an alkyl group (preferably having 8 or less carbon atoms. For example, a methyl group, an ethyl group, a propyl group, etc.).
上記アルキル基またはアリール基が置換基を有する場合、本発明の効果を損なわない限り、置換基の種類は特に制限されない。例えば、メチル基、エチル基等のアルキル基(好ましくは、炭素数1〜20);フェニル基、ナフチル基等のアリール基(好ましくは、炭素数6〜16);スルホンアミド基、N−スルホニルアミド基、アセトキシ基等のアシルオキシ基(好ましくは、炭素数1〜6);メトキシ基、エトキシ基等のアルコキシ基(好ましくは、炭素数1〜6);ジメチルアミノ基、ジエチルアミノ基、t−ブチルアミノ基等のアルキルアミノ基(好ましくは、炭素数1〜8);塩素、臭素等のハロゲン原子;メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等のアルコキシカルボニル基(好ましくは、炭素数2〜7);シアノ基;t−ブチルカーボネート等の炭酸エステル基が挙げられる。 When the alkyl group or aryl group has a substituent, the type of the substituent is not particularly limited as long as the effects of the present invention are not impaired. For example, alkyl groups such as methyl and ethyl groups (preferably having 1 to 20 carbon atoms); aryl groups such as phenyl and naphthyl groups (preferably having 6 to 16 carbon atoms); sulfonamide groups and N-sulfonylamides Group, acyloxy group such as acetoxy group (preferably 1 to 6 carbon atoms); alkoxy group such as methoxy group and ethoxy group (preferably 1 to 6 carbon atoms); dimethylamino group, diethylamino group, t-butylamino Alkylamino groups such as groups (preferably having 1 to 8 carbon atoms); halogen atoms such as chlorine and bromine; alkoxycarbonyl groups such as methoxycarbonyl groups, ethoxycarbonyl groups and cyclohexyloxycarbonyl groups (preferably having 2 to 2 carbon atoms) 7); cyano group; carbonate group such as t-butyl carbonate.
なお、R1、R2およびR3の好適態様としては、極性変換の効率がより優れ、金属層との密着力がより優れる点で、R1が炭素数1〜8のアルキル基で、R2が炭素数1〜8のアルキル基で、R3が炭素数1〜8のアルキル基、炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルキル基を有する炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルコキシ基を有する炭素数6〜19の炭素環式アリール基、炭素数3〜20の複素環式アリール基、または炭素数1〜6のアルキル基を有する炭素数3〜20の複素環式アリール基である態様が挙げられる。
また、R2とR3とが結合して4〜6員環の脂肪族炭化水素環を形成してもよい。
As a preferred embodiment of R 1, R 2 and R 3, the efficiency of the polarity conversion is more excellent, in terms of adhesion to the metal layer is more excellent, R 1 is an alkyl group having 1 to 8 carbon atoms, R 2 is an alkyl group having 1 to 8 carbon atoms, R 3 is an alkyl group having 1 to 8 carbon atoms, a carbocyclic aryl group having 6 to 19 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. 19 carbocyclic aryl groups, 6 to 19 carbocyclic aryl groups having 1 to 6 carbon alkoxy groups, 3 to 20 heterocyclic aryl groups, or alkyl having 1 to 6 carbon atoms The aspect which is a C3-C20 heterocyclic aryl group which has group is mentioned.
R 2 and R 3 may be bonded to form a 4- to 6-membered aliphatic hydrocarbon ring.
極性変換基Aの好ましい態様として、下記一般式(2)で表される基を有する態様が挙げられる。*は、結合位置を示す。 As a preferable aspect of the polar conversion group A, an aspect having a group represented by the following general formula (2) is exemplified. * Indicates a binding position.
一般式(2)中、R5およびR6は、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表し、R5およびR6の少なくとも一つはアリール基を表す。
アルキル基の定義および好適範囲は、上述したR1、R2、およびR3で表されるアルキル基と同義である。アリール基の種類としては、上述したR1、R2、およびR3で表されるアリール基が挙げられる。また、アルキル基およびアリール基に置換してもよい置換基の種類も上述した通りである。
なお、R5およびR6は、結合して環を形成してもよい。形成される環の種類としては、上述したR1、R2、およびR3で形成される環が挙げられる。
In General Formula (2), R 5 and R 6 represent a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent, and at least one of R 5 and R 6 Represents an aryl group.
The definition and preferred range of the alkyl group are the same as those of the alkyl group represented by R 1 , R 2 and R 3 described above. Examples of the aryl group include the aryl groups represented by R 1 , R 2 , and R 3 described above. The types of substituents that may be substituted on the alkyl group and aryl group are also as described above.
R 5 and R 6 may combine to form a ring. Examples of the ring formed include the rings formed by R 1 , R 2 , and R 3 described above.
なお、R5およびR6の好適態様としては、極性変換の効率がより優れ、金属層との密着力がより優れる点で、R5が炭素数1〜8のアルキル基、炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルキル基を有する炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルコキシ基を有する炭素数6〜19の炭素環式アリール基、炭素数3〜20の複素環式アリール基、または、炭素数1〜6のアルキル基を有する炭素数3〜20の複素環式アリール基であり、R6が炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルキル基を有する炭素数6〜19の炭素環式アリール基、炭素数1〜6のアルコキシ基を有する炭素数6〜19の炭素環式アリール基、炭素数3〜20の複素環式アリール基、または炭素数1〜6のアルキル基を有する炭素数3〜20の複素環式アリール基である態様が挙げられる。
なお、R5とR6とが結合して4〜6員環の脂肪族炭化水素環を形成してもよい。
As a preferred embodiment of R 5 and R 6, the efficiency of the polarity conversion is more excellent, in terms of adhesion to the metal layer is more excellent, R 5 is an alkyl group having 1 to 8 carbon atoms, carbon atoms 6 to 19 A carbocyclic aryl group, a C6-C19 carbocyclic aryl group having a C1-C6 alkyl group, a C6-C19 carbocyclic aryl group having a C1-C6 alkoxy group , A heterocyclic aryl group having 3 to 20 carbon atoms, or a heterocyclic aryl group having 3 to 20 carbon atoms having an alkyl group having 1 to 6 carbon atoms, and R 6 is a carbocyclic ring having 6 to 19 carbon atoms. C6-C19 carbocyclic aryl group having a C1-C6 alkyl group, C6-C19 carbocyclic aryl group having a C1-C6 alkoxy group, carbon number 3-20 heterocyclic aryl group or alkyl having 1 to 6 carbon atoms Aspect is a heterocyclic aryl group having 3 to 20 carbon atoms having the like.
R 5 and R 6 may be bonded to form a 4- to 6-membered aliphatic hydrocarbon ring.
極性変換基Aの好ましい態様として、下記一般式(3)で表される基を有する態様が挙げられる。*は、結合位置を示す。 As a preferable aspect of the polarity conversion group A, an aspect having a group represented by the following general formula (3) is exemplified. * Indicates a binding position.
一般式(3)中、R7は、水素原子または置換基を有してもよいアルキル基を表す。アルキル基の定義および好適範囲は、上述したR1、R2、およびR3で表されるアルキル基と同義である。アルキル基に置換してもよい置換基の種類も上述した通りである。
R8は、置換基を有してもよいアルキル基を表す。アルキル基の定義および好適範囲は、上述したR1、R2、およびR3で表されるアルキル基と同義である。アルキル基に置換してもよい置換基の種類も上述した通りである。
なお、R7およびR8は、結合して環を形成してもよい。形成される環の種類としては、上述したR1、R2、およびR3で形成される環が挙げられる。
In General Formula (3), R 7 represents a hydrogen atom or an alkyl group which may have a substituent. The definition and preferred range of the alkyl group are the same as those of the alkyl group represented by R 1 , R 2 and R 3 described above. The types of substituents that may be substituted on the alkyl group are also as described above.
R 8 represents an alkyl group which may have a substituent. The definition and preferred range of the alkyl group are the same as those of the alkyl group represented by R 1 , R 2 and R 3 described above. The types of substituents that may be substituted on the alkyl group are also as described above.
R 7 and R 8 may combine to form a ring. Examples of the ring formed include the rings formed by R 1 , R 2 , and R 3 described above.
なお、R7およびR8の好適態様としては、経時安定性、アルカリ耐性がより優れる点で、アルコキシ基、アルコキシカルボニル基、ハロゲン基等の電子吸引性基で置換されたアルキル基であることが好ましい。
また、R7およびR8の他の好適態様としては、R7が炭素数1〜8のアルキル基、炭素数1〜6アルコキシ基を有する炭素数1〜8のアルキル基、炭素数2〜7のアルコキシカルボニル基を有する炭素数1〜8のアルキル基、またはハロゲン基を有する炭素数1〜8のアルキル基であり、R8が炭素数1〜8のアルキル基、炭素数1〜6アルコキシ基を有する炭素数1〜8のアルキル基、炭素数2〜7のアルコキシカルボニル基を有する炭素数1〜8のアルキル基、またはハロゲン基を有する炭素数1〜8のアルキル基である態様が挙げられる。
なお、R7とR8とが結合して4〜6員環の脂肪族炭化水素環を形成してもよい。
A preferred embodiment of R 7 and R 8 is an alkyl group substituted with an electron-withdrawing group such as an alkoxy group, an alkoxycarbonyl group, or a halogen group in view of better stability over time and alkali resistance. preferable.
Further, as other preferred embodiments of R 7 and R 8 , R 7 is an alkyl group having 1 to 8 carbon atoms, an alkyl group having 1 to 8 carbon atoms having an alkoxy group having 1 to 6 carbon atoms, or 2 to 7 carbon atoms. Or an alkyl group having 1 to 8 carbon atoms or an alkyl group having 1 to 8 carbon atoms having a halogen group, and R 8 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms. And an alkyl group having 1 to 8 carbon atoms, an alkyl group having 1 to 8 carbon atoms having an alkoxycarbonyl group having 2 to 7 carbon atoms, or an alkyl group having 1 to 8 carbon atoms having a halogen group. .
R 7 and R 8 may combine to form a 4- to 6-membered aliphatic hydrocarbon ring.
極性変換基Aの好ましい態様として、下記一般式(4)で表される基を有する態様が挙げられる。*は、結合位置を示す。 As a preferable aspect of the polar conversion group A, an aspect having a group represented by the following general formula (4) is exemplified. * Indicates a binding position.
一般式(4)中、R9およびR10は、置換基を有してもよいアルキル基、または、置換基を有してもよいアリール基を表す。アルキル基としては、本発明の効果がより優れる点で、炭素数1〜25が好ましく、炭素数1〜8がより好ましい。より具体的には、メチル基、エチル基、イソプロピル基、t−ブチル基、シクロヘキシル基などの直鎖状、分岐状または環状のアルキル基が挙げられる。
アリール基の種類としては、上述したR1、R2、およびR3で表されるアリール基が挙げられる。
In general formula (4), R 9 and R 10 represent an alkyl group which may have a substituent or an aryl group which may have a substituent. As an alkyl group, C1-C25 is preferable and the C1-C8 is more preferable at the point which the effect of this invention is more excellent. More specifically, a linear, branched or cyclic alkyl group such as a methyl group, an ethyl group, an isopropyl group, a t-butyl group and a cyclohexyl group can be mentioned.
Examples of the aryl group include the aryl groups represented by R 1 , R 2 , and R 3 described above.
なお、R9およびR10は、結合して環を形成してもよい。形成される環の種類としては、上述したR1、R2、およびR3で形成される環が挙げられる。 R 9 and R 10 may combine to form a ring. Examples of the ring formed include the rings formed by R 1 , R 2 , and R 3 described above.
上記アルキル基またはアリール基が置換基を有する場合、本発明の効果を損なわない限り、置換基の種類は特に制限されず、例えば、上述したR1、R2、およびR3で表されるアルキル基またはアリール基に置換される置換基などが例示される。 When the alkyl group or aryl group has a substituent, the type of the substituent is not particularly limited as long as the effects of the present invention are not impaired. For example, the alkyl represented by the above-described R 1 , R 2 , and R 3 Examples include a substituent substituted with a group or an aryl group.
R9およびR10の好適態様としては、経時安定性の点で、アルコキシ基、カルボニル基、アルコキシカルボニル基、シアノ基、ハロゲン基等の電子吸引性基で置換されたアルキル基、または、シクロヘキシル基、ノルボルニル基等の環状アルキル基が特に好ましい。物性値としては、重クロロホルム中、プロトンNMRにおける2級メチン水素のケミカルシフトが4.4ppmよりも低磁場に現れる化合物が好ましく、4.6ppmよりも低磁場に現れる化合物がより好ましい。このように、電子吸引性基で置換されたアルキル基が特に好ましいのは、熱分解反応時に中間体として生成していると思われるカルボカチオンが電子吸引性基により不安定化し、分解が抑制されるためであると考えられる。具体的には、−CHR9R10の構造としては、下記式で表される構造が特に好ましい。 As a preferable embodiment of R 9 and R 10 , an alkyl group substituted with an electron-withdrawing group such as an alkoxy group, a carbonyl group, an alkoxycarbonyl group, a cyano group, a halogen group, or a cyclohexyl group is preferable in terms of stability over time. A cyclic alkyl group such as a norbornyl group is particularly preferable. As a physical property value, a compound in which the chemical shift of secondary methine hydrogen in proton NMR in a deuterated chloroform appears in a magnetic field lower than 4.4 ppm is preferable, and a compound that appears in a magnetic field lower than 4.6 ppm is more preferable. Thus, an alkyl group substituted with an electron-withdrawing group is particularly preferred because the carbocation that appears to be formed as an intermediate during the thermal decomposition reaction is destabilized by the electron-withdrawing group and decomposition is suppressed. This is considered to be because of this. Specifically, the structure represented by the following formula is particularly preferable as the structure of —CHR 9 R 10 .
なお、極性変換基は、上述した一般式(1)〜(4)のいずれかで表される基以外の基を有していてもよい。例えば、一般式(1)〜(4)中の*にさらに連結基−L−が結合していてもよい。
連結基としては特に制限されず、例えば、2〜4価の連結基が挙げられる。例えば、1から60個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から100個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が挙げられる。より具体的な連結基としては、下記の構造単位、および、それらが組み合わさって構成される基が挙げられる。
なお、これらの連結基は置換基を有していてもよい。置換基の種類は特に制限されないが、例えば、上述したR1、R2、およびR3で表されるアルキル基またはアリール基に置換される置換基などが例示される。
In addition, the polarity conversion group may have groups other than the group represented by any of the general formulas (1) to (4) described above. For example, a linking group -L- may be further bonded to * in the general formulas (1) to (4).
The linking group is not particularly limited, and examples thereof include a divalent to tetravalent linking group. For example, 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 100 hydrogen atoms, and 0 to 20 sulfur atoms. Examples include groups consisting of atoms. More specific examples of the linking group include the following structural units and groups constituted by combining them.
In addition, these coupling groups may have a substituent. The type of the substituent is not particularly limited, and examples thereof include a substituent substituted with the alkyl group or aryl group represented by R 1 , R 2 , and R 3 described above.
(B)極性変換基Y
極性変換基Yとしては公知の官能基を使用することができ、例えば、700nm以下の光照射を行うことにより親疎水性が変化する官能基を使用することができる。このように、700nm以下の光照射により極性変換する官能基は、赤外線などの長波長露光や熱によらず、所定の波長の光照射により直接に、分解、開環または二量化反応が生じることで、高感度で疎水性から親水性が変化することを特徴とする。
該官能基としては、例えば、特開2004−175098号公報に記載の一般式(a)〜(i)で表される官能基を用いることができる。
(B) Polarity converting group Y
As the polarity conversion group Y, a known functional group can be used. For example, a functional group whose hydrophilicity / hydrophobicity is changed by irradiation with light of 700 nm or less can be used. In this way, functional groups that undergo polarity conversion upon irradiation with light of 700 nm or less can directly undergo decomposition, ring opening, or dimerization reaction upon irradiation with light of a predetermined wavelength, regardless of long-wavelength exposure such as infrared rays or heat. And, it is characterized by high sensitivity and a change in hydrophobicity from hydrophobicity.
As the functional group, for example, functional groups represented by general formulas (a) to (i) described in JP-A No. 2004-175098 can be used.
極性変換基の具体例を以下に示す。 Specific examples of the polarity converting group are shown below.
(架橋性基)
ポリマーに含まれる架橋性基は、後述するアルカリ水溶液に対する耐性の高い架橋性基であり、具体的には、カルボキシル基(−COOH)、ヒドロキシル基、イソシアネート基、アルコキシシリル基、アセトキシシリル基、クロロシリル基、1級アミノ基(−NH2)、2級アミノ基(−NHRa。なお、Raは置換基(好ましくは、炭化水素基)を表す。)、3級アミノ基(−NRbRc。なお、RbおよびRcは置換基(好ましくは、炭化水素基)を表す。)、エポキシ基、オキセタニル基、(メタ)アクリルアミド基、アリル基、スチリル基、マレイミド基、およびシンナモイル基からなる群より選択される少なくとも一種である。これらの架橋性基を有することで、アルカリ水溶液に対する耐性の高い被めっき層を得ることができ、めっき処理時のめっきムラやめっき液の汚染が抑制される。
なかでも、めっきムラの発生をより抑制できる点で、エポキシ基、オキセタニル基、ヒドロキシル基またはアルコキシシリル基が好ましい。
(Crosslinkable group)
The crosslinkable group contained in the polymer is a crosslinkable group highly resistant to an alkaline aqueous solution described later. Specifically, a carboxyl group (—COOH), a hydroxyl group, an isocyanate group, an alkoxysilyl group, an acetoxysilyl group, a chlorosilyl group. Group, primary amino group (—NH 2 ), secondary amino group (—NHR a , where R a represents a substituent (preferably a hydrocarbon group)), tertiary amino group (—NR b R) c , wherein R b and R c represent a substituent (preferably a hydrocarbon group)), an epoxy group, an oxetanyl group, a (meth) acrylamide group, an allyl group, a styryl group, a maleimide group, and a cinnamoyl group. Is at least one selected from the group consisting of By having these crosslinkable groups, a to-be-plated layer having high resistance to an alkaline aqueous solution can be obtained, and plating unevenness and plating solution contamination during plating are suppressed.
Among these, an epoxy group, an oxetanyl group, a hydroxyl group, or an alkoxysilyl group is preferable in that the occurrence of uneven plating can be further suppressed.
なお、アルコキシシリル基とは、アルコキシ基を有するシリル基である。言い換えると、ケイ素原子にアルコキシ基が結合した基(−Si−ORd(Rd:アルキル基)を意味する。具体的には、トリアルコキシシリル基、アルキルジアルコキシシリル基などが挙げられる。アセトキシシリル基とは、ケイ素原子にアセトキシ基が結合した基を意味する。クロロシリル基とは、ケイ素原子に塩素原子が結合した基を意味する。 The alkoxysilyl group is a silyl group having an alkoxy group. In other words, it means a group in which an alkoxy group is bonded to a silicon atom (—Si—OR d (R d : alkyl group), specifically, a trialkoxysilyl group, an alkyldialkoxysilyl group, etc. A silyl group means a group in which an acetoxy group is bonded to a silicon atom, and a chlorosilyl group means a group in which a chlorine atom is bonded to a silicon atom.
なお、架橋性基としてアクリロオイルオキシ基またはメタアクリロイルオキシ基を使用すると、アルカリ水溶液に対する耐性が低い被めっき層が形成され、結果としてめっきムラの発生や、めっき液の汚染が進行する。 In addition, when an acryloyloxy group or a methacryloyloxy group is used as the crosslinkable group, a plating layer having low resistance to an alkaline aqueous solution is formed, and as a result, generation of plating unevenness and contamination of the plating solution proceed.
上記極性官能基および架橋性基を有するポリマーの骨格の種類は特に制限されないが、例えば、ポリイミド樹脂、エポキシ樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリエステル樹脂、ウレタン樹脂、ノボラック樹脂、クレゾール樹脂、アクリル樹脂、メタアクリル樹脂、スチレン樹脂などが挙げられる。なかでも、材料の入手性や、成膜性などの点で、アクリル樹脂、メタアクリル樹脂が好ましい。 The type of the skeleton of the polymer having the polar functional group and the crosslinkable group is not particularly limited. For example, polyimide resin, epoxy resin, urethane resin, polyethylene resin, polyester resin, urethane resin, novolac resin, cresol resin, acrylic resin, A methacrylic resin, a styrene resin, etc. are mentioned. Of these, acrylic resins and methacrylic resins are preferable in terms of availability of materials and film formability.
(極性変換基および特定の架橋性基を有するポリマーの好適態様)
極性変換基および特定の架橋性基を有するポリマーの好適態様としては、極性変換基を有するユニットとして、以下の一般式(A)で表されるユニットを含むポリマーが挙げられる。ポリマーが一般式(A)で表されるユニットを有する場合、めっきムラの発生やめっき液の汚染をより抑制できる。
(Preferred embodiment of polymer having polar conversion group and specific crosslinkable group)
As a suitable aspect of the polymer which has a polar conversion group and a specific crosslinkable group, the polymer containing the unit represented by the following general formula (A) is mentioned as a unit which has a polar conversion group. When the polymer has a unit represented by the general formula (A), the occurrence of uneven plating and contamination of the plating solution can be further suppressed.
一般式(A)中、R11は、水素原子、または、炭素数1〜4の置換若しくは無置換のアルキル基を表す。アルキル基としては、メチル基、エチル基などが挙げられる。
一般式(A)中、L1は、単結合または二価の有機基を表す。二価の有機基としては、置換若しくは無置換の二価の脂肪族炭化水素基(好ましくは炭素数1〜8。例えば、メチレン基、エチレン基、プロピレン基などのアルキレン基)、置換若しくは無置換の二価の芳香族炭化水素基(好ましくは炭素数6〜12。例えば、フェニレン基)、−O−、−S−、−SO2−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、またはこれらを組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。なかでも、本発明の効果がより優れる点で、単結合、芳香族炭化水素基が好ましい。
In general formula (A), R 11 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group and an ethyl group.
In general formula (A), L 1 represents a single bond or a divalent organic group. As the divalent organic group, a substituted or unsubstituted divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms, for example, an alkylene group such as a methylene group, an ethylene group or a propylene group), substituted or unsubstituted A divalent aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms, for example, a phenylene group), —O—, —S—, —SO 2 —, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof (for example, an alkyleneoxy group, an alkyleneoxycarbonyl group, an alkylenecarbonyloxy group, and the like) can be given. Especially, a single bond and an aromatic hydrocarbon group are preferable at the point which the effect of this invention is more excellent.
一般式(A)中、Yは、上述した極性変換基を表す。なかでも、めっきムラの発生やめっき液の汚染をより抑制できる点で、一般式(1)〜(4)のいずれかで表される基であることが好ましい。 In general formula (A), Y represents the polar conversion group mentioned above. Especially, it is preferable that it is group represented by either of General formula (1)-(4) at the point which can suppress generation | occurrence | production of plating nonuniformity and contamination of a plating solution more.
上記一般式(A)で表されるユニットの好適態様の一つとして、めっきムラの発生やめっき液の汚染をより抑制できる点で、以下の一般式(A−1)で表されるユニットが挙げられる。 As one of the preferred embodiments of the unit represented by the general formula (A), there is a unit represented by the following general formula (A-1) in that the occurrence of uneven plating and contamination of the plating solution can be further suppressed. Can be mentioned.
一般式(A−1)中、R11およびYの定義は上述の通りである。
L2は、単結合、アミド基(−CONH−)、エステル基、またはフェニレン基を表す。L3は、単結合、または、脂肪族炭化水素基を表す。なお、L2がアミド基またはエステル基の場合、L3は脂肪族炭化水素基を表す。
In general formula (A-1), the definitions of R 11 and Y are as described above.
L 2 represents a single bond, an amide group (—CONH—), an ester group, or a phenylene group. L 3 represents a single bond or an aliphatic hydrocarbon group. When L 2 is an amide group or an ester group, L 3 represents an aliphatic hydrocarbon group.
