JP2019205976A - Filter back washing method and device - Google Patents

Filter back washing method and device Download PDF

Info

Publication number
JP2019205976A
JP2019205976A JP2018102920A JP2018102920A JP2019205976A JP 2019205976 A JP2019205976 A JP 2019205976A JP 2018102920 A JP2018102920 A JP 2018102920A JP 2018102920 A JP2018102920 A JP 2018102920A JP 2019205976 A JP2019205976 A JP 2019205976A
Authority
JP
Japan
Prior art keywords
filter
water
backwash
backwashing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018102920A
Other languages
Japanese (ja)
Other versions
JP6634116B2 (en
Inventor
正和 黒田
Masakazu Kuroda
正和 黒田
杏梨 吉田
Anri Yoshida
杏梨 吉田
洋之進 川端
Hironoshin Kawabata
洋之進 川端
忠男 新井
Tadao Arai
忠男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2018102920A priority Critical patent/JP6634116B2/en
Publication of JP2019205976A publication Critical patent/JP2019205976A/en
Application granted granted Critical
Publication of JP6634116B2 publication Critical patent/JP6634116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

To provide a filter back washing method and device capable of effectively carrying out back washing without lowering the water level of a filter.SOLUTION: A filter back washing method and device 80 exerts excellent back washing capability by blending microbubbles and mini-bubbles in a back washing water. Further, there is no excessive hoisting of a filter medium since a fine bubble is smaller than a bubble at the time of idle washing and thus, a back washing operation can be carried out continuously from a filtration operation without needing the water level lowering of a filter 50. Thereby, the back washing having high back washing capability can be easily carried out.SELECTED DRAWING: Figure 1

Description

本発明は、濾材が充填されたろ過器の逆洗方法及び逆洗装置に関するものである。   The present invention relates to a backwashing method and a backwashing device for a filter filled with a filter medium.

水処理施設等において、原水中の濁質を分離除去する手段としてろ過器(砂ろ過器)が広く一般に使用されている。このろ過器はアンスラサイトや珪砂等の砂状もしくは粒状の濾材を充填した濾層を有し、このろ過器の前段において原水に凝集剤等を添加して濁質を凝集させ、この凝集物を濾層で捕集することで原水中の濁質を除去する。しかしながら、ろ過器は継続的な使用により濾材間に捕集物が溜まって濾層の間隙が閉塞し、ろ過抵抗が次第に大きくなる。このことは、ろ過流量の減少によるろ過効率の低下を引き起こす他、濾水の水質悪化の原因ともなる。従って、定期的に濾層の洗浄を行い、ろ過能力を回復する必要がある。濾層の洗浄方法としては濾層の下方から逆洗水(通常は濾水が用いられる)を送水し、濾層に溜まった捕集物を逆洗水ごとろ過器の上方に設けられた排出配管から排出する逆流洗浄(水逆洗)により行うことが一般的である。尚、水道施設設計指針によれば有効径0.6mm、均等係数1.3の濾層に対しては、水温20℃の逆洗水で逆流洗浄流速約0.6m/minの条件で逆洗を行うことで濾層の膨張率が約20%となり、捕集物を濾材から剥離除去するのに適当な流動状態になるとされている。   In water treatment facilities and the like, filters (sand filters) are widely used as a means for separating and removing turbidity in raw water. This filter has a filter layer filled with sandy or granular filter media such as anthracite and silica sand, and agglomerates and the like are added to the raw water to agglomerate turbidity in the previous stage of the filter. The turbidity in the raw water is removed by collecting in the filter layer. However, with continuous use of the filter, collected matter accumulates between the filter media, the gap between the filter layers is blocked, and the filtration resistance gradually increases. This causes a decrease in filtration efficiency due to a decrease in the filtration flow rate, and also causes a deterioration in the water quality of the filtrate. Therefore, it is necessary to periodically wash the filter layer and restore the filtration capacity. As a washing method of the filter layer, backwash water (usually filtered water) is sent from below the filter layer, and the collected matter collected in the filter layer is discharged together with the backwash water above the filter. It is common to carry out by backwashing (water backwashing) discharged from the piping. According to the water supply facility design guidelines, for a filter layer with an effective diameter of 0.6 mm and a uniformity coefficient of 1.3, backwashing with backwashing water at a water temperature of 20 ° C. and a backwashing flow rate of about 0.6 m / min By performing the step, the expansion rate of the filter layer becomes about 20%, and it is supposed that the fluidized state is suitable for separating and removing the collected material from the filter medium.

しかしながら、最適な条件で水逆洗を行ったとしても、捕集物は完全には除去できず徐々に堆積してろ過効率を低下させる。また、逆洗では除去が困難な濁質の塊、所謂マッドボールの形成要因となる。そして、このマッドボールは濾層を閉塞してろ過効率を著しく悪化させ、水処理施設全体の運用に支障をきたす場合もある。   However, even if the water is back-washed under optimum conditions, the collected matter cannot be completely removed, and gradually accumulates to lower the filtration efficiency. Moreover, it becomes a formation factor of the turbid lump which is difficult to remove by backwashing, so-called mud balls. And this mud ball clogs the filter layer, remarkably deteriorates the filtration efficiency, and may hinder the operation of the entire water treatment facility.

この問題点に対し、例えば下記[非特許文献1]、[特許文献1]、[特許文献2]には、捕集物を出来るだけ排出するために水逆洗に表面洗浄または空気洗浄を組み合わせて行うことが記載されている。特に、[特許文献1]、[特許文献2]では、空気洗浄と水逆洗の組み合わせにおいてマイクロバブルを用いる逆洗方法が記載されている。   In order to solve this problem, for example, [Non-patent Document 1], [Patent Document 1], and [Patent Document 2] below combine surface cleaning or air cleaning with water backwashing in order to discharge the collected material as much as possible. Is described. In particular, [Patent Literature 1] and [Patent Literature 2] describe a back washing method using microbubbles in a combination of air washing and water back washing.

水道維持管理指針2016 日本水道協会Water Supply Management Guidelines 2016 Japan Waterworks Association

特許第5748338号公報Japanese Patent No. 5748338 特開2014−151304号公報JP, 2014-151304, A

しかしながら、空気洗浄(以後、空洗とする)は気泡径が大きく濾層全体が攪乱され、濾材からの捕集物の剥離、細分化の効果は大きいものの、空洗時に濾層が膨張しすぎて濾材が舞い上がり排出配管から流出する虞がある。このため[非特許文献1]に記載されているように、ろ過器の水位を低下させてから空洗を行うことが必要となり、逆洗操作が煩雑化するという問題点がある。   However, air washing (hereinafter referred to as air washing) has a large bubble size and the entire filter layer is disturbed, and the effect of peeling and subdividing the collected material from the filter medium is great, but the filter layer expands too much during washing. The filter medium may rise and flow out of the discharge pipe. For this reason, as described in [Non-Patent Document 1], it is necessary to perform air washing after lowering the water level of the filter, and there is a problem that the back washing operation becomes complicated.

