KR101548746B1 - A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same - Google Patents

A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same Download PDF

Info

Publication number
KR101548746B1
KR101548746B1 KR1020090037692A KR20090037692A KR101548746B1 KR 101548746 B1 KR101548746 B1 KR 101548746B1 KR 1020090037692 A KR1020090037692 A KR 1020090037692A KR 20090037692 A KR20090037692 A KR 20090037692A KR 101548746 B1 KR101548746 B1 KR 101548746B1
Authority
KR
South Korea
Prior art keywords
bto
barium titanate
barium
aqueous solution
slurry
Prior art date
Application number
KR1020090037692A
Other languages
Korean (ko)
Other versions
KR20100118805A (en
Inventor
박지호
박연정
장동규
지영훈
공준영
양우영
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020090037692A priority Critical patent/KR101548746B1/en
Priority to PCT/KR2010/002536 priority patent/WO2010126253A2/en
Publication of KR20100118805A publication Critical patent/KR20100118805A/en
Application granted granted Critical
Publication of KR101548746B1 publication Critical patent/KR101548746B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말이 개시된다. 개시된 티탄산바륨 분말의 제조방법은 바륨티타닐옥살레이트의 합성후 상기 합성된 바륨티타닐옥살레이트에 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 첨가하여 습식분쇄하고 분무건조하는 단계를 포함한다. 또한, 상기 제조방법에 의해 제조된 티탄산바륨 분말은 미립의 균일한 입도분포 및 높은 결정성을 갖는다.A process for producing barium titanate powder by an oxalate process and a barium titanate powder produced by the process are disclosed. The disclosed method for producing a barium titanate powder includes the steps of adding an amino acid compound and a carboxylate group-containing compound to barium titanyl oxalate synthesized after synthesis of barium titanyl oxalate, followed by wet pulverization and spray drying. In addition, the barium titanate powder produced by the above-described production method has fine particle size distribution and high crystallinity.

Description

옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말{A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same}[0001] The present invention relates to a method for producing barium titanate powder by an oxalate process and a barium titanate powder prepared by the method,

티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말이개시된다. 보다 상세하게는 바륨티타닐옥살레이트의 합성후 상기 합성된 바륨티타닐옥살레이트에 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 첨가하여 습식분쇄하고 분무건조하는 단계를 포함하는 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말이 개시된다.A method for producing barium titanate powder and barium titanate powder produced by the method are disclosed. More specifically, the present invention relates to a process for producing barium titanyl oxalate, which comprises adding an amino acid compound and a carboxylate group-containing compound to barium titanyl oxalate synthesized after the synthesis of barium titanyl oxalate, wet pulverizing and spray- A method for producing barium powder and barium titanate powder produced by the method are disclosed.

최근 적층 세라믹 콘덴서(Multi Layer Ceramic Condenser: MLCC)의 소형 대용량화(고유전율 조성, 유전체의 박층화 및 고적층화), 저온 소성화, 고주파화 및 고성능화 등에 따라, MLCC용 티탄산바륨은 입경 200nm 이하의 초미립화가 요구되고 있다. 그러나, 티탄산바륨은 미립화될수록 결정성이 저하되어 유전율이 떨어지기 때문에 기존의 제조방법으로는 입경을 300nm 이하로 낮추는 것이 곤란하였다. BACKGROUND ART Recently, barium titanate for MLCC has been found to have a high dielectric constant (dielectric constant), a low dielectric constant (dielectric constant) and a high dielectric constant Atomization is required. However, as the barium titanate becomes finer, the crystallinity is lowered and the dielectric constant is lowered. Therefore, it has been difficult to lower the particle diameter to 300 nm or less in the conventional manufacturing method.

이러한 문제점을 개선한 것으로 한국공개특허 제2005-0081316호는 기존 공침법(또는 옥살레이트 공정법)을 개선하여 초미립의 티탄산바륨을 제조하는 방법을 개시하고 있다. 구체적으로, 상기 방법은 바륨티타닐옥살레이트의 합성 후 이를 분쇄하는 과정에 금속 함유 첨가제를 첨가하여 초미립의 티탄산바륨을 제조하는 방법이다. 그러나, 상기 방법에 의할 경우, 초미립의 균일한 티탄산바륨의 제조는 가능하지만 결정성이 높은 티탄산바륨의 제조는 불가능한데, 이는 금속 함유 첨가제를 첨가하여 바륨티타닐옥살레이트를 분쇄하게 되면, 상기 분쇄후 티탄산바륨의 합성시 결정성이 높은 정방정구조의 티탄산바륨이 입방정구조의 티탄산바륨으로 변화하면서 결정성이 떨어지기 때문이다. 이에 따라, 상기 방법에 의해 제조된 티탄산바륨이 MLCC에 채용될 경우에는 MLCC의 유전율이 저하되기 때문에 MLCC의 소형 대용량화가 어려워지는 문제점이 있다. In order to solve these problems, Korean Patent Laid-Open Publication No. 2005-0081316 discloses a method for producing ultrafine barium titanate by improving the conventional coprecipitation method (or oxalate processing method). Specifically, the method is a method of producing ultrafine barium titanate by adding a metal-containing additive to the process of pulverizing barium titanyl oxalate followed by pulverization thereof. However, in the case of this method, it is possible to produce ultrafine, uniform barium titanate, but it is impossible to produce barium titanate having a high crystallinity because when barium titanyl oxalate is pulverized by adding a metal- The barium titanate having a high crystallinity is converted into barium titanate having a cubic crystal structure and the crystallinity is deteriorated when the barium titanate after the pulverization is synthesized. Accordingly, when the barium titanate produced by the above method is employed in MLCC, the dielectric constant of the MLCC is lowered, which makes it difficult to miniaturize the MLCC.

또한, Journal of Alloys and Compounds, 434-435 (2007), p768~772는 기존 고상법을 개선한 티타산바륨의 제조방법을 개시하고 있다. 상기 방법에 의하면, 탄산바륨 및 이산화티탄의 혼합시 여러 가지 첨가제를 첨가하여 탄산바륨의 해리온도(즉, 분해온도)를 저하시킴으로써, 기존 고상법보다 결정성이 높은 티탄산바륨을 얻을 수 있다. 그러나, 상기 방법에 의해 제조된 티탄산바륨은 200nm에서 결정성이 1.0100이 안되며, 100nm에서는 1.0095 미만인 수준이므로 MLCC용으로 사용하기에는 적당하지 않으며, 상기 방법에 의해 티탄산바륨을 대량으로 생산하는 것은 입자의 균일성 및 Ba/Ti 몰비의 안정성 측면에서 적합하지가 않다.   Journal of Alloys and Compounds, 434-435 (2007), p. 688-772, discloses a method for preparing barium titanate which is improved from the existing solid phase method. According to the above method, barium titanate having a higher crystallinity than that of the existing solid phase method can be obtained by adding various additives when mixing barium carbonate and titanium dioxide to lower the dissociation temperature (that is, decomposition temperature) of barium carbonate. However, the barium titanate produced by the above method has a crystallinity of less than 1.0100 at 200 nm and less than 1.0095 at 100 nm. Therefore, barium titanate is not suitable for use in MLCC, and mass production of barium titanate by the above- And the stability of the Ba / Ti molar ratio is not suitable.

본 발명의 일 구현예는 바륨티타닐옥살레이트의 합성후 상기 합성된 바륨티타닐옥살레이트에 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 첨가하여 습식분쇄하고 분무건조하는 단계를 포함하는 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법을 제공한다.One embodiment of the present invention relates to an oxalate process comprising a step of adding an amino acid compound and a carboxylate group-containing compound to the synthesized barium titanyl oxalate after the synthesis of barium titanyl oxalate, wet pulverizing and spray drying And a method for producing the barium titanate powder.

본 발명의 다른 구현예는 상기 제조방법에 의해 제조되어 미립의 균일한 입도분포 및 높은 결정성을 갖는 티탄산바륨 분말을 제공한다.Another embodiment of the present invention provides a barium titanate powder having a fine particle size distribution and a high crystallinity prepared by the above production method.

