JP2013027862A - Device and method for filtration of suspended water - Google Patents

Device and method for filtration of suspended water Download PDF

Info

Publication number
JP2013027862A
JP2013027862A JP2012102226A JP2012102226A JP2013027862A JP 2013027862 A JP2013027862 A JP 2013027862A JP 2012102226 A JP2012102226 A JP 2012102226A JP 2012102226 A JP2012102226 A JP 2012102226A JP 2013027862 A JP2013027862 A JP 2013027862A
Authority
JP
Japan
Prior art keywords
water
filter medium
filtration
suspended
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012102226A
Other languages
Japanese (ja)
Other versions
JP5850793B2 (en
Inventor
Kazuaki Shimamura
和彰 島村
Masahide Suzuki
正英 鈴木
Takanori Nishii
啓典 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012102226A priority Critical patent/JP5850793B2/en
Publication of JP2013027862A publication Critical patent/JP2013027862A/en
Application granted granted Critical
Publication of JP5850793B2 publication Critical patent/JP5850793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a filtration device and method including a new washing method capable of discharging a peeled suspended material with a small amount of water when washing a suspended material-attached filter and heightening a water recovery rate.SOLUTION: The filtration device for removing the suspended material from a suspended material-containing raw water comprises: a filter layer 2 filled with a filter for trapping the suspended material; a raw water introduction tube A for feeding the raw water to the upper part of the filter layer 2; a fine bubble generator 4 for introducing a fine bubble into the raw water; a water collection unit 3 which is provided below the filter layer 2 and collects a treatment water; an air-supplying tube D for supplying air to the water collection unit 3; a treatment water outflow tube F which is stood from the water collection unit to the position upward from the filter layer 2 and discharges the treatment water from the water collection unit; a washing water-introducing tube E which flows a washing water to the filter layer 2 in an upward flow; and a washing water-discharging tube H for discharging the washing water from above the filter layer 2.

Description

本発明は、下水、工場排水、用水、海水などの懸濁粒子を含有する懸濁水(以下「原水」ともいう。)の高速ろ過分離装置及び方法に関し、懸濁水中の懸濁粒子を高速度でろ過除去できる技術に関する。本発明は、特に下水処理施設に流入する下水の高速固液分離技術、又は、有機性の懸濁粒子を含有する合流式下水道の雨天時越流水(以下「CSO」と略称することもある。)又は各種産業排水の処理、用水処理、海水処理として極めて好適な革新技術である。   The present invention relates to an apparatus and a method for high-speed filtration and separation of suspended water (hereinafter also referred to as “raw water”) containing suspended particles such as sewage, industrial effluent, irrigation water, and seawater. It is related with the technology which can be removed by filtration. The present invention may be abbreviated as “CSO” (hereinafter referred to as “CSO”), in particular, a high-speed solid-liquid separation technique for sewage flowing into a sewage treatment facility, or a combined sewer containing organic suspended particles. ) Or innovative technology that is extremely suitable for various industrial wastewater treatment, water treatment, and seawater treatment.

合流式下水道における雨天時越流水(CSO)の公共用水域への汚濁負荷が大きな問題になっている。また、下水処理施設に流入する下水は、まず、最初沈殿池で沈殿分離された後、活性汚泥処理される。このとき、最初沈殿池におけるSS(固体懸濁物質)の除去率が悪いため、凝集剤を添加して凝集沈殿処理する例が北欧で普及している。しかし、この方法は、汚泥発生量が多く、凝集沈殿速度が小さく、大きな沈殿池を必要とする欠点がある。そのためCSO及び下水を極力コンパクトな設備で固液分離できる新技術が待望されている。   Contamination load of rainwater overflow (CSO) in public water areas in the combined sewer system has become a major problem. Moreover, the sewage flowing into the sewage treatment facility is first separated and separated in the settling basin, and then treated with activated sludge. At this time, since the removal rate of SS (solid suspended solids) in the initial sedimentation basin is poor, an example in which a coagulant is added to perform coagulation sedimentation is prevalent in Northern Europe. However, this method has a drawback that a large amount of sludge is generated, the coagulation sedimentation rate is small, and a large sedimentation basin is required. Therefore, a new technology capable of solid-liquid separation of CSO and sewage with as much compact equipment as possible is awaited.

また、下水の高度処理として、放流先の水質改善のために、或いは場内用水として再利用するために、二次処理水中の懸濁物質を除去する三次処理が行われている。この場合、処理水量が多いため、高速処理可能なろ過装置の提供が要望されている。   Further, as an advanced treatment of sewage, a tertiary treatment for removing suspended substances in the secondary treated water is performed in order to improve the water quality at the discharge destination or to reuse it as in-house water. In this case, since the amount of treated water is large, it is desired to provide a filtration device capable of high-speed treatment.

従来、アンスラサイト、砂、例えば粒状プラスチックなどの各種粒状固体をろ材とするろ過法が検討されている。例えば、下水処理分野では、活性汚泥処理水のような比較的粒径の大きな懸濁物質を対象に、前述のアンスラサイト、砂などを用いてろ過を行うことが多い。この場合、排水の通水速度としては100〜500m/dで行うことが多い。   Conventionally, a filtration method using various granular solids such as anthracite and sand, for example, granular plastic has been studied. For example, in the sewage treatment field, filtration is often performed using the aforementioned anthracite, sand, or the like for a suspended substance having a relatively large particle size such as activated sludge treated water. In this case, the drainage flow rate is often 100 to 500 m / d.

また、通水速度を上げるために、ろ材粒径を大きくして目詰まりを少なくする場合があるが、この場合、SSの除去率が悪化してしまうなどの矛盾点が生じた。特に、下水などが含む有機性SSは粘着力が強いので、これら下水などを対象として、SS除去率は高く一方で目詰まりは少なく、と相反する要求を満足できる技術が要望されている。   In addition, in order to increase the water flow rate, the filter medium particle size may be increased to reduce clogging, but in this case, inconsistencies such as deterioration of the SS removal rate have occurred. In particular, since organic SS contained in sewage and the like has strong adhesive strength, there is a demand for a technology that can satisfy the contradicting requirements for sewage and the like, with a high SS removal rate and less clogging.

上記のビーズ系のろ材に代わる方法として、例えば、特公昭62−55885号公報や特開平10−305204号公報では、繊維長5〜50mmの有機繊維からなる短繊維を絡み合わせた多数の繊維塊をろ材として使用するろ過装置がある。このろ材を用いたろ過装置は、懸濁物質を含む排水を処理する際に、600m/d以上の高速でろ過を行うことができる。   As an alternative to the above-mentioned bead-based filter media, for example, in Japanese Patent Publication No. 62-55885 and Japanese Patent Laid-Open No. 10-305204, a large number of fiber masses in which short fibers made of organic fibers having a fiber length of 5 to 50 mm are entangled. There is a filtration device that uses as a filter medium. The filtration apparatus using this filter medium can perform filtration at a high speed of 600 m / d or more when treating wastewater containing suspended substances.

このような繊維ろ材は、ろ過工程で付着した懸濁物質を剥がす、いわゆる「逆洗」する場合には、ろ過塔内に洗浄水と空気の両者又はいずれかを供給することで繊維ろ材から懸濁物質を剥離させている。従来、この逆洗工程では、繊維ろ材を激しい流動状態に晒して繊維ろ材から懸濁物質を剥離し、剥離した懸濁物質を排出することにより、繊維ろ材のろ過性能を回復していた。しかしながら、繊維ろ材の汚れがひどい場合は、大量の洗浄水で洗い流さなければならず、水回収率(回収できた水量/ろ過した水量)が低くなる場合があり、水回収率の向上が課題として挙げられている。   Such a fiber filter medium is suspended from the fiber filter medium by supplying washing water and / or air into the filtration tower in the case of so-called “back washing” to remove suspended substances adhering in the filtration process. The turbid material is peeled off. Conventionally, in this backwashing process, the filtration performance of the fiber filter medium has been recovered by exposing the fiber filter medium to a vigorous fluid state, peeling the suspended substance from the fiber filter medium, and discharging the peeled suspended substance. However, if the fiber filter medium is very dirty, it must be washed away with a large amount of washing water, and the water recovery rate (recovered water amount / filtered water amount) may be low, and improving the water recovery rate is an issue. Are listed.

また、従来、海水或いは汽水を脱塩して、工業用水或いは飲用水を得る場合の脱塩方法として、逆浸透(RO)膜法、電気透析法又は電気式脱塩法、蒸発法などがあった。これらの技術を採用する場合には、予め海水或いは汽水に含まれている懸濁物質を除去する前処理が必要であり、凝集法、砂ろ過法、加圧浮上法、MF/UF膜法などが単独又は併用して使用されていた。   Conventionally, desalting methods for desalting seawater or brackish water to obtain industrial water or drinking water include a reverse osmosis (RO) membrane method, an electrodialysis method or an electric desalting method, and an evaporation method. It was. When these technologies are adopted, pretreatment to remove suspended substances contained in seawater or brackish water is necessary beforehand, such as agglomeration method, sand filtration method, pressurized flotation method, MF / UF membrane method, etc. Have been used alone or in combination.

たとえば、原水中の懸濁物質をろ過する前処理膜を有する前処理装置を逆浸透(RO)膜装置の前段に設ける淡水化装置が提案されている(特許文献3)。特許文献3においては、前処理膜として、UF膜(限外濾過膜)又はMF膜(精密濾過膜)等の分離膜を用いることが記載されている。しかし、昨今、海水或いは汽水に流入する都市下水などの影響により、懸濁物質のみならず、植物/植物プランクトン、船舶によるオイル、液中に溶解している有機物が、RO膜法、電気透析法、電気式脱塩法、蒸発法の運転、メンテナンス及びコストに大きな影響を与えることが顕在化してきた。特に、RO膜法、電気透析法及び電気式脱塩法などの膜を用いる脱塩法では脱塩膜表面に溶解している有機物が蓄積し、それらが生物学的繁殖によってスライム等として成長し、膜流速の低下、逆洗頻度の増加、膜寿命の減少などを引き起こしている。また、蒸発法においても、蒸発によって淡水側に移行する揮発成分による造水水質の悪化、有機物による伝熱面での効率低下など、コストパフォーマンス低下などを引き起こしている。これら原水中に溶解している有機物、オイル、各種プランクトンは、従来の砂ろ過法では除去できず、膜法を利用しても一部がリークし、膜の洗浄頻度、寿命等に悪影響を及ぼしていた。   For example, a desalination apparatus has been proposed in which a pretreatment device having a pretreatment membrane for filtering suspended substances in raw water is provided at the front stage of a reverse osmosis (RO) membrane device (Patent Document 3). Patent Document 3 describes that a separation membrane such as a UF membrane (ultrafiltration membrane) or an MF membrane (microfiltration membrane) is used as the pretreatment membrane. However, due to the influence of urban sewage flowing into seawater or brackish water, recently, not only suspended substances, but also plant / phytoplankton, marine oil, and organic matter dissolved in liquids are RO membrane method and electrodialysis method. It has become apparent that it greatly affects the operation, maintenance and cost of the electric desalination method and evaporation method. In particular, in the desalination methods using membranes such as the RO membrane method, electrodialysis method, and electric desalination method, organic substances dissolved on the surface of the desalination membrane accumulate, and they grow as slime by biological propagation. This causes a decrease in membrane flow velocity, an increase in backwash frequency, and a decrease in membrane life. Also in the evaporation method, cost performance decreases, such as deterioration in fresh water quality due to volatile components that migrate to the fresh water side due to evaporation and reduced efficiency in terms of heat transfer due to organic matter. These organic substances, oil, and various plankton dissolved in raw water cannot be removed by the conventional sand filtration method, and some leaks even if the membrane method is used, which adversely affects the membrane cleaning frequency, life, etc. It was.