また、[特許文献1]、[特許文献2]のように、逆洗水にマイクロバブルを混合した気液混合流(気泡流)を用いて逆洗を行う方法では、マイクロバブルが濾材に抑留された捕集物に付着して剥離を促進する効果はあるものの、マイクロバブルが合体して気泡径が大きくなることはほとんど無く上昇速度は非常に小さい。このため濾材を攪乱する力が弱く、大きな懸濁物質(捕集物)を細分化する効果は少ない。よって、大きな捕集物は逆洗水の流速では掃流されずに残留し易く、洗浄効率が低いという問題点がある。   Further, as in [Patent Document 1] and [Patent Document 2], in a method of performing backwashing using a gas-liquid mixed flow (bubble flow) in which microbubbles are mixed with backwashing water, the microbubbles are retained in the filter medium. Although there is an effect of promoting separation by adhering to the collected material, the bubble diameter is hardly increased due to coalescence of the microbubbles, and the rising speed is very small. For this reason, the force which disturbs a filter medium is weak, and there is little effect which subdivides a big suspended solid (collected matter). Therefore, there is a problem that a large amount of collected matter tends to remain without being swept away at the flow rate of the backwash water, and the washing efficiency is low.

また、濾層は、大きさの異なるろ過砂利を大きい順に下方から積層した支持層によって支持されていることが多い。しかしながら、空洗時の気泡は支持層のろ過砂利の成層を乱す場合があり、この場合には濾材が支持層を抜けて濾水とともに流失する虞が有る。この問題点に対し、支持層に多孔樹脂プレートを用いることが考えられる。しかしながら、支持層に多孔樹脂プレートを用いた場合、空洗時の気泡が特定の部位に偏ることが確認され、濾層全体を空洗できないという問題点がある。   In addition, the filter layer is often supported by a support layer in which filter gravels having different sizes are stacked from the bottom in descending order. However, the air bubbles at the time of air washing may disturb the stratification of the filter gravel of the support layer, and in this case, the filter medium may pass through the support layer and be washed away together with the filtered water. For this problem, it is conceivable to use a porous resin plate for the support layer. However, when a porous resin plate is used for the support layer, it is confirmed that bubbles at the time of air washing are biased to specific parts, and there is a problem that the entire filter layer cannot be air washed.

本発明は上記事情に鑑みてなされたものであり、ろ過器の水位を低下させることなく効果的な逆洗を行う事が可能なろ過器の逆洗方法及び逆洗装置の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the backwashing method and backwashing apparatus of a filter which can perform effective backwashing without reducing the water level of a filter. .

本発明は、
(1)濾材の充填により構成された濾層52と、前記濾層52を支持するための支持層54と、を有するろ過器50の逆洗方法であって、
前記支持層54の下方から送水される逆洗水中にマイクロバブル及びミニバブルを混合することを特徴とするろ過器50の逆洗方法を提供することにより、上記課題を解決する。
(2)濾材の充填により構成された濾層52と、前記濾層52を支持するための支持層54と、を有するろ過器50の逆洗装置であって、
逆洗水を貯留する逆洗水槽16と、前記逆洗水槽16と前記ろ過器50とを繋ぎ、前記逆洗水槽16の逆洗水を前記支持層54の下方に送出する逆洗配管38と、前記逆洗配管38に逆洗水を圧送する逆洗ポンプ34と、前記ろ過器50のろ過面よりも上方に設けられた排出配管36と、を有し、
さらに、前記逆洗配管38に設けられ外部から供給されるエアをミニバブル及びマイクロバブル化して逆洗水中に混合する微細気泡生成手段60を備えたことを特徴とする逆洗装置80を提供することにより、上記課題を解決する。
The present invention
(1) A backwashing method for a filter 50 having a filter layer 52 configured by filling a filter medium, and a support layer 54 for supporting the filter layer 52,
The above problem is solved by providing a backwashing method for the filter 50, wherein microbubbles and minibubbles are mixed in backwash water fed from below the support layer 54.
(2) A backwash device for a filter 50 having a filter layer 52 formed by filling a filter medium and a support layer 54 for supporting the filter layer 52,
A backwash water tank 16 for storing backwash water, a backwash pipe 38 for connecting the backwash water tank 16 and the filter 50 and sending backwash water from the backwash water tank 16 below the support layer 54; A backwash pump 34 for pumping backwash water to the backwash pipe 38, and a discharge pipe 36 provided above the filtration surface of the filter 50,
Further, the present invention provides a backwash device 80 comprising fine bubble generating means 60 that is provided in the backwash pipe 38 and converts air supplied from the outside into minibubbles and microbubbles and mixes them in backwash water. Thus, the above problem is solved.

本発明に係るろ過器の逆洗方法及び逆洗装置は、逆洗水にマイクロバブル及びミニバブルを混合することで優れた逆洗能力を有することができる。また、本発明に係るろ過器の逆洗方法及び逆洗装置は、逆洗時にろ過器の水位を低下させる必要がなく、ろ過動作から連続して逆洗動作を行うことができる。これにより、高い逆洗能力を有する逆洗を容易に行うことができる。   The backwashing method and backwashing apparatus for a filter according to the present invention can have excellent backwashing ability by mixing microbubbles and minibubbles with backwash water. Moreover, the backwashing method and backwashing apparatus of the filter which concern on this invention do not need to reduce the water level of a filter at the time of backwashing, and can perform backwashing operation | movement continuously from filtration operation. Thereby, the backwashing which has a high backwashing capability can be performed easily.

本発明に係る逆洗装置を備えたろ過システムの概略構成図である。It is a schematic block diagram of the filtration system provided with the backwashing apparatus which concerns on this invention. 本発明に係る逆洗装置を備えたろ過システムの他の例を示す図である。It is a figure which shows the other example of the filtration system provided with the backwashing apparatus which concerns on this invention. 本発明に係る微細気泡生成手段の一例を示す模式断面図である。It is a schematic cross section which shows an example of the fine bubble production | generation means based on this invention. 微細気泡混合水の逆洗効果を示すグラフである。It is a graph which shows the backwashing effect of fine bubble mixing water. エア供給量と逆洗効果の関係を示すグラフである。It is a graph which shows the relationship between the air supply amount and the backwashing effect.

本発明に係るろ過器の逆洗方法及び逆洗装置について図面に基づいて説明する。ここで、図1は本発明に係る逆洗装置80を備えたろ過システム100の概略構成図である。尚、ここでは気泡径が概ね1μm〜100μmのものをマイクロバブルと称し、気泡径が概ね100μm〜数mmのものをミニバブルと称する。   A filter backwashing method and a backwashing apparatus according to the present invention will be described with reference to the drawings. Here, FIG. 1 is a schematic configuration diagram of a filtration system 100 including a backwash device 80 according to the present invention. Here, those having a bubble diameter of approximately 1 μm to 100 μm are referred to as microbubbles, and those having a bubble diameter of approximately 100 μm to several mm are referred to as minibubbles.

