JP2013028509A - Method for producing alkaline earth metal carbonate, barium titanate and strontium titanate - Google Patents

Method for producing alkaline earth metal carbonate, barium titanate and strontium titanate Download PDF

Info

Publication number
JP2013028509A
JP2013028509A JP2011166514A JP2011166514A JP2013028509A JP 2013028509 A JP2013028509 A JP 2013028509A JP 2011166514 A JP2011166514 A JP 2011166514A JP 2011166514 A JP2011166514 A JP 2011166514A JP 2013028509 A JP2013028509 A JP 2013028509A
Authority
JP
Japan
Prior art keywords
earth metal
alkaline earth
carbonate
metal carbonate
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011166514A
Other languages
Japanese (ja)
Other versions
JP5879798B2 (en
JP2013028509A5 (en
Inventor
Hiroyuki Izumikawa
博幸 泉川
Takashi Suzuki
孝 鈴木
Masayuki Asada
雅幸 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2011166514A priority Critical patent/JP5879798B2/en
Priority to PCT/JP2012/069268 priority patent/WO2013018742A1/en
Priority to TW101126602A priority patent/TWI541197B/en
Publication of JP2013028509A publication Critical patent/JP2013028509A/en
Publication of JP2013028509A5 publication Critical patent/JP2013028509A5/ja
Application granted granted Critical
Publication of JP5879798B2 publication Critical patent/JP5879798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/188Barium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an alkaline earth metal carbonate such as barium carbonate in which grain growth caused by heat is suppressed, and to provide uniform and fine barium titanate and strontium titanate.SOLUTION: The surface of an alkaline earth metal carbonate such as barium carbonate is treated by a titanium compound such as titanium hydroxide, to thereby produce an alkaline earth metal carbonate in which grain growth caused by heat is suppressed.

Description

本発明は、炭酸バリウムや炭酸ストロンチウムなどのアルカリ土類金属炭酸塩の製造方法、更にその方法によって得られる炭酸バリウムおよび炭酸ストロンチウムを原料として製造されるチタン酸バリウムおよびチタン酸ストロンチウムに関し、更に詳しくは、熱による粒子成長を抑制したアルカリ土類金属炭酸塩を製造する方法、並びに、その方法によって得られる炭酸バリウムおよび炭酸ストロンチウムを原料として製造されるチタン酸バリウムおよびチタン酸ストロンチウムに関する。   The present invention relates to a method for producing alkaline earth metal carbonates such as barium carbonate and strontium carbonate, and further relates to barium carbonate obtained by the method and barium titanate and strontium titanate produced from strontium carbonate as raw materials. The present invention relates to a method for producing an alkaline earth metal carbonate in which particle growth due to heat is suppressed, and to barium titanate and strontium titanate produced using barium carbonate and strontium carbonate obtained by the method as raw materials.

アルカリ土類金属炭酸塩、特に、炭酸バリウムや炭酸ストロンチウムは、誘電体の原料などとして有用であり、例えば、炭酸バリウムは、セラミック磁器コンデンサの誘電体層に使用されるチタン酸バリウム(BaTiO3)の出発原料として広く利用されている。 Alkaline earth metal carbonates, in particular barium carbonate and strontium carbonate, are useful as raw materials for dielectrics. For example, barium carbonate is barium titanate (BaTiO 3 ) used for dielectric layers of ceramic ceramic capacitors. It is widely used as a starting material.

チタン酸バリウムは、一般に固相合成法によって製造され、この固相合成法では、炭酸バリウム(BaCO3)粉末と酸化チタン(TiO2)粉末とを湿式で混合し、乾燥後、混合粉末を900〜1200℃程度の温度で焼成するものである(例えば、特許文献1参照)。 Barium titanate is generally produced by a solid-phase synthesis method. In this solid-phase synthesis method, barium carbonate (BaCO 3 ) powder and titanium oxide (TiO 2 ) powder are mixed in a wet manner, and after drying, the mixed powder is 900 It is fired at a temperature of about ˜1200 ° C. (see, for example, Patent Document 1).

特開2008−222522号公報JP 2008-222522 A

近年、電子部品の小型化・高性能化に伴ってコンデンサについても小型化が要望されており、コンデンサの誘電体層の薄層化が求められている。この薄層化を実現するためには、誘電体材料であるチタン酸バリウムおよびその原料である酸化チタンと炭酸バリウムの両原料をいかに微粒子化させるかが重要である。   In recent years, with the miniaturization and high performance of electronic components, there has been a demand for miniaturization of capacitors, and there has been a demand for thinner dielectric layers of capacitors. In order to realize this thinning, it is important how to make fine particles of the dielectric material barium titanate and the raw materials of both titanium oxide and barium carbonate.

上記固相合成法における炭酸バリウム粉末と酸化チタン粉末との混合粉末の焼成では、炭酸バリウムが、その昇温過程で粒子成長することが知られており、その昇温過程での炭酸バリウムの粒子成長により、微細な酸化チタンとの混合の均一さが低下し、また炭酸バリウムと酸化チタンの接触点の数が減ってしまうため、生成するチタン酸バリウム粉末の粒子径等の特性にバラツキが生じてしまい、微細な原料の特性が生かしきれないという不具合が発生する。   It is known that in the solid phase synthesis method, the mixed powder of barium carbonate powder and titanium oxide powder is used to grow particles of barium carbonate during the temperature rising process, and the barium carbonate particles during the temperature rising process. Due to the growth, the uniformity of mixing with fine titanium oxide decreases, and the number of contact points between barium carbonate and titanium oxide decreases, resulting in variations in the particle size and other characteristics of the barium titanate powder produced. As a result, there arises a problem that the characteristics of fine raw materials cannot be fully utilized.

したがって、均一で微細なチタン酸バリウムを得るためには、炭酸バリウムの熱による粒子成長を抑制する必要がある。   Therefore, in order to obtain uniform and fine barium titanate, it is necessary to suppress particle growth due to the heat of barium carbonate.

かかる課題は、炭酸バリウムに限らず、炭酸ストロンチウムでも同様である。   Such a problem is not limited to barium carbonate but also applies to strontium carbonate.

本発明は、上述の点に鑑みて為されたものであって、熱による粒子成長を抑制したアルカリ土類金属炭酸塩の製造方法、均一で微細なチタン酸バリウムおよびチタン酸ストロンチウムを提供することを目的とする。   The present invention has been made in view of the above points, and provides a method for producing an alkaline earth metal carbonate in which particle growth due to heat is suppressed, and uniform and fine barium titanate and strontium titanate. With the goal.

上記目的を達成するために、本件発明者らは鋭意研究を重ねた結果、チタン化合物によって、炭酸バリウム等のアルカリ土類金属炭酸塩の表面を処理することによって、アルカリ土類金属炭酸塩粒子の熱による粒子成長を抑制できることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted intensive research, and as a result, by treating the surface of alkaline earth metal carbonate such as barium carbonate with a titanium compound, the alkaline earth metal carbonate particles are treated. The present inventors have found that particle growth due to heat can be suppressed and completed the present invention.

すなわち、本発明のアルカリ土類金属炭酸塩の製造方法は、アルカリ土類金属炭酸塩の表面をチタン化合物によって処理するものである。   That is, in the method for producing an alkaline earth metal carbonate of the present invention, the surface of the alkaline earth metal carbonate is treated with a titanium compound.

前記アルカリ土類金属炭酸塩としては、炭酸バリウムまたは炭酸ストロンチウムが好ましく、チタン化合物としては、水酸化チタンが好ましいが、含水酸化チタン、酸化チタンなどであってもよい。   The alkaline earth metal carbonate is preferably barium carbonate or strontium carbonate, and the titanium compound is preferably titanium hydroxide, but may be hydrous titanium oxide or titanium oxide.

前記チタン化合物による処理は、例えば水酸化チタンを前記アルカリ土類金属炭酸塩の表面に吸着させる処理であるのが好ましい。   The treatment with the titanium compound is preferably a treatment in which, for example, titanium hydroxide is adsorbed on the surface of the alkaline earth metal carbonate.

チタン化合物である前記水酸化チタンは、四塩化チタン水溶液をアンモニア等の塩基性物質で中和して生成するのが好ましい。   The titanium hydroxide which is a titanium compound is preferably produced by neutralizing an aqueous titanium tetrachloride solution with a basic substance such as ammonia.

本発明の他の実施態様では、前記アルカリ土類金属炭酸塩のスラリーに、四塩化チタン水溶液およびアルカリ溶液を添加する工程を含むものである。   In another embodiment of the present invention, a step of adding an aqueous solution of titanium tetrachloride and an alkaline solution to the slurry of the alkaline earth metal carbonate is included.