ポリマー中における一般式(A)で表されるユニット(または、一般式(A−1)で表されるユニット)の含有量は特に制限されないが、めっきムラの発生やめっき液の汚染をより抑制できる点で、全ポリマーユニット中、10〜95モル%が好ましく、55〜90モル%がより好ましい。 The content of the unit represented by the general formula (A) in the polymer (or the unit represented by the general formula (A-1)) is not particularly limited, but it further suppresses the occurrence of uneven plating and contamination of the plating solution. In the point which can do, 10-95 mol% is preferable in all polymer units, and 55-90 mol% is more preferable.
極性変換基および特定の架橋性基を有するポリマーの他の好適態様としては、架橋性基を有するユニットとして、以下の一般式(B)で表されるユニットを含むポリマーが挙げられる。ポリマーが一般式(B)で表されるユニットを有する場合、めっきムラの発生やめっき液の汚染をより抑制できる。 As another suitable aspect of the polymer which has a polar conversion group and a specific crosslinkable group, the polymer containing the unit represented by the following general formula (B) is mentioned as a unit which has a crosslinkable group. When the polymer has a unit represented by the general formula (B), the occurrence of uneven plating and contamination of the plating solution can be further suppressed.
一般式(B)中、R12は、水素原子、または、炭素数1〜4の置換若しくは無置換のアルキル基を表す。アルキル基としては、メチル基、エチル基などが挙げられる。
一般式(B)中、L4は、単結合または二価の有機基を表す。該有機基の定義は、L1で表される有機基の定義と同義である。
一般式(B)中、Zは、カルボキシル基、ヒドロキシル基、イソシアネート基、アルコキシシリル基、アセトキシシリル基、クロロシリル基、1級アミノ基、2級アミノ基、3級アミノ基、エポキシ基、オキセタニル基、アリル基、スチリル基、マレイミド基、シンナモイル基、または一般式(C)で表される基を表す。
In the general formula (B), R 12 is a hydrogen atom or, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group and an ethyl group.
In the general formula (B), L 4 represents a single bond or a divalent organic group. Definition of the organic groups are the same as those defined organic group represented by L 1.
In general formula (B), Z is a carboxyl group, hydroxyl group, isocyanate group, alkoxysilyl group, acetoxysilyl group, chlorosilyl group, primary amino group, secondary amino group, tertiary amino group, epoxy group, oxetanyl group. , An allyl group, a styryl group, a maleimide group, a cinnamoyl group, or a group represented by the general formula (C).
一般式(C)中、R13〜R15は、それぞれ独立して、水素原子、または炭素数1〜4の置換若しくは無置換のアルキル基を表す。アルキル基としては、例えば、メチル基、エチル基などが挙げられる。 In general formula (C), R < 13 > -R < 15 > represents a hydrogen atom or a C1-C4 substituted or unsubstituted alkyl group each independently. Examples of the alkyl group include a methyl group and an ethyl group.
一般式(C)中、R16は、水素原子、アルキル基(好ましくは炭素数1〜8)、アルケニル基(好ましくは炭素数1〜8)、アルキニル基(好ましくは炭素数1〜8)、またはアリール基を表す。なかでも、本発明の効果がより優れる点で、アルキル基、アリール基がより好ましい。 In the general formula (C), R 16 is a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms), an alkenyl group (preferably having 1 to 8 carbon atoms), an alkynyl group (preferably having 1 to 8 carbon atoms), Or represents an aryl group. Especially, an alkyl group and an aryl group are more preferable at the point which the effect of this invention is more excellent.
上記一般式(B)で表されるユニットの好適態様の一つとして、めっきムラの発生やめっき液の汚染をより抑制できる点で、以下の一般式(B−1)で表されるユニットが挙げられる。 As a preferred embodiment of the unit represented by the general formula (B), there is a unit represented by the following general formula (B-1) in that the occurrence of uneven plating and contamination of the plating solution can be further suppressed. Can be mentioned.
一般式(B−1)中、R12およびZの定義は上述の通りである。
L5は、単結合、アミド基、エステル基、またはフェニル基を表す。L6は、単結合、または−O−、−COO−、−CONH−結合で介されていてもよい脂肪族炭化水素基を表す。なお、Zがカルボキシル基の場合、L5、L6は、ともに単結合であってもよい。
In general formula (B-1), the definitions of R 12 and Z are as described above.
L 5 represents a single bond, an amide group, an ester group, or a phenyl group. L 6 represents a single bond or an aliphatic hydrocarbon group which may be interposed via a —O—, —COO— or —CONH— bond. When Z is a carboxyl group, L 5 and L 6 may both be single bonds.
極性変換基および架橋性基を有するポリマーの合成方法は特に制限されず、公知の方法(例えば、ラジカル重合、カチオン重合など)を使用できる。例えば、極性変換基を有するモノマーと、架橋性基を有するモノマーとを共重合させる方法が挙げられる。使用される架橋性基を有するモノマーとしては、例えば、以下のモノマーが挙げられる。 The method for synthesizing the polymer having a polar conversion group and a crosslinkable group is not particularly limited, and a known method (for example, radical polymerization, cationic polymerization, etc.) can be used. For example, a method of copolymerizing a monomer having a polarity converting group and a monomer having a crosslinkable group can be mentioned. Examples of the monomer having a crosslinkable group used include the following monomers.
使用される架橋性基を有するモノマーとしては、例えば、以下のモノマーが挙げられる。 Examples of the monomer having a crosslinkable group used include the following monomers.
また、架橋性基としてエチレン付加重合性不飽和基が使用される場合、例えば、特開2009−007540号公報などに記載の方法を参照してポリマーを合成することができる。 Further, when an ethylene addition polymerizable unsaturated group is used as the crosslinkable group, for example, a polymer can be synthesized with reference to a method described in JP 2009-007540 A.
極性変換基と架橋性基とを有するポリマーの好ましい様態としては、上記極性変換基を有するモノマーと上記架橋性基を有するモノマーを共重合することで合成したポリマーが挙げられる。具体例を以下に示すが、これらのポリマーに限定される訳ではない。なお、下記に示すポリマー中の繰り返し単位に併記された数値は、各ユニットのモル%を示す。 A preferred embodiment of the polymer having a polar converting group and a crosslinkable group includes a polymer synthesized by copolymerizing the monomer having the polar converting group and the monomer having the crosslinkable group. Specific examples are shown below, but are not limited to these polymers. In addition, the numerical value written together by the repeating unit in the polymer shown below shows mol% of each unit.
被めっき層形成用組成物中における上記ポリマーの含有量は特に制限されないが、組成物全量に対して、2〜50質量%が好ましく、5〜30質量%がより好ましい。上記範囲内であれば、組成物の取扱い性に優れ、被めっき層の層厚の制御がしやすい。 Although content of the said polymer in the composition for to-be-plated layer forming is not restrict | limited in particular, 2-50 mass% is preferable with respect to the composition whole quantity, and 5-30 mass% is more preferable. If it is in the said range, it is excellent in the handleability of a composition and it is easy to control the layer thickness of a to-be-plated layer.
(溶剤)
被めっき層形成用組成物は、必要に応じて、溶剤を含んでいてもよい。
使用できる溶剤としては、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテル等のアルコール系溶剤;酢酸等の酸;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤;ホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;酢酸メチル、酢酸エチル、プロピレングリコールモノメチルエーテルアセタート等のエステル系溶剤;ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶剤が挙げられる。
また取り扱いやすさから沸点が50℃〜150℃の溶剤が好ましい。なお、これらの溶剤は単一で使用してもよいし、混合して使用してもよい。
(solvent)
The composition for forming a layer to be plated may contain a solvent, if necessary.
Examples of solvents that can be used include alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, and propylene glycol monomethyl ether; acids such as acetic acid; ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; formamide and dimethyl Amide solvents such as acetamide and N-methylpyrrolidone; Nitrile solvents such as acetonitrile and propionitrile; Ester solvents such as methyl acetate, ethyl acetate and propylene glycol monomethyl ether acetate; Carbonates such as dimethyl carbonate and diethyl carbonate A solvent is mentioned.
A solvent having a boiling point of 50 ° C. to 150 ° C. is preferred for ease of handling. In addition, these solvents may be used alone or in combination.
(架橋剤)
被めっき層形成用組成物は、必要に応じて、上述した架橋性基と反応する反応性官能基を有する架橋剤を含有していてもよい。架橋剤が含まれることにより、上述したポリマー中の架橋性基との間で化学結合が形成され、被めっき層のアルカリ水溶液に対する耐性がより向上する。
(Crosslinking agent)
The composition for forming a layer to be plated may contain a cross-linking agent having a reactive functional group that reacts with the cross-linkable group described above, if necessary. By including the cross-linking agent, a chemical bond is formed with the cross-linkable group in the above-described polymer, and the resistance of the plated layer to the alkaline aqueous solution is further improved.
使用される架橋剤としては、山下信二編「架橋剤ハンドブック」に掲載されているような従来公知のものを用いることができる。
より具体的には、架橋剤は、通常、架橋性基と反応する反応性官能基を2個以上有し、2〜6個有することが好ましい。
反応性官能基としては、例えば、水酸基、イソシアネート基、カルボン酸基、エポキシ基、カルボン酸無水物基、1級アミノ基、2級アミノ基、アルコキシシリル基、ハロゲン化ベンジル基などが挙げられる。
As the crosslinking agent to be used, those conventionally known as described in Shinji Yamashita “Crosslinking agent handbook” can be used.
More specifically, the crosslinking agent usually has two or more reactive functional groups that react with the crosslinkable group, and preferably has 2 to 6 reactive functional groups.
Examples of the reactive functional group include a hydroxyl group, an isocyanate group, a carboxylic acid group, an epoxy group, a carboxylic anhydride group, a primary amino group, a secondary amino group, an alkoxysilyl group, and a benzyl halide group.
ポリマー中の架橋性基と架橋剤中の反応性官能基との好ましい組み合わせとしては、例えば、(架橋性基,反応性官能基)=(カルボキシル基,一級または二級アミノ基)、(カルボキシル基,アジリジン基)、(カルボキシル基,イソシアネート基)、(カルボキシル基,エポキシ基)、(カルボキシル基,ハロゲン化ベンジル基)、(一級または二級アミノ基,イソシアネート基)、(一級、二級、または三級アミノ基,ハロゲン化ベンジル基)、(一級アミノ基,アルデヒド類)、(イソシアネート基,一級または二級アミノ基)、(イソシアネート基,イソシアネート基)、(イソシアネート基,水酸基)、(イソシアネート基,エポキシ基)、(水酸基,イソシアネート基)、(水酸基,ハロゲン化ベンジル基)、(水酸基,カルボン酸無水物基)、(水酸基,エポキシ基)、(水酸基,アルコキシシリル基)、(エポキシ基,一級または二級アミノ基)、(エポキシ基,カルボン酸無水物基)、(エポキシ基,水酸基)、(エポキシ基,エポキシ基)、(オキセタニル基,エポキシ基)、(アルコキシシリル基,アルコキシシリル基)などが挙げられる。なかでも、めっきムラの発生やめっき液の汚染をより抑制できる点で、(架橋性基,反応性官能基)=(エポキシ基,アミノ基)、(エポキシ基,エポキシ基)、(三級アミノ基,ハロゲン化ベンジル基)、(水酸基,イソシアネート基)、(オキセタニル基,エポキシ基)、(アルコキシシリル基、アルコキシシリル基)が、より好ましい組み合わせである。 As a preferable combination of the crosslinkable group in the polymer and the reactive functional group in the crosslinking agent, for example, (crosslinkable group, reactive functional group) = (carboxyl group, primary or secondary amino group), (carboxyl group) , Aziridine group), (carboxyl group, isocyanate group), (carboxyl group, epoxy group), (carboxyl group, halogenated benzyl group), (primary or secondary amino group, isocyanate group), (primary, secondary, or Tertiary amino group, halogenated benzyl group), (primary amino group, aldehydes), (isocyanate group, primary or secondary amino group), (isocyanate group, isocyanate group), (isocyanate group, hydroxyl group), (isocyanate group) , Epoxy group), (hydroxyl group, isocyanate group), (hydroxyl group, halogenated benzyl group), (hydroxyl group, cal group) Acid anhydride group), (hydroxyl group, epoxy group), (hydroxyl group, alkoxysilyl group), (epoxy group, primary or secondary amino group), (epoxy group, carboxylic acid anhydride group), (epoxy group, hydroxyl group) ), (Epoxy group, epoxy group), (oxetanyl group, epoxy group), (alkoxysilyl group, alkoxysilyl group) and the like. Among these, (crosslinkable group, reactive functional group) = (epoxy group, amino group), (epoxy group, epoxy group), (tertiary amino group) in terms of suppressing the occurrence of uneven plating and contamination of the plating solution. Group, halogenated benzyl group), (hydroxyl group, isocyanate group), (oxetanyl group, epoxy group), and (alkoxysilyl group, alkoxysilyl group) are more preferable combinations.
使用される架橋剤としては、例えば、以下の架橋剤が挙げられる。 Examples of the crosslinking agent used include the following crosslinking agents.
被めっき層形成用組成物中における架橋剤の使用量としては、通常、架橋性基のモル数に対して、0.01〜50当量が好ましく、0.01〜10当量がより好ましく、0.5〜3当量が更に好ましい。架橋剤の使用量が上記範囲内の場合、後述するめっき触媒液やめっき液が浸透しやすくなる。 As a usage-amount of the crosslinking agent in the composition for to-be-plated layer forming, 0.01-50 equivalent is normally preferable with respect to the number-of-moles of a crosslinkable group, 0.01-10 equivalent is more preferable, and 0.0. 5 to 3 equivalents are more preferable. When the usage-amount of a crosslinking agent is in the said range, it will become easy to osmose | permeate the plating catalyst liquid mentioned later and a plating solution.
(光酸発生剤)
被めっき層形成用組成物は、必要に応じて、光酸発生剤を含有していてもよい。被めっき層形成用組成物中に光酸発生剤が含有される場合、後述する工程(C)において、光照射によって被めっき層中に酸を供給することができる。
(Photoacid generator)
The composition for forming a layer to be plated may contain a photoacid generator, if necessary. When a photoacid generator is contained in the composition for forming a layer to be plated, an acid can be supplied into the layer to be plated by light irradiation in the step (C) described later.
使用される光酸発生剤としては公知の化合物(例えば、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤など)を使用することができる。例えば、ヨードニウム塩、スルホニウム塩などのオニウム塩化合物などが挙げられる。 As the photoacid generator to be used, known compounds (for example, a photoinitiator for photocationic polymerization, a photoinitiator for radical photopolymerization, a photodecolorant for dyes, etc.) can be used. Examples thereof include onium salt compounds such as iodonium salts and sulfonium salts.
被めっき層形成用組成物中における光酸発生剤の含有量は特に制限されないが、組成物の全固形分に対して、0.001〜40質量%程度が好ましく、0.01〜20質量%がより好ましく、0.1〜5質量%がさらに好ましい。上記範囲内であれば、後述する工程(C)において、官能基の極性変換がより効率よく進行する。 Although content in particular of the photo-acid generator in the composition for to-be-plated layer forming is not restrict | limited, About 0.001-40 mass% is preferable with respect to the total solid of a composition, 0.01-20 mass% Is more preferable, and 0.1-5 mass% is further more preferable. If it is in the said range, in the process (C) mentioned later, the polarity conversion of a functional group will progress more efficiently.
(その他任意成分)
被めっき層形成用組成物は、上述した成分以外に、必要に応じて、界面活性剤、可塑剤、重合禁止剤、硬化を進めるための重合開始剤、硬化促進剤、ゴム成分(例えば、CTBN)、難燃化剤(例えば、りん系難燃化剤)、希釈剤、チキソトロピー化剤、顔料、消泡剤、レべリング剤、カップリング剤などを含有していてもよい。
また、被めっき層形成用組成物は、本発明の効果を阻害しない範囲で、特開2009−7540号公報、または特開2010‐248464号公報に記載の重合性基と触媒吸着性基を有するポリマーを含有していてもよい。
(Other optional ingredients)
In addition to the components described above, the composition for forming a layer to be plated includes a surfactant, a plasticizer, a polymerization inhibitor, a polymerization initiator for proceeding with curing, a curing accelerator, and a rubber component (for example, CTBN). ), Flame retardants (for example, phosphorus flame retardants), diluents, thixotropic agents, pigments, antifoaming agents, leveling agents, coupling agents and the like.
In addition, the composition for forming a layer to be plated has a polymerizable group and a catalyst adsorbing group described in JP2009-7540A or JP2010-248464A as long as the effects of the present invention are not impaired. It may contain a polymer.
<積層体の製造方法の第1の実施態様>
本発明の積層体の製造方法の第1の実施態様は、基板の表面上に被めっき層を形成する工程(A)と、被めっき層をアルカリ水溶液に接触させる工程(B)と、所定の処理を行って、被めっき層中の官能基を疎水性から親水性に変換する工程(C)と、被めっき層にめっき触媒またはその前駆体を付与する工程(D)と、めっき処理を行う工程(E)とを備える。
以下に、図面を参照しつつ、各工程で使用される材料およびその手順について詳述する。まず、工程(A)に関して詳述する。
<The 1st embodiment of the manufacturing method of a layered product>
The first embodiment of the laminate manufacturing method of the present invention includes a step (A) of forming a layer to be plated on the surface of the substrate, a step (B) of bringing the layer to be plated into contact with an alkaline aqueous solution, Performing a treatment to convert a functional group in the layer to be plated from hydrophobic to hydrophilic (C), applying a plating catalyst or a precursor thereof to the layer to be plated (D), and performing a plating treatment And a step (E).
Hereinafter, materials used in each step and the procedure thereof will be described in detail with reference to the drawings. First, the step (A) will be described in detail.
<工程(A):被めっき層形成工程>
工程(A)は、基板の表面に、上記被めっき層形成用組成物を用いて被めっき層を形成する工程である。該工程を行うことにより、後述するめっき触媒などが付与される被めっき層が形成される。
より具体的には、本工程では、図1(A)に示すように、基板10を用意し、図1(B)に示すように、基板10の表面に被めっき層12を形成する。
<Step (A): Plated layer forming step>
A process (A) is a process of forming a to-be-plated layer on the surface of a board | substrate using the said composition for to-be-plated layer forming. By performing this step, a layer to be plated to which a plating catalyst or the like to be described later is applied is formed.
More specifically, in this step, a substrate 10 is prepared as shown in FIG. 1A, and a layer 12 to be plated is formed on the surface of the substrate 10 as shown in FIG.
本工程で形成される被めっき層は、後述するように、加熱、酸の供給または輻射線の照射によって、極性変換基の親疎水性が疎水性から親水性へと変化し、結果として被めっき層の親疎水性もより親水性へと変化する。つまり、好ましくは疎水性被めっき層から親水性被めっき層へと変化する。なお、後述するように、被めっき層はアルカリ水溶液との接触後に親水性を示すため、後述するめっき触媒またはその前駆体を効率よく吸着する。つまり、被めっき層は、めっき触媒(またはその前駆体)の良好な受容層として機能する。その結果、被めっき層の表面に形成される金属層との優れた密着性が得られる。
以下では、まず、本工程で使用される材料(基板など)について詳述し、その後工程の手順について詳述する。
As will be described later, the layer to be plated formed in this step changes the hydrophilicity / hydrophobicity of the polarity conversion group from hydrophobic to hydrophilic by heating, supply of acid, or irradiation of radiation. The hydrophilicity / hydrophobicity of is also changed to more hydrophilic. That is, it preferably changes from a hydrophobic plated layer to a hydrophilic plated layer. As will be described later, since the layer to be plated exhibits hydrophilicity after contact with an alkaline aqueous solution, it efficiently adsorbs a plating catalyst or a precursor thereof described later. That is, the layer to be plated functions as a good receiving layer for the plating catalyst (or its precursor). As a result, excellent adhesion with the metal layer formed on the surface of the layer to be plated can be obtained.
In the following, first, materials (such as a substrate) used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(基板)
基板は、後述する各層を支持するための部材であり、従来知られているいずれの基板(例えば、樹脂基板、セラミック基板、ガラス基板、金属基板など。好ましくは、絶縁性基板。)を使用することができる。より具体的には、金属板(例えば、アルミニウム、亜鉛、銅等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、ポリイミド、エポキシ樹脂、等)、上記の如き金属がラミネートまたは蒸着されたプラスチックフィルム等が挙げられる。
(substrate)
The substrate is a member for supporting each layer described below, and any conventionally known substrate (for example, a resin substrate, a ceramic substrate, a glass substrate, a metal substrate, etc., preferably an insulating substrate) is used. be able to. More specifically, metal plates (eg, aluminum, zinc, copper, etc.), plastic films (eg, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate, polyethylene) , Polystyrene, polypropylene, polycarbonate, polyvinyl acetal, polyimide, epoxy resin, and the like), and plastic films on which the above metal is laminated or vapor-deposited.
また、基板は、その内部、または、片面若しくは両面に金属配線を有していてもよい。金属配線は、基板の表面に対してパターン状に形成されていてもよいし、全面に形成されていてもよい。代表的には、エッチング処理を利用したサブストラクティブ法で形成されたものや、電解めっきを利用したセミアディティブ法で形成したものが挙げられ、いずれの工法で形成されたものを用いてもよい。
金属配線を構成する材料としては、例えば、銅、銀、錫、パラジウム、金、ニッケル、クロム、タングステン、インジウム、亜鉛、またはガリウムなどが挙げられる。
Moreover, the board | substrate may have metal wiring in the inside or one side or both surfaces. The metal wiring may be formed in a pattern with respect to the surface of the substrate or may be formed on the entire surface. Typically, those formed by a subtractive method using an etching process and those formed by a semi-additive method using electrolytic plating may be used, and those formed by any method may be used.
Examples of the material constituting the metal wiring include copper, silver, tin, palladium, gold, nickel, chromium, tungsten, indium, zinc, and gallium.
(工程(A)の手順)
基板に被めっき層を形成する方法は、特に制限されず公知の方法を採用できる。例えば、被めっき層形成用組成物を基板上に塗布し、被めっき層を形成する方法(塗布方法)、該被めっき層形成用組成物より形成される被めっき層のフィルムを直接基板上にラミネートする方法などが挙げられる。なかでも、被めっき層の膜厚制御が容易である点から、塗布方法が好ましい。
以後、塗布方法の態様について詳述する。
(Procedure of step (A))
The method for forming the layer to be plated on the substrate is not particularly limited, and a known method can be adopted. For example, a method for forming a layer to be plated (coating method) by applying a composition for forming a layer to be plated on the substrate, and a film of the layer to be plated formed from the composition for forming a layer to be plated directly on the substrate The method of laminating etc. is mentioned. Especially, the coating method is preferable from the point that the film thickness control of a to-be-plated layer is easy.
Hereinafter, the aspect of the coating method will be described in detail.
被めっき層形成用組成物を基板上に塗布する方法は特に限定されず、公知の方法(例えば、スピンコート、デップコート、ダブルロールコータ、スリットコータ、エアナイフコータ、ワイヤーバーコータなど)を用いることができる。
取り扱い性や製造効率の観点からは、被めっき層形成用組成物を基板上に塗布して、必要に応じて乾燥処理を施して含まれる溶剤を除去し、被めっき層を形成する態様が好ましい。
The method for applying the composition for forming a layer to be plated on the substrate is not particularly limited, and a known method (for example, spin coating, dip coating, double roll coater, slit coater, air knife coater, wire bar coater, etc.) should be used. Can do.
From the viewpoint of handleability and production efficiency, an embodiment in which the composition for forming a layer to be plated is applied on a substrate, and if necessary, is subjected to a drying treatment to remove the contained solvent to form a layer to be plated. .
被めっき層の厚みは特に制限されないが、金属層の密着性がより優れる点から、0.02〜5.0μmが好ましく、0.05〜2.0μmがより好ましい。
被めっき層中におけるポリマーの含有量は特に制限されないが、金属層の密着性がより優れる点から、被めっき層全量に対して、10〜100質量%であることが好ましく、50〜100質量%であることがより好ましい。
Although the thickness of a to-be-plated layer is not restrict | limited in particular, 0.02-5.0 micrometers is preferable from the point which the adhesiveness of a metal layer is more excellent, and 0.05-2.0 micrometers is more preferable.