先ず、本発明を適用するろ過システム100は、例えば、原水を供給する供給配管20と、この供給配管20に接続され原水に対し周知の凝集剤を添加する凝集剤添加部30と、原水と凝集剤とを混合するラインミキサ等の周知の混合手段15と、凝集剤によって生じた凝集物を捕集するろ過器50と、このろ過器50を通過した濾水を濾水槽16に送る濾水配管22と、本発明に係る逆洗装置80と、を有している。   First, the filtration system 100 to which the present invention is applied includes, for example, a supply pipe 20 that supplies raw water, a flocculant addition unit 30 that is connected to the supply pipe 20 and adds a known flocculant to the raw water, and raw water and agglomerates. Well-known mixing means 15 such as a line mixer for mixing the agent, a filter 50 for collecting the agglomerates generated by the coagulant, and a drainage pipe for sending the filtrate that has passed through the filter 50 to the filtrate tank 16. 22 and the backwash device 80 according to the present invention.

また、ろ過器50は、周知の濾材の充填により構成された濾層52と、この濾層52を支持する支持層54と、を有している。尚、本例では濾層52を有効径の大きい濾材と有効径の小さい濾材とによる2層で構成した例を示しているが、濾層52の層数には特に限定は無く、単層としても良いし、3層、4層等、何層としても良い。   The filter 50 includes a filter layer 52 configured by filling a known filter medium, and a support layer 54 that supports the filter layer 52. In this example, the filter layer 52 is composed of two layers of a filter medium having a large effective diameter and a filter medium having a small effective diameter, but the number of filter layers 52 is not particularly limited, Alternatively, the number of layers may be three, four, or the like.

次に、本発明に係る逆洗装置80の構成を説明する。本発明に係る逆洗装置80は、逆洗水を貯留する逆洗水槽16と、この逆洗水槽16とろ過器50とを繋ぎ逆洗水槽16の逆洗水を支持層54の下方に送出する逆洗配管38と、この逆洗配管38に逆洗水を圧送する逆洗ポンプ34と、ろ過器50のろ過面よりも上方に設けられた排出配管36と、外部からエアを供給するエア供給管42と、逆洗配管38に設けられ外部から供給されるエアをミニバブル及びマイクロバブル化して逆洗水中に混合する微細気泡生成手段60と、を有している。尚、ここでは微細気泡生成手段60にエア供給管42を接続する例を示しているが、エア供給管42の接続位置は特にこれに限定されるものではない。また、逆洗に用いる逆洗水はろ過器50でろ過された濾水を用いるのが一般的である。よって、図1に示すように、逆洗水槽16は濾水槽16が兼ねることが一般的である。   Next, the configuration of the backwash device 80 according to the present invention will be described. The backwashing device 80 according to the present invention connects the backwashing water tank 16 that stores backwashing water, the backwashing water tank 16 and the filter 50, and sends backwash water in the backwashing water tank 16 below the support layer 54. The backwash pipe 38, the backwash pump 34 that pumps backwash water into the backwash pipe 38, the discharge pipe 36 provided above the filtration surface of the filter 50, and the air that supplies air from the outside It has a supply pipe 42 and fine bubble generating means 60 that is provided in the backwash pipe 38 and that is supplied from the outside into mini-bubbles and microbubbles and mixes in the backwash water. In addition, although the example which connects the air supply pipe | tube 42 to the fine bubble production | generation means 60 is shown here, the connection position of the air supply pipe | tube 42 is not specifically limited to this. In addition, as the backwash water used for backwashing, it is common to use the filtrate filtered by the filter 50. Therefore, as shown in FIG. 1, the backwash water tank 16 generally serves as the drainage water tank 16.

次に、ろ過システム100の動作を簡単に説明する。先ず、井戸や河川等の水源からポンプ等により原水を汲み上げる。汲み上げられた原水は例えば原水槽10等に貯留される。そして、供給配管20の開閉弁20aが開いた状態で供給ポンプ12が動作することで原水槽10の原水が供給配管20を流下しろ過システム100に供給される。次に、ろ過システム100に供給された原水には、凝集剤添加部30によってポリ塩化アルミニウム(PAC)等の周知の凝集剤が添加される。尚、凝集剤の添加前に周知の塩素系殺菌剤等を添加して原水に対する殺菌等を行っても良い。次に、原水と凝集剤とは混合手段15により混合され、これにより、原水中の濁質は凝集剤とともに凝集して凝集物を形成する。そして、この凝集物は原水とともにろ過器50に送出される。このとき、ろ過器50の排出配管36及び逆洗配管38の開閉弁36a、38aは閉状態にあり、濾水配管22の開閉弁22aは開状態にある。   Next, the operation of the filtration system 100 will be briefly described. First, raw water is pumped up from a water source such as a well or river by a pump. The pumped raw water is stored in the raw water tank 10 or the like, for example. The raw water in the raw water tank 10 flows down the supply pipe 20 and is supplied to the filtration system 100 by operating the supply pump 12 with the on-off valve 20a of the supply pipe 20 opened. Next, a known flocculant such as polyaluminum chloride (PAC) is added to the raw water supplied to the filtration system 100 by the flocculant adding unit 30. In addition, you may perform the disinfection with respect to raw | natural water by adding a well-known chlorine type disinfectant etc. before the addition of a flocculant. Next, the raw water and the flocculant are mixed by the mixing means 15, whereby the turbidity in the raw water is aggregated together with the flocculant to form an aggregate. And this aggregate is sent to the filter 50 with raw | natural water. At this time, the open / close valves 36a and 38a of the discharge pipe 36 and the backwash pipe 38 of the filter 50 are in a closed state, and the open / close valve 22a of the drainage pipe 22 is in an open state.

そして、原水中の凝集物は濾層52により捕集され、原水から分離される。そして、凝集物が除去された濾水は支持層54を通過して、濾水配管22を流下し例えば濾水槽16に貯留される。そして、必要に応じて殺菌等のしかるべき処理が施された後、例えば給水配管16a等を介して所定の水需要に給される。   Aggregates in the raw water are collected by the filter layer 52 and separated from the raw water. Then, the filtrate from which the aggregate has been removed passes through the support layer 54, flows down the filtrate pipe 22, and is stored, for example, in the filtrate tank 16. Then, after appropriate processing such as sterilization is performed as necessary, the water is supplied to a predetermined water demand through, for example, the water supply pipe 16a.