本発明の更に他の実施態様では、前記添加する工程で前記四塩化チタン水溶液および前記アルカリ溶液が添加されたアルカリ土類金属炭酸塩のスラリーからアルカリ土類金属炭酸塩を分離する工程を更に含むものである。   In still another embodiment of the present invention, the method further includes the step of separating the alkaline earth metal carbonate from the alkaline earth metal carbonate slurry to which the aqueous titanium tetrachloride solution and the alkaline solution are added in the adding step. It is a waste.

本発明のアルカリ土類金属炭酸塩の製造方法では、水酸化チタン等のチタン化合物で表面処理することによって、詳細な機構は不明であるが、アルカリ土類金属炭酸塩の粒子表面に吸着したチタン化合物によって、アルカリ土類金属炭酸塩粒子同士の接触が阻害され、熱によるアルカリ土類金属炭酸塩粒子の粒子成長を抑制することができる。   In the method for producing an alkaline earth metal carbonate of the present invention, the detailed mechanism is unknown by surface treatment with a titanium compound such as titanium hydroxide, but titanium adsorbed on the surface of the alkaline earth metal carbonate particles. By the compound, the contact between the alkaline earth metal carbonate particles is inhibited, and the particle growth of the alkaline earth metal carbonate particles due to heat can be suppressed.

本発明のチタン酸バリウムは、上記本発明の製造方法によって製造されるアルカリ土類金属炭酸塩を出発原料として製造され、該出発原料が、炭酸バリウムである。   The barium titanate of the present invention is produced using an alkaline earth metal carbonate produced by the production method of the present invention as a starting material, and the starting material is barium carbonate.

出発原料である本発明の製造方法によって製造されるアルカリ土類金属炭酸塩は、粉末であるのが好ましいが、スラリーの状態であってもよい。   The alkaline earth metal carbonate produced by the production method of the present invention, which is the starting material, is preferably a powder, but may be in a slurry state.

チタン酸バリウムを製造する方法は、本発明の製造方法によって製造される炭酸バリウムを出発原料とするものであれば、特に限定されず、公知の製造方法を適用することができる。   The method for producing barium titanate is not particularly limited as long as it uses barium carbonate produced by the production method of the present invention as a starting material, and a known production method can be applied.

また、本発明のチタン酸ストロンチウムは、上記本発明の製造方法によって製造されるアルカリ土類金属炭酸塩を出発原料として製造され、該出発原料が、炭酸ストロンチウムである。   Moreover, the strontium titanate of the present invention is produced using an alkaline earth metal carbonate produced by the production method of the present invention as a starting material, and the starting material is strontium carbonate.

このチタン酸ストロンチウムを製造する方法も、本発明の製造方法によって製造される炭酸ストロンチウムを出発原料とするものであれば、特に限定されず、公知の製造方法を適用することができる。   The method for producing strontium titanate is not particularly limited as long as strontium carbonate produced by the production method of the present invention is used as a starting material, and a known production method can be applied.

本発明のアルカリ土類金属炭酸塩の製造方法によれば、熱による粒子成長を抑制した炭酸バリウムや炭酸ストロンチウムなどのアルカリ土類金属炭酸塩を得ることができる。   According to the method for producing an alkaline earth metal carbonate of the present invention, an alkaline earth metal carbonate such as barium carbonate or strontium carbonate in which particle growth due to heat is suppressed can be obtained.

したがって、本発明の製造方法によって得られる炭酸バリウムを出発原料として製造される本発明のチタン酸バリウムは、その製造の際の昇温過程において、炭酸バリウム粒子の熱による粒子成長が抑制される結果、炭酸バリウム粒子を、微細な酸化チタンと微細な粒子のまま均一に混合された状態で反応させることができ、生成するチタン酸バリウムの粒子径等の特性のバラツキを低減して均一で微細なチタン酸バリウムを得ることができる。   Therefore, the barium titanate of the present invention produced using the barium carbonate obtained by the production method of the present invention as a starting material has the result that the particle growth due to the heat of the barium carbonate particles is suppressed during the temperature rising process during the production. In addition, the barium carbonate particles can be reacted in a state where they are uniformly mixed with the fine titanium oxide and fine particles. Barium titanate can be obtained.

また、本発明の製造方法によって得られる炭酸ストロンチウムを出発原料として製造される本発明のチタン酸ストロンチウムは、その製造の際の昇温過程において、炭酸ストロンチウム粒子の熱による粒子成長が抑制される結果、炭酸ストロンチウム粒子を、微細な酸化チタンと微細な粒子のまま均一に混合された状態で反応させることができ、生成するチタン酸ストロンチウムの粒子径等の特性のバラツキを低減して均一で微細なチタン酸バリウムおよびチタン酸ストロンチウムを得ることができる。   In addition, the strontium titanate of the present invention produced using strontium carbonate obtained by the production method of the present invention as a starting material is a result of suppressing the particle growth due to heat of the strontium carbonate particles during the temperature rising process during the production. , Strontium carbonate particles can be reacted in a finely mixed state with fine titanium oxide, reducing the variation in properties such as the particle size of the produced strontium titanate, and uniform and fine Barium titanate and strontium titanate can be obtained.

本発明によると、炭酸バリウムや炭酸ストロンチウムなどのアルカリ土類金属炭酸塩の表面を水酸化チタン等のチタン化合物で処理することによって、熱による粒子成長を抑制したアルカリ土類金属炭酸塩を得ることができる。   According to the present invention, by treating the surface of an alkaline earth metal carbonate such as barium carbonate or strontium carbonate with a titanium compound such as titanium hydroxide, an alkaline earth metal carbonate in which particle growth due to heat is suppressed is obtained. Can do.

また、かかるアルカリ土類金属炭酸塩を出発原料としてチタン酸バリウムおよびチタン酸ストロンチウムを製造するので、均一で微細な粒子径のチタン酸バリウムおよびチタン酸ストロンチウムを得ることができる。   Moreover, since barium titanate and strontium titanate are produced using such an alkaline earth metal carbonate as a starting material, barium titanate and strontium titanate having a uniform and fine particle size can be obtained.

実施例1の粒子の大きさ及び形状を示すSEM写真である。2 is a SEM photograph showing the size and shape of particles of Example 1. FIG. 実施例2の粒子の大きさ及び形状を示すSEM写真である。2 is a SEM photograph showing the size and shape of particles of Example 2. 比較例1の粒子の大きさ及び形状を示すSEM写真である。4 is a SEM photograph showing the size and shape of particles of Comparative Example 1. 図3よりも低倍率の図3(c)に対応するSEM写真である。It is a SEM photograph corresponding to FIG.3 (c) of lower magnification than FIG. 反応装置の構成を示す概略図である。It is the schematic which shows the structure of a reaction apparatus. 実施例3の粒子の大きさ及び形状を示すSEM写真である。4 is a SEM photograph showing the size and shape of particles of Example 3. 実施例4の粒子の大きさ及び形状を示すSEM写真である。4 is a SEM photograph showing the size and shape of particles of Example 4. 比較例2の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles of Comparative Example 2. 実施例5の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles in Example 5. 比較例3の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles of Comparative Example 3. 実施例6の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles of Example 6. 実施例7の粒子の大きさ及び形状を示すSEM写真である。10 is a SEM photograph showing the size and shape of particles of Example 7. 比較例4の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles of Comparative Example 4. 実施例8の粒子の大きさ及び形状を示すSEM写真である。10 is a SEM photograph showing the size and shape of particles in Example 8. 比較例5の粒子の大きさ及び形状を示すSEM写真である。6 is a SEM photograph showing the size and shape of particles of Comparative Example 5. 実施例9の粒子の大きさ及び形状を示すSEM写真である。10 is a SEM photograph showing the size and shape of the particles of Example 9. 実施例10の粒子の大きさ及び形状を示すSEM写真である。10 is a SEM photograph showing the size and shape of particles in Example 10. 比較例6の粒子の大きさ及び形状を示すSEM写真である。10 is a SEM photograph showing the size and shape of particles in Comparative Example 6.

以下、本発明のアルカリ土類金属炭酸塩の製造方法について詳細に説明する。   Hereafter, the manufacturing method of the alkaline earth metal carbonate of this invention is demonstrated in detail.

本発明のアルカリ土類金属炭酸塩の製造方法は、アルカリ土類金属炭酸塩の表面をチタン化合物によって処理するものである。   In the method for producing an alkaline earth metal carbonate of the present invention, the surface of the alkaline earth metal carbonate is treated with a titanium compound.

アルカリ土類金属炭酸塩としては、炭酸バリウムや炭酸ストロンチウムが好ましい。   As the alkaline earth metal carbonate, barium carbonate or strontium carbonate is preferable.