The content of the polymer in the layer to be plated is not particularly limited, but is preferably 10 to 100% by mass, and 50 to 100% by mass with respect to the total amount of the layer to be plated, because the adhesion of the metal layer is more excellent. It is more preferable that
(被めっき層の好適態様)
被めっき層の工程態様として、上述した被めっき層に対してさらに硬化処理を施すこと(工程(G))が好ましい。言い換えると、上記被めっき層は、極性変換基と架橋性基とを有するポリマーを架橋反応により硬化させて得られる層であることが好ましい。該態様の場合、架橋性基を介して層の硬化が進行し、被めっき層自体の膜強度が高くなると共に疎水性も高まり、アルカリ水溶液に対する耐性が向上する。
以後、工程(G)の態様について詳述する。
(Preferred embodiment of the layer to be plated)
As a process aspect of a to-be-plated layer, it is preferable to perform a hardening process with respect to the to-be-plated layer mentioned above (process (G)). In other words, the layer to be plated is preferably a layer obtained by curing a polymer having a polarity converting group and a crosslinkable group by a crosslinking reaction. In the case of this mode, the curing of the layer proceeds via the crosslinkable group, the film strength of the layer to be plated itself is increased, the hydrophobicity is also increased, and the resistance to the aqueous alkali solution is improved.
Hereinafter, the aspect of the step (G) will be described in detail.
硬化工程(工程(G))は、本工程(A)の後であって、後述する工程(D)の前に実施することが好ましい。より具体的には、工程(A)と工程(B)との間、工程(B)と工程(C)との間、または、工程(C)と工程(D)の間である。工程(D)の前に実施することによって、工程(D)で使用されるめっき触媒液や、工程(E)で使用されるめっき液に対する被めっき層の耐性を高めることができる。
なお、他の工程での被めっき層の溶出や分解を抑制できる点で、工程(A)と工程(B)との間に工程(G)を実施することが好ましい。
It is preferable to implement a hardening process (process (G)) after this process (A), and before the process (D) mentioned later. More specifically, it is between step (A) and step (B), between step (B) and step (C), or between step (C) and step (D). By carrying out before the step (D), it is possible to increase the resistance of the plating layer to the plating catalyst solution used in the step (D) and the plating solution used in the step (E).
In addition, it is preferable to implement a process (G) between a process (A) and a process (B) at the point which can suppress the elution and decomposition | disassembly of the to-be-plated layer in another process.
工程(G)におけるポリマーの架橋方法はポリマー中の架橋性基の種類によって適宜最適な方法が選択されるが、例えば、架橋性基同士を反応させる方法や、架橋剤を使用する方法が挙げられる。 As the method for crosslinking the polymer in the step (G), an optimal method is appropriately selected depending on the type of the crosslinkable group in the polymer. Examples thereof include a method of reacting crosslinkable groups with each other and a method of using a crosslinking agent. .
架橋性基同士を反応させる方法は、架橋性基同士の付加反応や縮合反応を介して被めっき層中に架橋構造を形成する方法である。例えば、架橋性基が−NCOである場合、熱をかけることにより自己縮合反応を進行させ、被めっき層中に架橋構造を形成することができる。 The method of reacting crosslinkable groups is a method of forming a crosslinked structure in the layer to be plated through an addition reaction or a condensation reaction between the crosslinkable groups. For example, when the crosslinkable group is -NCO, the self-condensation reaction can be advanced by applying heat to form a crosslinked structure in the layer to be plated.
架橋剤を使用する方法は、ポリマー中の架橋性基と、上述した該架橋性基と反応する反応性官能基を有する架橋剤の反応性官能基とを反応させ、被めっき層中に架橋構造を形成する方法である。 A method using a crosslinking agent is a method in which a crosslinkable group in a polymer is reacted with a reactive functional group of a crosslinker having a reactive functional group that reacts with the above-described crosslinkable group. It is a method of forming.
硬化処理の種類としては、使用されるポリマーおよび架橋剤などの種類によって異なり、適宜最適な処理方法が選択されるが、通常、加熱処理または露光処理が実施される。
加熱処理を行う場合、極性変換基の分解抑制、生産性などの点より、加熱温度としては、50〜200℃が好ましく、80〜150℃がより好ましい。処理時間としては、2〜60分が好ましく、5〜30分がより好ましい。
露光処理を行う場合、照射する光の種類は特に制限されないが、紫外光または可視光などが好適に使用される。照射エネルギーとしては、生産性などの点より、100〜10000mJが好ましく、500〜5000mJがより好ましい。
The type of curing treatment varies depending on the type of polymer used and the crosslinking agent, and an optimum treatment method is appropriately selected. Usually, heat treatment or exposure treatment is carried out.
When performing the heat treatment, the heating temperature is preferably from 50 to 200 ° C, more preferably from 80 to 150 ° C, from the viewpoints of suppression of decomposition of the polarity conversion group, productivity, and the like. As processing time, 2 to 60 minutes are preferable and 5 to 30 minutes are more preferable.
When performing the exposure process, the type of light to be irradiated is not particularly limited, but ultraviolet light or visible light is preferably used. The irradiation energy is preferably from 100 to 10,000 mJ, more preferably from 500 to 5000 mJ, from the viewpoint of productivity.
<工程(B):アルカリ水溶液接触工程>
工程(B)は、上記工程(A)の後に、被めっき層とアルカリ水溶液とを接触させる工程である。該工程を実施することにより、被めっき層上の有機吸着物が除去され、結果としてめっきの均一性が向上する。また、被めっき層の濡れ性が上がることで、後述するめっき触媒の浸透が促進される。
以下では、まず、本工程で使用される材料(アルカリ水溶液など)について詳述し、その後工程の手順について詳述する。
<Process (B): Alkaline aqueous solution contact process>
A process (B) is a process of making a to-be-plated layer and alkaline aqueous solution contact after the said process (A). By carrying out this step, the organic adsorbate on the layer to be plated is removed, and as a result, the uniformity of plating is improved. Moreover, the penetration of the plating catalyst described later is promoted by increasing the wettability of the layer to be plated.
Below, the material (alkali aqueous solution etc.) used at this process is explained in full detail first, and the procedure of the post process is explained in full detail.
(アルカリ水溶液)
工程(B)で用いるアルカリ水溶液は、pHがアルカリ性であれば特にその種類は限定されない。
アルカリ水溶液のpHは、めっきムラの発生やめっき液の汚染をより抑制できる点で、10〜14が好ましく、12〜14がより好ましい。
(Alkaline aqueous solution)
The type of the aqueous alkali solution used in the step (B) is not particularly limited as long as the pH is alkaline.
The pH of the alkaline aqueous solution is preferably 10 to 14, and more preferably 12 to 14 in terms of suppressing the occurrence of uneven plating and contamination of the plating solution.
アルカリ水溶液に使用される溶媒は、通常、水が使用される。また、必要に応じて、有機溶媒(メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶剤、酢酸、ヒドロキシ酢酸、アミノカルボン酸などの酸、アセトン、メチルエチルケトンなどのケトン系溶剤、ホルムアミド、ジメチルアセトアミド、N−メチルピロリドンなどのアミド系溶剤、アセトニトリル、プロピロニトリルなどのニトリル系溶剤、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶剤、グリコール系溶剤など)を併用してもよい。 As the solvent used for the alkaline aqueous solution, water is usually used. If necessary, organic solvents (alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin and propylene glycol monomethyl ether, acids such as acetic acid, hydroxyacetic acid and aminocarboxylic acid, ketones such as acetone and methyl ethyl ketone) Solvents, amide solvents such as formamide, dimethylacetamide, N-methylpyrrolidone, nitrile solvents such as acetonitrile and propyronitrile, carbonate solvents such as dimethyl carbonate and diethyl carbonate, glycol solvents, etc.) may be used in combination. .
アルカリ水溶液としては、その種類は特に制限されず、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸リチウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸水素リチウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、水酸化カルシウム水溶液、水酸化ストロンチウム水溶液、水酸化バリウム水溶液、炭酸カルシウム水溶液、炭酸ストロンチウム水溶液、炭酸バリウム水溶液などが挙げられる。
アルカリ成分(無機塩基)の含有量は、pHが上記範囲になるような範囲に調整されることが好ましい。
The type of the alkaline aqueous solution is not particularly limited, and examples thereof include a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a lithium carbonate aqueous solution, a sodium carbonate aqueous solution, a potassium carbonate aqueous solution, a lithium hydrogen carbonate aqueous solution, and a sodium hydrogen carbonate aqueous solution. Examples include aqueous solutions, potassium hydrogen carbonate aqueous solutions, calcium hydroxide aqueous solutions, strontium hydroxide aqueous solutions, barium hydroxide aqueous solutions, calcium carbonate aqueous solutions, strontium carbonate aqueous solutions, and barium carbonate aqueous solutions.
The content of the alkali component (inorganic base) is preferably adjusted to a range where the pH is in the above range.
アルカリ水溶液には、界面活性剤が添加されていてもよい。使用される界面活性剤の種類は特に制限されないが、例えば、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤が挙げられる。 A surfactant may be added to the alkaline aqueous solution. The type of the surfactant used is not particularly limited, and examples thereof include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
より具体的には、アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルまたはアルケニルエーテル硫酸塩、アルキルまたはアルケニル硫酸塩、アルキルまたはアルケニルエーテルカルボン酸塩、アミノ酸型界面活性剤、N−アシルアミノ酸型界面活性剤、アルキルまたはアルケニルリン酸エステルまたはその塩等が挙げられる。 More specifically, examples of the anionic surfactant include alkylbenzene sulfonate, alkyl or alkenyl ether sulfate, alkyl or alkenyl sulfate, alkyl or alkenyl ether carboxylate, amino acid type surfactant, N- Examples include acylamino acid type surfactants, alkyl or alkenyl phosphate esters and salts thereof.
ノニオン系界面活性剤としては、例えば、ポリオキシアルキレンアルキルまたはアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、高級脂肪酸アルカノールアミドまたはそのアルキレンオキサイド付加物、ショ糖脂肪酸エステル、アルキルグリコキシド、脂肪酸グリセリンモノエステル、アルキルアミンオキサイド等が挙げられる。 Nonionic surfactants include, for example, polyoxyalkylene alkyls or alkenyl ethers, polyoxyethylene alkyl phenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts thereof, sucrose fatty acid esters, alkyl glycoxides, fatty acid glycerin monoesters, Examples include alkylamine oxide.
カチオン系界面活性剤としては、例えば、アルキルカチオン系界面活性剤、アミド型4級カチオン系界面活性剤、エステル型4級カチオン系界面活性剤等が挙げられる。両性界面活性剤としては、例えば、カルボキシル型両性界面活性剤、スルホベタイン型両性界面活性剤等が挙げられる。 Examples of the cationic surfactant include alkyl cationic surfactants, amide type quaternary cationic surfactants, ester type quaternary cationic surfactants, and the like. Examples of amphoteric surfactants include carboxyl-type amphoteric surfactants and sulfobetaine-type amphoteric surfactants.
(工程(B)の手順)
被めっき層とアルカリ水溶液との接触方法は特に制限されず、公知の方法が使用される。例えば、アルカリ水溶液を被めっき層上に塗布する方法(スプレー塗布、スピンコート、印刷法など)や、アルカリ水溶液に被めっき層を有する基板を浸漬する方法(ディップ浸漬)などが挙げられ、処理の簡便さ、処理時間の調整の容易さから、ディップ浸漬、スプレー塗布が好ましい。
(Procedure of step (B))
The contact method of a to-be-plated layer and aqueous alkali solution is not restrict | limited, A well-known method is used. For example, a method of applying an alkaline aqueous solution on the layer to be plated (spray coating, spin coating, printing method, etc.), a method of immersing a substrate having a layer to be plated in an alkaline aqueous solution (dip immersion), etc. Dip dipping and spray coating are preferred because of their simplicity and ease of adjusting the processing time.
接触の際のアルカリ水溶液の液温は特に制限されないが、めっきムラの発生やめっき液の汚染をより抑制できる点で、30℃〜90℃の範囲が好ましく、50℃〜70℃の範囲がより好ましい。
被めっき層とアルカリ水溶液との接触時間は、めっきムラの発生やめっき液の汚染をより抑制できる点で、5秒〜30分の範囲が好ましく、30秒〜25分の範囲がより好ましく、1〜20分の範囲がさらに好ましい。
また、めっきムラの発生やめっき液の汚染をより抑制できる点で、アルカリ水溶液との接触後、被めっき層に付着したアルカリ水溶液を純水等で洗浄することが好ましい。
Although the liquid temperature of the aqueous alkali solution at the time of contact is not particularly limited, the range of 30 ° C. to 90 ° C. is preferable and the range of 50 ° C. to 70 ° C. is more preferable in that the occurrence of uneven plating and contamination of the plating solution can be further suppressed. preferable.
The contact time between the layer to be plated and the aqueous alkali solution is preferably in the range of 5 seconds to 30 minutes, more preferably in the range of 30 seconds to 25 minutes, in that the occurrence of uneven plating and contamination of the plating solution can be further suppressed. A range of ˜20 minutes is more preferred.
Moreover, it is preferable to wash | clean the alkaline aqueous solution adhering to the to-be-plated layer with a pure water after a contact with alkaline aqueous solution at the point which can suppress generation | occurrence | production of plating unevenness and plating solution contamination.
<工程(C):極性変換工程>
工程(C)は、上記工程(B)の後に、加熱、酸の供給または輻射線の照射を行って、極性変換基を疎水性から親水性に変換する工程である。より具体的には、該処理を行うことにより、処理後の被めっき層の水との接触角が、処理前の被めっき層の水との接触角より低下する。つまり、該処理によって、水との接触角が低下するように被めっき層の親疎水性が変化する。
該工程を実施することにより、被めっき層が疎水性から親水性へと変換され、めっき触媒またはその前駆体に対する親和性が向上する。また、後述する触媒付与工程で使用されるめっき触媒液、および、めっき工程で使用されるめっき液の浸透性が向上し、結果として金属層の密着性が向上する。
本工程で実施される処理は、被めっき層中の極性変換基の種類によって適宜最適な処理が実施される。以下に、それぞれの手順について詳述する。
なお、以下の極性変換処理は、必要に応じて、パターン状に実施してもよい。つまり、画像様に加熱、酸の供給または輻射線の照射を行って、被めっき層表面に親水性領域および疎水性領域のパターンを形成してもよい。
<Process (C): Polarity conversion process>
Step (C) is a step of converting the polarity conversion group from hydrophobic to hydrophilic by performing heating, acid supply, or irradiation with radiation after the step (B). More specifically, by performing the treatment, the contact angle with the water of the layer to be plated after the treatment is lower than the contact angle with the water of the layer to be plated before the treatment. That is, the treatment changes the hydrophilicity / hydrophobicity of the layer to be plated so that the contact angle with water decreases.
By carrying out this step, the layer to be plated is converted from hydrophobic to hydrophilic, and the affinity for the plating catalyst or its precursor is improved. Moreover, the permeability | transmittance of the plating catalyst liquid used at the catalyst provision process mentioned later and the plating liquid used at a plating process improves, As a result, the adhesiveness of a metal layer improves.
The treatment performed in this step is appropriately performed appropriately depending on the type of polarity conversion group in the layer to be plated. Below, each procedure is explained in full detail.
In addition, you may implement the following polarity conversion processes in a pattern form as needed. That is, the pattern of the hydrophilic region and the hydrophobic region may be formed on the surface of the layer to be plated by performing imagewise heating, acid supply, or irradiation with radiation.
(加熱処理)
加熱処理の条件は特に制限されないが、加熱温度としては、被めっき層の耐熱性および極性変換基の良好な極性変換効率の点から、100〜250℃が好ましく、150〜200℃がより好ましい。加熱時間としては、生産性および極性変換基の良好な極性変換効率の点から、1分〜1時間時間が好ましく、5分〜30分がより好ましい。
なお、加熱処理の際に使用される装置としては、公知の装置(例えば、送風乾燥機、オーブン、赤外線乾燥機、加熱ドラムなど)を用いることができる。
(Heat treatment)
The conditions for the heat treatment are not particularly limited, but the heating temperature is preferably from 100 to 250 ° C, more preferably from 150 to 200 ° C, from the viewpoint of the heat resistance of the layer to be plated and the good polarity conversion efficiency of the polarity conversion group. The heating time is preferably 1 minute to 1 hour, more preferably 5 minutes to 30 minutes from the viewpoint of productivity and good polarity conversion efficiency of the polarity conversion group.
In addition, as an apparatus used in the case of heat processing, a well-known apparatus (For example, a ventilation dryer, oven, an infrared dryer, a heating drum etc.) can be used.
(酸供給処理)
酸の供給を行う方法は特に制限されないが、例えば、被めっき層を酸性溶液と接触させる方法や、被めっき層中に光酸発生剤を含有させ、加熱処理または露光処理により光酸発生剤から酸を発生させる方法が挙げられる。
(Acid supply treatment)
The method for supplying the acid is not particularly limited. For example, the method in which the layer to be plated is brought into contact with an acidic solution, the photoacid generator is contained in the layer to be plated, and the photoacid generator is heated or exposed to light. The method of generating an acid is mentioned.
酸性溶液を使用する場合は、酸性溶液のpHは特に制限されないが、極性変換基の良好な極性変換効率の点から、3以下が好ましく、1以下がより好ましい。
酸性溶液中の酸性成分の種類は特に制限されないが、例えば、塩酸、硫酸、硝酸、酢酸、パラトルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸など公知の酸が使用できる。
酸性溶液中における酸の含有量は、極性変換基の良好な極性変換効率の点から、5〜50質量%程度が好ましく、10〜40質量%がより好ましい。
また、酸性溶液の中の溶媒の種類は特に制限されないが、例えば、水または有機溶媒が使用される。
In the case of using an acidic solution, the pH of the acidic solution is not particularly limited, but is preferably 3 or less, more preferably 1 or less, from the viewpoint of good polarity conversion efficiency of the polarity conversion group.
The kind of the acidic component in the acidic solution is not particularly limited, and known acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, paratoluenesulfonic acid, methanesulfonic acid, and trifluoroacetic acid can be used.
The content of the acid in the acidic solution is preferably about 5 to 50% by mass and more preferably 10 to 40% by mass from the viewpoint of good polarity conversion efficiency of the polar conversion group.
In addition, the type of the solvent in the acidic solution is not particularly limited, and for example, water or an organic solvent is used.
酸性溶液と被めっき層とを接触させる方法は特に制限されないが、酸性溶液を被めっき層上に塗布する方法や、被めっき層を有する基板を酸性溶液中に浸漬する方法などが挙げられる。
酸性溶液と被めっき層との接触時間は特に制限されないが、生産性および極性変換基の良好な極性変換効率の点から、1分〜1時間が好ましく、5分〜30分がより好ましい。
接触時の酸性溶液の液温は特に制限されないが、生産性および極性変換基の良好な極性変換効率の点から、30〜95℃が好ましく、40〜90℃がより好ましい。
The method for bringing the acidic solution into contact with the layer to be plated is not particularly limited, and examples thereof include a method of applying the acidic solution on the layer to be plated and a method of immersing a substrate having the layer to be plated in the acidic solution.
The contact time between the acidic solution and the layer to be plated is not particularly limited, but is preferably 1 minute to 1 hour and more preferably 5 minutes to 30 minutes from the viewpoint of productivity and good polarity conversion efficiency of the polarity conversion group.
Although the liquid temperature of the acidic solution at the time of a contact is not restrict | limited in particular, 30-95 degreeC is preferable and 40-90 degreeC is more preferable from the point of productivity and the favorable polarity conversion efficiency of a polarity conversion group.
光酸発生剤を使用する場合、使用される光酸発生剤としては公知の化合物(例えば、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤など)を使用することができる。
被めっき層中における光酸発生剤の含有量は、被めっき層の全固形分に対して、0.001〜40質量%程度が好ましく、0.01〜20質量%がより好ましく、0.1〜5質量%がさらに好ましい。
被めっき層中に光酸発生剤を供給する方法は特に制限されず、例えば、上述した被めっき層形成用組成物中に光酸発生剤を加え、被めっき層を形成する方法が挙げられる。
When using a photoacid generator, the photoacid generator used is a known compound (for example, a photoinitiator for photocationic polymerization, a photoinitiator for radical photopolymerization, a photodecolorant for dyes, etc.). Can be used.
About 0.001-40 mass% is preferable with respect to the total solid of a to-be-plated layer, and, as for content of the photo-acid generator in a to-be-plated layer, 0.01-20 mass% is more preferable, 0.1 -5 mass% is further more preferable.
The method for supplying the photoacid generator into the layer to be plated is not particularly limited, and examples thereof include a method of forming the layer to be plated by adding the photoacid generator to the above-described composition for forming a layer to be plated.
なお、被めっき層中の光酸発生剤より酸を発生させる方法は特に制限されないが、通常、加熱処理または露光処理により行われる。
加熱処理の条件としては、上述した条件が好ましく挙げられる。また、露光処理の条件としては、後述する輻射線照射処理の条件が挙げられる。
In addition, although the method in particular of generating an acid from the photo-acid generator in a to-be-plated layer is not restrict | limited, Usually, it is performed by heat processing or exposure processing.
As the conditions for the heat treatment, the above-mentioned conditions are preferably exemplified. Moreover, the conditions for the exposure process include conditions for a radiation irradiation process described later.
(輻射線照射処理)
使用される輻射線の種類は特に制限されず、極性変換基の種類に応じて最適な波長範囲の輻射線が使用される。なかでも、極性変換基の極性変換をより効率的に行う点から、紫外光または可視光を使用することが好ましい。
照射時間は、極性変換基の反応性および光源の種類などにより異なるが、生産性の点から、10秒〜5時間が好ましい。露光エネルギーとしては、10〜8000mJ程度が好ましく、100〜3000mJがより好ましい。
(Radiation irradiation treatment)
The type of radiation used is not particularly limited, and radiation in the optimum wavelength range is used according to the type of polarity conversion group. Especially, it is preferable to use ultraviolet light or visible light from the point which performs the polarity conversion of a polarity conversion group more efficiently.
The irradiation time varies depending on the reactivity of the polar conversion group and the type of the light source, but is preferably 10 seconds to 5 hours from the viewpoint of productivity. The exposure energy is preferably about 10 to 8000 mJ, more preferably 100 to 3000 mJ.
なお、上記加熱、酸の供給、および輻射線照射処理は、2以上の処理を工程(C)で実施してもよい。 In addition, the said heating, supply of an acid, and a radiation irradiation process may implement 2 or more processes by a process (C).
上述した処理を実施することにより被めっき層中の極性変換基の親疎水性が変化し、結果として被めっき層の親疎水性が親水性から疎水性に変化することが好ましい。つまり、好ましくは親水性被めっき層から疎水性被めっき層へと変化する。
通常、極性変換前の被めっき層は疎水性を示し、その水接触角は、アルカリ水溶液に対する耐性がより優れる点から、70°以上が好ましく、80°以上がより好ましい。なお、上限は特に制限されないが、通常、120°以下が多い。
一方、極性変換後の被めっき層は通常親水性を示し、その水接触角は、めっき触媒などに対する親和性がより優れる点から、70°未満が好ましく、50°以下がより好ましい。
なお、変換された極性変換基がカルボン酸基、スルホン酸基、またはスルフィン酸基である場合、極性変換後の被めっき層は、アルカリ性のめっき液を用いた場合は、これらの酸基が中和されて塩を生成することで、さらに親水性が増し、めっき液の浸透をより促進できる。
It is preferable that the hydrophilicity / hydrophobicity of the polarity conversion group in the layer to be plated is changed by performing the above-described treatment, and as a result, the hydrophilicity / hydrophobicity of the layer to be plated is changed from hydrophilic to hydrophobic. That is, it preferably changes from a hydrophilic plated layer to a hydrophobic plated layer.
Usually, the to-be-plated layer before polarity conversion shows hydrophobicity, and the water contact angle is preferably 70 ° or more, more preferably 80 ° or more from the viewpoint of better resistance to an aqueous alkali solution. The upper limit is not particularly limited, but is usually 120 ° or less.
On the other hand, the layer to be plated after polarity conversion usually exhibits hydrophilicity, and the water contact angle is preferably less than 70 °, more preferably 50 ° or less, from the viewpoint of better affinity for the plating catalyst and the like.
When the converted polarity conversion group is a carboxylic acid group, a sulfonic acid group, or a sulfinic acid group, the layer to be plated after the polarity conversion contains these acid groups when an alkaline plating solution is used. By being salted to form a salt, the hydrophilicity is further increased and the penetration of the plating solution can be further promoted.