また、ろ過器50の継続使用により、濾層52には捕集物(凝集物)が溜まり濾材間の間隙が閉塞する。これによりろ過器50のろ過抵抗が次第に大きくなり、供給配管20側のろ過器内圧力が上昇する。このろ過器内圧力の上昇は図示しない圧力計がモニタして、内圧が所定の値を超えた場合に逆洗装置80が逆洗動作を行う。   In addition, with continuous use of the filter 50, collected matter (aggregate) accumulates in the filter layer 52, and the gap between the filter media is blocked. As a result, the filtration resistance of the filter 50 gradually increases, and the pressure in the filter on the supply pipe 20 side increases. The rise in the internal pressure of the filter is monitored by a pressure gauge (not shown), and when the internal pressure exceeds a predetermined value, the backwash device 80 performs a backwash operation.

ここで、逆洗装置80の動作の一例を説明する。先ず、圧力計のろ過器内圧力が所定の値を超えると、ろ過システム100は供給ポンプ12を停止するとともに、供給配管20及び濾水配管22の開閉弁20a、22aを閉状態とする。これにより、ろ過器50への原水の供給が止まり、ろ過動作が停止する。次に、逆洗装置80の制御部が排出配管36及び逆洗配管38の開閉弁36a、38aを開状態とし、逆洗ポンプ34を動作させる。これにより、逆洗水槽16(濾水槽16)内の逆洗水が逆洗配管38を流下して微細気泡生成手段60に流入する。また、逆洗装置80はエア供給管42に設けられた開閉弁42aを開状態とする。これにより、エア供給管42から微細気泡生成手段60にエアが供給される。供給されたエアは微細気泡生成手段60によって微細化され、気泡径が概ね100μm〜数mmのミニバブルと気泡径が概ね1μm〜100μmのマイクロバブルとなり逆洗水中に混合する。そして、この微細気泡が混合した逆洗水はろ過器50の支持層54の下方に送出される。   Here, an example of the operation of the backwash device 80 will be described. First, when the pressure inside the filter of the pressure gauge exceeds a predetermined value, the filtration system 100 stops the supply pump 12, and closes the on-off valves 20a and 22a of the supply pipe 20 and the drainage pipe 22. Thereby, supply of the raw | natural water to the filter 50 stops, and filtration operation | movement stops. Next, the controller of the backwash device 80 opens the on-off valves 36a and 38a of the discharge pipe 36 and the backwash pipe 38, and operates the backwash pump 34. Thereby, the backwash water in the backwash water tank 16 (filtered water tank 16) flows down the backwash pipe 38 and flows into the fine bubble generating means 60. Further, the backwash device 80 opens the on-off valve 42 a provided in the air supply pipe 42. Thereby, air is supplied from the air supply pipe 42 to the fine bubble generating means 60. The supplied air is refined by the fine bubble generating means 60 and becomes a mini-bubble having a bubble diameter of approximately 100 μm to several mm and a microbubble having a bubble diameter of approximately 1 μm to 100 μm and mixed in the backwash water. Then, the backwash water mixed with the fine bubbles is sent out below the support layer 54 of the filter 50.

そして、微細気泡が混合した混合水は支持層54を通過して濾層52に到達する。そして、逆洗水及び微細気泡が濾材間の隙間を増大させ濾層52を膨張させるとともに、捕集物を攪乱、剥離する。剥離した捕集物は逆洗水とともに掃流され濾層52から離脱し、ろ過器50の上方の排出配管36から排出される。これにより、濾層52の捕集物は除去され、ろ過器50のろ過能力は回復する。尚、この際、マイクロバブル及びミニバブルは従来の空洗時の気泡よりも小さいため、過剰に濾材を巻き上げることが無い。このため、従来の空洗のようにろ過器50の水位を低下させる必要はない。また、支持層54をろ過砂利で構成した場合でも支持層54を乱すことは無い。   The mixed water mixed with the fine bubbles passes through the support layer 54 and reaches the filter layer 52. Then, the backwash water and fine bubbles increase the gap between the filter media and expand the filter layer 52, and disturb and peel off the collected matter. The separated collected substance is swept away together with the backwash water, separated from the filter layer 52, and discharged from the discharge pipe 36 above the filter 50. Thereby, the collected matter of the filter layer 52 is removed, and the filtration capability of the filter 50 is restored. At this time, since the microbubbles and minibubbles are smaller than the air bubbles at the time of conventional air washing, the filter medium is not excessively wound up. For this reason, it is not necessary to lower the water level of the filter 50 as in conventional air washing. Further, even when the support layer 54 is made of filtered gravel, the support layer 54 is not disturbed.

ここで、マイクロバブル及びミニバブルによる逆洗の効果について、マイクロバブルのゼータ電位は負(−)であるのに対し、PACなどの凝集剤により生成される凝集物のゼータ電位は正(+)を示す。このため、マイクロバブルは捕集物(凝集物)に付着しやすく、これにより捕集物の浮力が増大する。また、気泡径が数mmのミニバブルはろ過器50の支持層54を通って濾層52の中を上昇する過程で、一部の気泡が合体してさらに大きな径の気泡になり、濾層52を深部から適度に撹乱し、捕集物の剥離や分散を促進する。さらに、濾層52の濾材粒子濃度の高い固体・水・気泡で構成される層(I層)と、その上部に位置し浮遊する濾材粒子は無く水と気泡で構成される層(II層)の界面では、I層中でミニバブルの一部が合体し径が大きくなった気泡がI層からII層へ移動する際に、I層とII層との界面でジエット流を発生させる。そして、このジエット流によりI層の上層の濾材粒子や捕集物が撹乱されるとともにI層からII層へ放出される。尚、ジエット流で放出された濾材粒子は、重力により再びII層からI層へ戻る。このようにI層の上層部は表面洗浄のように激しく攪乱されるため捕集物の剥離や細分化が生じ、濾層52からの排出がされやすくなる。   Here, regarding the effect of backwashing with microbubbles and minibubbles, the zeta potential of microbubbles is negative (-), whereas the zeta potential of aggregates produced by an aggregating agent such as PAC is positive (+). Show. For this reason, microbubbles tend to adhere to the collected matter (aggregate), thereby increasing the buoyancy of the collected matter. In addition, in the process of minibubbles having a bubble diameter of several millimeters rising through the support layer 54 of the filter 50 and the inside of the filter layer 52, some of the bubbles are combined to form bubbles having a larger diameter. Is moderately disturbed from the deep part to promote separation and dispersion of the collected matter. Furthermore, the filter layer 52 has a layer (I layer) composed of solid, water, and bubbles having a high concentration of filter medium particles, and a layer (II layer) composed of water and bubbles without any filter medium particles floating above it. At the interface, a jet flow is generated at the interface between the I layer and the II layer when bubbles having a larger diameter due to the integration of some of the minibubbles in the I layer move from the I layer to the II layer. The jet stream disturbs the filter media particles and collected matter in the upper layer of the I layer and releases them from the I layer to the II layer. The filter medium particles released by the jet flow return from the II layer to the I layer again by gravity. In this way, the upper layer of the I layer is vigorously disturbed like surface cleaning, so that the collected material is peeled off or subdivided, and the filter layer 52 is easily discharged.