チタン化合物によって表面が処理されるアルカリ土類金属炭酸塩の粒子径、例えば、炭酸バリウムの粒子径は、電子顕微鏡写真による粒子径が10nm〜2000nm程度であるのが好ましく、50nm〜1000nmであるのがより好ましい。炭酸ストロンチウムの粒子径は、10nm〜2000nm程度であるのが好ましく、50nm〜1000nmであるのがより好ましい。炭酸バリウム及び炭酸ストロンチウムは製法によっては粒子形状が針状になることが知られているが、その場合の上記粒子径としては長径が該当する。   The particle diameter of the alkaline earth metal carbonate whose surface is treated with the titanium compound, for example, the particle diameter of barium carbonate is preferably about 10 nm to 2000 nm, and 50 nm to 1000 nm, as measured by electron micrographs. Is more preferable. The particle diameter of strontium carbonate is preferably about 10 nm to 2000 nm, and more preferably 50 nm to 1000 nm. Barium carbonate and strontium carbonate are known to have a needle shape depending on the production method, and the major diameter corresponds to the particle diameter in that case.

チタン化合物としては、水酸化チタンが好ましいが、含水酸化チタンや酸化チタンなどであってもよい。   The titanium compound is preferably titanium hydroxide, but may be hydrous titanium oxide or titanium oxide.

炭酸バリウムおよび炭酸ストロンチウムは、従来公知の方法によって製造すればよく、特にその製造方法は限定されない。   Barium carbonate and strontium carbonate may be produced by a conventionally known method, and the production method is not particularly limited.

チタン化合物によるアルカリ土類金属炭酸塩の表面の処理は、アルカリ土類金属炭酸塩の表面に水酸化チタンを吸着させるのが好ましい。   The treatment of the surface of the alkaline earth metal carbonate with the titanium compound is preferably performed by adsorbing titanium hydroxide on the surface of the alkaline earth metal carbonate.

この水酸化チタンの吸着量は、0.3wt%〜20wt%であるのが好ましく、0.7wt%〜15wt%であるのがより好ましい。水酸化チタンの吸着量が、前記0.3wt%未満では、熱による粒子成長を抑制する効果が得られず、逆に前記20wt%を超えると、炭酸バリウムに含まれる酸化チタンの割合が増え、最終的に得られるチタン酸バリウムの特性への影響が大きくなる。   The adsorption amount of titanium hydroxide is preferably 0.3 wt% to 20 wt%, and more preferably 0.7 wt% to 15 wt%. If the adsorption amount of titanium hydroxide is less than 0.3 wt%, the effect of suppressing particle growth due to heat cannot be obtained, and conversely if it exceeds 20 wt%, the proportion of titanium oxide contained in barium carbonate increases. The influence on the properties of the finally obtained barium titanate is increased.

水酸化チタンは、水溶性チタン化合物と塩基性物質との反応によって生成するのが好ましく、例えば、四塩化チタン水溶液をアンモニア水等で中和して生成するのが好ましい。   Titanium hydroxide is preferably produced by a reaction between a water-soluble titanium compound and a basic substance. For example, titanium hydroxide is preferably produced by neutralizing an aqueous titanium tetrachloride solution with ammonia water or the like.

本発明のアルカリ土類金属炭酸塩の製造方法は、アルカリ土類金属炭酸塩のスラリーに、四塩化チタン水溶液およびアルカリ溶液を添加する工程を含むのが好ましく、更に、前記添加する工程で前記四塩化チタン水溶液および前記アルカリ溶液が添加されたアルカリ土類金属炭酸塩のスラリーからアルカリ土類金属炭酸塩を分離する工程を含むのが好ましい。   The method for producing an alkaline earth metal carbonate according to the present invention preferably includes a step of adding an aqueous solution of titanium tetrachloride and an alkaline solution to the slurry of the alkaline earth metal carbonate. Further, in the step of adding, It is preferable to include a step of separating the alkaline earth metal carbonate from the aqueous titanium chloride solution and the alkaline earth metal carbonate slurry to which the alkaline solution is added.

前記添加する工程で四塩化チタン水溶液およびアルカリ溶液が添加されたアルカリ土類金属炭酸塩のスラリーを、例えば、固相法チタン酸バリウムの炭酸バリウム原料としてそのまま用いることも可能である。   The slurry of the alkaline earth metal carbonate to which the titanium tetrachloride aqueous solution and the alkali solution are added in the adding step can be used as it is, for example, as a barium carbonate raw material of solid phase barium titanate.

アルカリ土類金属炭酸塩のスラリーに、四塩化チタン溶液およびアルカリ溶液を添加する際の順序については特に限定されないが、アルカリ土類金属炭酸塩のスラリーにアンモニア水を加えて、この混合液に四塩化チタン溶液を加え、pHが6〜11になるように、より好ましくはpH8〜9になるようにする。あるいは、アルカリ土類金属炭酸塩のスラリーに、pH6〜10を保ちながら四塩化チタン水溶液とアルカリ溶液を同時に加える、より好ましくはpH7〜9を保ちながら四塩化チタン水溶液とアルカリ溶液を同時に加える。   The order in which the titanium tetrachloride solution and the alkali solution are added to the alkaline earth metal carbonate slurry is not particularly limited. Ammonia water is added to the alkaline earth metal carbonate slurry, and then added to the mixed solution. Titanium chloride solution is added so that the pH is 6-11, more preferably 8-9. Alternatively, the titanium tetrachloride aqueous solution and the alkali solution are simultaneously added to the alkaline earth metal carbonate slurry while maintaining the pH of 6 to 10, and more preferably the titanium tetrachloride aqueous solution and the alkali solution are simultaneously added while maintaining the pH of 7 to 9.

本発明では、アルカリ土類金属炭酸塩のスラリー中のアルカリ土類金属炭酸塩の濃度に関係なくアルカリ土類金属炭酸塩を処理できるが、スラリーの粘度や生産性、作業性を考慮した場合には、スラリー中のアルカリ土類金属炭酸塩の濃度は、10g/L〜400g/Lであるのが好ましく、50g/L〜200g/Lであるのがより好ましい。   In the present invention, alkaline earth metal carbonate can be treated regardless of the concentration of alkaline earth metal carbonate in the slurry of alkaline earth metal carbonate, but when the viscosity, productivity, and workability of the slurry are taken into consideration. The concentration of the alkaline earth metal carbonate in the slurry is preferably 10 g / L to 400 g / L, more preferably 50 g / L to 200 g / L.

前記スラリーに添加する前記四塩化チタン水溶液は、チタン濃度として5g/L〜200g/Lであるのが好ましく、15g/L〜30g/Lであるのがより好ましい。前記スラリーに添加するアルカリ溶液として、例えば、アンモニア水溶液を用いる場合の濃度は、1wt%〜30wt%であるのが好ましく、5wt%〜25wt%であるのがより好ましい。   The titanium tetrachloride aqueous solution added to the slurry preferably has a titanium concentration of 5 g / L to 200 g / L, and more preferably 15 g / L to 30 g / L. As the alkaline solution added to the slurry, for example, the concentration in the case of using an aqueous ammonia solution is preferably 1 wt% to 30 wt%, more preferably 5 wt% to 25 wt%.

前記スラリーに、四塩化チタン水溶液およびアルカリ溶液を添加して、アルカリ土類金属炭酸塩の表面を処理する際の処理温度は、5℃〜100℃であるのが好ましく、10℃〜40℃であるのがより好ましい。   The treatment temperature when treating the surface of the alkaline earth metal carbonate by adding a titanium tetrachloride aqueous solution and an alkali solution to the slurry is preferably 5 ° C to 100 ° C, and preferably 10 ° C to 40 ° C. More preferably.

前記スラリーに、四塩化チタン水溶液およびアルカリ溶液を添加する工程の後に、前記両溶液が添加されたスラリーを熟成する工程を設けるのが好ましく、この熟成する工程では、前記両溶液が添加されたスラリーを攪拌するのが好ましい。   Preferably, after the step of adding the titanium tetrachloride aqueous solution and the alkali solution to the slurry, a step of aging the slurry to which the both solutions are added is provided. In this step of aging, the slurry to which the both solutions are added is provided. Is preferably stirred.

熟成は、5℃〜100℃程度の温度で、5分〜1時間程度行うのが好ましく、10℃〜40℃の温度で、10分〜30分程度行うのがより好ましい。   The aging is preferably performed at a temperature of about 5 ° C to 100 ° C for about 5 minutes to 1 hour, more preferably at a temperature of 10 ° C to 40 ° C for about 10 minutes to 30 minutes.