なお、本明細書においては、水接触角が70°以上である被めっき層を疎水性被めっき層と、70°未満である被めっき層を親水性被めっき層と呼ぶ。
水接触角の測定方法としては、滴下した水の頂点と基板との2点の接点を用いる接線法を用いる。
In the present specification, a layer to be plated having a water contact angle of 70 ° or more is referred to as a hydrophobic layer and a layer to be plated that is less than 70 ° is referred to as a hydrophilic layer.
As a method for measuring the water contact angle, a tangential method using two points of contact between the top of the dropped water and the substrate is used.
<工程(D):触媒付与工程>
工程(D)は、工程(C)で得られた被めっき層にめっき触媒またはその前駆体を付与する工程である。
本工程においては、親水性を示す被めっき層(親水性被めっき層)にめっき触媒またはその前駆体が付与される。特に、親水性に変換された極性変換基がカルボン酸基、スルホン酸基、またはスルフィン酸基である場合、これらの基が付与されためっき触媒またはその前駆体を効率よく付着(吸着)する。
まず、本工程で使用される材料(めっき触媒またはその前駆体など)について詳述し、その後該工程の手順について詳述する。
<Step (D): catalyst application step>
A process (D) is a process of providing a plating catalyst or its precursor to the to-be-plated layer obtained at the process (C).
In this step, a plating catalyst or a precursor thereof is applied to a layer to be plated that exhibits hydrophilicity (hydrophilic layer to be plated). In particular, when the polar conversion group converted to hydrophilicity is a carboxylic acid group, a sulfonic acid group, or a sulfinic acid group, the plating catalyst or precursor thereof to which these groups are attached is efficiently attached (adsorbed).
First, materials (plating catalyst or its precursor etc.) used at this process are explained in full detail, and the procedure of this process is explained in full detail after that.
(めっき触媒またはその前駆体)
めっき触媒またはその前駆体は、後述するめっき工程における、めっき処理の触媒や電極として機能するものである。そのため、使用されるめっき触媒またはその前駆体の種類は、めっき処理の種類により適宜決定される。
なお、用いられるめっき触媒またはその前駆体は、めっきの均一性をより高める点で、無電解めっき触媒またはその前駆体であることが好ましい。
以下で、無電解めっきまたはその前駆体などについて詳述する。
(Plating catalyst or its precursor)
The plating catalyst or its precursor functions as a catalyst or electrode for plating treatment in the plating step described later. Therefore, the type of plating catalyst or precursor used is appropriately determined depending on the type of plating treatment.
In addition, it is preferable that the plating catalyst used or its precursor is an electroless plating catalyst or its precursor from the point which improves the uniformity of plating.
Hereinafter, electroless plating or a precursor thereof will be described in detail.
無電解めっき触媒としては、無電解めっき時の活性核となるものであれば、如何なるものも用いることができ、具体的には、自己触媒還元反応の触媒能を有する金属(Niよりイオン化傾向の低い無電解めっきできる金属として知られるもの)などが挙げられる。より具体的には、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。中でも、触媒能の高さから、Ag、Pdが特に好ましい。
無電解めっき触媒として、金属コロイド(金属粒子)を用いてもよい。一般に、金属コロイドは、荷電を持った界面活性剤または荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。
As the electroless plating catalyst, any catalyst can be used as long as it becomes an active nucleus at the time of electroless plating. Specifically, a metal having a catalytic ability for autocatalytic reduction reaction (which tends to be more ionized than Ni). And those known as metals capable of low electroless plating). More specifically, Pd, Ag, Cu, Ni, Al, Fe, Co, etc. are mentioned. Of these, Ag and Pd are particularly preferable because of their high catalytic ability.
As the electroless plating catalyst, metal colloid (metal particles) may be used. Generally, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent.
無電解めっき触媒前駆体としては、化学反応により無電解めっき触媒となりうるものであれば、特に制限なく使用することができる。主には、上記無電解めっき触媒として挙げた金属の金属イオンが用いられる。無電解めっき触媒前駆体である金属イオンは、還元反応により無電解めっき触媒である0価金属になる。無電解めっき触媒前駆体である金属イオンは、被めっき層へ付与した後、無電解めっき液への浸漬前に、別途還元反応により0価金属に変化させて無電解めっき触媒としてもよいし、無電解めっき触媒前駆体のまま無電解めっき液に浸漬し、無電解めっき液中の還元剤により金属(無電解めっき触媒)に変化させてもよい。 Any electroless plating catalyst precursor can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction. The metal ions of the metals mentioned as the electroless plating catalyst are mainly used. The metal ion that is an electroless plating catalyst precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. The metal ion that is an electroless plating catalyst precursor may be used as an electroless plating catalyst after being applied to the layer to be plated and before being immersed in the electroless plating solution, by separately changing to a zero-valent metal by a reduction reaction. The electroless plating catalyst precursor may be immersed in an electroless plating solution and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating solution.
無電解めっき触媒前駆体である金属イオンは、金属塩を用いて被めっき層に付与することが好ましい。使用される金属塩としては、適切な溶媒に溶解して金属イオンと塩基(陰イオン)とに解離されるものであれば特に制限はなく、M(NO3)n、MCln、M2/n(SO4)、M3/n(PO4)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Agイオン、Cuイオン、Alイオン、Niイオン、Coイオン、Feイオン、Pdイオンが挙げられ、中でも、多座配位可能なものが好ましく、特に、配位可能な官能基の種類数および触媒能の点で、Agイオン、Pdイオンが好ましい。 The metal ion that is the electroless plating catalyst precursor is preferably applied to the layer to be plated using a metal salt. The metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion), and M (NO 3 ) n , MCl n , M 2 / n (SO 4 ), M 3 / n (PO 4 ) (M represents an n-valent metal atom), and the like. As a metal ion, the thing which said metal salt dissociated can be used suitably. Specific examples include, for example, Ag ions, Cu ions, Al ions, Ni ions, Co ions, Fe ions, and Pd ions. Among them, those capable of multidentate coordination are preferable, and in particular, functionalities capable of coordination. In view of the number of types of groups and catalytic ability, Ag ions and Pd ions are preferred.
本工程において、無電解めっきを行わず直接電気めっきを行うために用いられる触媒として、上述した以外の0価金属を使用することもできる。 In this step, zero-valent metals other than those described above can also be used as a catalyst used for direct electroplating without electroless plating.
上記めっき触媒またはその前駆体は、これらを溶媒に分散または溶解させた溶液(以後、適宜めっき触媒液とも称する)の形態で使用されることが好ましい。つまり、めっき触媒液には、めっき触媒またはその前駆体が含まれる。
めっき触媒液を通常溶媒を含んでおり、溶媒の種類としては有機溶剤および/または水が用いられる。通常、水が主成分として使用される。めっき触媒液が有機溶剤を含有することで、被めっき層に対するめっき触媒液の浸透性が向上し、被めっき層に効率よくめっき触媒またはその前駆体を吸着させることができる。
The plating catalyst or a precursor thereof is preferably used in the form of a solution in which these are dispersed or dissolved in a solvent (hereinafter also referred to as a plating catalyst solution as appropriate). That is, the plating catalyst solution contains a plating catalyst or a precursor thereof.
The plating catalyst solution usually contains a solvent, and an organic solvent and / or water is used as the type of solvent. Usually, water is used as the main component. When the plating catalyst liquid contains an organic solvent, the permeability of the plating catalyst liquid to the layer to be plated is improved, and the plating catalyst or its precursor can be efficiently adsorbed to the layer to be plated.
めっき触媒液に用いられる有機溶剤としては、被めっき層に浸透しうる溶剤であれば特に制限はないが、具体的には、アセトン、アセト酢酸メチル、アセト酢酸エチル、エチレングリコールジアセテート、シクロヘキサノン、アセチルアセトン、アセトフェノン、2−(1−シクロヘキセニル)シクロヘキサノン、プロピレングリコールジアセテート、トリアセチン、ジエチレングリコールジアセテート、ジオキサン、N−メチルピロリドン、ジメチルカーボネート、ジメチルセロソルブなどを用いることができる。 The organic solvent used in the plating catalyst solution is not particularly limited as long as it is a solvent that can penetrate into the plating layer. Specifically, acetone, methyl acetoacetate, ethyl acetoacetate, ethylene glycol diacetate, cyclohexanone, Acetylacetone, acetophenone, 2- (1-cyclohexenyl) cyclohexanone, propylene glycol diacetate, triacetin, diethylene glycol diacetate, dioxane, N-methylpyrrolidone, dimethyl carbonate, dimethyl cellosolve, and the like can be used.
(工程(D)の手順)
めっき触媒またはその前駆体を被めっき層に付与する方法は、特に制限されない。
例えば、めっき触媒またはその前駆体を含有するめっき触媒液(金属を適当な分散媒に分散した分散液、または、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液)を調製し、めっき触媒液を被めっき層上に塗布する方法、または、めっき触媒液中に被めっき層が形成された基板を浸漬する方法などが挙げられる。
被めっき層とめっき触媒液との接触時間は、30秒〜10分程度であることが好ましく、3分〜5分程度であることがより好ましい。
接触時のめっき触媒液の温度は、20〜60℃程度であることが好ましく、30〜50℃程度であることがより好ましい。
(Procedure of step (D))
The method for applying the plating catalyst or its precursor to the layer to be plated is not particularly limited.
For example, a plating catalyst solution containing a plating catalyst or a precursor thereof (a dispersion in which a metal is dispersed in an appropriate dispersion medium or a solution containing a dissociated metal ion in which a metal salt is dissolved in an appropriate solvent) is prepared. And a method of applying a plating catalyst solution on the layer to be plated, or a method of immersing a substrate on which the layer to be plated is formed in the plating catalyst solution.
The contact time between the layer to be plated and the plating catalyst solution is preferably about 30 seconds to 10 minutes, and more preferably about 3 minutes to 5 minutes.
The temperature of the plating catalyst solution at the time of contact is preferably about 20 to 60 ° C, and more preferably about 30 to 50 ° C.
<工程(E):めっき工程>
工程(E)は、上記工程(D)にてめっき触媒またはその前駆体が付与された被めっき層に対してめっき処理を行い、金属層(めっき層)を被めっき層上に形成する工程である。より具体的には、本工程を実施することにより、図1(C)に示すように、被めっき層12上に金属層14が設けられ、積層体16が得られる。
<Process (E): Plating process>
The step (E) is a step of forming a metal layer (plating layer) on the layer to be plated by performing a plating process on the layer to be plated to which the plating catalyst or its precursor is applied in the step (D). is there. More specifically, by performing this step, as shown in FIG. 1C, the metal layer 14 is provided on the layer 12 to be plated, and the laminate 16 is obtained.
本工程において行われるめっき処理の種類は、無電解めっき、電解めっき等が挙げられ、上記工程において、被めっき層に付与されためっき触媒またはその前駆体の機能によって、選択することができる。
なかでも、形成される金属層の密着性向上の点から、無電解めっきを行うことが好ましい。また、所望の層厚の金属層を得るために、無電解めっきの後に、更に電解めっきを行うことがより好ましい態様である。
以下、本工程において好適に行われるめっきについて説明する。
Examples of the plating treatment performed in this step include electroless plating and electrolytic plating. In the above step, the plating treatment can be selected depending on the function of the plating catalyst applied to the layer to be plated or its precursor.
Especially, it is preferable to perform electroless plating from the point of the adhesive improvement of the metal layer formed. Further, in order to obtain a metal layer having a desired layer thickness, it is a more preferable aspect that electrolytic plating is further performed after electroless plating.
Hereinafter, the plating suitably performed in this process will be described.
(無電解めっき)
無電解めっきとは、めっきとして析出させたい金属イオンを溶かした溶液を用いて、化学反応によって金属を析出させる操作のことをいう。
本工程における無電解めっきは、例えば、無電解めっき触媒が付与された基板を水洗して、被めっき層から余分な無電解めっき触媒(金属)を除去した後、無電解めっき浴に浸漬して行う。使用される無電解めっき浴としては、公知の無電解めっき浴を使用することができる。なお、無電解めっき浴としては、入手のしやすさの点から、アルカリ性の無電解めっき浴(pHが9〜14程度が好ましい)を使用する場合が好ましい。
また、無電解めっき触媒前駆体が付与された基板を、無電解めっき浴に浸漬する場合には、基板を水洗して余分な前駆体(金属塩など)を除去した後、無電解めっき浴中へ浸漬させる。この場合には、無電解めっき浴中において、めっき触媒前駆体の還元とこれに引き続き無電解めっきが行われる。ここで使用される無電解めっき浴としても、上記同様、公知の無電解めっき浴を使用することができる。
(Electroless plating)
Electroless plating refers to an operation of depositing a metal by a chemical reaction using a solution in which metal ions to be deposited as a plating are dissolved.
In the electroless plating in this step, for example, the substrate to which the electroless plating catalyst has been applied is washed with water to remove excess electroless plating catalyst (metal) from the layer to be plated, and then immersed in an electroless plating bath. Do. As the electroless plating bath used, a known electroless plating bath can be used. In addition, as an electroless-plating bath, the case where an alkaline electroless-plating bath (pH is preferable about 9-14) is preferable from the point of availability.
In addition, when the substrate to which the electroless plating catalyst precursor is applied is immersed in the electroless plating bath, the substrate is washed with water to remove excess precursor (metal salt, etc.), and then in the electroless plating bath. Soak in. In this case, reduction of the plating catalyst precursor and subsequent electroless plating are performed in the electroless plating bath. As the electroless plating bath used here, a known electroless plating bath can be used as described above.
なお、無電解めっき触媒前駆体の還元は、上記のような無電解めっき液を用いる態様とは別に、触媒活性化液(還元液)を準備し、無電解めっき前の別工程として行うことも可能である。触媒活性化液は、無電解めっき触媒前駆体(主に金属イオン)を0価金属に還元できる還元剤を溶解した液で、液全体に対する該還元剤の濃度が0.1〜50質量%が好ましく、1〜30質量%がより好ましい。還元剤としては、公知の還元剤(例えば、水素化ホウ素ナトリウムまたはジメチルアミンボランなどのホウ素系還元剤、ホルムアルデヒド、次亜リン酸など)を使用できる。
浸漬の際には、無電解めっき触媒またはその前駆体が接触する被めっき層表面付近の無電解めっき触媒またはその前駆体の濃度を一定に保つ上で、攪拌または揺動を加えながら浸漬することが好ましい。
In addition, the reduction of the electroless plating catalyst precursor may be performed as a separate step before electroless plating by preparing a catalyst activation liquid (reducing liquid) separately from the embodiment using the electroless plating liquid as described above. Is possible. The catalyst activation liquid is a liquid in which a reducing agent capable of reducing an electroless plating catalyst precursor (mainly metal ions) to zero-valent metal is dissolved, and the concentration of the reducing agent with respect to the whole liquid is 0.1 to 50% by mass. Preferably, 1-30 mass% is more preferable. As the reducing agent, known reducing agents (for example, boron-based reducing agents such as sodium borohydride or dimethylamine borane, formaldehyde, hypophosphorous acid, etc.) can be used.
When dipping, keep the concentration of the electroless plating catalyst or its precursor near the surface of the layer to be plated in contact with the electroless plating catalyst or its precursor, and soak it with stirring or shaking. Is preferred.
一般的な無電解めっき浴の組成としては、例えば、溶剤(例えば、水)の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤など公知の添加物が含まれていてもよい。 As a composition of a general electroless plating bath, for example, in addition to a solvent (for example, water), 1. metal ions for plating; 2. reducing agent; Additives (stabilizers) that improve the stability of metal ions are mainly included. In addition to these, the plating bath may contain known additives such as a plating bath stabilizer.
めっき浴に用いられる有機溶剤としては、水に可能な溶媒である必要があり、その点から、アセトンなどのケトン類、メタノール、エタノール、イソプロパノールなどのアルコール類が好ましく用いられる。 The organic solvent used in the plating bath needs to be a solvent that can be used in water, and in this respect, ketones such as acetone and alcohols such as methanol, ethanol, and isopropanol are preferably used.
無電解めっき浴に用いられる金属の種類としては、例えば、銅、すず、鉛、ニッケル、金、銀、パラジウム、ロジウムが知られており、なかでも、導電性の観点からは、銅、金が特に好ましい。また、上記金属に合わせて最適な還元剤、添加物が選択される。 As the types of metals used in the electroless plating bath, for example, copper, tin, lead, nickel, gold, silver, palladium, rhodium are known, and from the viewpoint of conductivity, copper and gold are among others. Particularly preferred. Moreover, the optimal reducing agent and additive are selected according to the said metal.
無電解めっきにより得られる金属層の層厚は、めっき浴の金属イオン濃度、めっき浴への浸漬時間、または、めっき浴の温度などにより制御することができるが、導電性の観点からは、0.1μm以上が好ましく、0.2〜2μmがより好ましい。
ただし、無電解めっきによる金属層を導通層として、後述する電解めっきを行う場合は、少なくとも0.1μm以上の層が均一に付与されていることが好ましい。
また、めっき浴への浸漬時間としては、1分〜6時間程度であることが好ましく、1分〜3時間程度であることがより好ましい。
The thickness of the metal layer obtained by electroless plating can be controlled by the metal ion concentration of the plating bath, the immersion time in the plating bath, or the temperature of the plating bath, but from the viewpoint of conductivity, it is 0. .1 μm or more is preferable, and 0.2 to 2 μm is more preferable.
However, when performing electroplating to be described later using a metal layer formed by electroless plating as a conductive layer, it is preferable that a layer of at least 0.1 μm or more is uniformly applied.
Further, the immersion time in the plating bath is preferably about 1 minute to 6 hours, and more preferably about 1 minute to 3 hours.
(電解めっき(電気めっき))
本工程おいては、上記工程において付与されためっき触媒またはその前駆体が電極としての機能を有する場合、その触媒またはその前駆体が付与された被めっき層に対して、電解めっきを行うことができる。
また、前述の無電解めっきの後、形成された金属層を電極とし、更に、電解めっきを行ってもよい。これにより基板との密着性に優れた無電解めっき層をベースとして、そこに新たに任意の厚みをもつ金属層を容易に形成することができる。このように、無電解めっきの後に、電解めっきを行うことで、金属層を目的に応じた厚みに形成しうるため、金属層を種々の応用に適用するのに好適である。
(Electrolytic plating (electroplating))
In this step, when the plating catalyst or its precursor applied in the above step has a function as an electrode, electrolytic plating can be performed on the layer to be plated to which the catalyst or its precursor is applied. it can.
Moreover, after the above-mentioned electroless plating, the formed metal layer may be used as an electrode, and electrolytic plating may be further performed. Thereby, a new metal layer having an arbitrary thickness can be easily formed on the electroless plating layer having excellent adhesion to the substrate. As described above, by performing electroplating after electroless plating, the metal layer can be formed in a thickness according to the purpose, which is suitable for applying the metal layer to various applications.
電解めっきの方法としては、従来公知の方法を用いることができる。なお、電解めっきに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。 As a method of electrolytic plating, a conventionally known method can be used. In addition, as a metal used for electrolytic plating, copper, chromium, lead, nickel, gold | metal | money, silver, tin, zinc etc. are mentioned, Copper, gold | metal | money, silver is preferable from a conductive viewpoint, and copper is more preferable.
また、電解めっきにより得られる金属層の層厚は、めっき浴中に含まれる金属濃度、または、電流密度などを調整することで制御することができる。
なお、一般的な電気配線などに適用する場合、金属層の層厚は、導電性の観点から、0.5μm以上であることが好ましく、1〜30μmがより好ましい。
Further, the thickness of the metal layer obtained by electrolytic plating can be controlled by adjusting the concentration of metal contained in the plating bath, the current density, or the like.
In addition, when applying to general electrical wiring etc., the layer thickness of the metal layer is preferably 0.5 μm or more, more preferably 1 to 30 μm from the viewpoint of conductivity.
<工程(H):パターン形成工程>
パターン形成工程は、必要に応じて設けられる工程で、めっき工程で得られた金属層をパターン状にエッチングして、パターン状金属層を形成する工程である。本工程において、基板表面全体に形成された金属層の不要部分をエッチングで取り除くことで、所望のパターン状の金属層を生成することができる。
より具体的には、図1(D)に示すように、本工程においては、金属層の不要部を除去することにより、パターン状金属層18が、被めっき層12上に形成される。
<Process (H): Pattern formation process>
A pattern formation process is a process provided as needed, and is a process of etching the metal layer obtained by the plating process in pattern shape, and forming a pattern-shaped metal layer. In this step, a metal layer having a desired pattern can be generated by removing unnecessary portions of the metal layer formed on the entire substrate surface by etching.
More specifically, as shown in FIG. 1D, in this step, the patterned metal layer 18 is formed on the plated layer 12 by removing unnecessary portions of the metal layer.
このパターンの形成には、如何なる手法も使用することができ、具体的には一般的に知られているサブトラクティブ法(金属層上にパターン状のマスクを設け、マスクの非形成領域をエッチング処理した後、マスクを除去して、パターン状の金属層を形成する方法)、セミアディティブ法(金属層上にパターン状のマスクを設け、マスクの非形成領域に金属層を形成するようにめっき処理を行い、マスクを除去し、エッチング処理して、パターン状の金属層を形成する方法)が用いられる。 Any method can be used to form this pattern. Specifically, a generally known subtractive method (a patterned mask is provided on a metal layer, and an unformed region of the mask is etched). After that, the mask is removed to form a patterned metal layer), a semi-additive method (a plating process is performed so that a patterned mask is provided on the metal layer, and a metal layer is formed in a non-mask formation region) , Removing the mask, etching, and forming a patterned metal layer).
サブトラクティブ法とは、形成された金属層上にレジスト層を設けパターン露光、現像により金属層パターン部と同じパターンを形成し、レジストパターンをマスクとしてエッチング液で金属層を除去し、パターン状の金属層を形成する方法である。
レジストとしては如何なる材料も使用でき、ネガ型、ポジ型、液状、フィルム状のものが使用できる。また、エッチング方法としては、プリント配線基板の製造時に使用されている方法が何れも使用可能であり、湿式エッチング、ドライエッチング等が使用可能であり、任意に選択すればよい。作業の操作上、湿式エッチングが装置などの簡便性の点で好ましい。エッチング液として、例えば、塩化第二銅、塩化第二鉄等の水溶液を使用することができる。
In the subtractive method, a resist layer is provided on the formed metal layer, the same pattern as the metal layer pattern portion is formed by pattern exposure and development, and the metal layer is removed with an etching solution using the resist pattern as a mask. This is a method of forming a metal layer.
Any material can be used as the resist, and negative, positive, liquid, and film-like ones can be used. Moreover, as an etching method, any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus. As an etching solution, for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
セミアディティブ法とは、形成された金属層上にレジスト層を設け、パターン露光、現像により非金属層パターン部と同じパターンを形成し、レジストパターンをマスクとして電解めっきを行い、レジストパターンを除去した後にクイックエッチングを実施し、金属層をパターン状に除去することで、パターン状金属層を形成する方法である。
レジスト、エッチング液等はサブトラクティブ法と同様な材料が使用できる。また、電解めっき手法としては上記記載の手法が使用できる。
In the semi-additive method, a resist layer is provided on the formed metal layer, the same pattern as the non-metal layer pattern portion is formed by pattern exposure and development, and the resist pattern is removed by electrolytic plating using the resist pattern as a mask. This is a method of forming a patterned metal layer by performing quick etching later and removing the metal layer in a pattern.
The resist, the etching solution, etc. can use the same material as the subtractive method. Moreover, the above-described method can be used as the electrolytic plating method.
なお、金属層の除去と同時に、公知の手段(例えば、ドライエッチング)などによって、被めっき層を合わせて除去してもよい。 Note that the layer to be plated may be removed together with a known means (for example, dry etching) simultaneously with the removal of the metal layer.
上記製造方法で得られた積層体(表面金属層材料)は、最外層に金属層を有しており、種々の用途に使用することができる。例えば、FPC、COF、TAB、マザーボード、パッケージインターポーザー基板等の種々の用途に適用することができる。なかでも、プリント配線基板などの配線基板として使用することが好ましい。
また、必要に応じて、パターン状金属層上にさらに絶縁層を設けてもよい。絶縁層としては公知の材料を使用することができ、例えば、公知の層間絶縁膜、ソルダーレジストなどが挙げられる。
なお、パターン状金属層を有する積層体(金属パターン材料)は、上述した基板として使用して、さらに被めっき層および金属層を積層してもよい。
The laminate (surface metal layer material) obtained by the above production method has a metal layer as the outermost layer and can be used for various applications. For example, the present invention can be applied to various uses such as FPC, COF, TAB, motherboard, and package interposer substrate. Especially, it is preferable to use as wiring boards, such as a printed wiring board.