尚、微細気泡生成手段60を用い且つミニバブルの量とマイクロバブルの量を容易に制御するためには、図2に示すように例えば逆洗装置80の逆洗ポンプ34よりも上流側に第2のエア供給管40を接続しても良い。そして、この第2のエア供給管40の開閉弁40aを開状態とすることにより、第2のエア供給管40から逆洗配管38にエアが供給され逆洗水と混合する。この逆洗水中のエアは逆洗ポンプ34によって混合され細かな気泡(マイクロバブルなど)となる。そして、この気泡は逆洗水とともに微細気泡生成手段60に流入し、エア供給管42から流入したエアと合わされて微細化されマイクロバブル及びミニバブルとなる。尚、第2のエア供給管40からのエアは逆洗ポンプ34と微細気泡生成手段60との双方で微細化されるためマイクロバブルの比率が多くなる。よって、エア供給管42からのエア流入量、第2のエア供給管40からのエア流入量を調節することで、逆洗水中のマイクロバブルやミニバブルのそれぞれの量をある程度制御することができる。また、逆洗水のみで逆洗を行う場合には、エア供給管42の開閉弁42a及び第2のエア供給管40の開閉弁40aの双方を閉状態とする。   In order to use the fine bubble generating means 60 and to easily control the amount of mini-bubbles and the amount of micro-bubbles, as shown in FIG. The air supply pipe 40 may be connected. Then, by opening the on-off valve 40a of the second air supply pipe 40, air is supplied from the second air supply pipe 40 to the backwash pipe 38 and mixed with the backwash water. The air in the backwash water is mixed by the backwash pump 34 to form fine bubbles (such as microbubbles). Then, the bubbles flow into the fine bubble generating means 60 together with the backwash water, and are combined with the air flowing in from the air supply pipe 42 to be micronized into micro bubbles and mini bubbles. In addition, since the air from the second air supply pipe 40 is refined by both the backwash pump 34 and the fine bubble generating means 60, the ratio of microbubbles increases. Therefore, by adjusting the air inflow amount from the air supply pipe 42 and the air inflow amount from the second air supply pipe 40, the respective amounts of microbubbles and minibubbles in the backwash water can be controlled to some extent. When backwashing is performed only with backwashing water, both the open / close valve 42a of the air supply pipe 42 and the open / close valve 40a of the second air supply pipe 40 are closed.

次に、マイクロバブル、ミニバブルの逆洗効果の検証実験を以下のようにして行った。実験はミニバブルとマイクロバブルのそれぞれの量を調節しやすい図2に示す第2のエア供給管40を備えた構成にて行った。なお、微細気泡発生手段60は、図3に示す微細気泡発生器を使用した。ここで、図3に示す微細気泡生成手段60は、エア供給管42が接続し逆洗水中にエアを混合する混合部66と、この混合部66の下流側に設けられた第1のベンチュリー管68aと、この第1のベンチュリー管68aの下流側に設けられたエルボ部69と、このエルボ部69の下流側に設けられた第2のベンチュリー管68bと、を有している。そして、逆洗水中のエアが第1のベンチュリー管68a、第2のベンチュリー管68bを通過する際にこれを減圧して微細化し、ミニバブル及びマイクロバブルを生成する。   Next, the verification experiment of the backwashing effect of microbubbles and minibubbles was performed as follows. The experiment was performed with a configuration including the second air supply pipe 40 shown in FIG. 2 in which the amount of each of the mini bubbles and the micro bubbles can be easily adjusted. The fine bubble generating means 60 used the fine bubble generator shown in FIG. Here, the fine bubble generating means 60 shown in FIG. 3 includes a mixing unit 66 that is connected to the air supply pipe 42 and mixes the air into the backwash water, and a first venturi pipe provided on the downstream side of the mixing unit 66. 68a, an elbow part 69 provided on the downstream side of the first venturi pipe 68a, and a second venturi pipe 68b provided on the downstream side of the elbow part 69. And when the air in backwash water passes the 1st venturi pipe 68a and the 2nd venturi pipe 68b, this is decompressed and refined | miniaturized and a mini bubble and a micro bubble are produced | generated.

(検証実験)
先ず、水道水に濁質としてカオリンを添加し濁度2度の模擬原水を調製した。この模擬原水をろ過速度(原水流量÷ろ過器断面積)が160m/日となるようにろ過器50に対して連続通水を行った。尚、ろ過器50の直径は104mmであり、濾層は0.6mmの珪砂600mmの単層と、1.2mmのアンスラサイト200mm+0.6mmの珪砂400mmの複層の両方で行った。また、支持層54は12mm〜24mmのろ過砂利を75mm、8mm〜12mmのろ過砂利を75mm、4mm〜8mmのろ過砂利を75mm、2mm〜4mmのろ過砂利を75mm、下から順に積層し構成した。また、凝集剤添加部30による凝集剤(PAC)の注入はライン注入とし、添加量は15mg/L〜20mg/Lとした。尚、このろ過器50を通過した濾水の濁度は0.1度であり、十分に濁質の除去された良好な値をとった。そして、ろ過器50のろ過器内圧力が20kPaとなったところで模擬原水の通水を停止し、逆洗を行った。
(Verification experiment)
First, kaolin was added to tap water as turbidity to prepare simulated raw water having a turbidity of 2 degrees. The simulated raw water was continuously passed through the filter 50 so that the filtration speed (raw water flow rate ÷ filter cross-sectional area) was 160 m / day. In addition, the diameter of the filter 50 was 104 mm, and the filtration layer was performed by both a 600 mm quartz sand 600 mm single layer and a 1.2 mm anthracite 200 mm + 0.6 mm quartz sand 400 mm multilayer. Further, the support layer 54 was formed by laminating 12 mm to 24 mm of filtration gravel of 75 mm, 8 mm to 12 mm of filtration gravel of 75 mm, 4 mm to 8 mm of filtration gravel of 75 mm, and 2 mm to 4 mm of filtration gravel of 75 mm in order from the bottom. Moreover, the injection | pouring of the flocculant (PAC) by the flocculant addition part 30 was made into line injection, and the addition amount was 15 mg / L-20 mg / L. In addition, the turbidity of the filtrate which passed this filter 50 was 0.1 degree | times, and took the favorable value from which turbidity was fully removed. And when the pressure in the filter of the filter 50 became 20 kPa, water flow of the simulated raw water was stopped and backwashing was performed.