特公昭62−55885号公報Japanese Examined Patent Publication No. 62-55885 特開平10−305204号公報JP-A-10-305204 特開2011−31121号公報JP 2011-31121 A

本発明は、上記のような実情に鑑みてなされたものであり、簡単かつコンパクトな装置によって下水、各種廃水、用水、海水などの各種原水中の懸濁粒子を高速ろ過できる新技術を提供することを課題とする。特に、懸濁物質が付着したろ材の洗浄時に、剥離した懸濁物質を少ない水量で排出し、水回収率を高くすることができる新規洗浄方法を含むろ過装置及び方法を提供することにある。   The present invention has been made in view of the above circumstances, and provides a new technology capable of high-speed filtration of suspended particles in various raw waters such as sewage, various wastewaters, irrigation water, and seawater by a simple and compact device. This is the issue. In particular, it is an object of the present invention to provide a filtration apparatus and method including a novel cleaning method that can discharge a suspended solid material with a small amount of water and increase the water recovery rate at the time of cleaning a filter medium to which the suspended material is adhered.

また、懸濁物質と有機物とを含む原水を処理する場合に、有機物がろ材に付着することを防止するろ過装置及び方法を提供することにある。   Another object of the present invention is to provide a filtration apparatus and method for preventing the organic matter from adhering to the filter medium when the raw water containing the suspended substance and the organic matter is treated.

本発明によれば、懸濁物質を含む原水から懸濁物質を除去するろ過装置であって、懸濁物質を捕捉するろ材を充填してなるろ材層と、当該ろ材層の上部に原水を供給する原水導入管Aと、原水に微細気泡を導入する微細気泡発生装置と、当該ろ材層よりも下方に設けられている、処理水を集水する集水装置と、当該集水装置に空気を供給する空気供給管Dと、当該集水装置から当該ろ材層よりも上方の位置まで立ち上げられている、当該集水装置から処理水を排出する処理水流出管Fと、当該ろ材層に洗浄水を上向流で通水する洗浄水導入管Eと、当該ろ材層よりも上方から洗浄水を排出する洗浄水排出管Hと、を具備する、ろ過装置が提供される。   According to the present invention, there is provided a filtration device for removing suspended substances from raw water containing suspended substances, wherein the filter medium layer is filled with a filter medium that traps suspended substances, and the raw water is supplied to the upper part of the filter medium layer. Raw water introduction pipe A, a fine bubble generator for introducing fine bubbles into the raw water, a water collection device for collecting treated water, which is provided below the filter medium layer, and air to the water collection device The supplied air supply pipe D, the treated water outflow pipe F that discharges treated water from the water collection device, which is raised from the water collection device to a position above the filter material layer, and the filter material layer are washed. There is provided a filtration device comprising a washing water introduction pipe E for passing water in an upward flow and a washing water discharge pipe H for discharging washing water from above the filter medium layer.

さらに、前記ろ材層よりも上方に、フロス排出管Xを具備することが好ましい。
前記微細気泡発生装置は、前記ろ材層の上部に設けられた気液混合ノズルであることが好ましい。
Furthermore, it is preferable that a floss discharge pipe X is provided above the filter medium layer.
It is preferable that the fine bubble generating device is a gas-liquid mixing nozzle provided on an upper portion of the filter medium layer.

前記ろ過装置は、前記ろ材層及び前記集水装置を含むろ過部分と、当該ろ過部分の上流側に位置づけられ前記微細気泡発生装置を具備する微細気泡導入部分と、に区画されていてもよい。   The filtration device may be partitioned into a filtration portion including the filter medium layer and the water collecting device, and a fine bubble introduction portion that is positioned upstream of the filtration portion and includes the fine bubble generation device.

さらに、前記ろ材層の上流側に設けられている原水の濁度を計測する濁度計と、当該濁度計により計測される濁度に応じて前記微細気泡発生装置を制御する制御機構と、を具備する態様も含まれる。   Furthermore, a turbidimeter that measures the turbidity of raw water provided on the upstream side of the filter medium layer, a control mechanism that controls the fine bubble generator according to the turbidity measured by the turbidimeter, The aspect which comprises is also included.

さらに、前記処理水流出管Fから前記原水導入管Aに接続されている処理水戻し管と、前記処理水流出管Fに設けられ、前記濁度計により計測される濁度に応じて処理水の流路を切り替える弁と、を具備することが好ましい。   Furthermore, the treated water return pipe connected from the treated water outflow pipe F to the raw water introduction pipe A and the treated water outflow pipe F are provided in the treated water outflow pipe F, and treated water is measured according to the turbidity measured by the turbidimeter. And a valve for switching the flow path.

前記ろ材は、短繊維塊からなる繊維ろ材であることが好ましい。
前記ろ材は、好気性微生物を担持してなる生物膜ろ材でもよい。
本発明によれば、上記ろ過装置を用いて原水から懸濁物質を除去するろ過方法も提供される。ろ過方法は、
(1)懸濁物質を含む原水に微細気泡を導入する工程、
(2)微細気泡が導入された当該原水をろ材層の上部に導入して、下向流でろ材層を通過させて、ろ材層に懸濁物質を捕捉させる工程、
(3)懸濁物質が除去された処理水を集水装置に集水する工程、
(4)処理水流出管を介して処理水をろ過装置外部に排出する工程
を含む。
The filter medium is preferably a fiber filter medium composed of short fiber lumps.
The filter medium may be a biofilm filter medium carrying aerobic microorganisms.
According to this invention, the filtration method which removes a suspended solid from raw | natural water using the said filtration apparatus is also provided. The filtration method is
(1) a step of introducing fine bubbles into raw water containing suspended solids,
(2) introducing the raw water into which fine bubbles have been introduced into the upper part of the filter medium layer, allowing the filter medium layer to pass through the filter medium layer in a downward flow, and trapping suspended substances in the filter medium layer;
(3) collecting the treated water from which suspended substances have been removed into a water collecting device;
(4) including a step of discharging the treated water to the outside of the filtration device via the treated water outflow pipe.

工程(1)の微細気泡の導入は、原水の濁度に応じて制御されることが好ましい。
工程(1)において、原水の濁度に応じて原水に処理水を導入することがより好ましい。
The introduction of the fine bubbles in the step (1) is preferably controlled according to the turbidity of the raw water.
In the step (1), it is more preferable to introduce treated water into the raw water according to the turbidity of the raw water.

工程(1)において、微細気泡によって懸濁物質を浮上濃縮させ、浮上濃縮した懸濁物質をろ過装置上部から排出してもよい。
また本発明によれば、上記ろ過装置の洗浄方法も提供される。洗浄方法は、
(5)原水の導入を停止し、空気供給管Dを介して集水装置に空気を供給し、空気を含む水中にろ材を流動させて、ろ材から懸濁物質を水中に剥離させる工程、
(6)空気供給管Dからの空気の供給を停止し、微細気泡発生装置を作動させて水中に微細気泡を注入して、ろ材から剥離した懸濁物質を浮上濃縮させる工程、及び
(7)洗浄水導入管Eから洗浄水を上向流で通水し、浮上濃縮した懸濁物質を含む水を洗浄水排出管Hから排出させる工程
を含む。
In the step (1), the suspended solid may be floated and concentrated with fine bubbles, and the suspended and suspended suspension may be discharged from the upper part of the filtration device.
Moreover, according to this invention, the washing | cleaning method of the said filtration apparatus is also provided. The cleaning method is
(5) Stopping the introduction of raw water, supplying air to the water collecting device via the air supply pipe D, causing the filter medium to flow in the water containing air, and separating the suspended matter from the filter medium into the water;
(6) Stopping the supply of air from the air supply pipe D, operating the microbubble generator to inject microbubbles into the water, and levitating and concentrating the suspended matter separated from the filter medium; and (7) The cleaning water introduction pipe E includes a process of passing the cleaning water in an upward flow and discharging the water containing the suspended suspended matter from the cleaning water discharge pipe H.

工程(6)において、浮上濃縮した懸濁物質をろ過装置上部から排出させてもよい。
工程(6)において、微細気泡を注入する水に、無機凝集剤を添加しておくことが好ましい。
In the step (6), the suspended and suspended suspension may be discharged from the upper part of the filtration device.
In the step (6), it is preferable to add an inorganic flocculant to water into which fine bubbles are injected.

本発明のろ過装置及びろ過方法によれば、原水に導入する微細気泡によって原水中の懸濁物質が浮上濃縮されるため、ろ材に捕捉する懸濁物質の量を減少させることができ、ろ材の長寿命化に資する。特に、ろ材として生物膜を使用する場合には、ろ材に付着する有機物の量を減少させることができるため、スライムの発生を防止し、ろ過効率の向上に資する。   According to the filtration device and the filtration method of the present invention, since suspended substances in raw water are floated and concentrated by the fine bubbles introduced into the raw water, the amount of suspended substances trapped in the filter medium can be reduced. Contributes to longer life. In particular, when a biofilm is used as a filter medium, the amount of organic substances adhering to the filter medium can be reduced, thereby preventing slime generation and contributing to an improvement in filtration efficiency.

原水に導入する微細気泡の量を原水の濁度によって制御するため、過不足なく微細気泡を導入し、好適な懸濁物質除去を達成することができる。濁度が高い場合には、多量の微細気泡を導入して、懸濁物質を浮上濃縮させて、ろ過装置上部から排出することで、ろ材の負荷を減少させ、ろ過層の逆洗頻度を削減し、ろ材の長寿命化に資する。   Since the amount of fine bubbles to be introduced into the raw water is controlled by the turbidity of the raw water, fine bubbles can be introduced without excess and deficiency, and suitable suspended matter removal can be achieved. When the turbidity is high, a large amount of fine bubbles are introduced, the suspended matter is floated and concentrated, and discharged from the upper part of the filtration device, reducing the load on the filter medium and reducing the frequency of backwashing the filtration layer. And contributes to longer life of the filter media.

また、本発明のろ材の洗浄方法によれば、ろ材の洗浄時に水中に導入する微細気泡によって、ろ材から剥離された懸濁物質を浮上濃縮させ、逆洗効果を向上させることができ、洗浄水量を減少させることができる。浮上濃縮した懸濁物質をろ過装置上部から排出する態様では、さらに逆洗効果を向上させることができる。また、無機凝集剤を併用することで、懸濁物質の凝集が促進され、浮上濃縮による除去効率が向上する。   In addition, according to the method for cleaning a filter medium of the present invention, suspended substances separated from the filter medium can be levitated and concentrated by fine bubbles introduced into the water at the time of cleaning the filter medium, and the backwash effect can be improved. Can be reduced. In the embodiment in which the suspended and suspended suspension is discharged from the upper part of the filtration device, the backwash effect can be further improved. Further, by using an inorganic flocculant in combination, the aggregation of suspended substances is promoted, and the removal efficiency by flotation concentration is improved.