본 발명의 일 측면은,According to an aspect of the present invention,

염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련하는 단계(원료 수용액 마련단계);A step of preparing an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanium tetrachloride (TiCl 4 ) (raw material aqueous solution preparation step);

상기 수용액들을 옥살산(H2C2O4) 수용액에 적가함으로써 제1 바륨티타닐옥살레이트[BTO: BaTiO(C2O4)2·4H2O] 슬러리를 생성하는 단계(제1 BTO 슬러리 생성단계);To form a first barium titanyl oxalate [BTO: BaTiO (C 2 O 4 ) 2 .4H 2 O] slurry by adding the aqueous solutions to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) step);

상기 생성된 제1 BTO 슬러리 중의 BTO, 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 혼합하여 제2 BTO 슬러리를 형성한 후 상기 제2 BTO 슬러리 중의 BTO를 습식분쇄하는 단계(습식분쇄단계);Mixing the BTO, the amino acid compound and the carboxylate group-containing compound in the first BTO slurry to form a second BTO slurry, followed by wet pulverizing the BTO in the second BTO slurry;

상기 습식분쇄후 형성된 제3 BTO 슬러리를 분무건조하여 BTO 함유 분말을 얻 는 단계(건조단계); 및Spray drying the third BTO slurry formed after the wet pulverization to obtain a BTO-containing powder (drying step); And

상기 건조된 BTO 함유 분말을 열처리하여 티탄산바륨(BT: barium titanate)을 생성하는 단계(BT 생성단계)를 포함하는 티탄산바륨 분말의 제조방법을 제공한다.Treating the dried BTO-containing powder to produce barium titanate (BT) (BT production step).

상기 아미노산계 화합물은 글리신, 알라닌, 발린, 류신, 이소류신, 트레오닌, 세린, 시스테인, 메티오닌, 아스파르트산, 아스파라긴, 글루탐산, 글루타민, 리신, 아르기닌, 히스티딘, 페닐알라닌, 티로신, 트립토판 및 프롤린으로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다.Wherein the amino acid compound is selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, threonine, serine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan and proline And may include at least one species.

상기 아미노산계 화합물의 첨가량은 상기 BTO 100중량부에 대하여 100 내지 1,500중량부일 수 있다.The amount of the amino acid compound added may be 100 to 1,500 parts by weight based on 100 parts by weight of the BTO.

상기 카르복실레이트(carboxylate)기 함유 화합물은 고급지방산 알칼리염(비누), N-아크릴아미노산염, 알킬에테르 카본산염 및 아실화펩티드로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다.The carboxylate group-containing compound may include at least one member selected from the group consisting of higher fatty acid alkali salts (soap), N-acrylamino acid salts, alkyl ether carboxylates, and acylated peptides.

상기 카르복실레이트기 함유 화합물의 첨가량은 상기 BTO 100중량부에 대하여 50 내지 500중량부일 수 있다.The carboxylate group-containing compound may be added in an amount of 50 to 500 parts by weight based on 100 parts by weight of the BTO.

상기 티탄산바륨 분말의 제조방법은, 상기 BTO 생성단계와 상기 습식분쇄단계 사이에, 상기 생성된 BTO를 숙성하는 단계, 상기 숙성된 BTO를 여과하는 단계 및 상기 여과된 BTO를 과량의 물로 세척하는 단계를 더 포함할 수 있다.The method for producing the barium titanate powder may further comprise, between the BTO producing step and the wet pulverizing step, aging the BTO produced, filtering the aged BTO, and washing the filtered BTO with excess water As shown in FIG.

상기 티탄산바륨 분말의 제조방법은 상기 BT 생성단계에서 생성된 티탄산바륨를 분쇄하는 단계를 더 포함할 수 있다.The method for producing barium titanate powder may further include pulverizing barium titanate produced in the BT producing step.

본 발명의 다른 측면은,According to another aspect of the present invention,

상기 제조방법에 의해 제조된 티탄산바륨 분말을 제공한다.And barium titanate powder prepared by the above production method.

본 발명의 일 구현예에 의하면, 바륨티타닐옥살레이트의 합성후 상기 합성된 바륨티타닐옥살레이트에 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 첨가하여 습식분쇄하고 분무건조하는 단계를 포함하는 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법이 제공될 수 있다. 상기 제조방법에 의하면, 티탄산바륨의 대량생산의 경우에도 열처리 온도의 편차에 따른 민감도가 크지 않아 미립의 균일한 입도분포 및 높은 결정성을 갖는 티탄산바륨 분말을 제조 할 수 있다. According to one embodiment of the present invention, there is provided a process for producing barium titanyl oxalate, which comprises adding barium titanyl oxalate synthesized after the synthesis of barium titanyl oxalate to an amino acid-based compound and a carboxylate group-containing compound, followed by wet pulverization and spray drying A process for producing barium titanate powder by a rate process can be provided. According to the above production method, barium titanate powder having a fine particle size distribution and a high crystallinity can be produced even in the case of mass production of barium titanate because sensitivity to heat treatment temperature is not so high.

본 발명의 다른 구현예에 의하면, 상기 제조방법에 의해 제조되어 미립의 균일한 입도분포 및 높은 결정성을 갖는 티탄산바륨 분말이 제공될 수 있다.According to another embodiment of the present invention, barium titanate powder having a fine particle size distribution and a high crystallinity can be prepared by the above production method.

이하, 본 발명의 일 구현예에 따른 티탄산바륨 분말의 제조방법을 상세히 설명한다.Hereinafter, a method for producing barium titanate powder according to an embodiment of the present invention will be described in detail.

먼저, 염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련한다(원료 수용액 마련단계). 염화바륨 수용액은 보통 BaCl2·2H2O를 물에 녹여 사용하는데, 그 농도범위는 0.2~2.0 mol/l일 수 있다. 염화바륨 수용액의 농도가 0.2mol/l 미만인 경우에는 염화바륨 수용액의 부피 대비 후술하는 티탄산바륨의 생산성이 낮으며, 상기 농도가 2.0mol/l를 초과할 경우에는 물에 대한 염화바륨의 용해도 범위 를 벗어나 염화바륨이 석출될 가능성이 있다. 사염화티탄 수용액은 보통 고농도의 사염화티탄 용액을 희석하여 사용하는데, 그 농도범위는 0.2~2.0 mol/l일 수 있다. 사염화티탄 수용액의 농도가 0.2mol/l 미만인 경우에는 사염화티탄 수용액의 부피 대비 티탄산바륨의 생산성이 낮으며, 상기 농도가 2.0mol/l를 초과할 경우에는 물에 대한 사염화티탄의 용해도 범위를 벗어나 사염화티탄이 석출될 가능성이 있다. 염화바륨 수용액과 사염화티탄 수용액은 몰비(염화바륨/사염화티탄) 기준으로 1~1.5, 예를 들어 1~1.1의 비율로 혼합될 수 있다. 상기 몰비가 1 미만인 경우에는 최종 제품인 티탄산바륨의 몰비가 1 미만으로 낮아질 가능성이 매우 크고, 상기 몰비가 1.5를 초과하는 경우에는 제2상(second-phase)(티탄산바륨 외의 다른 상, 예를 들면 Ba2TiO9)이 생성된다. 최종 제품인 티탄산바륨의 몰비가 1 미만으로 낮아질 경우에는 제2상의 생성 및 비정상 입성장(abnormal grain growth) 등이 유발된다.First, an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanium tetrachloride (TiCl 4 ) are prepared (raw material aqueous solution preparation step). The aqueous barium chloride solution is usually prepared by dissolving BaCl 2 .2H 2 O in water, and its concentration range may be from 0.2 to 2.0 mol / l. When the concentration of barium chloride aqueous solution is less than 0.2 mol / l, the productivity of barium titanate described below is low compared to the volume of barium chloride aqueous solution. When the concentration exceeds 2.0 mol / l, the solubility range of barium chloride There is a possibility that barium chloride will precipitate out. The titanium tetrachloride aqueous solution is usually diluted with a high concentration titanium tetrachloride solution, and its concentration range may be from 0.2 to 2.0 mol / l. When the concentration of the titanium tetrachloride aqueous solution is less than 0.2 mol / l, the productivity of barium titanate is low relative to the volume of the aqueous titanium tetrachloride solution. When the concentration exceeds 2.0 mol / l, the solubility of titanium tetrachloride There is a possibility of titanium precipitation. The aqueous barium chloride solution and the aqueous titanium tetrachloride solution may be mixed in a ratio of 1 to 1.5, for example, 1 to 1.1, based on the molar ratio (barium chloride / titanium tetrachloride). When the molar ratio is less than 1, there is a high possibility that the molar ratio of barium titanate as the final product is lowered to less than 1. When the molar ratio exceeds 1.5, a second phase (another phase other than barium titanate, Ba 2 TiO 9 ) is produced. When the molar ratio of the final product barium titanate is lowered to less than 1, generation of the second phase and abnormal grain growth are caused.