逆洗は、逆洗水のみ、ミニバブルのみの混合水、マイクロバブルのみの混合水、ミニバブル及びマイクロバブルの混合水、空洗+水逆洗の5条件で逆洗速度0.6m/min(逆洗水量18L/min)にて行った。尚、エア供給管42からのエア供給量は1L/minとし、第2のエア供給管40からのエア供給量は0.5L/minとした。また、空洗+水逆洗の条件では、ろ過器50の水位を低下させた後、エア供給量24L/min(0.8m/min)で空洗を3分間行い、水位を元に戻しながら逆洗水による逆洗を5分間行った。そして、各条件の洗浄効果として濁質の回収率を下記式に基づいて算出した。
回収率(%)=(逆洗排水SS(mg/L)×逆洗排水量(L))/濁質量×100
尚、ここでの濁質量とは、模擬原水の濁質(カオリン)の総量+凝集剤量である。
Backwashing is performed with backwashing speed of 0.6 m / min (backwashing) under 5 conditions of backwashing water only, mixed water containing only mini bubbles, mixed water containing only microbubbles, mixed water containing minibubbles and microbubbles, and air washing + water backwashing The washing amount was 18 L / min). The air supply amount from the air supply pipe 42 was 1 L / min, and the air supply amount from the second air supply pipe 40 was 0.5 L / min. Moreover, under the conditions of air washing + water backwashing, the water level of the filter 50 is lowered, then air washing is performed for 3 minutes at an air supply rate of 24 L / min (0.8 m / min), and the water level is returned to the original level. Back washing with back washing water was performed for 5 minutes. And the recovery rate of turbidity was calculated based on the following formula as a cleaning effect under each condition.
Recovery rate (%) = (Backwash drainage SS (mg / L) × Backwash wastewater amount (L)) / turbid mass × 100
Here, the turbid mass is the total amount of turbidity (kaolin) of simulated raw water + the amount of flocculant.

ここで、図4(a)に単層条件のろ過器50における実験結果を示す。また、図4(b)に複層条件のろ過器50にける実験結果を示す。図4(a)より、単層条件のろ過器50において、ミニバブルのみの混合水、ミニバブル+マイクロバブルの混合水による逆洗は空洗+水逆洗による逆洗条件とほぼ同等の高い回収率を示した。また、マイクロバブルのみの混合水は、他の条件よりは若干劣るものの逆洗水のみの逆洗条件よりは高い回収率を示した。また、図4(b)より、複層条件のろ過器50においても、微細気泡が混合した混合水による逆洗は逆洗水のみの逆洗条件よりも高い回収率を示した。特に、マイクロバブルのみの混合水、ミニバブル+マイクロバブルの混合水による逆洗は空洗+水逆洗による逆洗条件よりも高い回収率を示した。   Here, the experimental result in the filter 50 of single layer conditions is shown to Fig.4 (a). Moreover, the experimental result in the filter 50 of a multilayer condition is shown in FIG.4 (b). As shown in FIG. 4A, in the filter 50 under the single layer condition, the backwashing with the mixed water of only the mini bubbles and the mixed water of the minibubbles + microbubbles has a high recovery rate substantially equal to the backwashing conditions with the air washing + water backwashing. showed that. In addition, the mixed water containing only microbubbles showed a higher recovery rate than the backwashing condition using only backwashing water, although it was slightly inferior to the other conditions. Moreover, from FIG.4 (b), also in the filter 50 of multi-layer conditions, the backwashing with the mixed water in which the fine bubbles were mixed showed a higher recovery rate than the backwashing condition with only the backwashing water. In particular, the backwashing with the mixed water of only microbubbles and the mixed water of minibubbles + microbubbles showed a higher recovery rate than the backwashing conditions with the air washing + backwashing with water.

以上のことから、ミニバブル+マイクロバブルの混合した混合水による逆洗は、逆洗水のみの逆洗(水逆洗)やマイクロバブルのみによる逆洗よりも回収率が高く、優れた逆洗能力を有することがわかる。この優れた逆洗能力は、先ず、気泡径が数mmのミニバブルは空洗の時の気泡よりも上昇速度が小さく、過度に濾層52を攪乱させることなく濾層52を深部より攪乱し、捕集物の剥離や分散を促進することによるものと考えられる。また、前述したように濾材粒子が流動する粒子濃度の高いI層の中において径が大きくなった一部の気泡が、濾材粒子のないII層へ移動するときの異相界面でジェット流となり、このジェット流により濾材粒子や捕集物がII層へ放出され、このうち濾材粒子は自重により再びI層に戻され、これにより流動する濾材粒子の上層の激しい撹乱によって捕集物に剥離や細分化が起き、濾層52からの排出が促進されることによるものと考えられる。   Based on the above, backwashing with water mixed with minibubbles + microbubbles has a higher recovery rate than backwashing with only backwashing water (water backwashing) or backwashing with only microbubbles, and has excellent backwashing ability. It can be seen that The excellent backwashing ability is as follows. First, a mini bubble having a bubble diameter of several millimeters has a lower rising speed than bubbles during air washing, and disturbs the filter layer 52 from the depth without excessively disturbing the filter layer 52. This is thought to be due to promoting the separation and dispersion of the collected matter. Further, as described above, a part of the bubbles having a large diameter in the I layer having a high particle concentration in which the filter medium particles flow, becomes a jet flow at the heterogeneous interface when moving to the II layer without the filter medium particles. Filter media particles and collected matter are released to the II layer by the jet flow. Among them, the filter media particles are returned to the I layer again by their own weight, and by this, the collected material is separated or fragmented by vigorous disturbance of the upper layer of the flowing filter media particles. This is thought to be due to the fact that the discharge from the filter layer 52 is promoted.

次に、ミニバブル及びマイクロバブル生成のためのエア供給量を変化させて以下の実験を行った。先ず、濁質として水道水にカオリンを添加し濁度5度の模擬原水を調製した。この模擬原水をろ過器50に対しろ過速度が120m/日となるように連続通水を行った。尚、凝集剤添加部30による凝集剤(PAC)の注入はライン注入とし、添加量は5mg/L〜10mg/Lとした。そして、ろ過器内圧力が所定の値となったところで通水を停止し、第2のエア供給管40及びエア供給管42のエア供給量を変化させて逆洗を行い、その回収率を算出した。尚、濾層52は1.2mmのアンスラサイト200mm+0.6mmの珪砂400mmの複層で行った。また、支持層54は先の実験と同様とした。   Next, the following experiment was performed by changing the air supply amount for generating mini-bubbles and micro-bubbles. First, kaolin was added to tap water as turbidity to prepare simulated raw water having a turbidity of 5 degrees. The simulated raw water was continuously passed through the filter 50 so that the filtration speed was 120 m / day. The flocculant (PAC) injection by the flocculant addition unit 30 was line injection, and the addition amount was 5 mg / L to 10 mg / L. Then, when the pressure in the filter reaches a predetermined value, the water flow is stopped, the air supply amount of the second air supply pipe 40 and the air supply pipe 42 is changed, backwashing is performed, and the recovery rate is calculated. did. The filter layer 52 was formed as a double layer of 1.2 mm anthracite 200 mm + 0.6 mm silica sand 400 mm. The support layer 54 was the same as the previous experiment.