本発明の洗浄方法を実施した後に再開するろ過方法では、ろ材に付着していた懸濁物質が除去されているため、長期にわたり懸濁物質の除去率を高く維持することができる。また、従来方法による水回収率(回収できた水量/ろ過水量)は繊維ろ材を用いた場合であっても95〜97%であったが、微細気泡導入による懸濁物質の浮上濃縮により、水回収率を99%以上に向上させることができる。   In the filtration method that is restarted after the cleaning method of the present invention is performed, the suspended solids adhering to the filter medium are removed. Therefore, the suspended matter removal rate can be maintained high over a long period of time. In addition, the water recovery rate (the amount of recovered water / the amount of filtered water) according to the conventional method was 95 to 97% even when a fiber filter medium was used. The recovery rate can be improved to 99% or more.

図1は、本発明の装置の一例を示すフロー構成図である。FIG. 1 is a flow configuration diagram showing an example of the apparatus of the present invention. 図2は、本発明の装置の他の例を示すフロー構成図である。FIG. 2 is a flow configuration diagram showing another example of the apparatus of the present invention. 図3は、本発明の装置の他の例を示すフロー構成図である。FIG. 3 is a flow configuration diagram showing another example of the apparatus of the present invention. 図4は、本発明の装置の他の例を示すフロー構成図である。FIG. 4 is a flowchart showing another example of the apparatus of the present invention. 図5は、本発明の装置の他の例を示すフロー構成図である。FIG. 5 is a flowchart showing another example of the apparatus of the present invention. 図6は、本発明の装置の他の例を示すフロー構成図である。FIG. 6 is a flow configuration diagram showing another example of the apparatus of the present invention. 図7は、本発明の装置の他の例を示すフロー構成図である。FIG. 7 is a flow configuration diagram showing another example of the apparatus of the present invention. 図8は、比較例1で用いた装置のフロー構成図である。FIG. 8 is a flow diagram of the apparatus used in Comparative Example 1.

実施形態Embodiment

以下、図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
図1に示すろ過装置1は、懸濁物質を捕捉するろ材を充填してなるろ材層2と、ろ材層2の上部に原水を供給する原水導入管Aと、原水に微細気泡を導入する微細気泡発生装置4と、ろ材層2よりも下方に設けられている処理水を集水する集水装置3と、集水装置3に空気を供給する空気供給管Dと、集水装置3からろ材層2よりも上方の位置まで立ち上げられている集水装置3から処理水を排出する処理水流出管Fと、ろ材層2に洗浄水を上向流で通水する洗浄水導入管Eと、ろ材層2よりも上方から洗浄水を排出する洗浄水排出管Hと、を具備する。微細気泡発生装置4は、気液混合ノズルであり、液体の導入管B及び気体の導入管Cが接続されている。気液混合ノズルの設置位置は、ろ材層2(通常は層高さが300〜2000mm)の上面と同じ位置とする。設置位置が、ろ材層2内であると微細気泡がろ材に付着し、剥離した懸濁物質の浮上濃縮が抑制される。また、反対に高すぎると、浮上濃縮できる割合が減少するので効率が低下する。集水装置3には、ろ材層2内の液を排出するための排出管Gが接続されている。排出管Gには弁Yが取り付けられている。集水装置3内に設けられた圧力計の指示値に応じて弁Yを開閉することで、ろ材層2の水位を調整する。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
A filtration device 1 shown in FIG. 1 includes a filter medium layer 2 filled with a filter medium that traps suspended substances, a raw water introduction pipe A that supplies raw water to the upper part of the filter medium layer 2, and a fine structure that introduces fine bubbles into the raw water. A bubble generating device 4, a water collecting device 3 that collects treated water provided below the filter medium layer 2, an air supply pipe D that supplies air to the water collecting device 3, and a filter medium from the water collecting device 3 A treated water outflow pipe F for discharging treated water from the water collecting device 3 raised to a position above the layer 2, and a washing water introduction pipe E for passing the washing water upward through the filter medium layer 2; And a cleaning water discharge pipe H that discharges the cleaning water from above the filter medium layer 2. The fine bubble generating device 4 is a gas-liquid mixing nozzle, to which a liquid introduction pipe B and a gas introduction pipe C are connected. The installation position of the gas-liquid mixing nozzle is the same position as the upper surface of the filter medium layer 2 (usually the layer height is 300 to 2000 mm). If the installation position is in the filter medium layer 2, fine bubbles adhere to the filter medium, and the floating concentration of the suspended suspended substances is suppressed. On the other hand, if it is too high, the ratio of levitation and concentration decreases, so the efficiency decreases. A discharge pipe G for discharging the liquid in the filter medium layer 2 is connected to the water collecting device 3. A valve Y is attached to the discharge pipe G. The water level of the filter medium layer 2 is adjusted by opening and closing the valve Y in accordance with an indication value of a pressure gauge provided in the water collecting device 3.

図2に示すろ過装置は、図1に示すろ過装置1とほぼ同じ構成であるが、微細気泡発生装置4への液体導入管を原水導入管Bとした。図2に示す態様の変形例として、原水導入管Aを用いず、原水の全量を微細気泡発生装置4に導入して微細気泡を含んだ原水としてろ過層2に導入してもよい。   The filtration device shown in FIG. 2 has substantially the same configuration as the filtration device 1 shown in FIG. 1, but the liquid introduction tube to the fine bubble generating device 4 is a raw water introduction tube B. As a modification of the embodiment shown in FIG. 2, the whole amount of raw water may be introduced into the fine bubble generating device 4 and introduced into the filtration layer 2 as raw water containing fine bubbles without using the raw water introduction pipe A.

図3に示すろ過装置は、基本構成は図1に示すろ過装置1と同じであるが、気液発生装置4を原水導入管Aに接続し、処理水と空気とを混合して発生させた微細気泡を原水に導入した後、ろ材層2に供給する構成とした。また、ろ材層2よりも上方に、浮上濃縮させた懸濁物質(以下「フロス」ともいう)の排出管であるフロス排出管Xが設けられている。ろ過装置には、フロス排出管Xよりも上方の位置に、原水の供給を均一にするために設けられた流路であるトラフが設けられている。また、処理水流出管Fには、バイパス管F−1と弁Zとが設けられている。   The basic structure of the filtration device shown in FIG. 3 is the same as that of the filtration device 1 shown in FIG. 1, but the gas-liquid generator 4 is connected to the raw water introduction pipe A, and the treated water and air are mixed and generated. After introducing fine bubbles into the raw water, the filter medium layer 2 was supplied. Further, a floss discharge pipe X, which is a discharge pipe for suspended and suspended substances (hereinafter also referred to as “floss”), is provided above the filter medium layer 2. In the filtration device, a trough, which is a flow path provided in order to make the supply of raw water uniform, is provided at a position above the floss discharge pipe X. Further, the treated water outflow pipe F is provided with a bypass pipe F-1 and a valve Z.

図4に示すろ過装置は、フロス排出管Xをトラフよりも上方に位置づけた点で異なる以外は図3に示す構成と同じである。バイパス管F−1は、ろ過装置内の水位を調節するために設けられており、弁Zを閉じて処理水をバイパス管F−1に流すことで、ろ過装置内の水位をバイパス管F−1の高さまで上昇させることができる。バイパス管F−1の高さは、フロス排出管Xの高さ位置と一致する高さである。   The filtration device shown in FIG. 4 is the same as the configuration shown in FIG. 3 except that the floss discharge pipe X is positioned above the trough. The bypass pipe F-1 is provided to adjust the water level in the filtration device, and the valve Z is closed and the treated water flows into the bypass pipe F-1, so that the water level in the filtration device is reduced to the bypass pipe F-. Can be raised to a height of 1. The height of the bypass pipe F-1 is a height that matches the height position of the floss discharge pipe X.

図5に示すろ過装置は、ろ材層2及び集水装置3を含むろ過部分1aと、ろ過部分1aの上流側に位置づけられ微細気泡発生装置4を具備する微細気泡導入部分1bと、に区画されている。微細気泡導入部分1bには原水導入管Aが接続され、微細気泡発生装置4には処理水導入管Bと空気導入管Cとが接続されている。微細気泡導入部分1bにおいて、気液混合により発生させた微細気泡を原水中に導入した後、ろ過部分1aに流入させ、ろ過する。ろ過部分1aと微細気泡導入部分1bとを区画する隔壁の高さよりも上方に、フロス排出管Xが設けられている。処理水流出管Fには、フロス排出管Xと一致する高さのバイパス管F−1と、処理水の流路を切り替える弁Zとが設けられており、ろ過部分1a内の水位をフロス排出管Xの位置まで上昇させることができる。   The filtration device shown in FIG. 5 is partitioned into a filtration part 1a including the filter medium layer 2 and the water collecting device 3, and a fine bubble introduction part 1b that is positioned upstream of the filtration part 1a and includes the fine bubble generation device 4. ing. A raw water introduction pipe A is connected to the fine bubble introduction portion 1b, and a treated water introduction pipe B and an air introduction pipe C are connected to the fine bubble generation device 4. In the fine bubble introduction portion 1b, the fine bubbles generated by gas-liquid mixing are introduced into the raw water, and then flowed into the filtration portion 1a and filtered. A floss discharge pipe X is provided above the height of the partition wall that partitions the filtration portion 1a and the fine bubble introduction portion 1b. The treated water outflow pipe F is provided with a bypass pipe F-1 having a height matching the floss discharge pipe X and a valve Z for switching the flow path of the treated water, and the water level in the filtration part 1a is discharged through the floss. It can be raised to the position of tube X.

図6に示すろ過装置は、微細気泡導入部分1b内の微細気泡発生装置4に導入される原水の濁度を測定する濁度計が設けられている点で異なる以外、図5に示す構成と同じである。濁度計で計測された濁度に基づいて、微細気泡発生装置4への空気の導入量を制御して、微細気泡の発生量を制御する。   The filtration device shown in FIG. 6 differs from the configuration shown in FIG. 5 except that a turbidimeter for measuring the turbidity of raw water introduced into the fine bubble generating device 4 in the fine bubble introduction portion 1b is provided. The same. Based on the turbidity measured by the turbidimeter, the amount of air introduced into the microbubble generator 4 is controlled to control the amount of microbubbles generated.

図7に示すろ過装置は、ろ過部分1a内に濁度計を設け、濁度計で計測された原水の濁度に基づいて、微細気泡導入部分1b内の微細気泡発生装置4に導入される処理水の量を制御する点で異なる以外、図6に示す構成と同じである。   The filtration device shown in FIG. 7 is provided with a turbidity meter in the filtration part 1a, and is introduced into the fine bubble generator 4 in the fine bubble introduction part 1b based on the turbidity of raw water measured by the turbidimeter. Except for the point which controls the quantity of treated water, it is the same as the structure shown in FIG.