四塩化チタン水溶液およびアルカリ溶液が添加されたアルカリ土類金属炭酸塩のスラリーからアルカリ土類金属炭酸塩を分離する工程では、吸引ろ過器、加圧ろ過器、遠心分離機等を用いて分離するのが好ましい。   In the step of separating the alkaline earth metal carbonate from the slurry of the alkaline earth metal carbonate to which the titanium tetrachloride aqueous solution and the alkaline solution are added, the separation is performed using a suction filter, a pressure filter, a centrifuge, or the like. Is preferred.

本発明のチタン酸バリウムは、本発明の製造方法によって製造される炭酸バリウムを出発原料として製造されるものであり、その製造方法は、特に限定されず、従来公知の方法を用いることができる。   The barium titanate of the present invention is produced using barium carbonate produced by the production method of the present invention as a starting material, and the production method is not particularly limited, and a conventionally known method can be used.

本発明のチタン酸ストロンチウムは、本発明の製造方法によって製造される炭酸ストロンチウムを出発原料として製造されるものであり、特に限定されず、従来公知の方法を用いることができる。   The strontium titanate of the present invention is produced using strontium carbonate produced by the production method of the present invention as a starting material, and is not particularly limited, and a conventionally known method can be used.

次に、本発明の実施例を、比較例と併せて説明する。但し、本発明は、これら実施例に限定されるものではない。   Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited to these examples.

また、以下の説明では、炭酸バリウムについては、チタン化合物である水酸化チタンで処理する前の炭酸バリウムの製法や商品毎に、実施例及び比較例を対応させている。   Moreover, in the following description, about the barium carbonate, an Example and a comparative example are made to respond | correspond for every manufacturing method and product of barium carbonate before processing with the titanium hydroxide which is a titanium compound.

[第1の製法による炭酸バリウムについて]
(実施例1)
実施例1では、水酸化チタンによって表面を処理する前の炭酸バリウムを次のようにして製造した。
[Barium carbonate by the first production method]
Example 1
In Example 1, barium carbonate before the surface was treated with titanium hydroxide was produced as follows.

すなわち、塩化バリウム・2水和物を純水に溶かし、400g/Lの濃度に調整した。この時の液温を60℃に調整し、この塩化バリウム水溶液を原料Aとする。次に、アンモニア水に炭酸ガスを吸収させ、CO2濃度として44g/Lの炭酸アンモニウム溶液を調整した。この時の液温を30℃に調整し、この炭酸アンモニウム溶液を原料Bとする。 That is, barium chloride dihydrate was dissolved in pure water and adjusted to a concentration of 400 g / L. The liquid temperature at this time is adjusted to 60 ° C., and this barium chloride aqueous solution is used as the raw material A. Next, carbon dioxide gas was absorbed into the ammonia water to prepare a 44 g / L ammonium carbonate solution with a CO 2 concentration. The liquid temperature at this time is adjusted to 30 ° C., and this ammonium carbonate solution is used as a raw material B.

5Lのガラスビーカーに原料Bを2L入れ、テフロン(登録商標)製の75mmの2枚羽根の攪拌棒を取り付けた攪拌機で、300rpmの回転数で攪拌した。そこへ、850mlの原料Aを、53ml/分の流量で滴下し、炭酸バリウムのスラリーを得た。   2 L of the raw material B was put in a 5 L glass beaker, and the mixture was stirred at a rotation speed of 300 rpm with a stirrer equipped with a Teflon (registered trademark) 2-mm blade stirring rod. Thereto, 850 ml of raw material A was dropped at a flow rate of 53 ml / min to obtain a barium carbonate slurry.

このスラリーに分散している炭酸バリウムの表面に、水酸化チタンによる処理を次のようにして行なった。   The surface of barium carbonate dispersed in this slurry was treated with titanium hydroxide as follows.

すなわち、得られた炭酸バリウムのスラリーに、濃度25wt%のアンモニア水を2ml添加した後、Ti濃度18.8g/Lに調整したTiCl4(四塩化チタン)水溶液を、3ml/minの添加速度で88ml添加した。添加後のスラリーのpHは8.6であった。添加終了後、1時間そのままの状態で攪拌し熟成した。熟成後のスラリーは、ヌッチェで5Cろ紙を用いてろ過して分離し、その後続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗後のケーキは、110℃に温めた箱型乾燥機で12時間乾燥し、水酸化チタンによって表面が処理された炭酸バリウムを得た。乾燥した炭酸バリウムを、小型の粉砕機で粉砕しサンプルとした。 That is, after adding 2 ml of 25 wt% ammonia water to the obtained barium carbonate slurry, a TiCl 4 (titanium tetrachloride) aqueous solution adjusted to a Ti concentration of 18.8 g / L was added at a rate of 3 ml / min. 88 ml was added. The pH of the slurry after the addition was 8.6. After completion of the addition, the mixture was aged with stirring for 1 hour. The slurry after aging was separated by filtration using a 5C filter paper with Nutsche, and then washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake after washing with water was dried for 12 hours with a box dryer heated to 110 ° C. to obtain barium carbonate whose surface was treated with titanium hydroxide. The dried barium carbonate was crushed with a small pulverizer to prepare a sample.

(実施例2)
実施例1において、アンモニア水の添加量を1ml、TiCl4の添加量を44mlとした以外は、すべて同じ操作を行って、水酸化チタンによって表面が処理された炭酸バリウムを製造し、そのサンプルを得た。
(Example 2)
In Example 1, barium carbonate whose surface was treated with titanium hydroxide was produced in the same manner except that the amount of ammonia water added was 1 ml and the amount of TiCl 4 added was 44 ml. Obtained.

(比較例1)
実施例1において、アンモニア水およびTiCl4を添加せずに、それ以外は、すべて同じ操作を行って、すなわち、水酸化チタンによる表面の処理を行なうことなく、炭酸バリウムを製造し、そのサンプルを得た。
(Comparative Example 1)
In Example 1, barium carbonate was produced by adding the aqueous ammonia and TiCl 4 , but otherwise performing the same operation, that is, without treating the surface with titanium hydroxide. Obtained.

これら実施例1,2及び比較例1の熱安定確認試験を次のようにして行った。
すなわち、各サンプルをアルミナるつぼに約5g入れ、各設定温度に予め熱した電気炉に入れ、そのまま30分強熱する。30分後取出して放冷し、走査型電子顕微鏡(SEM)で粒子の大きさ及び形状を確認した。強熱温度は、500℃及び800℃とした。
The thermal stability confirmation tests of Examples 1 and 2 and Comparative Example 1 were performed as follows.
That is, about 5 g of each sample is put in an alumina crucible, put in an electric furnace preheated to each set temperature, and ignited as it is for 30 minutes. After 30 minutes, the sample was taken out and allowed to cool, and the size and shape of the particles were confirmed with a scanning electron microscope (SEM). The ignition temperature was 500 ° C and 800 ° C.

また、実施例1,2の炭酸バリウムの表面に吸着されている水酸化チタンの吸着量を四塩化チタンの添加量から計算した。   Further, the amount of titanium hydroxide adsorbed on the surface of barium carbonate in Examples 1 and 2 was calculated from the amount of titanium tetrachloride added.

実施例1,2の水酸化チタンの吸着量は、水酸化チタンが吸着していない比較例1に対して、それぞれ1.5wt%、0.7wt%であった。   The adsorption amounts of titanium hydroxide in Examples 1 and 2 were 1.5 wt% and 0.7 wt%, respectively, with respect to Comparative Example 1 in which titanium hydroxide was not adsorbed.

図1〜図3に、熱安定確認試験による倍率10,000倍の実施例1,2及び比較例1のSEM写真をそれぞれ示す。また、800℃で30分強熱した比較例1のSEM写真では、成長した粒子が大きいために、倍率10,000以外に、倍率1,000倍の低倍率のSEM写真を、図4に示す。   1 to 3 show SEM photographs of Examples 1 and 2 and Comparative Example 1 at a magnification of 10,000 times according to a thermal stability confirmation test, respectively. Further, in the SEM photograph of Comparative Example 1 ignited at 800 ° C. for 30 minutes, since the grown particles are large, a SEM photograph at a low magnification of 1,000 times is shown in FIG. 4 in addition to the magnification of 10,000. .

800℃で30分強熱した実施例1,2の粒子をそれぞれ示す図1(c),図2(c)に比べて、同じ倍率の比較例1の粒子を示す図3(c)では、粒子径が大きすぎて、画面に入りきらない大きな粒子の表面に小さな粒子が付着している状態が示されている。図3(c)の倍率を、1/10にした図4に示されるように、比較例1では、倍率を1/10にしても、実施例1,2に比べて大きな粒子となっていることが分る。   In FIG. 3 (c) showing the particles of Comparative Example 1 having the same magnification as compared to FIGS. 1 (c) and 2 (c) showing the particles of Examples 1 and 2 ignited at 800 ° C. for 30 minutes, It shows a state in which small particles are attached to the surface of large particles that are too large to fit on the screen because the particle diameter is too large. As shown in FIG. 4 in which the magnification in FIG. 3C is 1/10, in Comparative Example 1, even if the magnification is 1/10, the particles are larger than those in Examples 1 and 2. I understand that.