Moreover, you may provide an insulating layer further on a patterned metal layer as needed. A known material can be used for the insulating layer, and examples thereof include a known interlayer insulating film and a solder resist.
In addition, the laminated body (metal pattern material) which has a pattern-like metal layer may be used as a board | substrate mentioned above, and may laminate | stack a to-be-plated layer and a metal layer further.
<積層体の製造方法の第2の実施態様>
本発明の積層体の製造方法の第2の実施態様は、基板上に絶縁層を形成する工程(F)と、絶縁層上に被めっき層を形成する工程(A’)と、被めっき層をアルカリ水溶液に接触させる工程(B)と、所定の処理を行って、被めっき層中の極性変換基を疎水性から親水性に変換させる工程(C)と、被めっき層にめっき触媒またはその前駆体を付与する工程(D)と、めっき処理を行う工程(E)とを備える。
該第2の実施態様と上述した第1の実施態様との主な相違点は、工程(F)の点である。以下では、図2を参照しながら、主に工程(F)の手順について詳述しつつ、本実施態様について説眼する。なお、図2において、図1に示す各構成要素と、同一の構成要素には同一の参照符号を付し、説明は省略する。
<Second Embodiment of Laminate Production Method>
The second embodiment of the laminate manufacturing method of the present invention includes a step (F) of forming an insulating layer on a substrate, a step (A ′) of forming a layer to be plated on the insulating layer, and a layer to be plated. A step (B) of contacting the aqueous solution with an alkaline aqueous solution, a step (C) for performing a predetermined treatment to convert the polarity conversion group in the layer to be plated from hydrophobic to hydrophilic, and a plating catalyst or its A step (D) of applying a precursor and a step (E) of performing a plating treatment are provided.
The main difference between the second embodiment and the first embodiment described above is the point of step (F). In the following, this embodiment will be discussed with reference to FIG. 2 while mainly detailing the procedure (F). In FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
<工程(F):絶縁層形成工程>
工程(F)は、基板の表面に絶縁層を形成する工程である。該工程を行うことにより、絶縁性がより担保される。
より具体的には、本工程では、図2(A)に示すように、基板10を用意し、図2(B)に示すように、表面上に絶縁層20を形成する。
まず、本工程で使用される材料(絶縁層など)について詳述し、その後本工程の手順について詳述する。
<Step (F): Insulating layer forming step>
Step (F) is a step of forming an insulating layer on the surface of the substrate. By performing this step, insulation is further ensured.
More specifically, in this step, the substrate 10 is prepared as shown in FIG. 2A, and the insulating layer 20 is formed on the surface as shown in FIG.
First, materials (insulating layer etc.) used in this step will be described in detail, and then the procedure of this step will be described in detail.
(絶縁層)
絶縁層を構成する材料は特に制限されず、例えば、熱硬化性樹脂または熱可塑性樹脂などの公知の絶縁性樹脂が挙げられる。
より具体的には、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン樹脂、イソシアネート樹脂等が挙げられる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。
(Insulating layer)
The material which comprises an insulating layer is not restrict | limited in particular, For example, well-known insulating resins, such as a thermosetting resin or a thermoplastic resin, are mentioned.
More specifically, examples of the thermosetting resin include epoxy resins, phenol resins, polyimide resins, polyester resins, bismaleimide resins, polyolefin resins, and isocyanate resins. Examples of the thermoplastic resin include phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
絶縁層の厚みは、積層体の使用目的に応じて適宜選択されるが、絶縁性担保の点から、10〜150μmが好ましく、30〜50μmがより好ましい。 Although the thickness of an insulating layer is suitably selected according to the intended purpose of a laminated body, 10-150 micrometers is preferable and 30-50 micrometers is more preferable from the point of insulation ensuring.
[工程(F)の手順]
絶縁層の形成方法は特に制限されない。例えば、絶縁性樹脂を含有する絶縁性樹脂組成物を基板上に塗布して、必要に応じて加熱処理または露光処理を行い、絶縁層を形成する方法(塗布法)や、絶縁性樹脂を含有する絶縁層を基板上にラミネートする方法などが挙げられる。
[Procedure of Step (F)]
The method for forming the insulating layer is not particularly limited. For example, an insulating resin composition containing an insulating resin is applied onto a substrate, and heat treatment or exposure treatment is performed as necessary to form an insulating layer (coating method) or an insulating resin is contained. And a method of laminating an insulating layer on the substrate.
なお、絶縁性樹脂組成物中には溶媒が含まれていてもよい。乾燥の容易性、作業性の観点からは、沸点が高すぎない溶媒が好ましく、沸点40〜150℃程度のものを選択するのが好ましい。具体的には、シクロヘキサノン、メチルエチルケトンなどを使用することができる。
なお、絶縁性樹脂組成物中の固形分の濃度は、取扱い性の点から、2〜50質量%が好ましい。
Note that a solvent may be included in the insulating resin composition. From the viewpoint of ease of drying and workability, a solvent having a boiling point not too high is preferable, and a solvent having a boiling point of about 40 to 150 ° C. is preferably selected. Specifically, cyclohexanone, methyl ethyl ketone, or the like can be used.
In addition, the density | concentration of solid content in an insulating resin composition has a preferable handling point of 2-50 mass%.
工程(F)の後、得られた絶縁層上に被めっき層を形成する工程(A’)を実施する。工程の手順は、上述した工程(A)と同じである。該工程を実施することにより、図2(C)に示すように、絶縁層20上に被めっき層12が形成される。 After the step (F), a step (A ′) of forming a layer to be plated on the obtained insulating layer is performed. The procedure of the process is the same as the process (A) described above. By performing this step, the layer 12 to be plated is formed on the insulating layer 20 as shown in FIG.
次に、上述した工程(B)を実施して、被めっき層上の有機吸着物を除去した後、上述した工程(C)を実施して被めっき層の親疎水性を変換する。
次に、上述した工程(D)を実施して、被めっき層にめっき触媒またはその前駆体を付与する。
Next, after performing the step (B) described above to remove the organic adsorbate on the layer to be plated, the step (C) described above is performed to convert the hydrophilicity / hydrophobicity of the layer to be plated.
Next, the above-described step (D) is performed to give a plating catalyst or a precursor thereof to the layer to be plated.
さらに、その後工程(E)を実施することにより、金属層を被めっき層上に形成する。より具体的には、本工程を実施することにより、図2(D)に示すように、被めっき層12上に金属層14が設けられ、積層体16が得られる。 Furthermore, a metal layer is formed on a to-be-plated layer by implementing a subsequent process (E). More specifically, by carrying out this step, as shown in FIG. 2D, a metal layer 14 is provided on the layer 12 to be plated, and a laminate 16 is obtained.
その後、必要に応じて、工程(H)を実施して、パターン状金属層を得る。より具体的には、図2(E)に示すように、本工程においては、金属層14の不要部を除去することにより、パターン状金属層18が、被めっき層12上に形成される。 Then, a process (H) is implemented as needed and a patterned metal layer is obtained. More specifically, as shown in FIG. 2E, in this step, the patterned metal layer 18 is formed on the plated layer 12 by removing unnecessary portions of the metal layer 14.
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
まず、実施例で使用されるポリマーの合成方法について詳述する。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
First, the synthesis method of the polymer used in the examples will be described in detail.
(合成例1:ポリマーA)
500mLの3つ口フラスコを窒素置換し、プロピレングリコールモノメチルエーテルアセテート(以下PEGMEAと呼ぶ)(27.6g)を入れ、60℃に昇温した。その中に、グリシジルメタクリレート(5.19g)、t−ブチルアクリレート(34.3g)、V−601(1.05g)、およびプロピレングリコールモノメチルエーテルアセテート(64.5g)の混合液を4時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーAの30wt%溶液(131.6g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=10.8万(Mw/Mn=4.0)であった。
(Synthesis Example 1: Polymer A)
A 500 mL three-necked flask was purged with nitrogen, propylene glycol monomethyl ether acetate (hereinafter referred to as PEGMEA) (27.6 g) was added, and the temperature was raised to 60 ° C. Into that, a mixed solution of glycidyl methacrylate (5.19 g), t-butyl acrylate (34.3 g), V-601 (1.05 g), and propylene glycol monomethyl ether acetate (64.5 g) was added over 4 hours. It was dripped. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (131.6g) of the polymer A was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 108,000 (Mw / Mn = 4.0) in terms of polystyrene.
(合成例2:ポリマーB)
500mLの3つ口フラスコを窒素置換し、PEGMEA(14.1g)を入れ、60℃に昇温し、その中に、OXE−30(大阪有機化学工業製)(2.78g)、t−ブチルアクリレート(17.4g)、V−601(0.277g)、およびPEGMEA(33g)の混合液を4時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーBの30wt%溶液(67.2g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=10:90(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=9.2万(Mw/Mn=3.5)であった。
(Synthesis Example 2: Polymer B)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (14.1 g) was added, the temperature was raised to 60 ° C., and OXE-30 (manufactured by Osaka Organic Chemical Industry) (2.78 g), t-butyl was contained therein. A mixture of acrylate (17.4 g), V-601 (0.277 g), and PEGMEA (33 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (67.2g) of the polymer B was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 10: 90 (mol ratio). Moreover, the weight average molecular weight was Mw = 92,000 (Mw / Mn = 3.5) in terms of polystyrene.
(合成例3:ポリマーC)
2Lの三口フラスコにt−ブチルメチルエーテル(600g)、水(330g)、2−ブチルアミノエタノール(200g)を入れ、氷浴にて冷却した。反応溶液の内温20℃以下になるように調節して、そこへ2−ブロモイソ酪酸ブロミド(98g)を滴下した。その後、反応溶液の内温を室温(25℃)まで上昇させて2時間反応させた。反応終了後、蒸留水(300mL)を追加して反応を停止させた。その後、t−ブチルメチルエーテル層を蒸留水(300mL)で4回洗浄後、硫酸マグネシウムで乾燥し、t−ブチルメチルエーテル層を留去することで原料A(91g)を得た。
次に、1Lの三口フラスコに原料A(91g)、ジメチルアミノピリジン(4.2g)、アセトン(300mL)を入れて、さらにメタクリル酸無水物(53g)を滴下した。その後、加熱還流下で4時間反応させた。反応終了後、酢酸エチル(1L)、蒸留水(300mL)を反応溶液に追加した。その後、酢エチ層を蒸留水(300mL)で2回洗浄後、硫酸マグネシウムで乾燥し、酢酸エチルを留去し、さらにカラムクロマトグラフィーにてモノマーA(50g)を精製して得た。
(Synthesis Example 3: Polymer C)
T-butyl methyl ether (600 g), water (330 g), and 2-butylaminoethanol (200 g) were placed in a 2 L three-necked flask and cooled in an ice bath. The internal temperature of the reaction solution was adjusted to 20 ° C. or lower, and 2-bromoisobutyric acid bromide (98 g) was added dropwise thereto. Thereafter, the internal temperature of the reaction solution was raised to room temperature (25 ° C.) and reacted for 2 hours. After completion of the reaction, distilled water (300 mL) was added to stop the reaction. Thereafter, the t-butyl methyl ether layer was washed four times with distilled water (300 mL), dried over magnesium sulfate, and the t-butyl methyl ether layer was distilled off to obtain a raw material A (91 g).
Next, raw material A (91 g), dimethylaminopyridine (4.2 g), and acetone (300 mL) were placed in a 1 L three-necked flask, and methacrylic anhydride (53 g) was further added dropwise. Then, it was made to react under heating-refluxing for 4 hours. After completion of the reaction, ethyl acetate (1 L) and distilled water (300 mL) were added to the reaction solution. Thereafter, the ethyl acetate layer was washed twice with distilled water (300 mL), dried over magnesium sulfate, ethyl acetate was distilled off, and monomer A (50 g) was further purified by column chromatography.
500mLの三口フラスコに、N,N−ジメチルアセトアミド(16.2g)を入れ、窒素気流下、65℃まで加熱した。そこへ、上記で得たモノマーA(10.43g)、t−ブチルアクリレート(12.67g)、V−601(和光純薬製)(0.24g)のN,N−ジメチルアセトアミド(38g)溶液を、4時間かけて滴下した。滴下終了後、更に反応溶液を3時間撹拌した。その後、反応溶液にN,N−ジメチルアセトアミド(154g)を足し、室温まで反応溶液を冷却した。上記の反応溶液に4−ヒドロキシTEMPO(東京化成製)(0.05g)およびDBU(50g)を加え、室温で12時間反応を行った。その後、反応溶液に70質量%メタンスルホン酸水溶液49g加えた。反応終了後、水で再沈を行い、固形物を取り出し、ポリマーC(重量平均分子量6.5万)を15g得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。 N, N-dimethylacetamide (16.2 g) was placed in a 500 mL three-necked flask and heated to 65 ° C. under a nitrogen stream. Thereto, N, N-dimethylacetamide (38 g) solution of monomer A (10.43 g) obtained above, t-butyl acrylate (12.67 g), V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) (0.24 g). Was added dropwise over 4 hours. After completion of the dropwise addition, the reaction solution was further stirred for 3 hours. Thereafter, N, N-dimethylacetamide (154 g) was added to the reaction solution, and the reaction solution was cooled to room temperature. 4-hydroxy TEMPO (product made from Tokyo Chemical Industry) (0.05g) and DBU (50g) were added to said reaction solution, and reaction was performed at room temperature for 12 hours. Thereafter, 49 g of a 70 mass% methanesulfonic acid aqueous solution was added to the reaction solution. After completion of the reaction, reprecipitation was carried out with water, the solid matter was taken out, and 15 g of polymer C (weight average molecular weight 650,000) was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio).
(合成例4:ポリマーD)
500mLの3つ口フラスコを窒素置換し、PEGMEA(17g)を入れ、60℃に昇温した。その中に、アクリル酸(1.73g)、t−ブチルアクリレート(22.56g)、V−601(0.46g)、およびPEGMEA(39.7g)の混合液を4時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーDの30wt%溶液(81.6g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=15.2万(Mw/Mn=3.5)であった。
(Synthesis Example 4: Polymer D)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (17 g) was added, and the temperature was raised to 60 ° C. Into this, a mixed solution of acrylic acid (1.73 g), t-butyl acrylate (22.56 g), V-601 (0.46 g), and PEGMEA (39.7 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (81.6g) of the polymer D was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 15,000 (Mw / Mn = 3.5) in terms of polystyrene.
(合成例5:ポリマーE)
500mLの3つ口フラスコを窒素置換し、PEGMEA(17.7g)を入れ、60℃に昇温した。その中に、ヒドロキシルエチルアクリレート(2.79g)、t−ブチルアクリレート(22.56g)、V−601(0.69g)、およびPEGMEA(41.4g)の混合液を2時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーEの30wt%溶液(84.5g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=17.5万(Mw/Mn=3.7)であった。
(Synthesis Example 5: Polymer E)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (17.7 g) was added, and the temperature was raised to 60 ° C. Into this, a mixed solution of hydroxylethyl acrylate (2.79 g), t-butyl acrylate (22.56 g), V-601 (0.69 g), and PEGMEA (41.4 g) was added dropwise over 2 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (84.5g) of the polymer E was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 175,000 (Mw / Mn = 3.7) in terms of polystyrene.
(合成例6:ポリマーF)
500mLの3つ口フラスコを窒素置換し、PEGMEA(33.3g)を入れ、70℃に昇温した。その中に、メタクリル酸3−(トリメトキシシリル)プロピル(5.96g)、t−ブチルアクリレート(22.56g)、V−601(0.69g)、およびPEGMEA(33.3g)の混合液を2時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーFの30wt%溶液(95g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=9.2万(Mw/Mn=5.2)であった。
(Synthesis Example 6: Polymer F)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (33.3 g) was added, and the temperature was raised to 70 ° C. In it, a mixed solution of 3- (trimethoxysilyl) propyl methacrylate (5.96 g), t-butyl acrylate (22.56 g), V-601 (0.69 g), and PEGMEA (33.3 g) was added. It was dripped over 2 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (95g) of the polymer F was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 92,000 (Mw / Mn = 5.2) in terms of polystyrene.
(合成例7:ポリマーG)
500mLの3つ口フラスコを窒素置換し、PEGMEA(30.3g)を入れ、70℃に昇温した。その中に、ジメチルアミノエチルアクリレート(3.44g)、t−ブチルアクリレート(22.56g)、V−601(0.69g)、およびPEGMEA(30.3g)の混合液を2時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーGの30wt%溶液(86.7g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=13万(Mw/Mn=3.9)であった。
(Synthesis Example 7: Polymer G)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (30.3 g) was added, and the temperature was raised to 70 ° C. Into this, a mixed solution of dimethylaminoethyl acrylate (3.44 g), t-butyl acrylate (22.56 g), V-601 (0.69 g), and PEGMEA (30.3 g) was added dropwise over 2 hours. . Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (86.7g) of the polymer G was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 130,000 (Mw / Mn = 3.9) in polystyrene conversion.
(合成例8:ポリマーH)
500mLの三口フラスコに2−フェニル−2−プロパノール(和光純薬製)(25g)、トリエチルアミン(30g)、テトラヒドロフラン(150mL)を入れて氷浴にて冷却をした。反応溶液の内温10℃以下になるように調節して、そこへ塩化アクリロイル(25g)を滴下した。その後、内温を室温(25℃)まで上昇させて5時間反応させた。反応終了後、酢酸エチル300mL、蒸留水100mL追加した。その後、酢エチ層を飽和重曹水100mLで洗浄後、飽和食塩水100mLで洗浄し、硫酸マグネシウムで乾燥した。その後、酢酸エチルを留去し、カラムクロマトグラフィーにて精製しモノマーB(10g)を得た。
(Synthesis Example 8: Polymer H)
2-phenyl-2-propanol (Wako Pure Chemical Industries, Ltd.) (25 g), triethylamine (30 g), and tetrahydrofuran (150 mL) were placed in a 500 mL three-necked flask and cooled in an ice bath. The inner temperature of the reaction solution was adjusted to 10 ° C. or lower, and acryloyl chloride (25 g) was added dropwise thereto. Thereafter, the internal temperature was raised to room temperature (25 ° C.) and reacted for 5 hours. After completion of the reaction, 300 mL of ethyl acetate and 100 mL of distilled water were added. Thereafter, the ethyl acetate layer was washed with 100 mL of saturated aqueous sodium bicarbonate, then with 100 mL of saturated brine, and dried over magnesium sulfate. Then, ethyl acetate was distilled off and purified by column chromatography to obtain monomer B (10 g).
500mLの3つ口フラスコを窒素置換し、PEGMEA(7.7g)を入れ、65℃に昇温した。その中に、グリシジルメタクリレート(1.0g)、モノマーB(10.0g)、V−601(0.11g)、およびPEGMEA(18.1g)の混合液を4時間かけて滴下した。滴下終了後、4時間反応を行い、ポリマーHの30wt%溶液(37g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=12.1万(Mw/Mn=4.0)であった。 A 500 mL three-necked flask was purged with nitrogen, PEGMEA (7.7 g) was added, and the temperature was raised to 65 ° C. Into this, a mixture of glycidyl methacrylate (1.0 g), monomer B (10.0 g), V-601 (0.11 g), and PEGMEA (18.1 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 4 hours, and the 30 wt% solution (37g) of the polymer H was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 121,000 (Mw / Mn = 4.0) in terms of polystyrene.
(合成例9:ポリマーI)
500mLの三口フラスコに4−メトキシ−α−メチルベンジルアルコール(ALDRICH製)(25g)、トリエチルアミン(26g)、テトラヒドロフラン(150mL)を入れて氷浴にて冷却をした。反応溶液の内温10℃以下になるように調節して、そこへ塩化アクリロイル(22.3g)を滴下した。その後、内温を室温(25℃)まで上昇させて5時間反応させた。反応終了後、酢酸エチル300mL、蒸留水100mLを追加した。その後、酢エチ層を飽和重曹水100mLで洗浄後、飽和食塩水100mLで洗浄し、硫酸マグネシウムで乾燥した。その後、酢酸エチルを留去し、カラムクロマトグラフィーにて精製しモノマーC(20g)を得た。
(Synthesis Example 9: Polymer I)
4-Methoxy-α-methylbenzyl alcohol (manufactured by ALDRICH) (25 g), triethylamine (26 g), and tetrahydrofuran (150 mL) were placed in a 500 mL three-necked flask and cooled in an ice bath. The inner temperature of the reaction solution was adjusted to 10 ° C. or lower, and acryloyl chloride (22.3 g) was added dropwise thereto. Thereafter, the internal temperature was raised to room temperature (25 ° C.) and reacted for 5 hours. After completion of the reaction, 300 mL of ethyl acetate and 100 mL of distilled water were added. Thereafter, the ethyl acetate layer was washed with 100 mL of saturated aqueous sodium bicarbonate, then with 100 mL of saturated brine, and dried over magnesium sulfate. Thereafter, ethyl acetate was distilled off, and the residue was purified by column chromatography to obtain monomer C (20 g).
500mLの3つ口フラスコを窒素置換し、トルエン(7.7g)を入れ、65℃に昇温した。その中に、グリシジルメタクリレート(0.94g)、モノマ−C(10.0g)、V−601(0.19g)、およびトルエン(17.7g)の混合液を4時間かけて滴下した。滴下終了後、4時間反応を行い、ポリマーIの30wt%溶液(36.7g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量はポリスチレン換算でMw=7.6万(Mw/Mn=4.2)であった。 A 500 mL three-necked flask was purged with nitrogen, toluene (7.7 g) was added, and the temperature was raised to 65 ° C. Into this, a mixed solution of glycidyl methacrylate (0.94 g), monomer-C (10.0 g), V-601 (0.19 g), and toluene (17.7 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 4 hours, and the 30 wt% solution (36.7g) of the polymer I was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 76,000 (Mw / Mn = 4.2) in terms of polystyrene.
(合成例10:ポリマーJ)
500mLの三口フラスコに、アクリル酸(17.99g)、10−カンファースルホン酸(6mg)、ヘキサン(100mL)を入れた。反応溶液の内温30℃以下になるように調節して、そこへイソブチルビニルエーテル(25g)を滴下した。その後、室温(25℃)で3時間反応させた。反応終了後、商品名キョーワード1000(協和化学工業株式会社製)、商品名キョーワード200(協和化学工業株式会社製)を用いて吸着処理を行い、ヘキサンを減圧留去し、モノマーG(42g)を得た。
(Synthesis Example 10: Polymer J)
A 500 mL three-necked flask was charged with acrylic acid (17.99 g), 10-camphorsulfonic acid (6 mg), and hexane (100 mL). The internal temperature of the reaction solution was adjusted to 30 ° C. or lower, and isobutyl vinyl ether (25 g) was added dropwise thereto. Then, it was made to react at room temperature (25 degreeC) for 3 hours. After completion of the reaction, adsorption treatment was performed using trade name Kyoward 1000 (manufactured by Kyowa Chemical Industry Co., Ltd.) and trade name Kyoword 200 (manufactured by Kyowa Chemical Industry Co., Ltd.), and hexane was distilled off under reduced pressure to give monomer G (42 g )
500mLの3つ口フラスコを窒素置換し、PEGMEA(4.6g)を入れ、70℃に昇温した。その中に、グリシジルメタクリレート(1.02g)、モノマーG(9.1g)、V−601(0.208g)、およびPEGMEA(11.5g)の混合液を2時間かけて滴下した。滴下終了後、3時間反応を行い、アセトニトリルで再沈を行い、固形物を取り出し、ポリマーJ(6g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:極性変換基ユニット=12:88(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=6.2万(Mw/Mn=2.9)であった。 A 500 mL three-necked flask was purged with nitrogen, PEGMEA (4.6 g) was added, and the temperature was raised to 70 ° C. Into this, a mixed liquid of glycidyl methacrylate (1.02 g), monomer G (9.1 g), V-601 (0.208 g), and PEGMEA (11.5 g) was added dropwise over 2 hours. After completion of dropping, the reaction was carried out for 3 hours, reprecipitation was performed with acetonitrile, the solid was taken out, and polymer J (6 g) was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: polar conversion group unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 62,000 (Mw / Mn = 2.9) in polystyrene conversion.