다음에, 상기 염화바륨 수용액 및 사염화티탄 수용액의 혼합 수용액이나 이들 각각의 수용액을 고속분사 노즐을 사용하여 옥살산(H2C2O4) 수용액에 적가함으로써 제1 바륨티타닐옥살레이트[BTO: BaTiO(C2O4)2·4H2O] 슬러리를 생성시킨다(제1 BTO 슬러리 생성단계). 이때, 옥살산 수용액은 염화바륨 수용액이나 사염화티탄 수용액 보다 많은 양이 사용될 수 있다. 상기 옥살산 수용액의 농도범위는 0.2~5.0 mol/l일 수 있다. 옥살산 수용액의 농도가 0.2mol/l 미만인 경우에는 옥살산 수용액의 부피 대비 티탄산바륨의 생산성이 낮고, 상기 농도가 5.0mol/l를 초과할 경우에는 물에 대한 옥살산의 용해도 범위를 벗어날 가능성이 있다. 또한 이 경우, 옥 살산 수용액의 온도는 20~100℃, 예를 들어 50~90℃로 유지될 수 있다. 염화바륨 수용액과 사염화티탄 수용액이 혼합용액의 형태로 또는 각각 별도로 옥살산 수용액에 노즐 분사되어 적가되는 시간은 1~3시간일 수 있다. 이러한 적가 시간은 노즐의 분사속도를 조절함으로써 달성될 수 있다. 분사노즐은 유체의 흐름에 따라 일류체 또는 이류체 노즐을 사용할 수 있으며, 일류체 노즐을 사용하는 것이 편리성 면에서나 균일한 침전물을 획득하는데 있어서 더욱 유리할 수 있다. 일류체 노즐로는 풀콘(full con), 할로우 콘(hollow con) 또는 플랫(flat) 등이 사용될 수 있다. 이와 같이 염화바륨 수용액과 사염화티탄 수용액을 옥살산 수용액에 적가하여 제1 BTO 슬러리를 생성하는 과정은 하기 반응식 1과 같이 표시될 수 있다.Next, a mixed aqueous solution of the aqueous solution of barium chloride and aqueous solution of titanium tetrachloride or an aqueous solution of each of them is dropped into an aqueous solution of oxalic acid (H 2 C 2 O 4 ) using a high-speed spray nozzle to obtain a first barium titanyl oxalate [BTO: BaTiO (C 2 O 4 ) 2 .4H 2 O] slurry (first BTO slurry production step). At this time, the oxalic acid aqueous solution may be used in a larger amount than the aqueous solution of barium chloride or aqueous solution of titanium tetrachloride. The concentration range of the oxalic acid aqueous solution may be 0.2 to 5.0 mol / l. If the concentration of oxalic acid aqueous solution is less than 0.2 mol / l, the productivity of barium titanate is low relative to the volume of oxalic acid aqueous solution. If the concentration exceeds 5.0 mol / l, the solubility of oxalic acid in water may be out of the range. Also in this case, the temperature of the oxalic acid aqueous solution may be maintained at 20 to 100 ° C, for example, 50 to 90 ° C. The time for which the aqueous solution of barium chloride and the aqueous solution of titanium tetrachloride are injected into the oxalic acid aqueous solution separately in the form of a mixed solution or separately is 1 to 3 hours. This drop time can be achieved by adjusting the injection speed of the nozzle. Injection nozzles can use a first-flow or second-flow nozzle depending on the flow of the fluid, and the use of a first-flow nozzle may be more advantageous in terms of convenience and obtaining uniform sediment. The first nozzle may be a full con, a hollow con or a flat nozzle. The process of adding the aqueous barium chloride solution and the aqueous titanium tetrachloride solution to the aqueous oxalic acid solution to produce the first BTO slurry can be represented by the following reaction formula 1.

[반응식 1][Reaction Scheme 1]

BaCl2·2H2O + TiOCl2· + 2H2C2O4 2H2O → BaTiO(C2O4)2·4H2O + 4HCl BaCl 2 .2H 2 O + TiOCl 2. + 2H 2 C 2 O 4 2H 2 O? BaTiO (C 2 O 4 ) 2 .4H 2 O + 4HCl

다음에, 상기 생성된 BTO를 숙성하고, 여과한 다음, 물로 세척할 수 있다. 숙성시간은 0.5~2시간 행하는 것이 생산성 측면에서 유리할 수 있다. 여기서, 여과란, 구체적으로 원심분리기를 이용하여 상기 제1 BTO 슬러리로부터 고상의 BTO만을 분리해내는 공정을 말한다. 이후, 세척액의 pH가 중성이 될 때까지 과량의 물로 여과된 BTO를 세척할 수 있다.Next, the produced BTO can be aged, filtered, and then washed with water. The aging time is preferably 0.5 to 2 hours in terms of productivity. Here, filtration refers to a process of separating only solid phase BTO from the first BTO slurry using a centrifugal separator. The filtered BTO can then be washed with excess water until the pH of the wash is neutral.

다음에, 상기와 같은 과정을 거쳐 얻어진 BTO를 습식분쇄한다(습식분쇄단계). 여기서, 습식분쇄란 소정의 매질과 함께 BTO를 비즈밀(beads mill), 볼밀(ball mill) 및 어트리션 밀(attrition mill) 등과 같은 습식분쇄기에 투입하여 제2 BTO 슬러리를 형성한 후 상기 제2 BTO 슬러리 중의 BTO를 습식분쇄하는 것을 의미한다. 여기서, 매질이란 알코올과 같은 유기용매이나 탈이온수(deionized water)와 같은 물을 의미하는 것으로, 유기용매를 사용하게 되면 분쇄효율이나 입도관리 측면에서는 유리하지만 비용이 증가하는 단점이 있고, 물을 사용하게 되면 공정이 단순해져 비용을 절감할 수 있는 잇점이 있다. 상기 매질로서 물을 사용하는 경우, 이의 사용량은 BTO 100중량부에 대하여 100~1,000 중량부일 수 있다. 상기 물의 사용량이 100 중량부 미만인 경우에는 점도 증가로 인해 분쇄가 불가능하고, 상기 사용량이 1,000 중량부를 초과할 경우에는 물의 부피 대비 BTO의 생산성이 낮다. 분쇄시간은 분쇄설비에 따라 분쇄력의 차이가 발생하여 적절히 제어될 필요가 있으며, 비즈밀을 사용하는 경우 10~300분일 수 있다. 이와 같이 분쇄시간을 조절함으로써 최종 제품인 티탄산바륨 분말의 입도를 적절하게 조절할 수 있다. Next, BTO obtained through the above process is wet pulverized (wet pulverization step). Herein, the wet grinding is performed by introducing BTO together with a predetermined medium into a wet pulverizer such as a beads mill, a ball mill and an attrition mill to form a second BTO slurry, 2 BTO " means wet pulverization of BTO in slurry. Here, the medium means water such as an organic solvent such as alcohol and deionized water. If an organic solvent is used, it is advantageous from the viewpoint of grinding efficiency and particle size control, but the cost is increased. This has the advantage of simplifying the process and reducing costs. When water is used as the medium, its amount may be 100-1,000 parts by weight based on 100 parts by weight of BTO. If the amount of the water used is less than 100 parts by weight, the powder can not be pulverized due to an increase in viscosity. If the amount is more than 1,000 parts by weight, the productivity of BTO is low compared with the volume of water. The milling time needs to be appropriately controlled by the difference in milling power depending on the milling equipment, and it may be 10 to 300 minutes when using the bead mill. By controlling the milling time in this way, the particle size of the final product, barium titanate powder, can be appropriately controlled.