すなわち、実施例1,2は、比較例1に比べて熱による粒子成長が抑制されていることが分る。   That is, in Examples 1 and 2, it can be seen that the particle growth due to heat is suppressed as compared with Comparative Example 1.

[第2の製法による炭酸バリウムについて]
(実施例3)
実施例3では、水酸化チタンによって表面を処理する前の炭酸バリウムを次のようにして製造した。
[About barium carbonate by the second manufacturing method]
(Example 3)
In Example 3, barium carbonate before the surface was treated with titanium hydroxide was produced as follows.

すなわち、水酸化バリウム・8水和物を純水に溶かし、濃度75g/Lの水酸化バリウム水溶液を50L調整した。この時の液温を40℃に調整し、この水酸化バリウム水溶液を原料Cとする。   That is, barium hydroxide octahydrate was dissolved in pure water, and 50 L of a barium hydroxide aqueous solution having a concentration of 75 g / L was prepared. The liquid temperature at this time is adjusted to 40 ° C., and this barium hydroxide aqueous solution is used as the raw material C.

この原料Cを、図5に示した反応装置1を用いて炭酸ガスと混合し、炭酸バリウムを合成した。図5において、P1,P2,P3は第1段,第2段,第3段の各ポンプであり、各段のポンプP1〜P2の構成は、次の通りである。   This raw material C was mixed with carbon dioxide using the reactor 1 shown in FIG. 5 to synthesize barium carbonate. In FIG. 5, P1, P2, and P3 are pumps of the first stage, the second stage, and the third stage, and the configurations of the pumps P1 and P2 of each stage are as follows.

(a)第1段のポンプP1:渦巻ポンプ(ラサ商事株式会社製)、吸入口径1.5インチ、吐出口径1インチ、吐出量170L/分、インペラ回転数2080rpm
(b)第2段のポンプP2:渦巻ポンプ(ラサ商事株式会社製)、吸入口径1インチ、吐出口径3/4インチ、吐出量30L/分、インペラ回転数1420rpm
(c)第3段のポンプP3:渦巻ポンプ(太平洋金属株式会社製)、吸入口径1インチ、吐出口径3/4インチ、吐出量30L/分、インペラ回転数1420rpm
炭酸バリウムの具体的な合成方法は、原料Cと炭酸ガスを、二重管を用いて第1段のポンプP1に送り込む。この時の原料Cの流速は、12L/minで、炭酸ガスの流速300L/minである。反応と同時に、25g/Lに濃度調整したクエン酸溶液を、1.2L/minの流速で図5中のクエン酸投入箇所から二重管を用いて連続的に第3段のポンプP3に添加し、炭酸バリウムのスラリーを得た。
(A) First stage pump P1: centrifugal pump (manufactured by Lhasa Corporation), suction port diameter 1.5 inches, discharge port diameter 1 inch, discharge amount 170 L / min, impeller rotation speed 2080 rpm
(B) Second stage pump P2: Centrifugal pump (manufactured by Rasa Shoji Co., Ltd.), suction port diameter 1 inch, discharge port diameter 3/4 inch, discharge rate 30 L / min, impeller rotation speed 1420 rpm
(C) Third stage pump P3: centrifugal pump (manufactured by Taiheiyo Metal Co., Ltd.), suction port diameter 1 inch, discharge port diameter 3/4 inch, discharge rate 30 L / min, impeller rotation speed 1420 rpm
A specific method for synthesizing barium carbonate is to feed the raw material C and carbon dioxide into the first-stage pump P1 using a double pipe. At this time, the flow rate of the raw material C is 12 L / min, and the flow rate of carbon dioxide gas is 300 L / min. Simultaneously with the reaction, the citric acid solution adjusted to a concentration of 25 g / L is continuously added to the third stage pump P3 from the citric acid charging point in FIG. 5 using a double pipe at a flow rate of 1.2 L / min. Thus, a barium carbonate slurry was obtained.

次に、このスラリーに分散している炭酸バリウムの表面に、水酸化チタンによる処理を次のようにして行なった。   Next, the surface of barium carbonate dispersed in the slurry was treated with titanium hydroxide as follows.

すなわち、図5のスラリー受け2の炭酸バリウムのスラリー22Lに、Ti濃度18.8g/Lに調整したTiCl4水溶液324mlを30分かけて添加した。TiCl4添加と同時に濃度25wt%のアンモニア水をスラリーに添加し、スラリーのpHが、8.5±0.2になるように調整した。添加中は、ステンレス製の10mmφの6枚羽の攪拌羽を取り付けた攪拌機を用いて、300rpmの攪拌速度で攪拌を続けた。添加終了後30分間そのままの状態で攪拌を続け、熟成を行った。熟成後スラリーを、ヌッチェで5Cろ紙を用いてろ過して分離し、続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗後のケーキは、110℃に温めた箱型乾燥機で12時間乾燥し、水酸化チタンによって表面が処理された炭酸バリウムを得た。乾燥した炭酸バリウムを、小型の粉砕機で粉砕してサンプルとした。 That is, 324 ml of TiCl 4 aqueous solution adjusted to a Ti concentration of 18.8 g / L was added to 22 L of barium carbonate slurry in the slurry receiver 2 of FIG. 5 over 30 minutes. Simultaneously with the addition of TiCl 4 , ammonia water having a concentration of 25 wt% was added to the slurry, and the pH of the slurry was adjusted to 8.5 ± 0.2. During the addition, stirring was continued at a stirring speed of 300 rpm using a stirrer equipped with stainless steel 10 mmφ six stirring blades. After completion of the addition, stirring was continued for 30 minutes, and aging was performed. After aging, the slurry was separated by filtration using 5C filter paper with Nutsche, and subsequently washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake after washing with water was dried for 12 hours with a box dryer heated to 110 ° C. to obtain barium carbonate whose surface was treated with titanium hydroxide. The dried barium carbonate was crushed with a small pulverizer to prepare a sample.

(実施例4)
実施例3において、TiCl4の添加量を810mlとした以外は、すべて同じ操作を行って水酸化チタンによって表面が処理された炭酸バリウムを製造し、サンプルを得た。
Example 4
In Example 3, barium carbonate whose surface was treated with titanium hydroxide was manufactured in the same manner except that the amount of TiCl 4 added was changed to 810 ml, and a sample was obtained.

(比較例2)
実施例3において、アンモニア水及びTiCl4を添加せずに、それ以外は、すべて同じ操作を行って、すなわち、水酸化チタンによる表面の処理を行なうことなく、炭酸バリウムを製造し、そのサンプルを得た。
(Comparative Example 2)
In Example 3, barium carbonate was produced by adding the aqueous ammonia and TiCl 4 , but otherwise performing the same operation, that is, without treating the surface with titanium hydroxide. Obtained.

これら実施例3,4及び比較例2について、上述と同様の熱安定確認試験を行った。強熱温度は、800℃とした。   These Examples 3 and 4 and Comparative Example 2 were subjected to the same thermal stability confirmation test as described above. The ignition temperature was 800 ° C.

また、上述の実施例1,2と同様にして算出した実施例3,4の水酸化チタンの吸着量は、それぞれ1.4wt%、3.6wt%であった。   Moreover, the adsorption amount of titanium hydroxide of Examples 3 and 4 calculated in the same manner as in Examples 1 and 2 was 1.4 wt% and 3.6 wt%, respectively.

図6〜図8に、熱安定試験による倍率10,000倍の実施例3,4及び比較例2のSEM写真をそれぞれ示す。   6 to 8 show SEM photographs of Examples 3 and 4 and Comparative Example 2 at a magnification of 10,000 times according to the thermal stability test.

800℃で30分強熱した実施例3,4の粒子をそれぞれ示す図6(b),図7(b)では、同じく800℃で30分強熱した比較例2の粒子を示す図8(b)に比べて、明らかに粒子サイズが小さく、熱による粒子成長が抑制されていることが分る。   6 (b) and FIG. 7 (b) showing the particles of Examples 3 and 4 heated at 800 ° C. for 30 minutes, respectively, FIG. 8 (B) showing the particles of Comparative Example 2 similarly heated at 800 ° C. for 30 minutes. It can be seen that, compared with b), the particle size is clearly small and particle growth due to heat is suppressed.

[第3の製法による炭酸バリウムについて]
(実施例5)
実施例5では、水酸化チタンによって表面を処理する前の炭酸バリウムを次のようにして製造した。
[Barium carbonate by the third manufacturing method]
(Example 5)
In Example 5, barium carbonate before the surface was treated with titanium hydroxide was produced as follows.