(合成例11:ポリマーK)
500mLの三口フラスコに、シクロヘキサノール(15g)、ピリジン(12.5g)、アセトニトリル(100mL)を入れて氷浴にて冷却をした。反応溶液の内温10℃以下になるように調節して、そこへアセトニトリル(50mL)に溶かしたp−スチレンスルホニルクロリド(20g)を滴下した。その後、内温を室温(25℃)まで上昇させて5時間反応させた。反応終了後、酢酸エチル300mL、蒸留水100mLを追加した。その後、酢エチ層を飽和重曹水100mLで洗浄後、飽和食塩水100mLで洗浄し、硫酸マグネシウムで乾燥した。その後、酢酸エチルを留去し、カラムクロマトグラフィーにて精製しモノマーD(20g)を得た。
(Synthesis Example 11: Polymer K)
Cyclohexanol (15 g), pyridine (12.5 g), and acetonitrile (100 mL) were placed in a 500 mL three-necked flask and cooled in an ice bath. The inner temperature of the reaction solution was adjusted to 10 ° C. or lower, and p-styrenesulfonyl chloride (20 g) dissolved in acetonitrile (50 mL) was added dropwise thereto. Thereafter, the internal temperature was raised to room temperature (25 ° C.) and reacted for 5 hours. After completion of the reaction, 300 mL of ethyl acetate and 100 mL of distilled water were added. Thereafter, the ethyl acetate layer was washed with 100 mL of saturated aqueous sodium bicarbonate, then with 100 mL of saturated brine, and dried over magnesium sulfate. Then, ethyl acetate was distilled off and purified by column chromatography to obtain monomer D (20 g).
500mLの3つ口フラスコを窒素置換し、PEGMEA(10.7g)を入れ、55℃に昇温した。その中に、グリシジルメタクリレート(0.85g)、モノマーD(14.4g)、V−65(0.11g)、およびPEGMEA(24.9g)の混合液を2時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーKの30wt%溶液(50.8g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:モノマーDユニット=10:90(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=8.6万(Mw/Mn=3.8)であった。 A 500 mL three-necked flask was purged with nitrogen, PEGMEA (10.7 g) was added, and the temperature was raised to 55 ° C. Into this, a mixed solution of glycidyl methacrylate (0.85 g), monomer D (14.4 g), V-65 (0.11 g), and PEGMEA (24.9 g) was added dropwise over 2 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (50.8g) of the polymer K was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: monomer D unit = 10: 90 (mol ratio). Moreover, the weight average molecular weight was Mw = 86,000 (Mw / Mn = 3.8) in terms of polystyrene.
(合成例12:ポリマーL)
500mLの三口フラスコにN−ヒドロキシフタルイミド(15g)、ピリジン(8.7g)、アセトニトリル(100mL)を入れて氷浴にて冷却をした。反応溶液の内温10℃以下になるように調節して、そこへアセトニトリル(50mL)に溶かしたp−スチレンスルホニルクロリド(20g)を滴下した。その後、反応溶液の内温を室温(25℃)まで上昇させて5時間反応させた。反応終了後、反応溶液に酢酸エチル300mL、蒸留水100mLを追加した。その後、酢エチ層を飽和重曹水100mLで洗浄後、飽和食塩水100mLで洗浄し、硫酸マグネシウムで乾燥した。その後、酢酸エチルを留去し、カラムクロマトグラフィーにて精製し、モノマーF(22g)を得た。
(Synthesis Example 12: Polymer L)
N-hydroxyphthalimide (15 g), pyridine (8.7 g), and acetonitrile (100 mL) were placed in a 500 mL three-necked flask and cooled in an ice bath. The inner temperature of the reaction solution was adjusted to 10 ° C. or lower, and p-styrenesulfonyl chloride (20 g) dissolved in acetonitrile (50 mL) was added dropwise thereto. Thereafter, the internal temperature of the reaction solution was raised to room temperature (25 ° C.) and reacted for 5 hours. After completion of the reaction, 300 mL of ethyl acetate and 100 mL of distilled water were added to the reaction solution. Thereafter, the ethyl acetate layer was washed with 100 mL of saturated aqueous sodium bicarbonate, then with 100 mL of saturated brine, and dried over magnesium sulfate. Then, ethyl acetate was distilled off and the residue was purified by column chromatography to obtain monomer F (22 g).
500mLの3つ口フラスコを窒素置換し、PEGMEA(6.5g)を入れ、60℃に昇温した。その中に、グリシジルメタクリレート(0.43g)、モノマーF(8.89g)、V−65(0.055g)、およびPEGMEA(15.2g)の混合液を4時間かけて滴下した。滴下終了後、3時間反応を行い、ポリマーLの30wt%溶液(30g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:モノマーFユニット=10:90(mol比)であった。また、重量平均分子量は、ポリスチレン換算でMw=7.2万(Mw/Mn=3.0)であった。 A 500 mL three-necked flask was purged with nitrogen, PEGMEA (6.5 g) was added, and the temperature was raised to 60 ° C. Into this, a mixed solution of glycidyl methacrylate (0.43 g), monomer F (8.89 g), V-65 (0.055 g), and PEGMEA (15.2 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 3 hours, and the 30 wt% solution (30g) of the polymer L was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: monomer F unit = 10: 90 (mol ratio). Moreover, the weight average molecular weight was Mw = 72,000 (Mw / Mn = 3.0) in polystyrene conversion.
(合成例13:比較ポリマー1)
500mLの3つ口フラスコを窒素置換し、PEGMEA(10g)を入れ、60℃に昇温した。その中に、グリシジルメタクリレート(1.71g)、メタクリル酸イソブチル(12.51g)、V−601(0.184g)、およびPEGMEA(23.2g)の混合液を4時間かけて滴下した。滴下終了後、4時間反応を行い、比較ポリマー1の30wt%溶液(47.6g)を得た。なお、ポリマー中の各ユニット比は、架橋性基ユニット:メタクリル酸イソブチルユニット=12:88(mol比)であった。また、重量平均分子量はポリスチレン換算でMw=8.8万(Mw/Mn=3.5)であった。
なお、該比較ポリマー1中には、極性変換基が含まれない。
(Synthesis Example 13: Comparative polymer 1)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (10 g) was added, and the temperature was raised to 60 ° C. Into this, a mixed solution of glycidyl methacrylate (1.71 g), isobutyl methacrylate (12.51 g), V-601 (0.184 g), and PEGMEA (23.2 g) was added dropwise over 4 hours. Reaction was performed after completion | finish of dripping for 4 hours, and the 30 wt% solution (47.6g) of the comparison polymer 1 was obtained. In addition, each unit ratio in a polymer was crosslinkable group unit: isobutyl methacrylate unit = 12: 88 (mol ratio). Moreover, the weight average molecular weight was Mw = 88,000 (Mw / Mn = 3.5) in terms of polystyrene.
The comparative polymer 1 does not contain a polarity converting group.
(合成例14:比較ポリマー2)
1000mlの三口フラスコに、N,N−ジメチルアセトアミド(35g)を入れ、窒素気流下、75℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)(6.60g)、t−ブチルアクリレート(29.1g)、V−601(和光純薬製)(0.65g)のN,N−ジメチルアセトアミド35g溶液を、2.5時間かけて滴下した。滴下終了後、反応溶液を80℃まで加熱し、更に3時間撹拌した。その後、室温まで、反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン(0.29g)、ジブチルチンジラウレート(0.29g)、カレンズAOI(昭和電工(株)製)(18.56g)、N,N−ジメチルアセトアミド(19g)を加え、55℃、4時間反応を行った。その後、反応溶液にメタノールを3.6g加え、更に1.5時間反応を行った。反応終了後、酢酸エチル:ヘキサン=1:1で再沈を行い、固形物を取り出し、比較ポリマー2(32g)を得た。なお、ポリマー中の各ユニット比は、アクリロニトリルオキシユニット:極性変換基ユニット=20:80(mol比)であった。また、重量平均分子量はポリスチレン換算でMw=7.2(Mw/Mn=2.4)であった。
なお、該比較ポリマー2中には、特定の架橋性基が含まれない。
(Synthesis Example 14: Comparative polymer 2)
N, N-dimethylacetamide (35 g) was placed in a 1000 ml three-necked flask and heated to 75 ° C. under a nitrogen stream. There, N, N-dimethylacetamide of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry) (6.60 g), t-butyl acrylate (29.1 g), V-601 (manufactured by Wako Pure Chemical Industries) (0.65 g) A 35 g solution was added dropwise over 2.5 hours. After completion of dropping, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone (0.29 g), dibutyltin dilaurate (0.29 g), Karenz AOI (manufactured by Showa Denko KK) (18.56 g), N, N-dimethylacetamide (19 g) Was added and reacted at 55 ° C. for 4 hours. Thereafter, 3.6 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with ethyl acetate: hexane = 1: 1, and the solid matter was taken out to obtain comparative polymer 2 (32 g). The unit ratio in the polymer was acrylonitrileoxy unit: polar conversion group unit = 20: 80 (mol ratio). Moreover, the weight average molecular weight was Mw = 7.2 (Mw / Mn = 2.4) in terms of polystyrene.
The comparative polymer 2 does not contain a specific crosslinkable group.
(合成例15:比較ポリマー3)
1000mlの三口フラスコに、N,N−ジメチルアセトアミド(35g)を入れ、窒素気流下、75℃まで加熱した。そこへ、2−ヒドロキシエチルアクリレート(東京化成製)(6.60g)、2−シアノエチルアクリレート(28.4g)、V−601(和光純薬製)(0.65g)のN,N−ジメチルアセトアミド35g溶液を、2.5時間かけて滴下した。滴下終了後、反応溶液を80℃まで加熱し、更に3時間撹拌した。その後、室温まで、反応溶液を冷却した。
上記の反応溶液に、ジターシャリーブチルハイドロキノン(0.29g)、ジブチルチンジラウレート(0.29g)、カレンズAOI(昭和電工(株)製)(18.56g)、N,N−ジメチルアセトアミド(19g)を加え、55℃、4時間反応を行った。その後、反応溶液にメタノールを3.6g加え、更に1.5時間反応を行った。反応終了後、酢酸エチル:ヘキサン=1:1で再沈を行い、固形物を取り出し、比較ポリマー3(32g)を得た。なお、ポリマー中の各ユニット比は、アクリロニトリルオキシユニット:シアノ基ユニット=20:80(mol比)であった。また、重量平均分子量はポリスチレン換算でMw=6.2(Mw/Mn=2.3)であった。
なお、該比較ポリマー3中には、極性変換基および特定の架橋性基が含まれない。
(Synthesis Example 15: Comparative Polymer 3)
N, N-dimethylacetamide (35 g) was placed in a 1000 ml three-necked flask and heated to 75 ° C. under a nitrogen stream. There, N, N-dimethylacetamide of 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry) (6.60 g), 2-cyanoethyl acrylate (28.4 g), V-601 (manufactured by Wako Pure Chemical Industries) (0.65 g) A 35 g solution was added dropwise over 2.5 hours. After completion of dropping, the reaction solution was heated to 80 ° C. and further stirred for 3 hours. Thereafter, the reaction solution was cooled to room temperature.
Ditertiary butyl hydroquinone (0.29 g), dibutyltin dilaurate (0.29 g), Karenz AOI (manufactured by Showa Denko KK) (18.56 g), N, N-dimethylacetamide (19 g) Was added and reacted at 55 ° C. for 4 hours. Thereafter, 3.6 g of methanol was added to the reaction solution, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was performed with ethyl acetate: hexane = 1: 1, and the solid matter was taken out to obtain comparative polymer 3 (32 g). The unit ratio in the polymer was acrylonitrileoxy unit: cyano group unit = 20: 80 (mol ratio). Moreover, the weight average molecular weight was Mw = 6.2 (Mw / Mn = 2.3) in terms of polystyrene.
The comparative polymer 3 does not contain a polarity converting group or a specific crosslinkable group.
(合成例16:比較ポリマー4)
500mLの3つ口フラスコを窒素置換し、PEGMEA(30g)、t−ブチルアクリレート(12.8g)、およびV−601(0.35g)を入れ、60℃に昇温し、5時間反応させ、比較ポリマー4の30wt%溶液(43g)を得た。重量平均分子量は、ポリスチレン換算でMw=8.0万(Mw/Mn=2.1)であった。
なお、該比較ポリマー4中には、特定の架橋性基が含まれない。
(Synthesis Example 16: Comparative polymer 4)
A 500 mL three-necked flask was purged with nitrogen, PEGMEA (30 g), t-butyl acrylate (12.8 g), and V-601 (0.35 g) were added, heated to 60 ° C., reacted for 5 hours, A 30 wt% solution (43 g) of Comparative Polymer 4 was obtained. The weight average molecular weight was Mw = 80,000 (Mw / Mn = 2.1) in terms of polystyrene.
The comparative polymer 4 does not contain a specific crosslinkable group.
上記合成例1〜16で合成した各種ポリマーの構造式を以下にまとめて示す。 Structural formulas of the various polymers synthesized in Synthesis Examples 1 to 16 are summarized below.
<実施例1>
(工程(A))
厚さ18μmの銅膜を片面に有する基板に、味の素ファインテクノ社製エポキシ系絶縁膜GX−13(膜厚40μm)を、真空ラミネーターにより0.2MPaの圧力で100〜110℃の条件により接着し、基板上に絶縁層を形成した。
<Example 1>
(Process (A))
An epoxy insulating film GX-13 (film thickness: 40 μm) manufactured by Ajinomoto Fine Techno Co., Ltd. was bonded to a substrate having a copper film with a thickness of 18 μm on one side at a pressure of 0.2 MPa with a vacuum laminator at 100 to 110 ° C. An insulating layer was formed on the substrate.
(被めっき層形成用組成物の調製)
上記で得られたポリマーAの30wt%溶液(3g)、プロピレングリコールモノメチルエーテル(以下、MFGと略す)(7g)を混合攪拌し、被めっき層形成用組成物Xを調製した。
(Preparation of composition for forming plated layer)
A 30 wt% solution (3 g) of polymer A obtained above and propylene glycol monomethyl ether (hereinafter abbreviated as MFG) (7 g) were mixed and stirred to prepare a composition X for forming a layer to be plated.
(被めっき層の形成)
調製された被めっき層形成用組成物Xを、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、150℃で30分間乾燥、硬化し、被めっき層を形成した。
得られた被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ、89°であり、疎水性であった。
(Formation of plated layer)
The prepared composition for plating layer X was applied on the insulating layer by spin coating so that the thickness of the layer to be plated was 1 μm, dried and cured at 150 ° C. for 30 minutes, and then the layer to be plated Formed.
When the contact angle with respect to the water of the obtained to-be-plated layer was measured using the contact angle measuring apparatus (the Kyowa Interface Science company make, model: DM500), it was 89 degrees and was hydrophobic.
(工程(B))
クリーナーコンディショナー902(アトテックジャパン社製)(脱脂剤)に水酸化ナトリウムを加え、水酸化ナトリウムの濃度が4質量%になるように調製した。調製した液(pH:13.6)に、工程(A)で得られた被めっき層付き基板を60℃にて10分間浸漬し、その後純水で2回洗浄した。
なお、上記工程(B)の後に、アルカリ処理前後の被めっき層の残膜率を測定したところ、膜厚はほとんど変化していないことが確認された。アルカリ耐性は、以下の基準で評価した。結果を表1に示す。
「◎」被めっき層の膜厚がほとんど変化しなかった。 (残膜率95%以上)
「○」被めっき層の大部分が残存していた。 (残膜率50%以上95%未満)
「△」被めっき層の一部が残存していた。 (残膜率25%以上50%未満)
「×」被めっき層がほぼ消失していた。 (残膜率25%未満)
なお、被めっき層残膜率の測定方法としては、アルカリ処理前後(工程(B)前後)の被めっき層を有する基板を基板平面に対して垂直に切断し、断面をSEMにより観察し、被めっき層の厚みを測定した。1つのサンプルにつき、3点を測定した平均値を用い、アルカリ処理前後の膜厚から残膜率(%){(アルカリ処理後の被めっき層の厚み/アルカリ処理前の被めっき層の厚み)×100}を測定した。
また上記工程(B)の後に、被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ、アルカリ処理前後で接触角が変化していなかった。
(Process (B))
Sodium hydroxide was added to a cleaner conditioner 902 (manufactured by Atotech Japan) (degreasing agent) to prepare a sodium hydroxide concentration of 4% by mass. The substrate with the layer to be plated obtained in the step (A) was immersed in the prepared liquid (pH: 13.6) at 60 ° C. for 10 minutes, and then washed twice with pure water.
In addition, when the remaining-film rate of the to-be-plated layer before and behind alkali treatment was measured after the said process (B), it was confirmed that the film thickness has hardly changed. The alkali resistance was evaluated according to the following criteria. The results are shown in Table 1.
“◎” The film thickness of the layer to be plated was hardly changed. (Residual film ratio 95% or more)
“◯” Most of the plated layer remained. (Residual film ratio 50% or more and less than 95%)
“△” A part of the plated layer remained. (Residual film ratio 25% or more and less than 50%)
The “x” plated layer almost disappeared. (Residual film rate less than 25%)
In addition, as a method for measuring the plating layer residual film ratio, a substrate having a plating layer before and after the alkali treatment (before and after the step (B)) was cut perpendicularly to the substrate plane, and the cross section was observed by SEM, The thickness of the plating layer was measured. Using an average value obtained by measuring three points per sample, the remaining film ratio (%) from the film thickness before and after the alkali treatment {(thickness of the plated layer after the alkali treatment / thickness of the plated layer before the alkali treatment) × 100} was measured.
Moreover, when the contact angle with respect to the water of a to-be-plated layer is measured using the contact angle measuring apparatus (the Kyowa Interface Science company make, model: DM500) after the said process (B), a contact angle changes before and behind alkali treatment. It wasn't.
(工程(C))
工程(B)で得られた基板を、硫酸40wt%を含む水溶液からなる酸処理水溶液(液温:90℃)中に、攪拌を加えながら30分間浸漬し、親水化処理を行なった。その後、基板を酸処理水溶液から取り出し、50℃温水にて3分浸漬処理を行なった。
(Process (C))
The substrate obtained in the step (B) was immersed in an acid treatment aqueous solution (liquid temperature: 90 ° C.) composed of an aqueous solution containing 40 wt% sulfuric acid for 30 minutes with stirring to perform a hydrophilic treatment. Thereafter, the substrate was taken out from the acid-treated aqueous solution and immersed in hot water at 50 ° C. for 3 minutes.
ATR−赤外分光光度計を用いて酸処理後の被めっき層のIRスペクトルを測定したところ、1367cm-1の極性変換基(三級エステル基)由来のピークが消失していることが確認され、新たに1710cm-1にカルボン酸基由来のピークが確認された。すなわち極性変換基が親水性基(カルボン酸基)へと変換していることが確認された。また酸処理後の被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ39°であり、被めっき層の接触角が低下していることが確認された。
以上より、酸処理によりカルボキシル基が生成し、被めっき層が親水化していることが確認された。
When the IR spectrum of the plated layer after acid treatment was measured using an ATR-infrared spectrophotometer, it was confirmed that the peak derived from the polar conversion group (tertiary ester group) at 1367 cm −1 disappeared. A new peak derived from a carboxylic acid group was confirmed at 1710 cm −1 . That is, it was confirmed that the polar conversion group was converted to a hydrophilic group (carboxylic acid group). Moreover, when the contact angle with respect to the water of the to-be-plated layer after an acid treatment was measured using the contact angle measuring apparatus (Kyowa Interface Science company make, model: DM500), it was 39 degrees, and the contact angle of the to-be-plated layer fell. It was confirmed that
From the above, it was confirmed that a carboxyl group was generated by acid treatment, and the plated layer was made hydrophilic.
((D)工程)
(C)工程で得られた基板を、スルカップACL−009(上村工業株式会社製)の5wt%水溶液(液温:50℃)に5分間浸漬し、浸漬後に純水にて2回洗浄した。その後、上記処理が施された基板を、Pd触媒付与液であるアクチベーターネオガント834(アトテックジャパン社製)に室温にて5分間浸漬し、浸漬後純水にて2回洗浄した。
(Step (D))
(C) The board | substrate obtained at the process was immersed for 5 minutes in 5 wt% aqueous solution (liquid temperature: 50 degreeC) of Sulcup ACL-009 (made by Uemura Kogyo Co., Ltd.), and it wash | cleaned twice with the pure water after immersion. Thereafter, the substrate subjected to the above treatment was immersed in an activator Neogant 834 (manufactured by Atotech Japan Co., Ltd.) which is a Pd catalyst application solution for 5 minutes at room temperature, and then washed twice with pure water after immersion.
((E)工程)
(無電解めっき)
次に、上記処理が施された基板を、Pd還元剤であるレデューサーネオガントWA(アトテックジャパン社製)に36℃にて5分間浸漬し、純水にて2回洗浄した。なお、上記処理を施すことにより被めっき層には、平均粒径1nmのパラジウム粒子(無電解めっき触媒)が付与された。
その後、基板を、無電解めっき液であるプリントガントPV(アトテックジャパン社製)(pH:12.8、含有金属イオン:銅イオン、ニッケルイオン、還元剤:ホルムアルデヒド、還元剤の量:0.45質量%(液全量に対して))に室温にて30分浸漬して、被めっき層上に金属層(めっき層)を作製した。得られた金属層(無電解銅めっき層)の厚みは0.5μmであった。
(Step (E))
(Electroless plating)
Next, the substrate subjected to the above treatment was immersed in a reducer Neogant WA (manufactured by Atotech Japan), which is a Pd reducing agent, at 36 ° C. for 5 minutes and washed twice with pure water. In addition, the palladium particle (electroless-plating catalyst) with an average particle diameter of 1 nm was provided to the to-be-plated layer by performing the said process.
Thereafter, the substrate was printed with Print Gantt PV (manufactured by Atotech Japan) (pH: 12.8, containing metal ions: copper ions, nickel ions, reducing agent: formaldehyde, amount of reducing agent: 0.45. A metal layer (plating layer) was prepared on the layer to be plated by immersing in mass% (relative to the total amount of liquid) at room temperature for 30 minutes. The thickness of the obtained metal layer (electroless copper plating layer) was 0.5 μm.
(電解めっき)
得られた無電解銅めっき層付き基板に対し、以下のようにして、電気めっきを行った。電解めっき液として、水1283g、硫酸銅5水和物135g、98%濃硫酸342g、36%濃塩酸0.25g、ET−901M(ロームアンドハース)39.6gの混合溶液を用い、ホルダーを取り付けた基板と銅板を電源に接続し、3A/dm2にて45分間電解銅めっき処理を行い、約20μmの金属層を有する基板を得た。
(Electrolytic plating)
Electroplating was performed on the obtained substrate with an electroless copper plating layer as follows. As an electrolytic plating solution, a mixed solution of 1283 g of water, 135 g of copper sulfate pentahydrate, 342 g of 98% concentrated sulfuric acid, 0.25 g of 36% concentrated hydrochloric acid, and 39.6 g of ET-901M (Rohm and Haas) is attached to the holder. The substrate and the copper plate were connected to a power source, and electrolytic copper plating was performed at 3 A / dm 2 for 45 minutes to obtain a substrate having a metal layer of about 20 μm.
[評価:面状評価]
上記無電解めっき後の積層体を100枚用意し、基板平面に対して垂直に切断した断面をSEMにより観察し、金属層(めっき層)の厚みを測定した。めっき層厚の最大値と最小値の差をめっき層厚のばらつきとし、めっき層厚バラつきが100nm以上の場合を不良と判定した。不良率(%){(不良と判断された枚数/100)×100}を算出し、以下の基準に従って評価した。結果を表1に示す。実用上、「◎」「○」であることが好ましい。
「◎」:不良率が0%以上5%未満のもの
「○」:不良率が5%以上10%未満のもの
「△」:不良率が10%以上20%未満のもの
「×」:不良率が20%以上のもの
「××」:めっきが析出しなかったもの
[Evaluation: Surface condition evaluation]
100 laminates after the electroless plating were prepared, and a cross section cut perpendicular to the substrate plane was observed with an SEM, and the thickness of the metal layer (plating layer) was measured. The difference between the maximum value and the minimum value of the plating layer thickness was regarded as the variation of the plating layer thickness, and the case where the plating layer thickness variation was 100 nm or more was judged as defective. A defect rate (%) {(number of sheets determined to be defective / 100) × 100} was calculated and evaluated according to the following criteria. The results are shown in Table 1. Practically, “◎” and “◯” are preferable.