이러한 제2 BTO 슬러리에는 아미노산계 화합물 및 카르복실레이트기 함유 화합물이 추가된다. 즉, 상기 습식분쇄기에 BTO 및 매질과 함께 아미노산계 화합물 및 카르복실레이트기(-COO-) 함유 화합물이 투입되고 혼합된 후 분쇄 조작이 이루어진다.Amino acid-based compounds and carboxylate group-containing compounds are added to such second BTO slurry. That is, an amino acid compound and a carboxylate group (-COO - ) -containing compound are introduced and mixed together with the BTO and the medium in the wet pulverizer, followed by pulverization.

상기 아미노산계 화합물은 아미노기(-NH2)와 카르복실기(-COOH)를 모두 함유하는 화합물을 의미한다. 상기 아미노산계 화합물에 함유된 아미노기와 카르복실기는 BTO를 열처리하여 티탄산바륨을 생성할 때 BTO에 함유된 CO 및 CO2의 해리를 촉진하여 티탄산바륨의 핵생성 속도를 증가시킴으로써, 티탄산바륨의 입자 크기를 줄 이고 입도분포를 균일하게 하는 역할을 수행한다. 이러한 아미노산계 화합물은 글리신, 알라닌, 발린, 류신, 이소류신, 트레오닌, 세린, 시스테인, 메티오닌, 아스파르트산, 아스파라긴, 글루탐산, 글루타민, 리신, 아르기닌, 히스티딘, 페닐알라닌, 티로신, 트립토판, 프롤린 및 이들 중 2 이상의 혼합물을 포함할 수 있다. 상기 아미노산계 화합물의 첨가량은 상기 BTO 100중량부에 대하여 1 내지 15중량부일 수 있다. 상기 아미노산계 화합물의 첨가량이 상기 BTO 100중량부에 대하여 1중량부 미만이면 첨가 효과가 미미하고, 15중량부를 초과하면 추가 효과를 기대하기 어려울 뿐만 아니라 후술하는 BT 생성단계의 열처리시 완전히 제거되지 않는다.The amino acid-based compound means a compound containing both an amino group (-NH 2 ) and a carboxyl group (-COOH). The amino group and the carboxyl group contained in the amino acid compound increase the nucleation rate of barium titanate by promoting dissociation of CO and CO 2 contained in BTO when barium titanate is produced by heat treatment of BTO, And serves to uniformize the particle size distribution. These amino acid compounds may be selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, threonine, serine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan, And mixtures thereof. The amount of the amino acid compound added may be 1 to 15 parts by weight based on 100 parts by weight of the BTO. If the amount of the amino acid compound added is less than 1 part by weight based on 100 parts by weight of the BTO, the addition effect is insignificant. If the amount is more than 15 parts by weight, an additional effect is not expected to be expected, .

상기 카르복실레이트기 함유 화합물은 BTO, 매질 및 아미노산계 화합물이 서로 균일하게 혼합하도록 돕는 역할을 수행한다. 통상적인 BTO를 매질과 혼합하여 형성한 BTO 슬러리는 점도가 매우 높기 때문에(BTO 100중량부와 물 300중량부를 혼합하여 형성한 BTO 슬러리의 점도를 Brookfield DV Ⅲ를 사용하여 LV2 spindle, rpm 1 조건에서 측정할 경우, 상기 점도는 20,000mPa.s 이상임), 상기 BTO 슬러리에 첨가된 아미노산계 화합물은 BTO와 균일하게 혼합되기 어렵다. 따라서, BTO 슬러리에 카르복실레이트기 함유 화합물을 첨가하지 않고, 아미노산계 화합물만을 첨가하여 혼합할 경우에는 불균일한 혼합을 초래하게 되어 최종 생성된 티탄산바륨의 입자 크기가 커지고 균일도가 저하된다. 이러한 이유로, 습식분쇄단계에서 카르복실레이트기 함유 화합물을 첨가하여 제2 BTO 슬러리의 점도를 낮추는 것이다. 이러한 카르복실레이트기 함유 화합물은 고급지방산 알칼리염(비누), N-아크릴아미노산염, 알킬에테르 카본산염, 아실화펩티드 및 이들 중 2 이상의 혼합물을 포함할 수 있다. 상기 카르복실레이트기 함유 화합물의 첨가량은 상기 BTO 100중량부에 대하여 50 내지 500중량부일 수 있다. 상기 카르복실레이트기 함유 화합물의 첨가량이 상기 BTO 100중량부에 대하여 50중량부 미만이면 첨가 효과가 미미하고, 500중량부를 초과하면 추가 효과를 기대하기 어려울 뿐만 아니라 후술하는 BT 생성단계의 열처리시 완전히 제거되지 않는다.The carboxylate group-containing compound plays a role in helping BTO, medium and amino acid-based compounds to mix uniformly with each other. Since the viscosity of BTO slurry formed by mixing conventional BTO with the medium is very high (viscosity of BTO slurry formed by mixing 100 parts by weight of BTO and 300 parts by weight of water is measured using Brookfield DV Ⅲ in LV2 spindle at rpm 1 The viscosity is 20,000 mPa · s or more), and the amino acid compound added to the BTO slurry is not uniformly mixed with BTO. Therefore, when only the amino acid compound is added and mixed in the BTO slurry without adding the carboxylate group-containing compound, nonuniform mixing is caused, and the particle size of the finally produced barium titanate is increased and the uniformity is lowered. For this reason, the carboxylate group-containing compound is added in the wet pulverization step to lower the viscosity of the second BTO slurry. Such carboxylate group-containing compounds may include higher fatty acid alkali salts (soaps), N-acrylamino acid salts, alkyl ether carboxylic acid salts, acylated peptides, and mixtures of two or more thereof. The carboxylate group-containing compound may be added in an amount of 50 to 500 parts by weight based on 100 parts by weight of the BTO. If the addition amount of the carboxylate group-containing compound is less than 50 parts by weight based on 100 parts by weight of the BTO, the addition effect is insignificant. If the addition amount exceeds 500 parts by weight, further effect is not expected to be expected. It is not removed.

다음에, 습식분쇄후 형성된 제3 BTO 슬러리(= 습식분쇄된 BTO + 아미노산계 화합물 + 카르복실레이트기 함유 화합물 + 매질)를 250℃ 이하의 온도에서 건조하여 상기 혼합물에 포함된 매질을 제거한다(건조단계). 상기 건조온도가 250℃를 초과하게 되면 상기 아미노산계 화합물에 함유된 아미노기 및/또는 카르복실기가 분해되어 상기 아미노산계 화합물이 발휘하는 본래의 효과를 얻을 수 없다. 이 경우, 사용된 매질을 증발시켜 제거하기 위해, 상기 건조온도가 상기 매질의 끓는점 이상이 되어야 함은 당연하다. 또한, 상기 건조단계는 건조에 의해 BTO와 아미노산계 화합물의 분리가 일어나지 않는 건조방식인 분무건조(spray drying) 등에 의해 수행된다. 만일, 통상적인 건조방식인 VAT 건조나, 압축여과(filter pressing)후 VAT 건조에 의할 경우에는, BTO와 아미노산계 화합물의 분리가 일어나 입도분포가 균일한 티탄산바륨을 얻을 수 없다. VAT 건조란 큰통에서 건조하는 것을 지칭한다. 결과로서, 건조된 BTO 함유 분말(= BTO + 아미노산계 화합물 + 카르복실레이트기 함유 화합물)을 얻는다. 상기 BTO 함유 분말은 BTO와, 아미노산계 화합물 및 카르복실레이트기 함유 화합물이 서로 혼합되어 있는 형태이다. Next, the third BTO slurry (= wet pulverized BTO + amino acid compound + carboxylate group-containing compound + medium) formed after wet pulverization is dried at a temperature of 250 DEG C or less to remove the medium contained in the mixture Drying step). When the drying temperature exceeds 250 ° C, the amino group and / or the carboxyl group contained in the amino acid compound decompose and the original effect of the amino acid compound exerted can not be obtained. In this case, it is natural that the drying temperature should be equal to or higher than the boiling point of the medium in order to evaporate and remove the used medium. In addition, the drying step is performed by spray drying or the like, which is a drying method in which BTO and amino acid-based compounds are not separated by drying. If VAT drying, which is a conventional drying method, or VAT drying after filter pressing, separation of BTO and an amino acid compound occurs, barium titanate having a uniform particle size distribution can not be obtained. VAT Drying refers to drying out of big tits. As a result, a dried BTO-containing powder (= BTO + amino acid compound + carboxylate group-containing compound) is obtained. The BTO-containing powder is a mixture of BTO and an amino acid compound and a carboxylate group-containing compound.