すなわち、50wt%のグルコン酸溶液3.7kgと水酸化バリウム8水塩6kgと純水を混ぜ、50Lの水酸化バリウム水溶液を調整する。この時の水溶液の温度を40℃に調整し、この水酸化バリウム水溶液を原料Dとする。この原料Dと炭酸ガスとを、二重管を用いて図5の反応装置1の第1段のポンプP1に送り込む。この時の原料Dの流速は、12L/minで、炭酸ガスの流速は300L/minである。反応と同時に12.5g/Lに濃度調整したクエン酸溶液を1.2L/minの速度で図中のクエン酸投入箇所から二重管を用いて連続的に第3段のポンプP3に添加し、炭酸バリウムのスラリーを得た。   That is, 3.7 kg of a 50 wt% gluconic acid solution, 6 kg of barium hydroxide octahydrate and pure water are mixed to prepare a 50 L barium hydroxide aqueous solution. The temperature of the aqueous solution at this time is adjusted to 40 ° C., and this barium hydroxide aqueous solution is used as the raw material D. This raw material D and carbon dioxide gas are fed into the first stage pump P1 of the reactor 1 of FIG. 5 using a double pipe. At this time, the flow rate of the raw material D is 12 L / min, and the flow rate of the carbon dioxide gas is 300 L / min. Simultaneously with the reaction, the citric acid solution whose concentration was adjusted to 12.5 g / L was continuously added to the third stage pump P3 using a double pipe from the citric acid charging point in the figure at a rate of 1.2 L / min. A slurry of barium carbonate was obtained.

この炭酸バリウムのスラリーを、ヌッチェで5Cろ紙を用いてろ過して分離し、続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗したケーキを、純水にリパルプし、炭酸バリウムの固形分として、67.5g/Lのスラリーを22L調整した。   The barium carbonate slurry was filtered and separated with a Nutsche using 5C filter paper, and then washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake washed with water was repulped into pure water to prepare 22 L of a 67.5 g / L slurry as a solid content of barium carbonate.

次に、このスラリーの炭酸バリウムの表面に、水酸化チタンによる処理を次のようにして行なった。   Next, the surface of the barium carbonate of this slurry was treated with titanium hydroxide as follows.

すなわち、このスラリーに、Ti濃度18.8g/Lに調整したTiCl4水溶液324mlを30分かけて添加した。TiCl4添加と同時に濃度25wt%のアンモニア水をスラリーに添加し、スラリーのpHが、8.5±0.2になるように調整した。添加中は、ステンレス製の10mmφ6枚羽根の攪拌羽根を取り付けた攪拌機を用いて、300rpmの攪拌速度で攪拌を続けた。添加終了後30分間そのままの状態で攪拌を続け、熟成を行った。 That is, 324 ml of a TiCl 4 aqueous solution adjusted to a Ti concentration of 18.8 g / L was added to this slurry over 30 minutes. Simultaneously with the addition of TiCl 4 , ammonia water having a concentration of 25 wt% was added to the slurry, and the pH of the slurry was adjusted to 8.5 ± 0.2. During the addition, stirring was continued at a stirring speed of 300 rpm using a stirrer equipped with a stainless steel 10 mmφ 6-blade stirring blade. After completion of the addition, stirring was continued for 30 minutes, and aging was performed.

熟成後スラリーを、ヌッチェで5Cろ紙を用いてろ過して分離し、続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗後のケーキは、110℃に温めた箱型乾燥機で12時間乾燥し、水酸化チタンによって表面が処理された炭酸バリウムを得た。乾燥した炭酸バリウムを、小型の粉砕機で粉砕しサンプルとした。   After aging, the slurry was separated by filtration using 5C filter paper with Nutsche, and subsequently washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake after washing with water was dried for 12 hours with a box dryer heated to 110 ° C. to obtain barium carbonate whose surface was treated with titanium hydroxide. The dried barium carbonate was crushed with a small pulverizer to prepare a sample.

(比較例3)
実施例5において、アンモニア水及びTiCl4を添加せずに、それ以外はすべて同じ操作を行って、すなわち、水酸化チタンによる表面の処理を行なうことなく、炭酸バリウムを製造し、そのサンプルを得た。
(Comparative Example 3)
In Example 5, barium carbonate was produced by performing the same operation without adding ammonia water and TiCl 4 , that is, without treating the surface with titanium hydroxide, and obtaining a sample thereof. It was.

これら実施例5及び比較例3について、上述と同様の熱安定確認試験を行った。強熱温度は、550℃及び800℃とした。   These Example 5 and Comparative Example 3 were subjected to the same thermal stability confirmation test as described above. The ignition temperature was 550 ° C and 800 ° C.

また、実施例5の水酸化チタンの吸着量は、1.0wt%であった。   Moreover, the adsorption amount of the titanium hydroxide of Example 5 was 1.0 wt%.

図9,図10に、熱安定確認試験による倍率10,000倍の実施例5及び比較例3のSEM写真をそれぞれ示す。   FIG. 9 and FIG. 10 show SEM photographs of Example 5 and Comparative Example 3, respectively, at a magnification of 10,000 times in the thermal stability confirmation test.

800℃で30分強熱した実施例5の粒子を示す図9(c)では、同じく800℃で30分強熱した比較例3の粒子を示す図10(c)に比べて、明らかに粒子サイズが小さく、熱による粒子成長が抑制されていることが分る。   9 (c) showing the particles of Example 5 ignited at 800 ° C. for 30 minutes, clearly compared to FIG. 10 (c) showing the particles of Comparative Example 3 similarly ignited at 800 ° C. for 30 minutes. It can be seen that the size is small and particle growth due to heat is suppressed.

[炭酸バリウム BW−KHR(商品名)について]
(実施例6)
実施例6では、水酸化チタンによって表面を処理する前の炭酸バリウムとして、堺化学工業株式会社製高純度炭酸バリウムBW−KHRを用いた。
[About Barium Carbonate BW-KHR (trade name)]
(Example 6)
In Example 6, high purity barium carbonate BW-KHR manufactured by Sakai Chemical Industry Co., Ltd. was used as the barium carbonate before the surface was treated with titanium hydroxide.

この炭酸バリウムBW−KHRの表面に、水酸化チタンによる処理を次のようにして行なった。   The surface of this barium carbonate BW-KHR was treated with titanium hydroxide as follows.

すなわち、炭酸バリウムBW−KHRを純水と混合し、75mmのテフロン(登録商標)製攪拌羽根を取り付けた攪拌機を用いて、回転数300rpmで攪拌して濃度10g/リットルのスラリーを5L調整した。そのスラリーにTi濃度18.8g/Lに調整したTiCl4水溶液12.8mlを30分かけて添加した。TiCl4水溶液を添加している間のスラリーpHが、8.5±0.2になるように、濃度25wt%のアンモニア水を連続的に添加した。 That is, barium carbonate BW-KHR was mixed with pure water and stirred at a rotation speed of 300 rpm using a stirrer equipped with a 75 mm Teflon (registered trademark) stirring blade to prepare 5 L of a slurry having a concentration of 10 g / liter. To the slurry, 12.8 ml of an aqueous TiCl 4 solution adjusted to a Ti concentration of 18.8 g / L was added over 30 minutes. Ammonia water having a concentration of 25 wt% was continuously added so that the slurry pH during the addition of the aqueous TiCl 4 solution was 8.5 ± 0.2.

TiCl4添加終了後30分そのままの状態で攪拌した。反応は、すべて室温で行った。5分後、スラリーをヌッチェで5Cろ紙を用いてろ過して分離し、続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗後のケーキは、110℃に温めた箱型乾燥機で12時間乾燥し、水酸化チタンによって表面が処理された炭酸バリウムを得た。乾燥した炭酸バリウムを、小型の粉砕機で粉砕しサンプルとした。 TiCl 4 and the mixture was stirred at the end of the addition after 30 minutes of intact state. All reactions were performed at room temperature. After 5 minutes, the slurry was filtered and separated with Nutsche using 5C filter paper, and then washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake after washing with water was dried for 12 hours with a box dryer heated to 110 ° C. to obtain barium carbonate whose surface was treated with titanium hydroxide. The dried barium carbonate was crushed with a small pulverizer to prepare a sample.

(実施例7)
実施例6において、炭酸バリウムスラリー添加する濃度18.8g/LのTiCl4水溶液の添加量を25.6mlに増やした以外は、全て同じ操作を行って、水酸化チタンによって表面が処理された炭酸バリウムを製造し、そのサンプルを得た。
(Example 7)
In Example 6, the same operation was performed except that the addition amount of the TiCl 4 aqueous solution having a concentration of 18.8 g / L added to the barium carbonate slurry was increased to 25.6 ml. Barium was produced and a sample was obtained.