先ず、ミニバブル+マイクロバブル混合水において、エア供給管42からのエア流入量を1L/minに固定し、エア供給管40からのエア流入量を0.2L/min、0.5L/min、1.0L/min、1.5L/minに変化させたときの回収率のグラフを図5(a)に示す。また、エア供給管42の開閉弁42aを閉状態としたマイクロバブルのみの混合水において、エア供給管40からのエア流入量を0.5L/min、1.0L/min、1.5L/minに変化させたときの回収率のグラフを図5(b)に示す。   First, in the mini bubble + micro bubble mixed water, the air inflow amount from the air supply pipe 42 is fixed to 1 L / min, and the air inflow amount from the air supply pipe 40 is 0.2 L / min, 0.5 L / min, 1 FIG. 5 (a) shows a graph of the recovery rate when changed to 0.0 L / min and 1.5 L / min. Further, in the mixed water containing only microbubbles with the on-off valve 42a of the air supply pipe 42 closed, the air inflow from the air supply pipe 40 is 0.5 L / min, 1.0 L / min, 1.5 L / min. FIG. 5B shows a graph of the recovery rate when changed to.

図5(a)、図5(b)から、ミニバブル+マイクロバブル混合水及びマイクロバブルのみの混合水による逆洗において、エア供給管40からのエア流入量は1.0L/minのときが最も高い回収率をとることがわかる。これは、エア供給量が少なすぎるとミニバブルの濃度が不足して濾層の攪乱による捕集物の除去能力が低下し、エア供給量が多すぎるとマイクロバブルの径が大きくなり微細なマイクロバブルの量が減少するためと考えられる。そして、図5(a)、図5(b)から回収率85%以上の場合のエア供給量は0.8L/min〜1.3L/minであり、よってマイクロバブル及びミニバブル生成のためのエア供給量は逆洗水量に対し4.4%〜7.2%が好ましいことがわかる。さらに、回収率90%以上の場合のエア供給量は0.9L/min〜1.1L/minであり、よってエア供給量は逆洗水量に対し5.0%〜6.1%とすることが特に好ましいことがわかる。   From FIG. 5A and FIG. 5B, in the backwashing with the mixed water of only the mini bubble + micro bubble mixed water and the micro bubble, the air inflow amount from the air supply pipe 40 is most at 1.0 L / min. It can be seen that the recovery rate is high. This is because if the amount of air supply is too small, the concentration of minibubbles will be insufficient and the ability to remove trapped materials will be reduced due to disturbance of the filter layer. If the amount of air supply is too large, the diameter of the microbubbles will increase and the fine microbubbles will decrease. This is thought to be due to a decrease in the amount. 5A and 5B, the air supply amount when the recovery rate is 85% or more is 0.8 L / min to 1.3 L / min. Therefore, the air for generating microbubbles and minibubbles is used. It can be seen that the supply amount is preferably 4.4% to 7.2% with respect to the amount of backwash water. Furthermore, when the recovery rate is 90% or more, the air supply amount is 0.9 L / min to 1.1 L / min. Therefore, the air supply amount is 5.0% to 6.1% with respect to the backwash water amount. Is particularly preferable.

次に、ミニバブル+マイクロバブル混合水において、エア供給管40からのエア流入量を1.0L/minに固定し、エア供給管42からのエア流入量を0.5L/min、1.0L/min、1.5L/min、2.0L/min、2.5L/minに変化させたときの回収率のグラフを図5(c)に示す。図5(c)から、ミニバブル及びマイクロバブル混合水における逆洗において、エア供給管42からのエア供給量を変化させても回収率に大きな差は認められなかった。よって、ミニバブル+マイクロバブル混合水におけるエア供給管42からのエア供給量は0.5L/min〜2.5L/min、即ち、逆洗水量に対し2.8%〜13.8%とする。尚、ミニバブルのみの混合水におけるエア供給菅42からのエア供給量は1.0L/min〜2.5L/minで逆洗水のみの逆洗よりも高い回収率を示す。よって、ミニバブルのみの混合水におけるエア供給量は逆洗水量に対し5.5%〜13.9%とすることが好ましい。   Next, in the mini-bubble + micro-bubble mixed water, the air inflow from the air supply pipe 40 is fixed at 1.0 L / min, and the air inflow from the air supply pipe 42 is 0.5 L / min, 1.0 L / min. FIG. 5C shows a graph of the recovery rate when changing to min, 1.5 L / min, 2.0 L / min, and 2.5 L / min. From FIG.5 (c), in the backwashing in the mini bubble and micro bubble mixed water, even if it changed the air supply amount from the air supply pipe | tube 42, the big difference was not recognized by the recovery rate. Therefore, the air supply amount from the air supply pipe 42 in the minibubble + microbubble mixed water is 0.5 L / min to 2.5 L / min, that is, 2.8% to 13.8% with respect to the backwash water amount. In addition, the air supply amount from the air supply tank 42 in the mixed water containing only the mini bubbles is 1.0 L / min to 2.5 L / min, indicating a higher recovery rate than the back washing using only the backwash water. Therefore, it is preferable that the air supply amount in the mixed water containing only minibubbles is 5.5% to 13.9% with respect to the backwash water amount.

尚、支持層54をろ過砂利で構成した場合、マイクロバブルはこのろ過砂利を通過する際に合体して気泡径が大きくなり微細なマイクロバブルの濃度が低下する。この点、ろ過砂利に替えて多孔樹脂プレートを支持層54として用いることで微細なマイクロバブルの減少を抑制し、マイクロバブルによる逆洗をより一層効果的に機能させることができる。よって、逆洗水にマイクロバブルを混合する場合には、支持層54に多孔樹脂プレートを用いることが好ましい。尚、多孔樹脂プレートを使用した場合、従来の空洗では気泡の偏りが生じ濾層52の一部のみしか空洗が行えなかったが、マイクロバブル、ミニバブルでは偏りは発生せず、濾層52全体にマイクロバブル、ミニバブルによる効果的な逆洗を行う事ができる。   When the support layer 54 is made of filtered gravel, the microbubbles coalesce when passing through the filtered gravel to increase the bubble diameter and reduce the concentration of fine microbubbles. In this regard, by using a porous resin plate as the support layer 54 instead of the filter gravel, the reduction of fine microbubbles can be suppressed, and backwashing with microbubbles can be made to function more effectively. Therefore, when mixing microbubbles with backwash water, it is preferable to use a porous resin plate for the support layer 54. When the porous resin plate is used, the conventional air washing causes unevenness of bubbles, and only a part of the filter layer 52 can be air-washed. However, the microbubbles and minibubbles do not cause unevenness, and the filter layer 52 Effective backwashing with micro-bubbles and mini-bubbles can be performed as a whole.