이어서, 상기 건조된 BTO 함유 분말을 열처리하여 티탄산바륨를 생성한다 (BT 생성단계). 이 단계에서는 전술한 바와 같이 상기 BTO 함유 분말에 함유된 아미노산계 화합물이 열처리 과정에서 BTO에 함유된 CO 및 CO2의 해리를 촉진하여 티탄산바륨의 핵생성 속도를 증가시킴으로써, 입자 크기가 작고 입도분포가 균일한 티탄산바륨이 제조될 수 있다.Then, the dried BTO-containing powder is heat-treated to produce barium titanate (BT production step). At this stage, as described above, the amino acid-based compound contained in the BTO-containing powder accelerates the dissociation of CO and CO 2 contained in the BTO in the heat treatment process to increase the nucleation rate of barium titanate, Barium titanate can be prepared.

상기 열처리 온도는 800~1,200℃일 수 있다. 상기 열처리 온도가 800℃ 미만인 경우에는 티탄산바륨이 거의 생성되지 않아 바람직하지 않으며, 1,200℃를 초과하는 경우에는 생성되는 티탄산바륨의 입자 크기가 지나치게 커져서 바람직하지 않다. 상기 건조온도에서부터 상기 열처리 온도로의 승온속도는 0.5~10℃/min, 예를 들어 1~5℃/min일 수 있다. 상기 승온속도가 0.5℃/min 미만인 경우에는 티탄산바륨의 생산성이 저하되어 바람직하지 않고, 10℃/min를 초과할 경우에는 온도분포가 균일하지 않아 티탄산바륨의 입도가 불균일해져서 바람직하지 않다. 이와 같이 열처리를 행함으로써, BTO 결정의 내부에 결정수로 존재하는 수분과 과량의 탄산가스를 제거하여 하기 반응식 2 내지 4와 같은 과정을 거쳐 수십~수백nm 크기의 티탄산바륨 분말을 얻는다.The heat treatment temperature may be 800 to 1,200 ° C. If the heat treatment temperature is lower than 800 ° C, barium titanate is hardly produced, which is not preferable. If the heat treatment temperature is higher than 1,200 ° C, barium titanate is excessively large in particle size. The temperature raising rate from the drying temperature to the heat treatment temperature may be 0.5 to 10 占 폚 / min, for example, 1 to 5 占 폚 / min. When the rate of temperature rise is less than 0.5 占 폚 / min, the productivity of barium titanate is lowered. When the heating rate is more than 10 占 폚 / min, the temperature distribution is not uniform and the particle size of barium titanate becomes uneven. By performing the heat treatment as described above, water and excess carbon dioxide gas present in the crystal water as the crystal water are removed, and barium titanate powder having a size of several tens to several hundreds of nanometers is obtained through the process of the following Reaction Schemes 2 to 4.

[반응식 2][Reaction Scheme 2]

BaTiO(C2O4)2·4H2O → BaTiO(C2O4)2 + 4H2OBaTiO (C 2 O 4 ) 2 .4H 2 O? BaTiO (C 2 O 4 ) 2 + 4H 2 O

[반응식 3][Reaction Scheme 3]

BaTiO(C2O4)2 + 1/2 O2 → BaCO3 + TiO2 + 2CO2 BaTiO (C 2 O 4 ) 2 + 1/2 O 2 - > BaCO 3 + TiO 2 + 2CO 2

[반응식 4][Reaction Scheme 4]

BaCO3 + TiO2 → BaTiO3 BaCO 3 + TiO 2 - > BaTiO 3

상기 건조된 BTO 함유 분말의 열처리를 위해 가열로로서 Sagger 또는 Tray를 사용할 수 있다. 여기서, Sagger란 내화토(耐火土) 용기를 의미한다. 상기 Sagger는, 예를 들어 정사각형 형태의 밑면을 갖는 육면체 형상의 용기일 수 있다. A sagger or a tray may be used as a heating furnace for heat-treating the dried BTO-containing powder. Here, Sagger refers to refractory earth containers. The sagger may be, for example, a hexagonal container having a square bottom surface.

이후, 상기 열처리 과정(즉, BT 생성단계)을 통해 생성된 티탄산바륨를 분쇄할 수 있으나, 이러한 분쇄단계는 생략될 수도 있다. 상기 분쇄는, 소정의 매질과 함께 비즈밀(beads mill), 어트리션밀(Atrition mill), 및 볼밀(ball mill)과 같은 분쇄기를 사용하는 습식분쇄와, 젯밀(jet mill) 및 디스크밀(Disk mill)과 같이 매질을 사용하지 않은 상태에서 원료간의 충돌이나 분쇄기와의 마찰력을 이용하는 건식분쇄를 포함할 수 있다. 상기 분쇄단계는 티탄산바륨 분말의 입자간 응집을 해소하기 위한 것으로, 습식분쇄를 행한 후에는 건조과정이 추가로 필요하지만 건조를 위해 특별히 한정된 설비를 사용해야 하는 것은 아니다. 상기 분쇄단계에서 분쇄효율이 지나치게 높은 설비를 사용할 경우, 입자의 파괴가 유발되어 미분이 다량으로 발생하게 되고, 이로 인해 오히려 입도분포와 결정성이 저하될 가능성이 있으므로 가능한한 분쇄 강도를 낮춰서 입자 자체의 파괴없이 입자간의 결합(necking)만을 끊어주는 것이 바람직하다. Thereafter, the barium titanate produced through the heat treatment process (i.e., the BT production process) may be pulverized, but such a pulverization process may be omitted. The pulverization may be carried out by wet pulverization using a pulverizer such as a beads mill, an atrition mill, and a ball mill together with a predetermined medium, a jet mill and a disk mill Disk mill or the like may be used for the pulverization between the raw materials without using the medium or the dry grinding using the frictional force with the grinder. The pulverization step is intended to solve the intergranular agglomeration of the barium titanate powder. After the wet pulverization, a drying process is additionally required, but it is not necessary to use facilities specially limited for drying. In the case of using an apparatus having an excessively high grinding efficiency in the grinding step, the grinding strength is lowered as much as possible to reduce the grain size distribution and crystallinity, It is preferable to cut only the necking between the particles without destroying the particles.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하지만, 본 발명이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but the present invention is not limited thereto.

실시예Example

실시예 1Example 1

(BTO 결정 생성 및 숙성)(BTO crystal formation and aging)

1mol/L 농도의 염화바륨 수용액 1.2L와 1mol/L 농도의 사염화티탄 수용액 1.0L를 4M3 글래스-라인(Glass-lined) 반응조에서 잘 섞어서 혼합 수용액을 만들었다. 이후, 상기 혼합 수용액을 2mol/L 농도의 옥살산 수용액 2.0L가 채워져 있는 반응기에 풀콘(full con) 타입의 노즐을 사용하여 반응기에 20mL/min의 속도로 분사하여 혼합하였다. 노즐 분사시 상기 혼합 수용액의 공급을 위해 2개의 비맥동 펌프(펀도프사의 L/S Digital standard pump)를 사용하였다. 상기 혼합 수용액 및 옥살산 수용액을 혼합할 때, 합성온도는 65℃로 하였으며, 혼합이 완료된 이후 상기 온도로 30분간 유지하여 숙성시켰다. 결과로서, 제1 BTO 슬러리를 얻었다. The titanium tetrachloride aqueous solution of barium chloride aqueous solution 1.0L 1.2L with 1mol / L concentration of 1mol / L concentration 4M 3 Glass-mix well in line (Glass-lined) reaction vessel made of a mixed aqueous solution. Then, the mixed aqueous solution was injected into a reactor filled with 2.0 L of an oxalic acid aqueous solution having a concentration of 2 mol / L into the reactor at a rate of 20 mL / min using a full cone type nozzle and mixed. Two non-pulsating pumps (L / S Digital standard pump of Fondo Corp.) were used to supply the mixed aqueous solution when injecting the nozzles. When the mixed aqueous solution and the oxalic acid aqueous solution were mixed, the synthesis temperature was set to 65 ° C, and after the mixing was completed, the mixture was kept at the above temperature for 30 minutes and aged. As a result, a first BTO slurry was obtained.