(比較例4)
水酸化チタンによる表面の処理がされていない比較サンプルとして、堺化学工業株式会社製高純度炭酸バリウムBW−KHRを比較例4とした。
(Comparative Example 4)
As a comparative sample in which the surface treatment with titanium hydroxide was not performed, high purity barium carbonate BW-KHR manufactured by Sakai Chemical Industry Co., Ltd. was used as Comparative Example 4.

これら実施例6、実施例7及び比較例4について、上述と同様の熱安定確認試験を行った。強熱温度は、800℃とした。   About these Example 6, Example 7, and Comparative Example 4, the same thermal stability confirmation test as the above-mentioned was done. The ignition temperature was 800 ° C.

また、実施例6、実施例7の水酸化チタンの吸着量は、それぞれ1.2wt%、2.3wt%であった。   Moreover, the adsorption amount of the titanium hydroxide of Example 6 and Example 7 was 1.2 wt% and 2.3 wt%, respectively.

図11,図12、図13に、熱安定確認試験による倍率10,000倍の実施例6、実施例7及び比較例4のSEM写真をそれぞれ示す。   11, 12, and 13 show SEM photographs of Example 6, Example 7, and Comparative Example 4 at a magnification of 10,000 times in the thermal stability confirmation test, respectively.

800℃で30分強熱した実施例6,7の粒子をそれぞれ示す図11(b),図12(b)では、同じく800℃で30分強熱した比較例4の粒子を示す図13(b)に比べて、粒子サイズが小さく、熱による粒子成長が抑制されていることが分る。   FIGS. 11 (b) and 12 (b) show the particles of Examples 6 and 7 ignited at 800 ° C. for 30 minutes, respectively. FIG. 13 (13) shows the particles of Comparative Example 4 similarly ignited at 800 ° C. for 30 minutes. It can be seen that the particle size is small compared to b), and particle growth due to heat is suppressed.

[炭酸バリウム BW−KH30(商品名)について]
(実施例8)
実施例6において、使用する炭酸バリウムを堺化学工業株式会社製高純度炭酸バリウムBW−KH30に変えた以外は、全て同じ操作を行って、水酸化チタンによって表面が処理された炭酸バリウムを製造し、そのサンプルを得た。
[About barium carbonate BW-KH30 (trade name)]
(Example 8)
In Example 6, except that the barium carbonate used was changed to Sakai Chemical Industry Co., Ltd. high purity barium carbonate BW-KH30, all the same operations were performed to produce barium carbonate whose surface was treated with titanium hydroxide. And got that sample.

(比較例5)
水酸化チタンによる表面の処理がされていない比較サンプルとして、堺化学工業株式会社製高純度炭酸バリウムBW−KH30を比較例5とした。
(Comparative Example 5)
As a comparative sample in which the surface treatment with titanium hydroxide was not performed, high purity barium carbonate BW-KH30 manufactured by Sakai Chemical Industry Co., Ltd. was used as Comparative Example 5.

これら実施例8及び比較例5について、上述と同様の熱安定確認試験を行った。強熱温度は、800℃とした。   These Example 8 and Comparative Example 5 were subjected to the same thermal stability confirmation test as described above. The ignition temperature was 800 ° C.

実施例8の水酸化チタンの吸着量は、1.2wt%であった。   The adsorption amount of titanium hydroxide of Example 8 was 1.2 wt%.

図14,図15に、熱安定確認試験による倍率10,000倍の実施例8及び比較例5のSEM写真をそれぞれ示す。   14 and 15 show SEM photographs of Example 8 and Comparative Example 5, respectively, at a magnification of 10,000 times in the thermal stability confirmation test.

800℃で30分強熱した実施例8の粒子を示す図14(b)では、同じく800℃で30分強熱した比較例5の粒子を示す図15(b)に比べて、粒子サイズが明らかに小さく、熱による粒子成長が抑制されていることが分る。   In FIG. 14 (b) showing the particles of Example 8 ignited at 800 ° C. for 30 minutes, the particle size is similar to FIG. 15 (b) showing the particles of Comparative Example 5 similarly ignited at 800 ° C. for 30 minutes. It can be seen that the particle growth due to heat is obviously suppressed.

[炭酸ストロンチウムについて]
(実施例9)
実施例9では、水酸化チタンによって表面を処理する前の炭酸ストロンチウムを次のようにして製造した。
[About strontium carbonate]
Example 9
In Example 9, strontium carbonate before the surface was treated with titanium hydroxide was produced as follows.

すなわち、塩化ストロンチウム(SrCl2・1H2O)を純水に溶かし、200g/Lの濃度に調整した。この時の液温を、60℃に調整し、この塩化ストロンチウム水溶液を原料Eとする。次にアンモニア水に炭酸ガスを吸収させ、CO2濃度として44g/Lの炭酸アンモニウム溶液を調整した。この時の液温を、30℃に調整し、この炭酸アンモニウム溶液を原料Fとする。 That is, dissolved strontium chloride (SrCl 2 · 1H 2 O) of pure water and adjusted to a concentration of 200 g / L. The liquid temperature at this time is adjusted to 60 ° C., and this strontium chloride aqueous solution is used as the raw material E. Next, carbon dioxide gas was absorbed into the ammonia water to prepare a 44 g / L ammonium carbonate solution as the CO 2 concentration. The liquid temperature at this time is adjusted to 30 ° C., and this ammonium carbonate solution is used as the raw material F.

5Lのステンレス製タンクに原料Fを2L入れ、75mmのテフロン(登録商標)製の2枚羽根の攪拌羽根を取り付けた攪拌機で、300rpmの回転数で攪拌した。そこへ、1Lの原料Eを188ml/分の流量で滴下させ、炭酸ストロンチウムのスラリーを得た。   2 L of the raw material F was placed in a 5 L stainless steel tank, and the mixture was stirred at a rotational speed of 300 rpm with a stirrer equipped with a 75 mm Teflon (registered trademark) two-blade stirring blade. Thereto, 1 L of raw material E was dropped at a flow rate of 188 ml / min to obtain a slurry of strontium carbonate.

このスラリーに分散している炭酸ストロンチウムの表面に、水酸化チタンによる処理を次のようにして行なった。   The surface of strontium carbonate dispersed in this slurry was treated with titanium hydroxide as follows.

すなわち、得られた炭酸ストロンチウムのスラリーに、Ti濃度18.8g/Lに調整したTiCl4水溶液72mlを一定の流速で30分かけて添加した。TiCl4添加と同時に濃度25wt%のアンモニア水をスラリーに添加し、スラリーのpHが、8.5±0.2になるように調整した。TiCl4添加終了後30分間そのままの状態で攪拌し熟成した。 That is, 72 ml of a TiCl 4 aqueous solution adjusted to a Ti concentration of 18.8 g / L was added to the obtained strontium carbonate slurry at a constant flow rate over 30 minutes. Simultaneously with the addition of TiCl 4 , ammonia water having a concentration of 25 wt% was added to the slurry, and the pH of the slurry was adjusted to 8.5 ± 0.2. After completion of the addition of TiCl 4, the mixture was stirred and aged for 30 minutes.

熟成後、スラリーをヌッチェで5Cろ紙を用いてろ過して分離し、続けて純水で水洗を行った。水洗は、水洗水の電導度が100μs以下になるまで実施した。水洗後のケーキは、110℃に温めた箱型乾燥機で12時間乾燥し、水酸化チタンによって表面が処理された炭酸ストロンチウムを得た。乾燥した炭酸ストロンチウムを、小型の粉砕機で粉砕しサンプルとした。   After aging, the slurry was separated by filtration using 5C filter paper with Nutsche, and subsequently washed with pure water. The washing was performed until the conductivity of the washing water became 100 μs or less. The cake after washing with water was dried for 12 hours in a box-type dryer heated to 110 ° C. to obtain strontium carbonate whose surface was treated with titanium hydroxide. The dried strontium carbonate was pulverized with a small pulverizer to prepare a sample.

(実施例10)
実施例9において、TiCl4の添加量を180mlとした以外は、すべて同じ操作を行って酸化チタンによって表面が処理された炭酸ストロンチウムを製造し、サンプルを得た。
(Example 10)
In Example 9, except that the addition amount of TiCl 4 was changed to 180 ml, the same operation was carried out to produce strontium carbonate whose surface was treated with titanium oxide, and a sample was obtained.

(比較例6)
実施例9において、TiCl4及びアンモニア水を添加せず、それ以外は、すべて同じ操作を行って、すなわち、水酸化チタンによる表面の処理を行なうことなく、炭酸ストロンチウムを製造し、そのサンプルを得た。
(Comparative Example 6)
In Example 9, strontium carbonate was produced by performing the same operation except that TiCl 4 and aqueous ammonia were not added, that is, without treating the surface with titanium hydroxide, and a sample thereof was obtained. It was.