次に、図1〜7のろ過装置において共通する構成部材を説明する。
[微細気泡発生装置]
微細気泡発生装置4は、マイクロバブルを発生させる装置である。「マイクロバブル」とは、10〜数10μmの直径をもつ気泡であるが、必ずしもすべての気泡の直径がこの範囲に収まる必要はない。また、マイクロバブルよりも気泡が小さいナノバブルを発生させることができる発生器を用いても良いが、発生した気泡の大粒径側は上記の気泡径の範囲に入っていることが望ましい。マイクロバブル発生器は種々のものが提案されており、例えば、旋回液流式、スタティックミキサー式、エゼクター式、ベンチュリ式、加圧溶解式、極微細孔式、超音波付加中空針状ノズル、蒸気凝縮式などが挙げられる。例えば、エゼクター式では、気液混合ノズル内で、狭い通路を高速で通過する液流によって生じる負圧を利用してガスを吸引し、下流における管路の拡大により生じたキャビテーションによって吸引ガスが微細に粉砕される。加圧溶解式は、ガスと液との混相をポンプで昇圧(0.5〜1MPa程度)し、ガス成分を液中に過飽和まで溶解させる。加圧タンク内で未溶解気泡を浮上分離させパージする。過飽和液のみを減圧弁を経て常圧液中にフラッシュさせると、過飽和ガス成分が水中からマイクロバブルになって析出する(化学工学vol.71、No.3(2007))。このとき、気液の混合ノズルを通すとより微細な気泡を発生させることができる。
Next, components common to the filtration devices of FIGS. 1 to 7 will be described.
[Microbubble generator]
The microbubble generator 4 is a device that generates microbubbles. “Microbubbles” are bubbles having a diameter of 10 to several tens of μm, but the diameters of all the bubbles need not necessarily fall within this range. In addition, a generator capable of generating nanobubbles having smaller bubbles than microbubbles may be used, but it is desirable that the large particle size side of the generated bubbles is within the above bubble diameter range. Various types of microbubble generators have been proposed. For example, swirling liquid flow type, static mixer type, ejector type, venturi type, pressure dissolution type, ultra fine hole type, ultrasonically added hollow needle nozzle, steam Condensation type is mentioned. For example, in the ejector type, the gas is sucked using the negative pressure generated by the liquid flow passing through the narrow passage at high speed in the gas-liquid mixing nozzle, and the suction gas is fine due to the cavitation caused by the expansion of the downstream pipe. To be crushed. In the pressure dissolution type, the mixed phase of gas and liquid is increased in pressure (about 0.5 to 1 MPa) with a pump, and the gas component is dissolved in the liquid until supersaturated. Undissolved bubbles are floated and separated in a pressurized tank and purged. When only the supersaturated liquid is flushed into the normal pressure liquid through the pressure reducing valve, the supersaturated gas component is deposited as microbubbles from the water (Chemical Engineering vol. 71, No. 3 (2007)). At this time, if the gas-liquid mixing nozzle is passed, finer bubbles can be generated.

気液の混合ノズルは、種々のものが提案されており、ノズル内で、段階的に管路を変化させたもの、管路に球状の障害物を設置したもの、スリットを用いるもの、遠心力によって発生した気体柱を突起物によって破砕するものなど、を採用することができる。   A variety of gas-liquid mixing nozzles have been proposed. Inside the nozzle, the pipeline is changed in stages, spherical obstacles are installed in the pipeline, slits are used, centrifugal force What crushes the gas column generated by the above by the projections can be employed.

[集水装置]
集水装置3は、砂利を敷き詰めたもの、有孔ブロック型、ホイラー型、ストレーナ型、ポーラスボトム型、多孔管型など任意のものを選択することができるが、特に、有孔ブロック型は、ブロックが軽く施工が容易であるので、ろ材の集水装置として好ましい。集水装置としては、トリラテラル(水ing株式会社製)を好適に用いることができる。
[Water collector]
The water collecting device 3 can be selected from any of gravel, perforated block type, wheeler type, strainer type, porous bottom type, perforated tube type, etc. Since the block is light and easy to construct, it is preferable as a water collecting device for filter media. As the water collecting device, trilateral (manufactured by Mizuing Inc.) can be suitably used.

[ろ材層]
ろ材層2には、ろ材が充填されている。ろ材の充填高さとしては、逆洗頻度を高めず、ろ材層上部のフリーボード部が極端に高くならないように設計するため300〜2000mm程度が好適である。ろ材としては、種々のろ材を使用することができ、砂、アンスラサイト、ガーネット、活性炭、造粒活性炭、人工ビーズ、短繊維塊からなる繊維ろ材などを挙げることができる。短繊維塊からなる繊維ろ材は、水回収率を著しく向上することができるので特に好ましい。また、これらのろ材表面に好気性微生物を固定させた生物膜を用いて、溶存有機物を除去することもできる。生物膜を用いる場合、通常の活性炭は破砕された状態で形状も大きさも不均一であるが、球状に加工された造粒活性炭は均一な形状と大きさとを有するため、微生物を均一に担持して均一な生物膜を形成しやすく、好適である。造粒活性炭は好ましくは0.5〜3.5mmの平均粒径を有することが好ましい。
[Filter media layer]
The filter medium layer 2 is filled with a filter medium. About 300-2000 mm is preferable as the filling height of the filter medium in order to design the freeboard part on the upper part of the filter medium layer so as not to become extremely high without increasing the frequency of backwashing. Various filter media can be used as the filter media, and examples thereof include sand, anthracite, garnet, activated carbon, granulated activated carbon, artificial beads, and fiber filter media composed of short fiber clusters. A fiber filter medium composed of short fiber lumps is particularly preferable because the water recovery rate can be remarkably improved. In addition, dissolved organic matter can be removed using a biofilm in which aerobic microorganisms are immobilized on the surface of these filter media. When using biofilms, normal activated carbon is crushed and non-uniform in shape and size, but granulated activated carbon processed into a spherical shape has a uniform shape and size, so it supports microorganisms uniformly. It is easy to form a uniform biofilm and is suitable. The granulated activated carbon preferably has an average particle size of 0.5 to 3.5 mm.

短繊維塊からなる繊維ろ材としては、種々の繊維ろ材を使用することができるが、特に下記製法によって製造された繊維ろ材が好適である。
(工程1)芯成分と鞘成分とからなる芯鞘構造の第1熱可塑性繊維と単一成分からなる第2熱可塑性繊維を混綿して形成した複合熱可塑性繊維、又は数種類の芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維を混綿して混綿体とする混綿工程
(工程2)該混綿体をロープ状のスライバーとするスライバー工程
(工程3)該スライバーに熱風を吹き掛け、該スライバーの一部を溶着させた溶着部を形成する溶着工程
(工程4)該溶着部を有するスライバーを切断する切断工程
以下それぞれの工程を説明する。
Various fiber filter media can be used as the fiber filter medium composed of short fiber masses, and fiber filter media manufactured by the following production method are particularly suitable.
(Process 1) A composite thermoplastic fiber formed by blending a first thermoplastic fiber having a core-sheath structure composed of a core component and a sheath component and a second thermoplastic fiber composed of a single component, or several kinds of core components and sheaths A blending step of blending the core-sheath composite thermoplastic fiber comprising the components into a blended cotton body (step 2), a sliver step of blending the blended cotton body with a rope-like sliver (step 3), blowing hot air on the sliver, Welding step for forming a welded portion where a part of the sliver is welded (step 4) Cutting step for cutting the sliver having the welded portion Each step will be described below.

(混綿工程)
混綿工程において、第1熱可塑性繊維は、芯鞘型複合繊維であり、芯成分と鞘成分とからなる芯鞘構造を有している。芯成分の材質としては、ポリエチレンテレフタレートなどのポリエステル系繊維、ナイロン6、ナイロン66などのポリアミド系繊維、ポリビニルアルコール系繊維などが挙げられる。これらは単独で用いても複数を混合して用いてもよい。これらの中でも、芯成分の材質は汎用性及び強度の観点からポリエステル繊維であることが好ましい。また、鞘成分の材質としては、ポリエステルと脂肪族化合物との共重合体、ポリエチレン、ポリプロピレン等が用いられる。これらは単独で用いても複数を混合して用いてもよい。これらの中でも、鞘成分の材質は、芯成分の材質がポリエステル繊維を使用している場合、同一成分を含有させるほうが、強度が優れるため、ポリエステルと脂肪族化合物との共重合体を用いることが好ましい。
(Mixed cotton process)
In the blending step, the first thermoplastic fiber is a core-sheath type composite fiber, and has a core-sheath structure including a core component and a sheath component. Examples of the material of the core component include polyester fibers such as polyethylene terephthalate, polyamide fibers such as nylon 6 and nylon 66, and polyvinyl alcohol fibers. These may be used alone or in combination. Among these, the material of the core component is preferably a polyester fiber from the viewpoint of versatility and strength. As the material for the sheath component, a copolymer of polyester and an aliphatic compound, polyethylene, polypropylene, or the like is used. These may be used alone or in combination. Among these, when the core component is made of polyester fibers, the sheath component is made of a polyester fiber and a copolymer of an aliphatic compound because the strength is better when the same component is used. preferable.

第1熱可塑性繊維の繊度は、1〜50dtexであることが好ましい。第1熱可塑性繊維の繊度が1dtex未満であると、繊度が上記範囲内にある場合と比較して、繊維間の空隙が小さくなりすぎ、一方、繊度が50dtexを超えると、繊維間の空隙が大きくなりすぎて、共に懸濁粒子を捕捉できなくなる恐れがある。   The fineness of the first thermoplastic fiber is preferably 1 to 50 dtex. When the fineness of the first thermoplastic fiber is less than 1 dtex, the gap between the fibers is too small compared to the case where the fineness is within the above range, whereas when the fineness exceeds 50 dtex, the gap between the fibers is reduced. There is a risk that the particles may become too large to capture the suspended particles together.

また、混綿工程において、単一成分からなる第2熱可塑性繊維の材質としては、ポリエステル繊維、ポリアミド繊維、ビニロン繊維、ポリオレフィン繊維等が用いられる。これらの中でも、第2熱可塑性繊維の材質は汎用性、強度、及び水に沈みやすいといった観点から、ポリエステル繊維であることが好ましい。   In the blending step, polyester fiber, polyamide fiber, vinylon fiber, polyolefin fiber, or the like is used as the material of the second thermoplastic fiber made of a single component. Among these, the material of the second thermoplastic fiber is preferably a polyester fiber from the viewpoints of versatility, strength, and easy sinking in water.

単一成分からなる第2熱可塑性繊維の繊度は、1〜50dtexであることが好ましい。第2熱可塑性繊維の繊度が1dtex未満であると、繊度が上記範囲内にある場合と比較して、繊維間の空隙が小さくなりすぎ、一方、繊度が50dtexを超えると、繊維間の空隙が大きくなりすぎて、共に懸濁粒子を捕捉できなくなる恐れがある。   The fineness of the second thermoplastic fiber made of a single component is preferably 1 to 50 dtex. When the fineness of the second thermoplastic fiber is less than 1 dtex, the gap between the fibers is too small compared to the case where the fineness is within the above range, whereas when the fineness exceeds 50 dtex, the gap between the fibers is reduced. There is a risk that the particles may become too large to capture the suspended particles together.

また、第2熱可塑性繊維の融点は、第1熱可塑性繊維の鞘成分の融点よりも高いほうが好ましく、且つ160〜250℃であることが好ましい。この場合、混綿して形成される複合熱可塑性繊維によるバインダー効果を発揮させて、繊維ろ材の形状を維持することができる。   The melting point of the second thermoplastic fiber is preferably higher than the melting point of the sheath component of the first thermoplastic fiber, and is preferably 160 to 250 ° C. In this case, the shape of the fiber filter medium can be maintained by exerting a binder effect by the composite thermoplastic fiber formed by blending.