“◎”: A defect rate of 0% or more and less than 5% “◯”: A defect rate of 5% or more and less than 10% “Δ”: A defect rate of 10% or more and less than 20% “X”: Defect "XX" with a rate of 20% or more: No plating was deposited
[評価:めっき浴汚染性評価]
上記無電解めっきにおいて、無電解めっき液中に析出した銅粉の有無を評価した。結果を表1に示す。実用上、「○」であることが好ましい。
「○」:100枚めっき時にも無電解めっき液中に銅粉の析出が認められなかった。
「△」:50枚〜99枚めっき時に無電解めっき液中に銅粉が析出した。
「×」:1枚〜49枚めっき時に無電解めっき液中に銅粉が析出した。
[Evaluation: Evaluation of plating bath contamination]
In the electroless plating, the presence or absence of copper powder precipitated in the electroless plating solution was evaluated. The results are shown in Table 1. Practically, “◯” is preferable.
“◯”: No copper powder was deposited in the electroless plating solution even when 100 sheets were plated.
“Δ”: Copper powder was deposited in the electroless plating solution during plating of 50 to 99 sheets.
"X": Copper powder deposited in the electroless plating solution during plating of 1 to 49 sheets.
[評価:密着性評価]
電解銅めっき処理後の金属層付き基板に、180℃にて1時間の熱処理を施した。その後、得られた金属層に5mmの間隔を開けて、平行に130mmの切り込みを入れ、その端部をカッターにて切り込みを入れ10mm立ち上げた。引張試験機((株)エー・アンド・ディー製、RTM−100)を用いて、剥がした金属層端部をつかんで90°ピール強度を測定した(引張速度10mm/min)。結果を表1に示す。実用上、「○」「△」であることが好ましい。
評価基準は以下の通りである。
「○」:ピール強度が0.60kN/m以上である
「△」:ピール強度が0.30kN/m以上0.60kN/m未満である
「×」:ピール強度が0.10kN/m以上0.30kN/m未満である
「××」:めっきが析出せず、金属層が得られなかった。
[Evaluation: Adhesion evaluation]
The board | substrate with a metal layer after the electrolytic copper plating process was heat-processed at 180 degreeC for 1 hour. Thereafter, a gap of 5 mm was made in the obtained metal layer, a cut of 130 mm was made in parallel, and the end was cut with a cutter and started up by 10 mm. Using a tensile testing machine (RTM-100, manufactured by A & D Co., Ltd.), the peeled end of the metal layer was grasped and the 90 ° peel strength was measured (tensile speed: 10 mm / min). The results are shown in Table 1. Practically, “◯” and “Δ” are preferable.
The evaluation criteria are as follows.
“◯”: Peel strength is 0.60 kN / m or more “Δ”: Peel strength is 0.30 kN / m or more and less than 0.60 kN / m “X”: Peel strength is 0.10 kN / m or more 0 “XX” which is less than 30 kN / m: Plating was not deposited, and a metal layer was not obtained.
<実施例2>
ポリマーAの30wt%溶液の代わりにポリマーBの30wt%溶液を用いた以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 2>
A laminate was produced according to the same procedure as in Example 1 except that a 30 wt% solution of polymer B was used instead of the 30 wt% solution of polymer A. The evaluation results are summarized in Table 1.
<実施例3>
ポリマーAの代わりにポリマーCを使用し、被めっき層の形成を以下の手順に変更した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 3>
A laminate was produced according to the same procedure as in Example 1 except that the polymer C was used instead of the polymer A, and the formation of the plated layer was changed to the following procedure. The evaluation results are summarized in Table 1.
[被めっき層の形成]
ポリマーC(1g)、MFG(9g)、Irgacure2959(0.05g)を混合攪拌し、被めっき層形成用組成物を調製した。
調製された被めっき層形成用組成物を、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、150℃で20分間乾燥した。その後、UV露光機(型番:(株)三永電機製作所製 型番:UVF−502S、ランプ:UXM−501MD)を用い、10mW/cm2の照射パワー(ウシオ電機(株)製紫外線積算光量計UIT150−受光センサーUVDS254で照射パワー測定)にて500秒間、露光し硬化させ、被めっき層を形成した。
[Formation of layer to be plated]
Polymer C (1 g), MFG (9 g), and Irgacure 2959 (0.05 g) were mixed and stirred to prepare a composition for forming a layer to be plated.
The prepared composition for forming a layer to be plated was applied on the insulating layer by a spin coating method so that the thickness of the layer to be plated was 1 μm, and dried at 150 ° C. for 20 minutes. Then, using a UV exposure machine (model number: manufactured by Mitsunaga Electric Co., Ltd. model number: UVF-502S, lamp: UXM-501MD), irradiation power of 10 mW / cm 2 (Ushio Electric Co., Ltd. UV integrated light meter UIT150) -Irradiation power measurement with a light receiving sensor UVDS254) and exposure and curing for 500 seconds to form a plated layer.
<実施例4>
被めっき層形成用組成物Xの代わりに、ポリマーDの30wt%溶液(4g)、架橋剤として1,4−ブチレングリコールジグリシジルエーテル(0.12g)、およびMFG(6g)を混合攪拌して得られる被めっき層形成用組成物を使用した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 4>
Instead of the composition X for forming a layer to be plated, a 30 wt% solution of polymer D (4 g), 1,4-butylene glycol diglycidyl ether (0.12 g) as a crosslinking agent, and MFG (6 g) were mixed and stirred. A laminate was produced according to the same procedure as in Example 1, except that the obtained composition for forming a layer to be plated was used. The evaluation results are summarized in Table 1.
<実施例5>
被めっき層形成用組成物Xの代わりに、ポリマーEの30wt%溶液(4g)、架橋剤としてトリレン−2,4−ジイソシアナート(0.20g)、およびMFG(6g)を混合攪拌して得られる被めっき層形成用組成物を使用した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 5>
Instead of the composition X for forming a layer to be plated, a 30 wt% solution of polymer E (4 g), tolylene-2,4-diisocyanate (0.20 g) as a crosslinking agent, and MFG (6 g) were mixed and stirred. A laminate was produced according to the same procedure as in Example 1, except that the obtained composition for forming a layer to be plated was used. The evaluation results are summarized in Table 1.
<実施例6>
被めっき層形成用組成物Xの代わりに、ポリマーFの30wt%溶液(4g)、架橋剤としてテトラメトキシシラン(0.16g)、およびMFG(6g)を混合攪拌して得られる被めっき層形成用組成物を使用した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 6>
In place of the composition for forming a layer to be plated X, a layer to be plated formed by mixing and stirring a 30 wt% solution of polymer F (4 g), tetramethoxysilane (0.16 g) as a crosslinking agent, and MFG (6 g) A laminate was produced according to the same procedure as in Example 1 except that the composition for use was used. The evaluation results are summarized in Table 1.
<実施例7>
被めっき層形成用組成物Xの代わりに、ポリマーGの30wt%溶液(4g)、架橋剤として1,4−ビス(クロロメチル)ベンゼン(0.10g)、およびMFG(6g)を混合攪拌して得られる被めっき層形成用組成物を使用した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 7>
Instead of the composition X for forming the plating layer, a 30 wt% solution of polymer G (4 g), 1,4-bis (chloromethyl) benzene (0.10 g) as a crosslinking agent, and MFG (6 g) were mixed and stirred. A laminate was produced according to the same procedure as in Example 1, except that the composition for forming a layer to be plated obtained was used. The evaluation results are summarized in Table 1.
<実施例8>
ポリマーAの30wt%溶液の代わりにポリマーHの30wt%溶液を用いた以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 8>
A laminate was produced according to the same procedure as in Example 1 except that a 30 wt% solution of polymer H was used instead of the 30 wt% solution of polymer A. The evaluation results are summarized in Table 1.
<実施例9>
ポリマーAの30wt%溶液の代わりにポリマーIの30wt%溶液を用いた以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果を表1にまとめて示す。
<Example 9>
A laminate was produced according to the same procedure as in Example 1 except that a 30 wt% solution of polymer I was used instead of the 30 wt% solution of polymer A. The evaluation results are summarized in Table 1.
<実施例10>
ポリマーAの代わりにポリマーJを使用し、被めっき層の形成を以下の手順に変更し、さらに上記工程(C)の代わりに下記工程(C1)を実施した以外は、実施例1と同様の手順に従って積層体を製造した。評価結果を表1にまとめて示す。
<Example 10>
The same as Example 1 except that the polymer J was used instead of the polymer A, the formation of the layer to be plated was changed to the following procedure, and the following step (C1) was performed instead of the above step (C). A laminate was produced according to the procedure. The evaluation results are summarized in Table 1.
[被めっき層の形成]
ポリマーJ(1g)、THF(9g)、トリメチルヘキサメチレンジアミン(30mg)を混合攪拌し、被めっき層形成用組成物を調製した。
調製された被めっき層形成用組成物を、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、80℃で30分間乾燥し、被めっき層を形成した。
[Formation of layer to be plated]
Polymer J (1 g), THF (9 g), and trimethylhexamethylenediamine (30 mg) were mixed and stirred to prepare a composition for forming a plated layer.
The prepared composition for forming a layer to be plated was applied onto the insulating layer by spin coating so that the thickness of the layer to be plated was 1 μm, and dried at 80 ° C. for 30 minutes to form a layer to be plated. .
[工程(C1)]
工程(B)で得られた基板を150℃で30分熱ベークした。
ATR−赤外分光光度計を用いて熱処理後の被めっき層のIRスペクトルを測定したところ、1141cm-1の極性変換基(アセタール基)由来のピークが消失していることが確認され、新たに1710cm-1にカルボン酸基由来のピークが確認された。すなわち極性変換基が親水性基(カルボン酸基)へと変換していることが確認された。また酸処理後の被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ40°であり、被めっき層の接触角が低下していることが確認された。
以上より、加熱処理によりカルボン酸基が生成し、被めっき層が親水化していることが確認された。
[Step (C1)]
The substrate obtained in the step (B) was baked at 150 ° C. for 30 minutes.
When the IR spectrum of the plated layer after the heat treatment was measured using an ATR-infrared spectrophotometer, it was confirmed that the peak derived from the polar conversion group (acetal group) at 1141 cm −1 had disappeared. A peak derived from a carboxylic acid group was confirmed at 1710 cm −1 . That is, it was confirmed that the polar conversion group was converted to a hydrophilic group (carboxylic acid group). Moreover, when the contact angle with respect to the water of the to-be-plated layer after an acid treatment was measured using the contact angle measuring apparatus (Kyowa Interface Science company make, model: DM500), it was 40 degrees, and the contact angle of the to-be-plated layer fell. It was confirmed that
From the above, it was confirmed that carboxylic acid groups were generated by the heat treatment, and the plated layer was made hydrophilic.
<実施例11>
ポリマーAの代わりにポリマーKを用い、被めっき層の形成を以下の手順に変更し、工程(C)の代わりに以下の工程(C2)を実施した以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
<Example 11>
According to the same procedure as in Example 1, except that the polymer K was used instead of the polymer A, the formation of the layer to be plated was changed to the following procedure, and the following step (C2) was performed instead of the step (C). A laminate was produced. The evaluation results are summarized in Table 1.
[被めっき層の形成]
ポリマーKの30wt%溶液(3g)、THF(7g)を混合攪拌し、被めっき層形成用組成物を調製した。
調製された被めっき層形成用組成物を、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、80℃で20分間乾燥し、被めっき層を形成した。
[Formation of layer to be plated]
A 30 wt% solution (3 g) of polymer K and THF (7 g) were mixed and stirred to prepare a composition for forming a layer to be plated.
The prepared composition for forming a layer to be plated was applied onto the insulating layer by spin coating so that the thickness of the layer to be plated was 1 μm, and dried at 80 ° C. for 20 minutes to form a layer to be plated. .
(工程(C2))
工程(B)で得られた基板を、150℃で30分間熱ベークした。ATR−赤外分光光度計を用いて熱処理後の被めっき層のIRスペクトルを測定したところ、1367cm-1の極性変換基(三級エステル基)由来のピークが消失していることが確認され、新たに1710cm-1にカルボン酸基由来のピークが観測され、さらに1030cm-1および1000cm-1にスルホン酸基の吸収が観測された。すなわち極性変換基が親水性基(カルボン酸基とスルホン酸基)へと変換していることが確認された。熱べーク後の被めっき層の接触角は50°であり、被めっき層が親水化していることが確認された。
以上より、熱ベークによりスルホン酸基、カルボン酸基が生成し、被めっき層が親水化していることが確認された。
(Process (C2))
The substrate obtained in the step (B) was heat baked at 150 ° C. for 30 minutes. When the IR spectrum of the layer to be plated after heat treatment was measured using an ATR-infrared spectrophotometer, it was confirmed that the peak derived from the 1367 cm −1 polar conversion group (tertiary ester group) had disappeared, new peak derived from a carboxylic acid group was observed at 1710 cm -1, further 1030 cm -1 and 1000 cm -1 absorption of a sulfonic acid group was observed. That is, it was confirmed that the polar conversion group was converted into a hydrophilic group (carboxylic acid group and sulfonic acid group). The contact angle of the layer to be plated after heat baking was 50 °, and it was confirmed that the layer to be plated was hydrophilized.
From the above, it was confirmed that sulfonic acid groups and carboxylic acid groups were generated by heat baking, and the plated layer was made hydrophilic.
<実施例12>
ポリマーAの代わりにポリマーLを使用し、被めっき層の形成を以下の手順に変更し、さらに上記工程(C)の代わりに下記工程(C3)を実施した以外は、実施例1と同様の手順に従って、多層基板を製造した。各種測定結果を表1にまとめて示す。
<Example 12>
The same as in Example 1 except that the polymer L was used instead of the polymer A, the formation of the layer to be plated was changed to the following procedure, and the following step (C3) was performed instead of the above step (C). A multilayer substrate was manufactured according to the procedure. Various measurement results are summarized in Table 1.
[被めっき層の形成]
ポリマーLの30wt%溶液(3g)、THF(7g)を混合攪拌し、被めっき層形成用組成物を調製した。
調製された被めっき層形成用組成物を、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、80℃で20分間乾燥して、被めっき層を形成した。
[Formation of layer to be plated]
A 30 wt% solution (3 g) of polymer L and THF (7 g) were mixed and stirred to prepare a composition for forming a layer to be plated.
The prepared composition for forming a layer to be plated is applied on the insulating layer by spin coating so that the thickness of the layer to be plated is 1 μm, and dried at 80 ° C. for 20 minutes to form the layer to be plated. did.
[工程(C3)]
工程(B)で得られた基板を、150UV露光機(型番:(株)三永電機製作所製 型番:UVF−502S、ランプ:UXM−501MD)を用い、10mW/cm2の照射パワー(ウシオ電機(株)製紫外線積算光量計UIT150−受光センサーUVDS254で照射パワー測定)にて100秒間露光した後、90℃で5分間加熱を行った。
ATR−赤外分光光度計を用いて熱処理後の被めっき層のIRスペクトルを測定したところ、1367cm-1の極性変換基(三級エステル基)由来のピークが消失していることが確認され、新たに1710cm-1にカルボン酸基由来のピークが観測され、さらに1030cm-1および1000cm-1にスルホン酸基の吸収が観測された。すなわち極性変換基が親水性基(カルボン酸基とスルホン酸基)へと変換していることが確認された。熱べーク後の被めっき層の接触角は52°であり、被めっき層が親水化していることが確認された。
以上より、熱ベークによりスルホン酸基、カルボン酸基が生成し、被めっき層が親水化していることが確認された。
[Step (C3)]
The substrate obtained in the step (B) was irradiated with 10 mW / cm 2 (USHIO ELECTRIC CO., LTD.) Using a 150 UV exposure machine (model number: manufactured by Mitsunaga Electric Co., Ltd. model number: UVF-502S, lamp: UXM-501MD). After exposure for 100 seconds with a UV integrated light meter UIT150 (irradiation power measurement with UVDS254 manufactured by Co., Ltd.), heating was performed at 90 ° C. for 5 minutes.
When the IR spectrum of the layer to be plated after heat treatment was measured using an ATR-infrared spectrophotometer, it was confirmed that the peak derived from the 1367 cm −1 polar conversion group (tertiary ester group) had disappeared, new peak derived from a carboxylic acid group was observed at 1710 cm -1, further 1030 cm -1 and 1000 cm -1 absorption of a sulfonic acid group was observed. That is, it was confirmed that the polar conversion group was converted into a hydrophilic group (carboxylic acid group and sulfonic acid group). The contact angle of the layer to be plated after heat baking was 52 °, and it was confirmed that the layer to be plated was hydrophilized.
From the above, it was confirmed that sulfonic acid groups and carboxylic acid groups were generated by heat baking, and the plated layer was made hydrophilic.
<実施例13>
被めっき層の形成を以下の手順に変更し、さらに上記工程(C)の代わりに下記工程(C4)を実施した以外は、実施例1と同様の手順に従って、多層基板を製造した。各種測定結果を表1にまとめて示す。
<Example 13>
A multilayer substrate was manufactured according to the same procedure as in Example 1 except that the formation of the layer to be plated was changed to the following procedure and the following step (C4) was performed instead of the above step (C). Various measurement results are summarized in Table 1.
[被めっき層の形成]
ポリマーAの30wt%溶液(3g)、THF(7g)、トリフェニルスルホニウムトリフラート0.15gを混合攪拌し、被めっき層形成用組成物を調製した。
調製された被めっき層形成用組成物を、被めっき層の厚さが1μmになるように、絶縁層上にスピンコート法により塗布し、100℃で20分間乾燥させ、被めっき層を形成した。
[Formation of layer to be plated]
A 30 wt% solution of polymer A (3 g), THF (7 g), and triphenylsulfonium triflate 0.15 g were mixed and stirred to prepare a composition for forming a layer to be plated.
The prepared composition for forming a layer to be plated was applied on the insulating layer by spin coating so that the thickness of the layer to be plated was 1 μm, and dried at 100 ° C. for 20 minutes to form a layer to be plated. .
[工程(C4)]
上記被めっき層に対し、UV露光機(型番:(株)三永電機製作所製 型番:UVF−502S、ランプ:UXM−501MD)を用い、10mW/cm2の照射パワー(ウシオ電機(株)製紫外線積算光量計UIT150−受光センサーUVDS254で照射パワー測定)にて100秒間露光した。ATR−赤外分光光度計を用いて露光、熱処理後の被めっき層のIRスペクトルを測定したところ、1367cm-1の極性変換基(三級エステル基)由来のピークが消失していることが確認され、新たに1710cm-1にカルボン酸基由来のピークが確認された。すなわち極性変換基が親水性基(カルボン酸基)へと変換していることが確認された。また酸処理後の被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ48°であり、被めっき層の接触角が低下していることが確認された。
[Step (C4)]
Using a UV exposure machine (model number: manufactured by Mitsunaga Electric Co., Ltd. model number: UVF-502S, lamp: UXM-501MD), the irradiation power of 10 mW / cm 2 (made by USHIO INC.) Exposure was carried out for 100 seconds using a UV integrated light meter UIT150-irradiation power measurement with a light receiving sensor UVDS254. When the IR spectrum of the layer to be plated after exposure and heat treatment was measured using an ATR-infrared spectrophotometer, it was confirmed that the peak derived from the polar conversion group (tertiary ester group) at 1367 cm −1 disappeared. In addition, a peak derived from a carboxylic acid group was newly confirmed at 1710 cm −1 . That is, it was confirmed that the polar conversion group was converted to a hydrophilic group (carboxylic acid group). Moreover, when the contact angle with respect to the water of the to-be-plated layer after an acid treatment was measured using the contact angle measuring device (Kyowa Interface Science company make, model: DM500), it was 48 degrees, and the contact angle of the to-be-plated layer fell. It was confirmed that
<比較例1>
ポリマーAの30wt%溶液の代わりに比較ポリマー1の30wt%溶液を用いた以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
<Comparative Example 1>
A laminate was produced according to the same procedure as in Example 1 except that a 30 wt% solution of Comparative Polymer 1 was used instead of the 30 wt% solution of Polymer A. The evaluation results are summarized in Table 1.
<比較例2>
ポリマーAの30wt%溶液の代わりに比較ポリマー2(0.9g)を用いた以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
<Comparative example 2>
A laminate was produced according to the same procedure as in Example 1 except that Comparative Polymer 2 (0.9 g) was used instead of the 30 wt% solution of Polymer A. The evaluation results are summarized in Table 1.
<比較例3>
ポリマーAの30wt%溶液の代わりに比較ポリマー3(0.9g)を用い、工程(C)を実施しなかった以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
なお、(B)工程後の被めっき層の水に対する接触角を、接触角測定装置(協和界面科学社製、型式:DM500)を用いて測定したところ、38°であり、アルカリ処理により被めっき層が親水化されていることが確認されたため、工程(C)は実施しなかった。
<Comparative Example 3>
A laminate was produced according to the same procedure as in Example 1, except that Comparative Polymer 3 (0.9 g) was used instead of the 30 wt% solution of Polymer A, and Step (C) was not performed. The evaluation results are summarized in Table 1.
In addition, when the contact angle with respect to the water of the to-be-plated layer after a (B) process was measured using the contact angle measuring apparatus (the Kyowa Interface Science company make, model: DM500), it is 38 degrees and is to be plated by alkali treatment. Since it was confirmed that the layer was hydrophilized, step (C) was not performed.
<比較例4>
ポリマーAの30wt%溶液の代わりに比較ポリマー4の30wt%溶液を用いた以外は、実施例13と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
<Comparative example 4>
A laminate was produced according to the same procedure as in Example 13, except that a 30 wt% solution of Comparative Polymer 4 was used instead of the 30 wt% solution of Polymer A. The evaluation results are summarized in Table 1.
<比較例5>
工程(C)を行わなかった以外は、実施例1と同様の手順に従って、積層体を製造した。評価結果は表1にまとめて示す。
<Comparative Example 5>
A laminate was produced according to the same procedure as in Example 1 except that the step (C) was not performed. The evaluation results are summarized in Table 1.
表1より、本発明の被めっき層形成用組成物を用いて製造した積層体は、めっきムラが少なく、めっき時のめっき浴の汚染性も抑制されていることが分かる。また、金属層の密着性にも優れていた。
さらに、水接触角の値から、本発明の被めっき層形成用組成物を用いて形成した被めっき層は、極性変換工程によって疎水性から親水性に変化していることが確認された。
From Table 1, it can be seen that the laminate produced using the composition for forming a layer to be plated according to the present invention has little plating unevenness and suppresses the contamination of the plating bath during plating. Moreover, the adhesiveness of the metal layer was also excellent.
Furthermore, from the value of the water contact angle, it was confirmed that the to-be-plated layer formed using the composition for forming to-be-plated layer of this invention has changed from hydrophobic to hydrophilic by the polarity conversion process.
すなわち本発明では、アルカリ水溶液に対する耐性の高い特定の架橋性基を導入すると共に、アルカリ水溶液との接触を行う際には、被めっき層中の極性変換基の極性を疎水性にしておき、被めっき層の疎水性を高め、アルカリ水溶液に対する耐性を付与する。アルカリ水溶液との接触後には、極性変換基の極性を所定の処理により疎水性から親水性へ変換し、被めっき層をより親水性にして、その後のめっき触媒液やめっき液などに対する親和性を高める。結果として、めっき液の汚染を抑制しつつ、めっきムラの少ない金属層を有する積層体を得ることができる。 That is, in the present invention, a specific crosslinkable group having high resistance to an alkaline aqueous solution is introduced, and when contacting with the alkaline aqueous solution, the polarity of the polarity conversion group in the plating layer is set to be hydrophobic, Increases the hydrophobicity of the plating layer and imparts resistance to an aqueous alkaline solution. After contact with the alkaline aqueous solution, the polarity of the polarity conversion group is changed from hydrophobic to hydrophilic by a predetermined treatment, and the layer to be plated is made more hydrophilic, and the affinity for subsequent plating catalyst solution and plating solution is increased. Increase. As a result, a laminate having a metal layer with little plating unevenness can be obtained while suppressing contamination of the plating solution.