(생성된 제1 BTO 슬러리의 여과 및 세척)(Filtration and washing of the resulting first BTO slurry)

상기에서 제조된 제1 BTO 슬러리를 원심분리기로 여과하고 과량의 물로 세척액의 pH가 4 이상이 되도록 세척하여 BTO 결정 덩어리를 얻었다.The first BTO slurry prepared above was filtered with a centrifuge and washed with excessive water to a pH of the washing solution of 4 or more to obtain a BTO crystal mass.

(생성된 BTO 결정 덩어리의 습식분쇄 및 건조)(Wet grinding and drying of the resulting BTO crystal mass)

상기 BTO 1kg, 탈이온수 3kg, 글리신 0.01kg 및 카르복실레이트기 함유 화합물(KAO社, POIZ532A) 0.05kg을 혼합조에 투입하고 교반하여 제2 BTO 슬러리를 생성하였다. 이후, 내부 용적 1L의 수평식 비즈밀로 최대 입경이 3㎛ 이하가 되도록 상기 제2 BTO 슬러리를 습식분쇄하였다. 분쇄후 형성된 제3 BTO 슬러리의 점도(Brookfield DV Ⅲ를 사용하여 LV2 spindle, rpm 1 조건에서 측정)는 12,000mPa ·s이었다. 이렇게 얻어진 제3 BTO 슬러리를 분무건조하여 BTO 함유 분말을 얻었다. 1 kg of BTO, 3 kg of deionized water, 0.01 kg of glycine and 0.05 kg of a carboxylate group-containing compound (KAO, POIZ532A) were added to a mixing vessel and stirred to produce a second BTO slurry. Thereafter, the second BTO slurry was wet pulverized so as to have a maximum particle diameter of 3 mu m or less with a 1 L horizontal volume type bead mill. The viscosity of the third BTO slurry formed after milling (LV2 spindle using Brookfield DV III, measured at rpm 1) was 12,000 mPa · s. The thus-obtained third BTO slurry was spray-dried to obtain a BTO-containing powder.

(열처리)(Heat treatment)

건조된 BTO 함유 분말을 1,000cm3 Sagger에 충전하여 900℃의 온도에서 열처리를 실시하였다. 결과로서, 티탄산바륨을 얻었다. 상기 열처리시 채택한 온도와 함께, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 입도분포(D10/D50, D50/D90)를 측정하여 하기 표 1에 나타내었다.The dried BTO-containing powder was charged in a 1,000 cm 3 sagger and subjected to heat treatment at a temperature of 900 ° C. As a result, barium titanate was obtained. The crystallization degree (c / a), the average particle size and the particle size distribution (D 10 / D 50 , D 50 / D 90 ) of the barium titanate crystals were measured with the temperature employed in the heat treatment.

상기 결정화도(c/a)는 XRD(Rigaku사의 D/Max 2000 series)를 이용하여 40kV, 200mA에서 2sec/step의 속도와 0.02의 step size의 조건으로, 2Θ = 44~46.5°를 측정하여 결정 격자의 a축과 c축의 d-spacing 값을 구한 후 이들의 비로써 티탄산바륨의 결정성을 평가한 지표이다. 또한, 상기 평균입경, 및 입도분포의 지표인 D10/D50와 D50/D90는 Jeol사의 JSM-7400F를 이용하여 주사전자현미경(SEM) 사진을 50,000배로 촬영한 후 이미지 분석 프로그램(이미지프로 플러스 ver 4.5)을 이용하여 티탄산바륨 입자의 장축과 단축의 평균으로 티탄산바륨 입자의 크기를 계산하였으며, 측정한 티탄산바륨 입자의 개수는 800개 이상이었다. 여기서, D10/D50 및 D50/D90이 클수록 입도분포가 좋다고 할 수 있다. 여기서, D10, D50, D90은 측정한 입자를 입경이 작은 것부터 큰 것 순으로 나열할 때 입자의 전체 개수 중 각각 10%, 50%, 90%의 순위에 해당하는 입자의 입경을 의미한다. 아울러, 상기 SEM 사진들 중 실시예 1 및 비교예 1에서 각각 제조한 티탄산바륨의 사진들을 도 1a 및 도 1b에 각각 나타내었다. The crystallinity (c / a) was determined by measuring XRD (D / Max 2000 series by Rigaku) at 40 kV, 200 mA at a rate of 2 sec / step and 0.02 step size, And the d-spacing values of the a-axis and the c-axis of the barium titanate were measured. D 10 / D 50 and D 50 / D 90, which are the indexes of the average particle size and the particle size distribution, were measured by scanning electron microscope (SEM) photographs using a JSM-7400F manufactured by Jeol Co., Pro Plus ver 4.5) was used to calculate the size of the barium titanate particles on the average of the major axis and the minor axis of the barium titanate particles. The number of barium titanate particles measured was 800 or more. Here, the larger the D 10 / D 50 and the D 50 / D 90 , the better the particle size distribution. Here, D 10, D 50, and D 90 represent the particle diameters of particles corresponding to the order of 10%, 50%, and 90%, respectively, of the total number of particles when the measured particles are arranged in order from smallest to largest. do. In addition, photographs of barium titanate prepared in Example 1 and Comparative Example 1 of the SEM photographs are shown in FIGS. 1A and 1B, respectively.

실시예Example 2~5 2 to 5

BTO의 습식분쇄단계에서 글리신 및 카르복실레이트기 함유 화합물의 투입량 및/또는 건조방법을 각각의 실시예에 따라 하기 표 1에 나타낸 것과 같이 변화시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 티탄산바륨를 제조하고, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 입도분포(D10/D50, D50/D90)를 측정하여 하기 표 1에 나타내었다. 아울러, 습식분쇄후 형성된 제3 BTO 슬러리의 점도를 측정하여 하기 표 1에 나타내었다. The same procedure as in Example 1 was carried out except that the amount of the glycine and carboxylate group-containing compound and / or the drying method in the wet pulverization step of BTO were changed as shown in the following Table 1 according to the respective examples (C / a), average particle diameter and particle size distribution (D 10 / D 50 , D 50 / D 90 ) of barium titanate crystals were measured. The results are shown in Table 1 below. In addition, the viscosity of the third BTO slurry formed after wet pulverization was measured and is shown in Table 1 below.

비교예Comparative Example 1~4 1-4

BTO의 습식분쇄단계에서 글리신 및 카르복실레이트기 함유 화합물 중 적어도 하나를 투입하지 않은 것을 제외하고는(하기 표 1 참조), 상기 실시예 1과 동일한 방법으로 티탄산바륨를 제조하고, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 입도분포(D10/D50, D50/D90)를 측정하여 하기 표 1에 나타내었다. 아울러, 습식분쇄후 형성된 제3 BTO 슬러리의 점도를 측정하여 하기 표 1에 나타내었다. 비교예 3 및 4의 VAT 건조는 전기오븐을 사용하여 120℃에서 24시간 동안 수행하였고, 비교예 4의 압축여과를 위해 감압여과장치(삼성정밀화학㈜ 자체 제작)를 사용하였다. Barium titanate was prepared in the same manner as in Example 1 except that at least one of glycine and carboxylate group-containing compounds was not added in the wet pulverization step of BTO (see Table 1 below), and barium titanate crystals (C / a), average particle size and particle size distribution (D 10 / D 50 , D 50 / D 90 ) In addition, the viscosity of the third BTO slurry formed after wet pulverization was measured and is shown in Table 1 below. The VAT drying of Comparative Examples 3 and 4 was carried out at 120 DEG C for 24 hours using an electric oven, and a vacuum filtration device (manufactured by Samsung Fine Chemicals Co., Ltd.) was used for compression filtration of Comparative Example 4. [

Figure 112009026127933-pat00001
Figure 112009026127933-pat00001

상기 표 1을 참조하면, 실시예 1~5의 티탄산바륨은 비교예 1~4의 티탄산바륨에 비하여, 입도분포가 균일하며 대체적으로 결정화도가 높고 평균입경이 작은 것으로 나타났다. 이러한 결과는 도 1a 및 도 1b를 관찰할 경우 더욱 명백해진다.Referring to Table 1, barium titanate in Examples 1 to 5 was uniform in particle size distribution, and had a higher degree of crystallinity and a smaller average particle size than barium titanate in Comparative Examples 1 to 4. These results become more apparent when the FIGS. 1A and 1B are observed.