混綿工程においては、第1熱可塑性繊維の塊状物と、第2熱可塑性繊維の塊状物とを混合する。
このときの混合割合は、第1熱可塑性繊維1質量部に対し、第2熱可塑性繊維が1.5〜4質量部であることが好ましい。第2熱可塑性繊維の混合割合が1.5質量部未満であると、混合割合が上記範囲内にある場合と比較して、繊維ろ材の強度が不十分となる恐れがあり、第2熱可塑性繊維の混合割合が4質量部を超えると、混合割合が上記範囲内にある場合と比較して、複合熱可塑性繊維のバインダー効果が不十分となる恐れがある。
In the blending step, the lump of the first thermoplastic fiber and the lump of the second thermoplastic fiber are mixed.
As for the mixing ratio at this time, it is preferable that 2nd thermoplastic fiber is 1.5-4 mass parts with respect to 1 mass part of 1st thermoplastic fibers. If the mixing ratio of the second thermoplastic fiber is less than 1.5 parts by mass, the strength of the fiber filter medium may be insufficient compared to the case where the mixing ratio is in the above range, and the second thermoplasticity When the mixing ratio of the fibers exceeds 4 parts by mass, the binder effect of the composite thermoplastic fiber may be insufficient as compared with the case where the mixing ratio is in the above range.

数種類の芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維を混綿して混綿体とする場合は、それぞれの繊維がバインダーの働きをするので、よりほつれにくい混綿体とすることができる。混合割合は任意とするとことができるが、各複合熱可塑性繊維が持つ特性をいかすために、少なくともそれぞれが全量に対して1/3以上であることが望ましい。   When a composite thermoplastic fiber having a core-sheath structure composed of several kinds of core components and a sheath component is blended to form a blended cotton body, each fiber functions as a binder, so that it is possible to obtain a blended cotton body that is more difficult to fray. . Although the mixing ratio can be arbitrary, in order to take advantage of the characteristics of each composite thermoplastic fiber, it is desirable that at least each is 1/3 or more of the total amount.

混綿工程においては、複数の繊維を混合させることで、繊維ろ材の表面の毛羽の長さや量を調整することが可能となる。これにより、得られる繊維ろ材は、懸濁粒子を効率良く捕集できるようになる。   In the blending step, the length and amount of fluff on the surface of the fiber filter medium can be adjusted by mixing a plurality of fibers. Thereby, the obtained fiber filter medium can collect suspended particles efficiently.

(スライバー工程)
スライバー工程は、混綿工程で得られた混綿体を、ロープ状のスライバーにする工程である。この工程は、混綿体を紡績用カード機にかけ薄い平面状のウェブとした後、練条機を通してドラフトし、ロープ状のスライバーにする工程である。
(Sliver process)
A sliver process is a process of making the blended cotton body obtained at the blended cotton process into a rope-shaped sliver. This process is a process in which the blended cotton body is applied to a spinning card machine to form a thin flat web, and then drafted through a drawing machine to form a rope-like sliver.

ここで、「スライバー」とは、撚りをかけないロープ状にした繊維の束をいう。
スライバー工程においては、混綿体をドラフトして延伸しロープ状のスライバーとすることで、繊維方向が引き揃えられる。これにより、スライバーの引張り強度が向上するという利点がある。
Here, “sliver” refers to a bundle of fibers in a rope shape that is not twisted.
In the sliver process, the fiber direction is aligned by drafting and stretching the blended cotton body to form a rope-shaped sliver. Thereby, there exists an advantage that the tensile strength of a sliver improves.

また、ロープ状のスライバーの直径は5〜20mmの範囲であることが好ましい。直径が5mm未満であると、繊維ろ材の幅が狭くなりろ過装置からろ材が流出しやすくなる欠点があり、直径が20mmを超えると、繊維ろ材自体が大きくなることで比表面積が減少し、水中の懸濁物質を捕捉するために必要な表面積が小さくなる欠点がある。   The diameter of the rope-shaped sliver is preferably in the range of 5 to 20 mm. If the diameter is less than 5 mm, the width of the fiber filter medium becomes narrow and the filter medium tends to flow out of the filtration device. If the diameter exceeds 20 mm, the fiber filter medium itself becomes larger, reducing the specific surface area, There is a disadvantage that the surface area required for capturing the suspended solids is reduced.

(溶着工程)
溶着工程は、スライバーに熱風を吹き掛け、スライバー内の一部の繊維同士を溶着させた溶着スライバーとする工程である。
(Welding process)
The welding step is a step of forming a welding sliver in which hot air is blown onto the sliver to weld some fibers in the sliver.

溶着スライバーは、一部にスライバーの繊維同士を溶着させた溶着部が形成されている。これにより、得られる繊維ろ材は、ほつれが防止されると共に、長期間、摩耗に耐えうる耐久性を有することになる。「一部」とは定量的な表現をできるものではないが、溶着は芯成分と鞘成分とからなる芯鞘構造の第1熱可塑性繊維と単一成分からなる第2熱可塑性繊維の格子点で行われ、格子点が多いほどほつれにくくなる。数種類の芯成分と鞘成分とからなる芯鞘構造の複合熱可塑性繊維を混綿して混綿体とする場合は、それぞれの繊維がバインダーの働きをするので、よりほつれにくい混綿体とすることができる。   The welded sliver has a welded part in which the fibers of the sliver are welded in part. Thereby, the obtained fiber filter medium is prevented from fraying and has durability capable of withstanding abrasion for a long period of time. Although “partial” cannot be expressed quantitatively, the weld is a lattice point of a first thermoplastic fiber having a core-sheath structure consisting of a core component and a sheath component and a second thermoplastic fiber consisting of a single component. As the number of grid points increases, fraying becomes difficult. When a composite thermoplastic fiber having a core-sheath structure composed of several kinds of core components and a sheath component is blended to form a blended cotton body, each fiber functions as a binder, so that it is possible to obtain a blended cotton body that is more difficult to fray. .

また、通水時には水圧で繊維の間隙が埋められ、逆洗時には繊維の間隙が離れ効率良く懸濁粒子を脱離させることが可能となる。
かかる溶着工程において、熱風の温度は120〜180℃であることが好ましい。
Further, the gap between the fibers is filled with water pressure when water is passed, and the gap between the fibers is separated during backwashing, so that the suspended particles can be efficiently detached.
In the welding step, the temperature of the hot air is preferably 120 to 180 ° C.

(切断工程)
切断工程は、溶着スライバーを連続的に溶着切断することにより全長が5〜20mmの繊維ろ材とする工程である。溶着切断の方法としては、熱刃による方法、超音波の振動による超音波切断が挙げられる。ここでは、熱刃による方法を記す。
(Cutting process)
The cutting step is a step of making a fiber filter medium having a total length of 5 to 20 mm by continuously welding and cutting the welding sliver. Examples of the welding and cutting method include a method using a hot blade and an ultrasonic cutting using ultrasonic vibration. Here, a method using a hot blade will be described.

切断工程においては、溶着スライバーを長手方向に進行させると共に、十分に加熱された熱刃昇降移動させることにより、連続的に溶着スライバーが切断され、個々の扁平矩形状の繊維ろ材となる。繊維ろ材は、左右の縁が溶着されているので、カットによるほつれの発生が抑制される。   In the cutting step, the welding sliver is advanced in the longitudinal direction and is moved up and down by a sufficiently heated hot blade, whereby the welding sliver is continuously cut to obtain individual flat rectangular fiber filter media. Since the left and right edges of the fiber filter medium are welded, the occurrence of fraying due to cutting is suppressed.

溶着切断において、熱刃の温度は700℃以上であることが好ましい。この場合、溶着スライバーを瞬時にカットすると共に、溶着スライバーの縁を確実に溶着することができる。   In welding cutting, the temperature of the hot blade is preferably 700 ° C. or higher. In this case, the welding sliver can be cut instantaneously and the edge of the welding sliver can be reliably welded.

こうして短繊維塊からなる繊維ろ材が得られる。
[ろ過方法]
次に、本発明のろ過装置を用いるろ過方法を説明する。
(1)懸濁物質を含む原水に微細気泡が導入される。
図1及び図2に示すろ過装置では、ろ材層2の上部に設けられている気液混合ノズル(微細気泡発生装置)4から、ろ材層2に導入される直前の原水に微細気泡が導入される。図3及び図4に示すろ過装置では、原水導入管Aに空気と処理水を混合して微細気泡を発生させ原水に導入する。図5〜図7に示すろ過装置では、微細気泡導入部分1bにて、処理水と空気とを混合して微細気泡を発生させ原水に導入する。さらに、図6及び図7に示すろ過装置では、濁度計で測定した原水の濁度に応じて微細気泡の導入量を制御する。図6に示すろ過装置では、濁度に応じて空気の混合量を調節して微細気泡の導入量を制御する。図7に示すろ過装置では、濁度に応じて、処理水流出管Fの弁を制御して原水に戻す処理水の量を調節して微細気泡の導入量を制御する。また、図3〜図7に示すろ過装置では、原水に微細気泡を導入することで、懸濁物質が浮上濃縮してフロスが形成され、フロス排出管Xからフロスが排出される。このとき、原水に無機凝集剤を添加しておくと、懸濁物質の凝集が促進され、浮上濃縮するフロスが増加するので好ましい。
(2)微細気泡が導入された原水をろ材層2の上部に導入して、下向流でろ材層2を通過させて、ろ材層に懸濁物質を捕捉させる。ろ過工程における原水の通水速度は、500〜2000m/dの範囲が好適である。図3〜7に示すろ過装置では、処理水流出管Fに設けられたバイパス管F−1の設置高さによって、ろ過装置内の水位を調節できる。バイパス管F−1をろ過層2よりも上方のフロス排出管Xと同じ高さに設け、弁Zを閉じて処理水をバイパス管F−1に流すと、ろ過装置内の水位が上昇して、浮上濃縮したフロスをフロス排出管Xから排出することができ、ろ材による懸濁物質除去量を減少させることができる。このような態様での処理は濁度が高い原水の処理に有効である。
(3)懸濁物質が除去された処理水を集水装置3に集水する。
(4)処理水流出管Fを介して処理水をろ過装置外部に排出する。
Thus, a fiber filter medium composed of short fiber masses is obtained.
[Filtration method]
Next, a filtration method using the filtration device of the present invention will be described.
(1) Fine bubbles are introduced into raw water containing suspended solids.
In the filtration device shown in FIGS. 1 and 2, fine bubbles are introduced from the gas-liquid mixing nozzle (fine bubble generating device) 4 provided on the top of the filter medium layer 2 into the raw water just before being introduced into the filter medium layer 2. The In the filtration apparatus shown in FIGS. 3 and 4, air and treated water are mixed in the raw water introduction pipe A to generate fine bubbles and introduce them into the raw water. In the filtration apparatus shown in FIGS. 5 to 7, the treated water and air are mixed in the fine bubble introduction portion 1 b to generate fine bubbles and introduce them into the raw water. Furthermore, in the filtration apparatus shown in FIG.6 and FIG.7, the introduction amount of a fine bubble is controlled according to the turbidity of the raw | natural water measured with the turbidimeter. In the filtration apparatus shown in FIG. 6, the amount of fine bubbles introduced is controlled by adjusting the amount of air mixed according to the turbidity. In the filtration device shown in FIG. 7, the amount of fine bubbles introduced is controlled by controlling the valve of the treated water outflow pipe F and adjusting the amount of treated water returned to the raw water according to the turbidity. Moreover, in the filtration apparatus shown in FIGS. 3-7, a suspension substance floats and concentrates by introduce | transducing a fine bubble to raw | natural water, a floss is formed, and a floss is discharged | emitted from the floss discharge pipe X. FIG. At this time, it is preferable to add an inorganic flocculant to the raw water because the aggregation of suspended substances is promoted and the floss to be floated and concentrated increases.
(2) The raw water into which the fine bubbles are introduced is introduced into the upper part of the filter medium layer 2 and passed through the filter medium layer 2 in a downward flow so that the suspended substance is captured by the filter medium layer. The flow rate of raw water in the filtration step is preferably in the range of 500 to 2000 m / d. In the filtration apparatus shown in FIGS. 3-7, the water level in a filtration apparatus can be adjusted with the installation height of the bypass pipe F-1 provided in the treated water outflow pipe F. FIG. When the bypass pipe F-1 is provided at the same height as the floss discharge pipe X above the filtration layer 2, and the valve Z is closed and the treated water flows into the bypass pipe F-1, the water level in the filtration device rises. The floss that has been floated and concentrated can be discharged from the floss discharge pipe X, and the amount of suspended matter removed by the filter medium can be reduced. The treatment in such an embodiment is effective for treating raw water with high turbidity.
(3) Collect the treated water from which suspended substances have been removed in the water collecting device 3.
(4) The treated water is discharged to the outside of the filtration device through the treated water outflow pipe F.