実施例1、実施例2、実施例5、実施例6、実施例8、および実施例9の結果から分かるように、架橋性基がエポキシ基、オキセタニル基、ヒドロキシル基またはアルコキシシリル基であり、極性変換基が上記一般式(1)または(2)で表される基である場合、めっきムラがより抑制されることが確認された。
また、実施例11および12と、他の実施例との比較より、極性変換基が一般式(1)〜(3)のいずれかで表される基の場合、金属層の密着性がより優れることが確認された。
As can be seen from the results of Example 1, Example 2, Example 5, Example 6, Example 8, and Example 9, the crosslinkable group is an epoxy group, oxetanyl group, hydroxyl group or alkoxysilyl group, When the polarity converting group is a group represented by the general formula (1) or (2), it was confirmed that plating unevenness was further suppressed.
Moreover, when the polarity conversion group is a group represented by any one of the general formulas (1) to (3), the adhesion of the metal layer is more excellent than the comparison between Examples 11 and 12 and other examples. It was confirmed.
一方、極性変換基を有さない比較ポリマー1を使用した比較例1では、めっき層自体が析出しなかった。
所定の架橋性基を有さない比較ポリマー2(アクリロイルオキシ基含有ポリマー)を使用した比較例2では、めっきムラおよびめっき浴汚染性に劣っていた。
特許文献1に記載の比較ポリマー3を使用した比較例3では、めっきムラおよびめっき浴汚染性に劣っていた。
架橋性基を有さない比較ポリマー4を使用した比較例4では、めっきムラおよびめっき浴汚染性に劣っていた。
実施例1と同じポリマーAを用いた場合であっても、工程(C)(極性変換工程)を行わなかった比較例5では、めっきが析出しなかった。
On the other hand, in Comparative Example 1 using Comparative Polymer 1 having no polarity conversion group, the plating layer itself did not precipitate.
In Comparative Example 2 using Comparative Polymer 2 (acryloyloxy group-containing polymer) having no predetermined crosslinkable group, plating unevenness and plating bath contamination were poor.
In Comparative Example 3 using Comparative Polymer 3 described in Patent Document 1, plating unevenness and plating bath contamination were poor.
In Comparative Example 4 using Comparative Polymer 4 having no crosslinkable group, plating unevenness and plating bath contamination were poor.
Even when the same polymer A as in Example 1 was used, in Comparative Example 5 where the step (C) (polarity conversion step) was not performed, plating did not precipitate.
<実施例14>
実施例1で得られた金属層を有する積層体に対し180℃/1時間の熱処理を行なった後、該積層体の金属層表面に、ドライレジストフィルム(日立化成(株)製;RY3315、膜厚15μm)を真空ラミネーター((株)名機製作所製:MVLP−600)で70℃、0.2MPaでラミネートした。次いで、ドライレジストフィルムがラミネートされた積層体に、JPCA−ET01に定める櫛型配線(JPCA−BU01−2007準拠)が形成できるガラスマスクを密着させ、レジストを中心波長405nmの露光機にて70mJの光エネルギーを照射した。露光後の積層体に、1%Na2CO3水溶液を0.2MPaのスプレー圧で噴きつけ、現像を行なった。その後、積層体の水洗・乾燥を行い、金属膜上に、サブトラクティブ法用のレジストパターンを形成した。
レジストパターンを形成した積層体を、FeCl3/HCl水溶液(エッチング液)に温度40℃で浸漬することによりエッチングを行い、レジストパターンの非形成領域に存在する金属層を除去した。その後、3%NaOH水溶液を0.2MPaのスプレー圧で積層体上に噴き付けることで、レジストパターンを膨潤剥離し、10%硫酸水溶液で中和処理を行い、水洗することで櫛型配線(パターン状金属膜)を得た。得られた配線は、L/S=20μm/75μmであった。
<Example 14>
The laminate having the metal layer obtained in Example 1 was heat-treated at 180 ° C./1 hour, and then a dry resist film (manufactured by Hitachi Chemical Co., Ltd .; RY3315, film) was formed on the surface of the laminate. 15 μm thick) was laminated at 70 ° C. and 0.2 MPa with a vacuum laminator (manufactured by Meiki Seisakusho: MVLP-600). Next, a glass mask capable of forming comb wiring (JPCA-BU01-2007 compliant) defined in JPCA-ET01 is closely attached to the laminate obtained by laminating the dry resist film, and the resist is 70 mJ with an exposure machine having a central wavelength of 405 nm. Irradiated with light energy. Development was performed by spraying a 1% Na 2 CO 3 aqueous solution onto the layered product after the exposure with a spray pressure of 0.2 MPa. Thereafter, the laminate was washed with water and dried to form a resist pattern for the subtractive method on the metal film.
Etching was performed by immersing the laminate on which the resist pattern was formed in an FeCl 3 / HCl aqueous solution (etching solution) at a temperature of 40 ° C., and the metal layer present in the region where the resist pattern was not formed was removed. Thereafter, the resist pattern is swollen and peeled off by spraying a 3% NaOH aqueous solution onto the laminate at a spray pressure of 0.2 MPa, neutralized with a 10% sulfuric acid aqueous solution, and washed with water to form a comb-shaped wiring (pattern A metal film) was obtained. The obtained wiring was L / S = 20 μm / 75 μm.
さらに、パターン状銅金属層を有する積層体に対して、ソルダーレジスト(PFR800;太陽インキ製造(株)製)を110℃、0.2MPaの条件で真空ラミネートし、中心波長365nmの露光機にて420mJの光エネルギーを照射した。
次いで、積層体を80℃/10分間の加熱処理を施した後、NaHCO3:10%水溶液を、スプレー圧2kg/m2で積層体表面に付与することで現像し、乾燥した。その後、再度、中心波長365nmの露光機にて1000mJの光エネルギーを、積層体に対して照射した。最後に150℃/1hrの加熱処理を行ない、ソルダーレジストで被覆された配線基板を得た。
Furthermore, a solder resist (PFR800; manufactured by Taiyo Ink Mfg. Co., Ltd.) is vacuum-laminated on a laminate having a patterned copper metal layer under conditions of 110 ° C. and 0.2 MPa, and an exposure machine having a center wavelength of 365 nm. The light energy of 420 mJ was irradiated.
Next, the laminate was subjected to a heat treatment at 80 ° C./10 minutes, and then developed by applying a NaHCO 3 : 10% aqueous solution to the laminate surface at a spray pressure of 2 kg / m 2 and dried. Thereafter, the laminate was irradiated again with light energy of 1000 mJ with an exposure machine having a center wavelength of 365 nm. Finally, a heat treatment at 150 ° C./1 hr was performed to obtain a wiring board coated with a solder resist.
10:基板
12:被めっき層
14:金属層
16:積層体
18:パターン状金属層
20:絶縁層
10: Substrate 12: Plated layer 14: Metal layer 16: Laminate 18: Patterned metal layer 20: Insulating layer
Claims (10)
(一般式(1)中、R1、R2、およびR3は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表す。なお、R1、R2、およびR3のうち、2つまたはすべてが結合して環を形成してもよく、さらに−O−基、−S−基、−CO−基、または−NR4−基を介して環を形成してもよい。R4は、水素原子またはアルキル基を表す。*は、結合位置を示す。)
(一般式(2)中、R5およびR6は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表し、R5およびR6の少なくとも一つはアリール基を表す。なお、R5およびR6は、結合して環を形成してもよい。*は、結合位置を示す。)
(一般式(3)中、R7は、水素原子または置換基を有してもよいアルキル基を表す。R8は、置換基を有してもよいアルキル基を表す。なお、R7およびR8は、結合して環を形成してもよい。*は、結合位置を示す。)
(一般式(4)中、R9およびR10は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表す。なお、R9およびR10は、結合して環を形成してもよい。*は、結合位置を示す。) The composition for to-be-plated layer forming of Claim 1 or 2 in which the said functional group has group represented by either of General formula (1)-(4).
(In general formula (1), R 1 , R 2 , and R 3 each independently represents an alkyl group that may have a substituent or an aryl group that may have a substituent. Two or all of R 1 , R 2 , and R 3 may be bonded to form a ring, and an —O— group, —S— group, —CO— group, or —NR 4 — group (R 4 represents a hydrogen atom or an alkyl group, and * represents a bonding position.)
(In the general formula (2), R 5 and R 6 each independently represent a hydrogen atom, an optionally substituted alkyl group or an aryl group which may have a substituent,, R 5 and (At least one of R 6 represents an aryl group, and R 5 and R 6 may be bonded to form a ring. * Represents a bonding position.)
(In the general formula (3), R 7 is .R 8 representing an alkyl group which may have a hydrogen atom or a substituent, represents an alkyl group which may have a substituent. In addition, R 7 and R 8 may be bonded to form a ring. * Represents the bonding position.)
(In General Formula (4), R 9 and R 10 each independently represents an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 9 and R 10 10 may combine with each other to form a ring.
前記工程(A)後に、前記被めっき層とアルカリ水溶液とを接触させる工程(B)と、
前記工程(B)後に、加熱、酸の供給または輻射線の照射を行い、前記官能基を疎水性から親水性に変換する工程(C)と、
前記工程(C)後に、前記被めっき層にめっき触媒またはその前駆体を付与する工程(D)と、
前記工程(D)後に、前記めっき触媒またはその前駆体が付与された被めっき層に対してめっき処理を行い、前記被めっき層上に金属層を形成する工程(E)と、
を含む金属層を有する積層体の製造方法。 Using the composition for forming a layer to be plated according to any one of claims 1 to 4, a step (A) of forming a layer to be plated on a substrate;
After the step (A), the step (B) for bringing the layer to be plated into contact with the alkaline aqueous solution;
(C) after the step (B), heating, supplying acid or irradiating with radiation to convert the functional group from hydrophobic to hydrophilic;
A step (D) of applying a plating catalyst or a precursor thereof to the layer to be plated after the step (C);
After the step (D), a plating process is performed on the plating layer to which the plating catalyst or its precursor is applied, and a metal layer is formed on the plating layer (E),
The manufacturing method of the laminated body which has a metal layer containing this.
(一般式(D)中、R12およびR13〜R15は、それぞれ独立して、水素原子、または、置換若しくは無置換のアルキル基を表す。L4は、単結合または二価の有機基を表す。R16は、水素原子、アルキル基、アルケニル基、アルキニル基、またはアリール基を表す。
一般式(A)中、R11は、水素原子、または置換若しくは無置換のアルキル基を表す。L1は、単結合または二価の有機基を表す。Yは、一般式(1)〜(4)のいずれかで表される官能基を表す。
(一般式(1)中、R1、R2、およびR3は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表す。なお、R1、R2、およびR3のうち、2つまたはすべてが結合して環を形成してもよく、さらに−O−基、−S−基、−CO−基、または−NR4−基を介して環を形成してもよい。R4は、水素原子またはアルキル基を表す。*は、結合位置を示す。)
(一般式(2)中、R5およびR6は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表し、R5およびR6の少なくとも一つはアリール基を表す。なお、R5およびR6は、結合して環を形成してもよい。*は、結合位置を示す。)
(一般式(3)中、R7は、水素原子または置換基を有してもよいアルキル基を表す。R8は、置換基を有してもよいアルキル基を表す。なお、R7およびR8は、結合して環を形成してもよい。*は、結合位置を示す。)
(一般式(4)中、R9およびR10は、それぞれ独立に、置換基を有してもよいアルキル基、または置換基を有してもよいアリール基を表す。なお、R9およびR10は、結合して環を形成してもよい。*は、結合位置を示す。) A polymer comprising a unit represented by the general formula (D) and a unit represented by the general formula (A).
(In the general formula (D), R 12 and R 13 to R 15 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group. L 4 represents a single bond or a divalent organic group. R 16 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
In general formula (A), R 11 represents a hydrogen atom or a substituted or unsubstituted alkyl group. L 1 represents a single bond or a divalent organic group. Y represents a functional group represented by any one of the general formulas (1) to (4).
(In general formula (1), R 1 , R 2 , and R 3 each independently represents an alkyl group that may have a substituent or an aryl group that may have a substituent. Two or all of R 1 , R 2 , and R 3 may be bonded to form a ring, and an —O— group, —S— group, —CO— group, or —NR 4 — group (R 4 represents a hydrogen atom or an alkyl group, and * represents a bonding position.)
(In the general formula (2), R 5 and R 6 each independently represent a hydrogen atom, an optionally substituted alkyl group or an aryl group which may have a substituent,, R 5 and (At least one of R 6 represents an aryl group, and R 5 and R 6 may be bonded to form a ring. * Represents a bonding position.)
(In the general formula (3), R 7 is .R 8 representing an alkyl group which may have a hydrogen atom or a substituent, represents an alkyl group which may have a substituent. In addition, R 7 and R 8 may be bonded to form a ring. * Represents the bonding position.)
(In General Formula (4), R 9 and R 10 each independently represents an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 9 and R 10 10 may combine with each other to form a ring.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011167600A JP2013028772A (en) | 2011-07-29 | 2011-07-29 | Composition for forming layer to be plated, and method for producing laminate including metal layer |
PCT/JP2012/065849 WO2013018454A1 (en) | 2011-07-29 | 2012-06-21 | Composition for forming layer to be plated, and method of producing laminate having metal layer |
TW101122916A TW201309114A (en) | 2011-07-29 | 2012-06-27 | Composition for forming plating layer, laminate, method for producing laminate comprising metal layer, laminate having metal layer, printing substrate, and polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011167600A JP2013028772A (en) | 2011-07-29 | 2011-07-29 | Composition for forming layer to be plated, and method for producing laminate including metal layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013028772A true JP2013028772A (en) | 2013-02-07 |
Family
ID=47628990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011167600A Withdrawn JP2013028772A (en) | 2011-07-29 | 2011-07-29 | Composition for forming layer to be plated, and method for producing laminate including metal layer |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013028772A (en) |
TW (1) | TW201309114A (en) |
WO (1) | WO2013018454A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014211484A (en) * | 2013-04-17 | 2014-11-13 | 三菱化学株式会社 | Method of manufacturing polarizer |
US9023560B1 (en) * | 2013-11-05 | 2015-05-05 | Eastman Kodak Company | Electroless plating method using non-reducing agent |
US20150125674A1 (en) * | 2013-11-05 | 2015-05-07 | Thomas B. Brust | Forming conductive metal patterns using reactive polymers |
US20150125667A1 (en) * | 2013-11-05 | 2015-05-07 | Thomas B. Brust | Forming conductive metal patterns with reactive polymers |
US20150125787A1 (en) * | 2013-11-05 | 2015-05-07 | Eastman Kodak Company | Electroless plating method using bleaching |
US20150140481A1 (en) * | 2013-11-20 | 2015-05-21 | Allan Wexler | Forming patterns using crosslinkable reactive polymers |
US9228039B2 (en) | 2013-11-20 | 2016-01-05 | Eastman Kodak Company | Crosslinkable reactive polymers |
US20160048078A1 (en) * | 2014-08-12 | 2016-02-18 | Brust Thomas B | Forming electrically-conductive patterns using crosslinkable reactive polymers |
WO2018151073A1 (en) * | 2017-02-14 | 2018-08-23 | 日産化学工業株式会社 | Wiring forming method |
JP6398026B1 (en) * | 2017-09-14 | 2018-09-26 | 共栄社化学株式会社 | Thermosetting resin composition |
WO2019069783A1 (en) * | 2017-10-04 | 2019-04-11 | 共栄社化学株式会社 | Thermosetting resin composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014194944A1 (en) * | 2013-06-05 | 2014-12-11 | Ev Group E. Thallner Gmbh | Measuring device and method for ascertaining a pressure map |
WO2016009829A1 (en) * | 2014-07-16 | 2016-01-21 | 富士フイルム株式会社 | Conductive film for touch panel sensor, touch panel sensor, and touch panel |
JP6295330B2 (en) * | 2014-07-31 | 2018-03-14 | 富士フイルム株式会社 | Conductive laminate for touch panel sensor, and manufacturing method thereof, touch panel sensor, touch panel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4414858B2 (en) * | 2004-02-23 | 2010-02-10 | 富士フイルム株式会社 | Metal pattern forming method and conductive film forming method |
JP4684632B2 (en) * | 2003-11-27 | 2011-05-18 | 富士フイルム株式会社 | Metal pattern forming method, metal pattern and printed wiring board |
JP5085043B2 (en) * | 2005-02-25 | 2012-11-28 | 富士フイルム株式会社 | Method for forming conductive film and method for forming conductive pattern |
JP2006237400A (en) * | 2005-02-25 | 2006-09-07 | Fuji Photo Film Co Ltd | Method for forming conductive pattern |
JP2007262542A (en) * | 2006-03-29 | 2007-10-11 | Fujifilm Corp | Method for forming metal film, substrate for forming metal film, metal film laminate, method for forming metal pattern, substrate for forming metal pattern, metal pattern material, and coating liquid composition for forming polymer precursor layer |
WO2011065568A1 (en) * | 2009-11-30 | 2011-06-03 | 富士フイルム株式会社 | Insulating resin, composition for forming insulating resin layer, laminate, method for producing surface metal film material, method for producing metal pattern material, method for producing wiring board, electronic part and semiconductor device |
-
2011
- 2011-07-29 JP JP2011167600A patent/JP2013028772A/en not_active Withdrawn
-
2012
- 2012-06-21 WO PCT/JP2012/065849 patent/WO2013018454A1/en active Application Filing
- 2012-06-27 TW TW101122916A patent/TW201309114A/en unknown
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014211484A (en) * | 2013-04-17 | 2014-11-13 | 三菱化学株式会社 | Method of manufacturing polarizer |
US9023560B1 (en) * | 2013-11-05 | 2015-05-05 | Eastman Kodak Company | Electroless plating method using non-reducing agent |
US20150125674A1 (en) * | 2013-11-05 | 2015-05-07 | Thomas B. Brust | Forming conductive metal patterns using reactive polymers |
US20150125667A1 (en) * | 2013-11-05 | 2015-05-07 | Thomas B. Brust | Forming conductive metal patterns with reactive polymers |
US20150122778A1 (en) * | 2013-11-05 | 2015-05-07 | Mark Edward Irving | Electroless plating method using non-reducing agent |
US20150125787A1 (en) * | 2013-11-05 | 2015-05-07 | Eastman Kodak Company | Electroless plating method using bleaching |
US9122161B2 (en) * | 2013-11-05 | 2015-09-01 | Eastman Kodak Company | Electroless plating method using bleaching |
US9128378B2 (en) * | 2013-11-05 | 2015-09-08 | Eastman Kodak Company | Forming conductive metal patterns with reactive polymers |
US20150140481A1 (en) * | 2013-11-20 | 2015-05-21 | Allan Wexler | Forming patterns using crosslinkable reactive polymers |
US9228039B2 (en) | 2013-11-20 | 2016-01-05 | Eastman Kodak Company | Crosslinkable reactive polymers |
US9235128B2 (en) * | 2013-11-20 | 2016-01-12 | Eastman Kodak Company | Forming patterns using crosslinkable reactive polymers |
US9366965B2 (en) * | 2014-08-12 | 2016-06-14 | Eastman Kodak Company | Forming electrically-conductive patterns using crosslinkable reactive polymers |
US20160048078A1 (en) * | 2014-08-12 | 2016-02-18 | Brust Thomas B | Forming electrically-conductive patterns using crosslinkable reactive polymers |
CN110291849A (en) * | 2017-02-14 | 2019-09-27 | 日产化学株式会社 | Wiring method |
WO2018151073A1 (en) * | 2017-02-14 | 2018-08-23 | 日産化学工業株式会社 | Wiring forming method |
KR102463945B1 (en) * | 2017-02-14 | 2022-11-04 | 닛산 가가쿠 가부시키가이샤 | How to form wiring |
JP7099328B2 (en) | 2017-02-14 | 2022-07-12 | 日産化学株式会社 | Wiring formation method |
JPWO2018151073A1 (en) * | 2017-02-14 | 2019-12-19 | 日産化学株式会社 | Wiring formation method |
KR20190117587A (en) * | 2017-02-14 | 2019-10-16 | 닛산 가가쿠 가부시키가이샤 | Wiring formation method |
WO2019054136A1 (en) * | 2017-09-14 | 2019-03-21 | 共栄社化学株式会社 | Thermosetting resin composition |
US10538610B2 (en) | 2017-09-14 | 2020-01-21 | Kyoeisha Chemical Co., Ltd. | Thermosetting resin composition |
CN111051425A (en) * | 2017-09-14 | 2020-04-21 | 共荣社化学株式会社 | Thermosetting resin composition |
CN111051425B (en) * | 2017-09-14 | 2022-07-08 | 共荣社化学株式会社 | Thermosetting resin composition |
JP2019052286A (en) * | 2017-09-14 | 2019-04-04 | 共栄社化学株式会社 | Thermosetting resin composition |
JP6398026B1 (en) * | 2017-09-14 | 2018-09-26 | 共栄社化学株式会社 | Thermosetting resin composition |
JP6526928B1 (en) * | 2017-10-04 | 2019-06-05 | 共栄社化学株式会社 | Thermosetting resin composition |
WO2019069783A1 (en) * | 2017-10-04 | 2019-04-11 | 共栄社化学株式会社 | Thermosetting resin composition |
Also Published As
Publication number | Publication date |
---|---|
TW201309114A (en) | 2013-02-16 |
WO2013018454A1 (en) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013018454A1 (en) | Composition for forming layer to be plated, and method of producing laminate having metal layer | |
JP5079396B2 (en) | Conductive substance adsorbing resin film, method for producing conductive substance adsorbing resin film, resin film with metal layer using the same, and method for producing resin film with metal layer | |
JP5334777B2 (en) | Composition for forming layer to be plated, method for producing metal pattern material, and novel polymer | |
JP5419441B2 (en) | Method for forming multilayer wiring board | |
TWI503383B (en) | Composition for forming plating layer and method for producing laminate having metal film | |
JP4544913B2 (en) | Surface graft formation method, conductive film formation method, metal pattern formation method, multilayer wiring board formation method, surface graft material, and conductive material | |
JP2010084196A (en) | Method of forming metal film | |
JP2008277717A (en) | Resin film with metal layer, its forming method, and flexible printed board manufacturing method using the film | |
JP2011214001A (en) | Inkjet ink, surface metal film material and method for manufacturing the same, metal pattern material and method for manufacturing the same | |
JP2010185128A (en) | Photosensitive resin composition for plating, laminate, method of producing surface metal film material using the same, surface metal film material, method of producing metal pattern material, metal pattern material, and wiring board | |
JP2011094192A (en) | Composition for forming layer to be plated, method for producing metal pattern material, and metal pattern material | |
JP2010239057A (en) | Method of fabricating circuit board | |
WO2013018456A1 (en) | Multilayer substrate manufacturing method | |
JP2010239080A (en) | Method of forming conductive film, method of manufacturing printed wiring board, and conductive film material | |
JP2010077322A (en) | Composition for forming plated layer, production method for metal pattern material and metal pattern material obtained thereby, and production method for surface metal film material and surface metal film material obtained thereby | |
WO2012133032A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
WO2012133684A1 (en) | Production method for laminate having patterned metal films, and plating layer-forming composition | |
JP2012031447A (en) | Composition for forming layer to be plated, material for surface metal film and method for producing the same, and material for metal pattern and method for producing the same | |
JP5750009B2 (en) | Manufacturing method of laminate | |
JP2013095958A (en) | Manufacturing method of laminate having metal layer | |
JP2008192850A (en) | Manufacturing method for metal-pattern material | |
WO2011118797A1 (en) | Composition for forming plating layer, surface metal film material and method for producing same, and metal pattern material and method for producing same | |
JP2008258211A (en) | Method for manufacturing multilayer wiring board, and multilayer wiring board | |
JP4414858B2 (en) | Metal pattern forming method and conductive film forming method | |
JP2011111602A (en) | Insulating resin, insulating resin layer-forming composition, laminate, method for manufacturing surface metal film material, method for manufacturing metal pattern material, method for manufacturing wiring board, electronic part, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141007 |