실시예 6~7Examples 6 to 7

열처리 온도를 변경한 것을 제외하고는(하기 표 2 참조), 상기 실시예 1과 동일한 방법으로 티탄산바륨를 제조하고, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 열처리 온도에 따른 평균입경의 변화율을 측정 또는 계산하여 하기 표 2에 나타내었다. 아울러, 습식분쇄후 형성된 제3 BTO 슬러리의 점도를 측정하여 하기 표 2에 나타내었다. 또한, 비교를 위해 실시예 1의 데이터를 표 2에 추가하였다. Barium titanate was prepared in the same manner as in Example 1 except that the heat treatment temperature was changed (see Table 2 below), and the barium titanate crystals were measured for crystallinity (c / a), average particle size The change rate of the particle diameter is measured or calculated and is shown in Table 2 below. In addition, the viscosity of the third BTO slurry formed after wet pulverization was measured and is shown in Table 2 below. The data of Example 1 was also added to Table 2 for comparison.

실시예 8~9Examples 8 to 9

열처리 온도를 변경한 것을 제외하고는(하기 표 2 참조), 상기 실시예 3과 동일한 방법으로 티탄산바륨를 제조하고, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 열처리 온도에 따른 평균입경의 변화율을 측정 또는 계산하여 하기 표 2에 나타내었다. 아울러, 습식분쇄후 형성된 제3 BTO 슬러리의 점도를 측정하여 하기 표 2에 나타내었다. 또한, 비교를 위해 실시예 3의 데이터를 표 2에 추가하였다. Barium titanate was prepared in the same manner as in Example 3 except that the heat treatment temperature was changed (see Table 2 below), and the barium titanate crystals were measured for crystallinity (c / a), average particle diameter The change rate of the particle diameter is measured or calculated and is shown in Table 2 below. In addition, the viscosity of the third BTO slurry formed after wet pulverization was measured and is shown in Table 2 below. The data of Example 3 was also added to Table 2 for comparison.

비교예 5~6Comparative Examples 5 to 6

열처리 온도를 변경한 것을 제외하고는(하기 표 2 참조), 상기 비교예 2와 동일한 방법으로 티탄산바륨를 제조하고, 제조된 티탄산바륨 결정의 결정화도(c/a), 평균입경 및 열처리 온도에 따른 평균입경의 변화율을 측정 또는 계산하여 하기 표 2에 나타내었다. 아울러, 습식분쇄후 형성된 제3 BTO 슬러리의 점도를 측정하여 하기 표 2에 나타내었다. 또한, 비교를 위해 비교예 2의 데이터를 표 2에 추가하였다. Barium titanate was prepared in the same manner as in Comparative Example 2 except that the heat treatment temperature was changed (see Table 2 below), and the barium titanate crystal thus prepared was evaluated for crystallinity (c / a) The change rate of the particle diameter is measured or calculated and is shown in Table 2 below. In addition, the viscosity of the third BTO slurry formed after wet pulverization was measured and is shown in Table 2 below. The data of Comparative Example 2 was also added to Table 2 for comparison.

Figure 112009026127933-pat00002
Figure 112009026127933-pat00002

실시예 1, 6, 7 및 실시예 3, 8, 9는 비교예 2, 5, 6에 비해 열처리 온도에 따른 평균입경의 변화율이 작은 것을 알 수 있다. 또한, 실시예 1, 6, 7 및 실시예 3, 8, 9를 서로 비교하여 보면 글리신의 첨가량이 증가하면 열처리 온도에 따른 평균입경의 변화율이 작아지는 것을 알 수 있다. 따라서, 본 발명의 일 구현예에 따른 티탄산바륨 분말의 제조방법에 의하면 대량생산의 경우에도 제조되는 티탄산바륨의 평균입경이 열처리로의 온도 편차에 민감하게 반응하지 않아, 입도가 균일한 티탄산바륨의 제조가 가능해진다. It can be seen that Examples 1, 6 and 7 and Examples 3, 8 and 9 have a smaller rate of change of the average particle diameter depending on the heat treatment temperature than Comparative Examples 2, 5 and 6. Further, when Examples 1, 6, 7 and Examples 3, 8, and 9 are compared with each other, it can be seen that as the amount of glycine added increases, the rate of change of the average particle diameter decreases with the heat treatment temperature. Therefore, according to the method for producing barium titanate powder according to an embodiment of the present invention, the average particle diameter of barium titanate produced even in the case of mass production does not react sensitively to the temperature deviation of the heat treatment furnace, And manufacturing becomes possible.

도 2는 열처리 온도에 따른 평균입경의 변화율을 글리신의 첨가량 별로 도시한 그래프이다. 도 2에서 글리신 1%의 각 점은 각각 실시예 6, 1, 7을 나타내고, 글리신 10%의 각 점은 각각 실시예 8, 3, 9를 나타내며, 글리신 0%의 각 점은 각각 비교예 5, 2, 6을 나타낸다.  FIG. 2 is a graph showing the rate of change of the average particle diameter according to the heat treatment temperature by the addition amount of glycine. In FIG. 2, 1% of glycine represents Examples 6, 1 and 7, 10% of glycine represents Examples 8, 3 and 9, and 0% of glycine corresponds to Comparative Example 5 , 2, and 6, respectively.

본 발명은 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다. While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

도 1a는 본 발명의 일 구현예에 따른 티탄산바륨의 제조방법에 의해 제조된 티탄산바륨 입자의 SEM 사진이고(실시예 1), 도 1b는 종래기술에 따른 티탄산바륨의 제조방법에 의해 제조된 티탄산바륨 입자의 SEM 사진이다(비교예 1).BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is an SEM photograph of barium titanate particles prepared by the method of producing barium titanate according to an embodiment of the present invention (Example 1), and FIG. 1B is a SEM photograph of barium titanate particles produced by the method of manufacturing barium titanate SEM photograph of barium particles (Comparative Example 1).

도 2는 열처리 온도에 따른 평균입경의 변화율을 글리신의 첨가량 별로 도시한 그래프이다. FIG. 2 is a graph showing the rate of change of the average particle diameter according to the heat treatment temperature by the addition amount of glycine.

Claims (8)