[洗浄方法]
ろ過処理を行うことで、ろ材の内部や表面に懸濁物質が付着し、ろ過性能が低下するため、定期的あるいはろ過抵抗の上昇を検出して洗浄する。
(5)原水の導入を停止し、空気供給管Dを介して集水装置3に空気を供給し、空気を含む水中にろ材を流動させて、ろ材から懸濁物質を水中に剥離させる。空気の通気速度及び通気時間は、ろ材に付着した懸濁物質が剥離するに十分であればよく、通常は、0.1〜5.0m/minの通気速度、3〜30分の通気時間で実施することができる。このとき、洗浄水排出管Hから洗浄水が流出しない程度に原水や洗浄水を供給すると、ろ材の流動空間が広がり、流動が良好で効果的に洗浄を行うことができる。
(6)空気供給管Dからの空気の供給を停止し、微細気泡発生装置4を作動させて水中に微細気泡を注入して、ろ材から剥離した懸濁物質を浮上濃縮させる。微細気泡を含む水(以下「微細気泡水」という)の供給量は、ろ材の0.1〜10倍(容量)程度が好適である。微細気泡水としては、原水、処理水、市水、用水等種々のものを用いることができるが、原水及び処理水が好適である。微細気泡を発生させる気体としては空気、窒素ガス、酸素ガス等種々のものを用いることができるが、空気が好適である。また、懸濁物質の凝集を促進するために、微細気泡水中にポリ塩化第二鉄やPACなどの無機凝集剤を添加することが好ましい。無機凝集剤の添加量は、特に限定されるものではないが、数mg/L〜数百mg/Lの範囲とすることが好適である。
(7)洗浄水導入管Eから洗浄水を上向流で通水し、浮上濃縮した懸濁物質を含む水を洗浄水排出管Hから排出させる。洗浄水の通水速度は0.1〜5.0m/min、通気時間は3〜30分が好適である。洗浄水としては、下水二次処理水、工業用水、雨水、懸濁物質の含有量が少ないろ過原水などを用いることができる。
[Cleaning method]
By performing the filtration treatment, suspended substances adhere to the inside and the surface of the filter medium, and the filtration performance deteriorates.
(5) The introduction of raw water is stopped, air is supplied to the water collecting device 3 via the air supply pipe D, the filter medium is caused to flow in water containing air, and the suspended substances are separated from the filter medium into the water. The air aeration rate and aeration time may be sufficient for the suspended substances attached to the filter medium to peel off. Usually, the aeration rate is 0.1 to 5.0 m / min and the aeration time is 3 to 30 minutes. Can be implemented. At this time, if the raw water or the cleaning water is supplied to such an extent that the cleaning water does not flow out from the cleaning water discharge pipe H, the flow space of the filter medium is widened, and the flow is good and the cleaning can be performed effectively.
(6) The supply of air from the air supply pipe D is stopped, the fine bubble generating device 4 is operated to inject the fine bubbles into the water, and the suspended solid separated from the filter medium is floated and concentrated. The amount of water containing fine bubbles (hereinafter referred to as “fine bubble water”) is preferably about 0.1 to 10 times (volume) that of the filter medium. Various water such as raw water, treated water, city water, and irrigation water can be used as the fine bubble water, but raw water and treated water are preferred. Various gases such as air, nitrogen gas, and oxygen gas can be used as the gas for generating fine bubbles, but air is preferred. In order to promote the aggregation of the suspended substance, it is preferable to add an inorganic flocculant such as polyferric chloride or PAC to the fine bubble water. The addition amount of the inorganic flocculant is not particularly limited, but is preferably in the range of several mg / L to several hundred mg / L.
(7) The cleaning water is passed through the cleaning water introduction pipe E in an upward flow, and the water containing the suspended suspended matter is discharged from the cleaning water discharge pipe H. The washing water flow rate is preferably 0.1 to 5.0 m / min, and the ventilation time is preferably 3 to 30 minutes. As washing water, sewage secondary treated water, industrial water, rainwater, raw filter water with a low content of suspended solids, and the like can be used.

洗浄は、(5)〜(7)工程を複数回繰り返し行うことが好ましい。   The washing is preferably performed by repeating the steps (5) to (7) a plurality of times.

以下、実施例及び比較例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
図1に示す、繊維ろ材(密度90kg/m)を20L分(見掛け容積)充填してなるろ材層を具備するφ160mmのろ過装置を用いて、原水のろ過を行った。繊維ろ材は、真比重1.38であり、長さ10mm、幅7mmであった。繊維ろ材は、2種類の複合熱可塑性繊維を混綿したものであり、共に材質はポリエステルとした。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
[Example 1]
The raw water was filtered using a φ160 mm filtration device equipped with a filter medium layer filled with 20 L (apparent volume) of fiber filter medium (density 90 kg / m 3 ) shown in FIG. The fiber filter medium had a true specific gravity of 1.38, a length of 10 mm, and a width of 7 mm. The fiber filter material was a blend of two types of composite thermoplastic fibers, both of which were made of polyester.

原水の通水量は20m/d、ろ材層2内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSS(懸濁物質)が繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、通気によって繊維ろ材に付着した懸濁物質を剥離したのち、微細気泡発生装置(オーラテック社製)を用いて気液混合ノズルからろ過層2上部に微細気泡液を供給し、剥離した懸濁物質を浮上濃縮した。その後、上向流で通水を行い、浮上濃縮した懸濁物質をろ過装置から排出した。以上の操作を5回繰り返した。なお、用いた水量は、微細気泡液が0.5m/回(微細気泡液量,m/ろ過装置断面積,m)、通水による排出量が0.5m/回(排出水量,m/ろ過装置断面積,m)であったので、水回収率は99%であった。 The flow rate of the raw water was 20 m 3 / d, the flow rate in the filter medium layer 2 was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS (suspended substance) in raw water was trapped by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, after the suspended substances adhering to the fiber filter medium are peeled off by aeration, the fine bubble liquid is supplied to the upper part of the filtration layer 2 from the gas-liquid mixing nozzle using a fine bubble generator (made by Aura Tech). The separated suspended material was floated and concentrated. Thereafter, water was passed in an upward flow, and the suspended suspended matter was discharged from the filtration device. The above operation was repeated 5 times. In addition, the amount of water used was 0.5 m / time for fine bubble liquid (fine bubble liquid amount, m 3 / filtration device cross-sectional area, m 2 ), and 0.5 m / time for discharged water (discharged water amount, m 3 / cross-sectional area of the filtration device, m 2 ), the water recovery rate was 99%.

約1ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは4mg/Lであった。処理性能は落ちることなく良好に処理がされた。
[実施例2]
図1に示す、φ0.6mmのアンスラサイトを20L分(見掛け容積)充填してなるろ材層を具備するφ160mmのろ過装置を用いて、原水のろ過を行った。
The filtration performance after about one month was 4 mg / L for the SS of the treated water with respect to the SS concentration of 10 mg / L for the raw water. The processing performance was excellent without any degradation.
[Example 2]
The raw water was filtered using a φ160 mm filtration device having a filter medium layer filled with 20 L (apparent volume) of φ0.6 mm anthracite shown in FIG.

原水の通水量は7m/d、ろ材層内の流速は350m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSがろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、通気によってろ材に付着した懸濁物質を剥離したのち、微細気泡発生装置(オーラテック社製)から微細気泡液を供給し、剥離した懸濁物質を浮上濃縮した。その後、上向流で通水を行い、浮上濃縮した懸濁物質を排出した。以上の操作を5回繰り返した。なお、用いた水量は、微細気泡液が0.5m/回、通水による排出量が0.5m/回で、あったので、水回収率は97.1%であった。 The flow rate of the raw water was 7 m 3 / d, the flow rate in the filter medium layer was 350 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, after the suspended substances adhering to the filter medium were peeled off by aeration, a fine bubble liquid was supplied from a fine bubble generator (Auratech Co., Ltd.), and the separated suspended substances were floated and concentrated. Thereafter, water was passed in an upward flow, and suspended suspended substances were discharged. The above operation was repeated 5 times. In addition, since the amount of water used was 0.5 m / times for the fine bubble liquid and 0.5 m / times for the amount discharged by passing water, the water recovery rate was 97.1%.

約1ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは2mg/Lであった。処理性能は落ちることなく良好に処理がされた。
[実施例3]
図2に示す、繊維ろ材(密度90kg/m)を20L分(見掛け容積)充填してなるろ材層を具備するφ160mmのろ過装置を用いて、原水のろ過を行った。原水の50%を気液混合ノズルを通して通水した以外、実施例1と同じとした。
The filtration performance after about 1 month was 2 mg / L for the treated water SS with respect to the SS concentration of the raw water 10 mg / L. The processing performance was excellent without any degradation.
[Example 3]
The raw water was filtered using a φ160 mm filtration device equipped with a filter medium layer filled with 20 L (apparent volume) of fiber filter medium (density 90 kg / m 3 ) shown in FIG. Example 1 was the same as Example 1 except that 50% of the raw water was passed through a gas-liquid mixing nozzle.

繊維ろ材は、真比重1.38であり、長さ10mm、幅7mmである。
原水の通水量は20m/d(内10m/dは気液混合ノズルを通して供給)、ろ材層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、まず、通水によってフロスを排出し、次いで、通気によって繊維ろ材に付着した懸濁物質を剥離したのち、微細気泡発生装置(オーラテック社製)から微細気泡液を供給し、剥離した懸濁物質を浮上濃縮した。その後、上向流で通水を行い、浮上濃縮した懸濁物質を排出した。以上の操作を4回繰り返した(フロスの排出は1回のみ)。なお、用いた水量は、微細気泡液が0.5m/回、通水による排出量が0.5m/回で、あったので、水回収率は99.2%であった。
The fiber filter medium has a true specific gravity of 1.38, a length of 10 mm, and a width of 7 mm.
The flow rate of raw water was 20 m 3 / d (of which 10 m 3 / d was supplied through a gas-liquid mixing nozzle), the flow rate in the filter medium layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, firstly, the floss is discharged by passing water, and then the suspended matter adhering to the fiber filter medium is peeled off by aeration, and then the fine bubble liquid is supplied from the fine bubble generator (Auratech), The separated suspended material was floated and concentrated. Thereafter, water was passed in an upward flow, and suspended suspended substances were discharged. The above operation was repeated 4 times (floss was discharged only once). In addition, since the amount of water used was 0.5 m / times for the fine bubble liquid and 0.5 m / times for the amount discharged through water, the water recovery rate was 99.2%.