これら実施例9,10及び比較例6について、上述と同様の熱安定確認試験を行った。強熱温度は、800℃とした。   These Examples 9 and 10 and Comparative Example 6 were subjected to the same thermal stability confirmation test as described above. The ignition temperature was 800 ° C.

また、実施例9,10の水酸化チタンの吸着量は、それぞれ2.0wt%、4.9wt%であった。   Moreover, the adsorption amounts of titanium hydroxide in Examples 9 and 10 were 2.0 wt% and 4.9 wt%, respectively.

図16〜図18に、熱安定確認試験による倍率10,000倍の実施例9,10及び比較例6のSEM写真をそれぞれ示す。   FIGS. 16 to 18 show SEM photographs of Examples 9 and 10 and Comparative Example 6 at a magnification of 10,000 times in the thermal stability confirmation test, respectively.

上述の各実施例では、水酸化チタンによって、炭酸バリウム等のアルカリ土類金属炭酸塩の表面を処理したけれども、水酸化ジルコニウムによって表面の処理を行なうようにしてもよい。   In each of the above-described embodiments, the surface of an alkaline earth metal carbonate such as barium carbonate is treated with titanium hydroxide, but the surface may be treated with zirconium hydroxide.

1 反応装置
2 スラリー受け
1 reactor 2 slurry receiver

Claims (7)

アルカリ土類金属炭酸塩の表面をチタン化合物によって処理する、
ことを特徴とするアルカリ土類金属炭酸塩の製造方法。
Treating the surface of the alkaline earth metal carbonate with a titanium compound;
A method for producing an alkaline earth metal carbonate.
前記アルカリ土類金属炭酸塩が、炭酸バリウムまたは炭酸ストロンチウムであり、
前記チタン化合物が、水酸化チタンである、
請求項1に記載のアルカリ土類金属炭酸塩の製造方法。
The alkaline earth metal carbonate is barium carbonate or strontium carbonate;
The titanium compound is titanium hydroxide;
The method for producing an alkaline earth metal carbonate according to claim 1.
前記処理が、前記水酸化チタンを前記アルカリ土類金属炭酸塩の表面に吸着させる処理である、
請求項2に記載のアルカリ土類金属炭酸塩の製造方法。
The treatment is a treatment of adsorbing the titanium hydroxide on the surface of the alkaline earth metal carbonate.
The manufacturing method of the alkaline-earth metal carbonate of Claim 2.
前記アルカリ土類金属炭酸塩のスラリーに、四塩化チタン水溶液およびアルカリ溶液を添加する工程を含む、
請求項2または3に記載のアルカリ土類金属炭酸塩の製造方法。
Adding a titanium tetrachloride aqueous solution and an alkali solution to the slurry of the alkaline earth metal carbonate,
The method for producing an alkaline earth metal carbonate according to claim 2 or 3.
前記添加する工程で前記四塩化チタン水溶液および前記アルカリ溶液が添加されたアルカリ土類金属炭酸塩のスラリーからアルカリ土類金属炭酸塩を分離する工程を更に含む、
請求項4に記載のアルカリ土類金属炭酸塩の製造方法。
Further comprising the step of separating the alkaline earth metal carbonate from the slurry of the alkaline earth metal carbonate to which the titanium tetrachloride aqueous solution and the alkaline solution have been added in the adding step.
The manufacturing method of the alkaline-earth metal carbonate of Claim 4.
前記請求項1ないし5のいずれかに記載のアルカリ土類金属炭酸塩の製造方法によって製造されるアルカリ土類金属炭酸塩を出発原料として製造され、該出発原料が、炭酸バリウムである、
ことを特徴とするチタン酸バリウム。
The alkaline earth metal carbonate produced by the method for producing an alkaline earth metal carbonate according to any one of claims 1 to 5 is used as a starting material, and the starting material is barium carbonate.
Barium titanate characterized in that.
前記請求項1ないし5のいずれかに記載のアルカリ土類金属炭酸塩の製造方法によって製造されるアルカリ土類金属炭酸塩を出発原料として製造され、該出発原料が炭酸ストロンチウムである、
ことを特徴とするチタン酸ストロンチウム。
The alkaline earth metal carbonate produced by the method for producing an alkaline earth metal carbonate according to any one of claims 1 to 5 is used as a starting material, and the starting material is strontium carbonate.
Strontium titanate characterized by that.
JP2011166514A 2011-07-29 2011-07-29 Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate Active JP5879798B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011166514A JP5879798B2 (en) 2011-07-29 2011-07-29 Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate
PCT/JP2012/069268 WO2013018742A1 (en) 2011-07-29 2012-07-23 Barium titanate, strontium titanate, and manufacturing method for alkaline earth metal carbonate
TW101126602A TWI541197B (en) 2011-07-29 2012-07-24 Alkaline earth metal carbonate, barium titanate and strontium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166514A JP5879798B2 (en) 2011-07-29 2011-07-29 Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate

Publications (3)

Publication Number Publication Date
JP2013028509A true JP2013028509A (en) 2013-02-07
JP2013028509A5 JP2013028509A5 (en) 2014-09-11
JP5879798B2 JP5879798B2 (en) 2016-03-08

Family

ID=47629265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166514A Active JP5879798B2 (en) 2011-07-29 2011-07-29 Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate

Country Status (3)

Country Link
JP (1) JP5879798B2 (en)
TW (1) TWI541197B (en)
WO (1) WO2013018742A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658792B2 (en) * 2018-04-26 2020-03-04 堺化学工業株式会社 Production method of barium carbonate
JP7200797B2 (en) * 2019-03-27 2023-01-10 堺化学工業株式会社 Method for producing alkaline earth metal carbonate
CN111072065B (en) * 2019-12-17 2021-05-28 西安交通大学 (111) oriented strontium titanate template material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251016A (en) * 1997-03-07 1998-09-22 Agency Of Ind Science & Technol Production of coated calcium carbonate particles
JPH10273316A (en) * 1997-03-27 1998-10-13 Agency Of Ind Science & Technol Production of coated calcium carbonate particle
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
JP2008508170A (en) * 2004-07-28 2008-03-21 ソルヴェイ(ソシエテ アノニム) Alkaline earth metal carbonate powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251016A (en) * 1997-03-07 1998-09-22 Agency Of Ind Science & Technol Production of coated calcium carbonate particles
JPH10273316A (en) * 1997-03-27 1998-10-13 Agency Of Ind Science & Technol Production of coated calcium carbonate particle
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
JP2008508170A (en) * 2004-07-28 2008-03-21 ソルヴェイ(ソシエテ アノニム) Alkaline earth metal carbonate powder

Also Published As

Publication number Publication date
JP5879798B2 (en) 2016-03-08
WO2013018742A1 (en) 2013-02-07
TWI541197B (en) 2016-07-11
TW201311562A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
US20050186133A1 (en) Process for preparing a strontium titanate powder
JP5879798B2 (en) Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate
JP3232794B2 (en) Method for producing fine barium carbonate for producing barium titanate
KR101773622B1 (en) Generally spherical barium carbonate particles, and method for producing generally spherical barium carbonate particles
JP5310462B2 (en) Nickel powder and method for producing the same
CN1865153A (en) Babrium titanate preparation method
KR101548746B1 (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
KR20150041606A (en) Ultrafine particles of titanium dioxide and process for producing the same
KR20090118748A (en) A method of preparing highly crystalline barium-titanate fine powder by oxalate process and highly crystalline barium-titanate fine powder prepared by the same
JP5219072B2 (en) Method for producing metal titanate particles
KR101606932B1 (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
TW201520172A (en) Method of preparing barium titanate and barium titanate prepared by using the same
WO2021199702A1 (en) Method for producing perovskite compound, and perovskite compound
KR102271087B1 (en) The calcium carbonate manufacturing method from shell
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JP2011042528A (en) Nickel oxide powder and method for manufacturing the same
TWI830871B (en) Method for producing alkaline earth metal carbonates
JP2005008445A (en) Method for manufacturing barium titanate powder
JP2011073930A (en) Method for producing titanate powder
TW201520173A (en) Method of preparing barium titanyl oxalate, and method of preparing barium titanate comprising the same
KR20060102928A (en) Manufacturing method of barium titanate powder
JP2009078960A (en) Method for producing compound oxide powder
KR100435534B1 (en) A method of preparing Barium Titanate
KR20110082859A (en) Method of preparing barium titanyl oxalate and method of preparing barium titanate comprising the same
KR100281829B1 (en) Preparation of barium titanate fine powder by hydrothermal reaction using titanium 2-alkoxyethoxide precursors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5879798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250