염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련하는 단계(원료 수용액 마련단계);A step of preparing an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanium tetrachloride (TiCl 4 ) (raw material aqueous solution preparation step); 상기 수용액들을 옥살산(H2C2O4) 수용액에 적가함으로써 제1 바륨티타닐옥살레이트[BTO: BaTiO(C2O4)2·4H2O] 슬러리를 생성하는 단계(제1 BTO 슬러리 생성단계);To form a first barium titanyl oxalate [BTO: BaTiO (C 2 O 4 ) 2 .4H 2 O] slurry by adding the aqueous solutions to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) step); 상기 생성된 제1 BTO 슬러리 중의 BTO, 아미노산계 화합물 및 카르복실레이트기 함유 화합물을 혼합하여 제2 BTO 슬러리를 형성한 후 상기 제2 BTO 슬러리 중의 BTO를 습식분쇄하는 단계(습식분쇄단계);Mixing the BTO, the amino acid compound and the carboxylate group-containing compound in the first BTO slurry to form a second BTO slurry, followed by wet pulverizing the BTO in the second BTO slurry; 상기 습식분쇄후 형성된 제3 BTO 슬러리를 분무건조하여 BTO 함유 분말을 얻는 단계(건조단계); 및Spray drying the third BTO slurry formed after the wet pulverization to obtain a BTO-containing powder (drying step); And 상기 건조된 BTO 함유 분말을 열처리하여 티탄산바륨(BT: barium titanate)을 생성하는 단계(BT 생성단계)를 포함하는 티탄산바륨 분말의 제조방법.Treating the dried BTO-containing powder to produce barium titanate (BT producing step). 제1항에 있어서,The method according to claim 1, 상기 아미노산계 화합물은 글리신, 알라닌, 발린, 류신, 이소류신, 트레오닌, 세린, 시스테인, 메티오닌, 아스파르트산, 아스파라긴, 글루탐산, 글루타민, 리신, 아르기닌, 히스티딘, 페닐알라닌, 티로신, 트립토판 및 프롤린으로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 티탄산바륨 분말의 제조방법.Wherein the amino acid compound is selected from the group consisting of glycine, alanine, valine, leucine, isoleucine, threonine, serine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan and proline And at least one barium titanate powder. 제1항에 있어서,The method according to claim 1, 상기 아미노산계 화합물의 첨가량은 상기 BTO 100중량부에 대하여 1 내지 15중량부인 티탄산바륨 분말의 제조방법.Wherein the amino acid compound is added in an amount of 1 to 15 parts by weight based on 100 parts by weight of the BTO. 제1항에 있어서,The method according to claim 1, 상기 카르복실레이트기 함유 화합물은 고급지방산 알칼리염(비누), N-아크릴아미노산염, 알킬에테르 카본산염 및 아실화펩티드로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 티탄산바륨 분말의 제조방법. Wherein the carboxylate group-containing compound comprises at least one member selected from the group consisting of a higher fatty acid alkali salt (soap), an N-acrylamino acid salt, an alkyl ether carboxylic acid salt, and an acylated peptide. 제1항에 있어서,The method according to claim 1, 상기 카르복실레이트기 함유 화합물의 첨가량은 상기 BTO 100중량부에 대하여 50 내지 500중량부인 티탄산바륨 분말의 제조방법.Wherein the carboxylate group-containing compound is added in an amount of 50 to 500 parts by weight based on 100 parts by weight of the BTO. 제1항에 있어서,The method according to claim 1, 상기 BTO 생성단계와 상기 습식분쇄단계 사이에,Between the BTO generation step and the wet grinding step, 상기 생성된 BTO를 숙성하는 단계; Aging the resultant BTO; 상기 숙성된 BTO를 여과하는 단계; 및 Filtering the aged BTO; And 상기 여과된 BTO를 과량의 물로 세척하는 단계를 더 포함하는 티탄산바륨 분 말의 제조방법.≪ / RTI > further comprising washing the filtered BTO with excess water. 제1항에 있어서,The method according to claim 1, 상기 BT 생성단계에서 생성된 티탄산바륨를 분쇄하는 단계를 더 포함하는 티탄산바륨 분말의 제조방법.And b) grinding the barium titanate produced in the BT production step. 삭제delete
KR1020090037692A 2009-04-29 2009-04-29 A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same KR101548746B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090037692A KR101548746B1 (en) 2009-04-29 2009-04-29 A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
PCT/KR2010/002536 WO2010126253A2 (en) 2009-04-29 2010-04-23 Method for producing barium titanate powder by an oxalate process, and barium titanate powder produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090037692A KR101548746B1 (en) 2009-04-29 2009-04-29 A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same

Publications (2)

Publication Number Publication Date
KR20100118805A KR20100118805A (en) 2010-11-08
KR101548746B1 true KR101548746B1 (en) 2015-09-01

Family

ID=43032658

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090037692A KR101548746B1 (en) 2009-04-29 2009-04-29 A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same

Country Status (2)

Country Link
KR (1) KR101548746B1 (en)
WO (1) WO2010126253A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330622B2 (en) 2017-02-01 2022-05-10 Lg Electronics Inc. Method and apparatus for requesting system information

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770701B1 (en) 2012-12-21 2017-09-06 삼성전자주식회사 Carbon dioxide adsorbent comprising barium titanate, carbondioxide capture module comprising the same, and methods for separating carbondioxide using the same
WO2015099203A1 (en) * 2013-11-26 2015-07-02 삼성전기 주식회사 Method for preparing barium titanyl oxalate, method for preparing barium titanate, and barium titanate
KR20150060188A (en) * 2013-11-26 2015-06-03 삼성전기주식회사 Method of preparing barium titanyl oxalate, and method of preparing barium titanate comprising the same
KR20150060303A (en) * 2013-11-26 2015-06-03 삼성전기주식회사 Method of preparing barium titanyl oxalate, method of preparing barium titanate comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609911A (en) 1994-07-19 1997-03-11 Murata Manufacturing Co., Ltd. Production of ceramic material powder
US6409983B1 (en) 2000-07-11 2002-06-25 Korea Institute Of Science And Technology Process for preparing crystalline barium titanate powder
US20030133869A1 (en) * 2002-01-15 2003-07-17 Samsung Electro-Mechanics Co., Tld. Method for preparing barium titanate powder by oxalate synthesis
US20070020036A1 (en) 2003-05-20 2007-01-25 Perrin Steven J Novelty caps for writing instruments

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202036A1 (en) * 2004-04-07 2007-08-30 Nathalie Jongen Production Of Barium Titanate Compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609911A (en) 1994-07-19 1997-03-11 Murata Manufacturing Co., Ltd. Production of ceramic material powder
US6409983B1 (en) 2000-07-11 2002-06-25 Korea Institute Of Science And Technology Process for preparing crystalline barium titanate powder
US20030133869A1 (en) * 2002-01-15 2003-07-17 Samsung Electro-Mechanics Co., Tld. Method for preparing barium titanate powder by oxalate synthesis
US20070020036A1 (en) 2003-05-20 2007-01-25 Perrin Steven J Novelty caps for writing instruments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330622B2 (en) 2017-02-01 2022-05-10 Lg Electronics Inc. Method and apparatus for requesting system information

Also Published As

Publication number Publication date
KR20100118805A (en) 2010-11-08
WO2010126253A2 (en) 2010-11-04
WO2010126253A3 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4060791B2 (en) Method for producing barium titanate powder
KR101548746B1 (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
KR101158985B1 (en) Process for producing perovskite compound powder
CN112266012B (en) Barium titanate powder and preparation method thereof
KR101451987B1 (en) A method of preparing highly crystalline Barium-Titanate fine powder by Oxalate Process and highly crystalline Barium-Titanate fine powder prepared by the same
KR101426345B1 (en) A method of preparing Barium-Titanate powder by Oxalate Process and Barium-Titanate powder prepared by the same
KR100414832B1 (en) Preparation of the high quality Barium-Titanate based powder
KR101606932B1 (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
KR20100088311A (en) Method for preparing cerium oxide nano powder
JP5879798B2 (en) Method for producing alkaline earth metal carbonate, method for producing barium titanate, and method for producing strontium titanate
KR20150060190A (en) Method of preparing barium titanate and barium titanate prepared thereby
KR20100113847A (en) Method of preparing barium titanyl oxalate by continous oxalate process, barium titanyl oxalate prepared by the same and method of preparing barium titanate comprising the same
KR20150060188A (en) Method of preparing barium titanyl oxalate, and method of preparing barium titanate comprising the same
KR20110082859A (en) Method of preparing barium titanyl oxalate and method of preparing barium titanate comprising the same
TWI576314B (en) Method of manufacturing barium titanate and barium titanate manufactured thereby
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP6828711B2 (en) Method for producing barium titanate particle powder
JPH0239451B2 (en)
KR101792278B1 (en) A method of preparing barium titanate powder and barium titanate powder prepared by same
TW201520195A (en) Method of preparing barium titanyl oxalate, method of preparing barium titanate including the same, and barium titanate prepared thereby
KR20060102928A (en) Manufacturing method of barium titanate powder
JP4140695B2 (en) Titanium tetrachloride aqueous solution and method for producing titanium composite oxide powder using the same
KR20150060303A (en) Method of preparing barium titanyl oxalate, method of preparing barium titanate comprising the same
KR102048839B1 (en) Method of preparing barium titanate
JP2008150290A (en) Titanium-based compound oxide powder

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 5