約1ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは4mg/Lであった。処理性能は落ちることなく良好に処理がされた。
[比較例1]
図8に示す、繊維ろ材(密度90kg/m)を20L分(見掛け容積)充填してなるろ材層を具備するφ160mmのろ過装置を用いて、原水のろ過を行った。微細気泡を発生させる気液混合ノズルが無いこと以外は、実施例1と同じである。
The filtration performance after about one month was 4 mg / L for the SS of the treated water with respect to the SS concentration of 10 mg / L for the raw water. The processing performance was excellent without any degradation.
[Comparative Example 1]
The raw water was filtered using a φ160 mm filtration device having a filter medium layer filled with 20 L (apparent volume) of fiber filter medium (density 90 kg / m 3 ) shown in FIG. Example 1 is the same as Example 1 except that there is no gas-liquid mixing nozzle that generates fine bubbles.

原水の通水量は20m/d、ろ材層内の流速は1000m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、空気供給管Dから空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材から懸濁物質を剥離した。剥離した懸濁物質は排出管Gより排出した後、再度水張りを行なった。以上の操作を5回繰り返した。なお、1回当たりの水張り量は3m/回なので、水回収率は97%であった。 The flow rate of the raw water was 20 m 3 / d, the flow rate in the filter medium layer was 1000 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, air was supplied from the air supply pipe D, the fiber filter medium to which SS was attached was shaken, and the suspended substances were peeled off from the fiber filter medium. The separated suspended substance was discharged from the discharge pipe G, and then refilled with water. The above operation was repeated 5 times. Since the amount of water filling per time was 3 m / time, the water recovery rate was 97%.

約1ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは5mg/Lであった。
[比較例2]
図8に示す、φ0.6mmのアンスラサイトを20L分(見掛け容積)充填してなるろ材層を具備するφ160mmのろ過装置を用いて、原水のろ過を行った。微細気泡を発生させる気液混合ノズルが無いこと以外は、実施例2と同じである。
The filtration performance after about 1 month was 5 mg / L for the SS of the treated water with respect to the SS concentration of 10 mg / L for the raw water.
[Comparative Example 2]
The raw water was filtered using a φ160 mm filtration device having a filter medium layer filled with 20 L (apparent volume) of φ0.6 mm anthracite shown in FIG. Example 2 is the same as Example 2 except that there is no gas-liquid mixing nozzle that generates fine bubbles.

原水の通水量は7m/d、ろ材層内の流速は350m/dとし、処理水は処理水流出管Fから連続排出した。原水中のSSが繊維ろ材に捕捉されると、ろ過性能が落ちるため、12時ごとに逆洗工程を実施した。逆洗方法は、空気供給管Dから空気を供給して、SSが付着した繊維ろ材をゆらし、繊維ろ材から懸濁物質を剥離した。剥離した懸濁物質は排出管Gより排出した後、再度水張りを行なった。以上の操作を5回繰り返した。なお、1回当たりの水張り量は3m/回なので、水回収率91.4%であった。 The flow rate of the raw water was 7 m 3 / d, the flow rate in the filter medium layer was 350 m / d, and the treated water was continuously discharged from the treated water outflow pipe F. When SS in the raw water was captured by the fiber filter medium, the filtration performance deteriorated, so a backwash process was performed every 12 o'clock. In the backwashing method, air was supplied from the air supply pipe D, the fiber filter medium to which SS was attached was shaken, and the suspended substances were peeled off from the fiber filter medium. The separated suspended substance was discharged from the discharge pipe G, and then refilled with water. The above operation was repeated 5 times. Since the amount of water filling per time was 3 m / time, the water recovery rate was 91.4%.

約1ヶ月後のろ過性能は、原水のSS濃度10mg/Lに対して処理水のSSは3mg/Lであった。
[実施例4]
図3に示す、造粒活性炭(水ing株式会社製「エバダイヤ」)を20L分(見掛け容積)充填してなるろ材層を具備するろ過装置(断面積0.3m×0.6m)を用いて、海水のろ過を行った。海水に塩化第二鉄を3mg/L添加して原水とした。
The filtration performance after about one month was 3 mg / L for the SS of the treated water with respect to the SS concentration of the raw water of 10 mg / L.
[Example 4]
Using a filtration apparatus (cross-sectional area 0.3 m × 0.6 m) having a filter medium layer that is filled with 20 L (apparent volume) of granulated activated carbon (“Evadia” manufactured by Mizuing Co., Ltd.) shown in FIG. The seawater was filtered. 3 mg / L of ferric chloride was added to seawater to make raw water.

原水の通水量は7m/d、ろ材層内の流速は350m/dとした。原水の濁度を濁度計により計測し、濁度が30NTUを超えると、気液混合ノズルから微細気泡を発生させ、弁Zを閉じて処理水を処理水流出管Fのバイパス管F−1に通した。濁度が30NTU以下の場合に、微細気泡の供給を停止し、弁Zを開き処理水を処理水流出管Fに通した。 The flow rate of the raw water was 7 m 3 / d, and the flow rate in the filter medium layer was 350 m / d. When the turbidity of the raw water is measured with a turbidimeter and the turbidity exceeds 30 NTU, fine bubbles are generated from the gas-liquid mixing nozzle, the valve Z is closed, and the treated water is bypassed by the bypass pipe F-1 of the treated water outflow pipe F. Passed through. When the turbidity was 30 NTU or less, the supply of fine bubbles was stopped, the valve Z was opened, and the treated water was passed through the treated water outflow pipe F.

原水の濁度は5〜50NTUの範囲で変動したが、処理水濁度は常に5NTU以下であり、安定したろ過を行うことができた。水回収率は97%であった。
[比較例4]
常に、微細気泡を供給しなかった点を除いて実施例4と同様に海水をろ過処理した。
The turbidity of the raw water varied in the range of 5 to 50 NTU, but the treated water turbidity was always 5 NTU or less, and stable filtration could be performed. The water recovery rate was 97%.
[Comparative Example 4]
Seawater was always filtered as in Example 4 except that fine bubbles were not supplied.

原水の濁度は5〜50NTUの範囲で変動し、処理水濁度は1〜20NTUの範囲で変動した。実施例4と比較して、安定した処理水質を得ることができなかった。水回収率は92%であった。   The turbidity of the raw water varied in the range of 5-50 NTU, and the turbidity of the treated water varied in the range of 1-20 NTU. Compared to Example 4, stable treated water quality could not be obtained. The water recovery rate was 92%.

以上の結果を表1にまとめて示す。   The above results are summarized in Table 1.

本発明の装置及び方法によれば、懸濁物質除去及び水回収率の双方が向上し、特に従来法の課題であった水回収率を従来法と比較すると、繊維ろ材の場合に97%から99%以上へと2%以上の向上、アンスラサイトの場合に91.4%から97.1%へと約6%の向上、造粒活性炭の場合に92%から97%へと5%の向上を確認できた。さらに、濁度に応じた微細気泡導入の制御及び無機凝集剤を添加した実施例4では、常時安定した懸濁物質除去効果が確認された。 According to the apparatus and method of the present invention, both suspended solids removal and water recovery rate are improved. Especially when compared with the conventional method, the water recovery rate, which was a problem of the conventional method, is 97% in the case of fiber filter media. 2% or more improvement to 99% or more, about 6% improvement from 91.4% to 97.1% in the case of anthracite, 5% improvement from 92% to 97% in the case of granulated activated carbon . Furthermore, in Example 4 in which the introduction of fine bubbles according to turbidity and the addition of an inorganic flocculant were added, a stable suspended substance removal effect was confirmed.

本発明のろ過装置及びろ過方法は、原水の懸濁物質除去処理として、また脱塩処理などの前処理として好適である。本発明の洗浄方法によりろ材の長寿命化が達成され、ろ過処理のコスト削減にも資する。   The filtration device and the filtration method of the present invention are suitable as a raw material suspended matter removal treatment and a pretreatment such as a desalting treatment. The cleaning method of the present invention achieves a long filter life and contributes to cost reduction of the filtration treatment.

1:ろ過装置、2:ろ材層、3:集水装置、4:微細気泡発生装置(気液混合ノズル)、A:原水導入管、B:液体導入管、C:気体導入管、D:空気供給管、E:洗浄水導入管、F:処理水流出管、F−1:バイパス管、G:排出管、H:洗浄水排出管、X:フロス排出管、Z:弁 1: filtration device, 2: filter medium layer, 3: water collection device, 4: fine bubble generator (gas-liquid mixing nozzle), A: raw water introduction tube, B: liquid introduction tube, C: gas introduction tube, D: air Supply pipe, E: Wash water introduction pipe, F: Treated water outflow pipe, F-1: Bypass pipe, G: Discharge pipe, H: Wash water discharge pipe, X: Floss discharge pipe, Z: Valve

Claims (15)

懸濁物質を含む原水から懸濁物質を除去するろ過装置であって、
懸濁物質を捕捉するろ材を充填してなるろ材層と、
当該ろ材層の上部に原水を供給する原水導入管Aと、
原水に微細気泡を導入する微細気泡発生装置と、
当該ろ材層よりも下方に設けられている、処理水を集水する集水装置と、
当該集水装置に空気を供給する空気供給管Dと、
当該集水装置から当該ろ材層よりも上方の位置まで立ち上げられている、当該集水装置から処理水を排出する処理水流出管Fと、
当該ろ材層に洗浄水を上向流で通水する洗浄水導入管Eと、
当該ろ材層よりも上方から洗浄水を排出する洗浄水排出管Hと、
を具備する、ろ過装置。
A filtration device for removing suspended matter from raw water containing suspended matter,
A filter medium layer filled with a filter medium that traps suspended substances;
Raw water introduction pipe A for supplying raw water to the upper part of the filter medium layer,
A fine bubble generator for introducing fine bubbles into raw water;
A water collecting device for collecting treated water, provided below the filter medium layer;
An air supply pipe D for supplying air to the water collecting device;
A treated water outflow pipe F that discharges treated water from the water collecting device, which is raised from the water collecting device to a position above the filter medium layer,
A washing water introduction pipe E for passing washing water upward through the filter medium layer;
A wash water discharge pipe H for discharging wash water from above the filter medium layer;
A filtration apparatus comprising:
さらに、前記ろ材層よりも上方に、フロス排出管Xを具備する、請求項1に記載のろ過装置。   Furthermore, the filtration apparatus of Claim 1 which comprises the floss discharge pipe X above the said filter medium layer. 前記微細気泡発生装置は、前記ろ材層の上部に設けられた気液混合ノズルである、請求項1又は2に記載のろ過装置。   The filtration device according to claim 1 or 2, wherein the fine bubble generating device is a gas-liquid mixing nozzle provided on an upper portion of the filter medium layer. 前記ろ過装置は、前記ろ材層及び前記集水装置を含むろ過部分と、当該ろ過部分の上流側に位置づけられ前記微細気泡発生装置を具備する微細気泡導入部分と、に区画されている、請求項1又は2に記載のろ過装置。   The filtration device is partitioned into a filtration portion including the filter medium layer and the water collecting device, and a fine bubble introduction portion that is positioned upstream of the filtration portion and includes the fine bubble generation device. The filtration apparatus according to 1 or 2. さらに、前記ろ材層の上流側に設けられている原水の濁度を計測する濁度計と、当該濁度計により計測される濁度に応じて前記微細気泡発生装置を制御する制御機構と、を具備する、請求項1〜4のいずれかに記載のろ過装置。   Furthermore, a turbidimeter that measures the turbidity of raw water provided on the upstream side of the filter medium layer, a control mechanism that controls the fine bubble generator according to the turbidity measured by the turbidimeter, The filtration device according to claim 1, comprising: さらに、前記処理水流出管Fから前記原水導入管Aに接続されている処理水戻し管と、前記処理水流出管Fに設けられ、前記濁度計により計測される濁度に応じて処理水の流路を切り替える弁と、を具備する、請求項5に記載のろ過装置。   Furthermore, the treated water return pipe connected from the treated water outflow pipe F to the raw water introduction pipe A and the treated water outflow pipe F are provided in the treated water outflow pipe F, and treated water is measured according to the turbidity measured by the turbidimeter. The filtration device according to claim 5, further comprising a valve for switching the flow path. 前記ろ材は、短繊維塊からなる繊維ろ材である、請求項1〜6のいずれかに記載のろ過装置。   The said filter medium is a filtration apparatus in any one of Claims 1-6 which is a fiber filter medium which consists of a short fiber lump. 前記ろ材は、好気性微生物を担持してなる生物膜ろ材である、請求項1〜7のいずれかに記載のろ過装置。   The filtration apparatus according to any one of claims 1 to 7, wherein the filter medium is a biofilm filter medium that supports aerobic microorganisms. 請求項1〜8のいずれかに記載のろ過装置を用いて原水から懸濁物質を除去するろ過方法であって、
(1)懸濁物質を含む原水に微細気泡を導入する工程、
(2)微細気泡が導入された当該原水をろ材層の上部に導入して、下向流でろ材層を通過させて、ろ材層に懸濁物質を捕捉させる工程、
(3)懸濁物質が除去された処理水を集水装置に集水する工程、
(4)処理水流出管を介して処理水をろ過装置外部に排出する工程
を含む、ろ過方法。
A filtration method for removing suspended substances from raw water using the filtration device according to claim 1,
(1) a step of introducing fine bubbles into raw water containing suspended solids,
(2) introducing the raw water into which fine bubbles have been introduced into the upper part of the filter medium layer, allowing the filter medium layer to pass through the filter medium layer in a downward flow, and trapping suspended substances in the filter medium layer;
(3) collecting the treated water from which suspended substances have been removed into a water collecting device;
(4) A filtration method including a step of discharging treated water to the outside of the filtration device through the treated water outflow pipe.
工程(1)の微細気泡の導入は、原水の濁度に応じて制御される、請求項9に記載のろ過方法。   The filtration method according to claim 9, wherein the introduction of the fine bubbles in the step (1) is controlled according to the turbidity of the raw water. 工程(1)において、原水の濁度に応じて原水に処理水を導入する、請求項9又は10に記載のろ過方法。   The filtration method according to claim 9 or 10, wherein in step (1), treated water is introduced into the raw water according to the turbidity of the raw water. 工程(1)において、微細気泡によって懸濁物質を浮上濃縮させ、浮上濃縮した懸濁物質をろ過装置上部から排出する、請求項9〜11のいずれかに記載のろ過方法。   The filtration method according to any one of claims 9 to 11, wherein in the step (1), the suspended solid is floated and concentrated by fine bubbles, and the suspended and suspended suspension is discharged from the upper part of the filtration device. 請求項1〜8のいずれかに記載のろ過装置の洗浄方法であって、
(5)原水の導入を停止し、空気供給管Dを介して集水装置に空気を供給し、空気を含む水中にろ材を流動させて、ろ材から懸濁物質を水中に剥離させる工程、
(6)空気供給管Dからの空気の供給を停止し、微細気泡発生装置を作動させて水中に微細気泡を注入して、ろ材から剥離した懸濁物質を浮上濃縮させる工程、及び
(7)洗浄水導入管Eから洗浄水を上向流で通水し、浮上濃縮した懸濁物質を含む水を洗浄水排出管Hから排出させる工程
を含む洗浄方法。
A method for cleaning a filtration device according to any one of claims 1 to 8,
(5) Stopping the introduction of raw water, supplying air to the water collecting device via the air supply pipe D, causing the filter medium to flow in the water containing air, and separating the suspended matter from the filter medium into the water;
(6) Stopping the supply of air from the air supply pipe D, operating the microbubble generator to inject microbubbles into the water, and levitating and concentrating the suspended matter separated from the filter medium; and (7) A cleaning method including a step of allowing cleaning water to flow through the cleaning water introduction pipe E in an upward flow and discharging water containing suspended suspended substances from the cleaning water discharge pipe H.
工程(6)において、浮上濃縮した懸濁物質をろ過装置上部から排出させる、請求項13に記載の洗浄方法。   The washing | cleaning method of Claim 13 which discharges the suspended solid which floated and concentrated in the process (6) from the upper part of a filtration apparatus. 工程(6)において、微細気泡を注入する水に無機凝集剤を添加する、請求項13又は14に記載の洗浄方法。   The washing | cleaning method of Claim 13 or 14 which adds an inorganic flocculant to the water which inject | pours a microbubble in a process (6).
JP2012102226A 2011-06-21 2012-04-27 Suspended water filtration apparatus and method Active JP5850793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102226A JP5850793B2 (en) 2011-06-21 2012-04-27 Suspended water filtration apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011137107 2011-06-21
JP2011137107 2011-06-21
JP2012102226A JP5850793B2 (en) 2011-06-21 2012-04-27 Suspended water filtration apparatus and method

Publications (2)

Publication Number Publication Date
JP2013027862A true JP2013027862A (en) 2013-02-07
JP5850793B2 JP5850793B2 (en) 2016-02-03

Family

ID=47785459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102226A Active JP5850793B2 (en) 2011-06-21 2012-04-27 Suspended water filtration apparatus and method

Country Status (1)

Country Link
JP (1) JP5850793B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007301A1 (en) * 2012-07-05 2014-01-09 東レ株式会社 Desalinization method and desalinization device
JP2016215116A (en) * 2015-05-20 2016-12-22 株式会社クラレ Microorganism carrier
CN107246358A (en) * 2016-12-16 2017-10-13 腾进科技有限公司 Round-the-clock natural air pressure power generation system with height draught head
CN110339604A (en) * 2019-05-13 2019-10-18 陕西大唐水务有限责任公司 A kind of filter tank water distribution gas distribution system
JP2019205976A (en) * 2018-05-30 2019-12-05 株式会社ヤマト Filter back washing method and device
WO2020045411A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Water treatment device
CN114382702A (en) * 2022-01-07 2022-04-22 河南顺达新能源科技有限公司 Novel waste water pump suction device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387552A (en) * 1976-12-07 1978-08-02 Kurita Water Ind Ltd Water treating apparatus
JPS6255885A (en) * 1985-09-04 1987-03-11 株式会社日立テレコムテクノロジー Separate supply for comb-shaped spring block
JPH01242187A (en) * 1988-03-24 1989-09-27 Fuso Kensetsu Kogyo Kk Treatment of aqueous suspension in single tank and equipment therefor
JPH0457300U (en) * 1990-09-27 1992-05-15
US5130029A (en) * 1989-04-28 1992-07-14 Oiva Suutarinen Flotation method for purification of a liquid from solid and liquid impurities
JP2002177990A (en) * 2000-12-14 2002-06-25 Yasumasa Kondo Water cleaning method and water cleaning plant
JP2002282612A (en) * 2001-03-28 2002-10-02 Fuji Electric Co Ltd Method for operating spontaneous equilibrium type quick filter basin
JP2003200007A (en) * 2002-01-11 2003-07-15 Hitachi Plant Eng & Constr Co Ltd Water treatment apparatus
JP2007105567A (en) * 2005-10-11 2007-04-26 Takenaka Komuten Co Ltd Muddy water treatment system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387552A (en) * 1976-12-07 1978-08-02 Kurita Water Ind Ltd Water treating apparatus
JPS6255885A (en) * 1985-09-04 1987-03-11 株式会社日立テレコムテクノロジー Separate supply for comb-shaped spring block
JPH01242187A (en) * 1988-03-24 1989-09-27 Fuso Kensetsu Kogyo Kk Treatment of aqueous suspension in single tank and equipment therefor
US5130029A (en) * 1989-04-28 1992-07-14 Oiva Suutarinen Flotation method for purification of a liquid from solid and liquid impurities
JPH0457300U (en) * 1990-09-27 1992-05-15
JP2002177990A (en) * 2000-12-14 2002-06-25 Yasumasa Kondo Water cleaning method and water cleaning plant
JP2002282612A (en) * 2001-03-28 2002-10-02 Fuji Electric Co Ltd Method for operating spontaneous equilibrium type quick filter basin
JP2003200007A (en) * 2002-01-11 2003-07-15 Hitachi Plant Eng & Constr Co Ltd Water treatment apparatus
JP2007105567A (en) * 2005-10-11 2007-04-26 Takenaka Komuten Co Ltd Muddy water treatment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007301A1 (en) * 2012-07-05 2014-01-09 東レ株式会社 Desalinization method and desalinization device
JP2016215116A (en) * 2015-05-20 2016-12-22 株式会社クラレ Microorganism carrier
CN107246358A (en) * 2016-12-16 2017-10-13 腾进科技有限公司 Round-the-clock natural air pressure power generation system with height draught head
CN107246358B (en) * 2016-12-16 2019-04-19 腾进科技有限公司 Round-the-clock natural air pressure power generation system with height draught head
JP2019205976A (en) * 2018-05-30 2019-12-05 株式会社ヤマト Filter back washing method and device
WO2020045411A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Water treatment device
CN110339604A (en) * 2019-05-13 2019-10-18 陕西大唐水务有限责任公司 A kind of filter tank water distribution gas distribution system
CN114382702A (en) * 2022-01-07 2022-04-22 河南顺达新能源科技有限公司 Novel waste water pump suction device

Also Published As

Publication number Publication date
JP5850793B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5850793B2 (en) Suspended water filtration apparatus and method
JP5844196B2 (en) Desalination apparatus and desalination method
AU2013320381B2 (en) Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment
JP4635666B2 (en) Water treatment method
KR20120069587A (en) Membrane bioreactor (mbr) and moving bed bioreactor (mbbr) configurations for wastewater treatment system
JPWO2014128851A1 (en) Water treatment method and water treatment apparatus
JP2007289847A (en) Raw tap water purification method and its apparatus
JP5748338B2 (en) Suspended water filtration apparatus and method
JP5801249B2 (en) Desalination apparatus and desalination method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JPWO2014128850A1 (en) Water treatment method and water treatment apparatus
JP5464836B2 (en) Cleaning device and cleaning method
JP5324117B2 (en) Water treatment facility having a diffuser and a membrane concentrator equipped with the diffuser
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2016150283A (en) Membrane treatment apparatus and method
JP5797874B2 (en) Waste water treatment apparatus and waste water treatment method
JPH11188206A (en) Flocculation and settling device
KR101591791B1 (en) Method for treating recycle-water
KR101469634B1 (en) Water treatment system use of tubular filter module
JPH10202010A (en) Water treatment device
JPH05285478A (en) Apparatus for treating water containing suspended component
JP2012096222A (en) Filtering apparatus and filtering method
JPH11253704A (en) Flocculator and operation method thereof
JP4124957B2 (en) Filter body washing method and apparatus
WO2019132742A1 (en) System and a method for water treatment by flotation and filtration membrane cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5850793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250