以上のように、本発明に係るろ過器の逆洗方法及び逆洗装置80は、逆洗水にマイクロバブル、ミニバブルの微細気泡を混合することで優れた逆洗能力を有することができる。また、微細気泡は空洗時の気泡よりも小さいため濾材を過剰に巻き上げることが無い。このため、ろ過器50の水位を低下させる必要がなく、ろ過動作から連続して逆洗動作を行うことができる。これにより、高い逆洗能力を有する逆洗を容易に行うことができる。また、微細気泡は空洗とは異なり支持層54のろ過砂利の成層を乱すことがなく、濾材が流出することも無い。さらに、支持層54に多孔樹脂プレートを用いた場合でも微細気泡の通過位置に偏りが発生せず、濾層52全体に微細気泡による効果的な逆洗を行う事ができる。   As described above, the filter backwashing method and backwashing apparatus 80 according to the present invention can have excellent backwashing ability by mixing microbubbles and minibubbles in the backwash water. Further, since the fine bubbles are smaller than the bubbles at the time of air washing, the filter medium is not excessively wound up. For this reason, it is not necessary to lower the water level of the filter 50, and the backwash operation can be performed continuously from the filtration operation. Thereby, the backwashing which has a high backwashing capability can be performed easily. Further, unlike air washing, the fine bubbles do not disturb the stratification of the filter gravel of the support layer 54, and the filter medium does not flow out. Further, even when a porous resin plate is used for the support layer 54, the position where fine bubbles pass is not biased, and the entire filter layer 52 can be effectively backwashed with fine bubbles.

さらに、図3に示す本発明に好適な微細気泡生成手段60は既存の逆洗配管38にも容易に設置することができる。さらに第2のエア供給管40を備えた図2の構成では、エア供給管42の開閉弁42a、エア供給管40の開閉弁40aの開閉状態を調節することにより、マイクロバブル及びミニバブルのそれぞれの量を調節し、逆洗水へのマイクロバブル及びミニバブルの混合の割合を変えることができる。また、逆洗水を、逆洗水のみ、ミニバブルのみの混合水、マイクロバブルのみの混合水、ミニバブル+マイクロバブルの混合水の中から容易に選択することができる。   Furthermore, the fine bubble generating means 60 suitable for the present invention shown in FIG. 3 can be easily installed in the existing backwash pipe 38. Further, in the configuration of FIG. 2 provided with the second air supply pipe 40, each of the micro bubbles and the mini bubbles is adjusted by adjusting the open / close state of the open / close valve 42a of the air supply pipe 42 and the open / close valve 40a of the air supply pipe 40. The amount can be adjusted to change the mixing ratio of microbubbles and minibubbles to the backwash water. Further, the backwash water can be easily selected from backwash water alone, mixed water containing only minibubbles, mixed water containing only microbubbles, and mixed water containing minibubbles + microbubbles.

尚、本例で示したろ過システム100、逆洗装置80、ろ過器50、微細気泡生成手段60及び付随設備の構成、配管経路、寸法、ろ過動作、逆洗動作の条件等は一例であるから、適宜必要な設備、装置、工程等を挿入可能な他、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。   The configuration of the filtration system 100, the backwash device 80, the filter 50, the fine bubble generating means 60 and the accompanying equipment, the piping path, the dimensions, the filtration operation, the conditions of the backwash operation, etc. shown in this example are examples. Besides, necessary facilities, devices, processes and the like can be inserted as appropriate, and the present invention can be modified and implemented without departing from the gist of the present invention.

16 逆洗水槽
34 逆洗ポンプ
36 排出配管
38 逆洗配管
42 エア供給管
42a 開閉弁
50 ろ過器
52 濾層
54 支持層
60 微細気泡生成手段
80 逆洗装置
100 ろ過システム
16 Backwash tank
34 Backwash pump
36 Discharge piping
38 Backwash piping
42 Air supply pipe
42a On-off valve
50 Filter
52 Filter layer
54 Support layer
60 Fine bubble generating means
80 Backwash equipment
100 Filtration system

本発明は、
(1)濾材の充填により構成され凝集剤の添加により形成された凝集物を捕集する濾層52と、前記濾層52を支持するための支持層54と、を有するろ過器50の逆洗方法であって、
前記支持層54の下方から送水される逆洗水中に気泡径が1μm〜100μmのマイクロバブルと気泡径が100μm〜数mmのミニバブルを混合し、
前記マイクロバブルは前記凝集物に付着して前記凝集物の浮力を増大させるとともに、気泡径が数mmのミニバブルは前記濾層52中を上昇する過程で一部が合体して大きな径の気泡となって前記濾層52を撹乱し、さらに前記大きな径の気泡は前記濾層52の濾材粒子濃度の高いI層と、その上部に位置し水と気泡で構成されるII層との界面で前記I層からII層へ移動する際にジエット流を発生させ、前記ジエット流によりI層の上層の濾材粒子及び凝集物を撹乱することを特徴とするろ過器50の逆洗方法を提供することにより、上記課題を解決する。
(2)濾材の充填により構成され凝集剤の添加により形成された凝集物を捕集する濾層52と、前記濾層52を支持するための支持層54と、を有するろ過器50の逆洗装置であって、
逆洗水を貯留する逆洗水槽16と、前記逆洗水槽16と前記ろ過器50とを繋ぎ、前記逆洗水槽16の逆洗水を前記支持層54の下方に送出する逆洗配管38と、前記逆洗配管38に逆洗水を圧送する逆洗ポンプ34と、前記ろ過器50のろ過面よりも上方に設けられた排出配管36と、を有し、
さらに、前記逆洗配管38に設けられ外部から供給されるエアを気泡径が100μm〜数mmのミニバブルと気泡径が1μm〜100μmのマイクロバブル化して逆洗水中に混合する微細気泡生成手段60と、前記マイクロバブル及びミニバブルのそれぞれの量を調節するエア流入量調節機構と、を備えたことを特徴とする逆洗装置80を提供することにより、上記課題を解決する。
The present invention
(1) Backwashing of a filter 50 having a filter layer 52 configured to collect aggregates formed by filling a filter medium and formed by adding a flocculant, and a support layer 54 for supporting the filter layer 52 A method,
Mixing microbubbles with a bubble diameter of 1 μm to 100 μm and minibubbles with a bubble diameter of 100 μm to several mm in backwash water fed from below the support layer 54 ,
The microbubbles adhere to the aggregates and increase the buoyancy of the aggregates, and the minibubbles having a bubble diameter of several millimeters are partly merged in the process of rising in the filter layer 52 to form large diameter bubbles. The filter layer 52 is disturbed, and the large-diameter bubbles are formed at the interface between the I layer having a high filter particle concentration in the filter layer 52 and the II layer, which is located above and includes water and bubbles. By providing a method of backwashing the filter 50 , wherein a jet flow is generated when moving from the I layer to the II layer, and the filter media particles and aggregates in the upper layer of the I layer are disturbed by the jet flow. Solve the above problems.
(2) Backwashing of the filter 50 having a filter layer 52 configured to collect aggregates formed by filling a filter medium and formed by adding a flocculant, and a support layer 54 for supporting the filter layer 52. A device,
A backwash water tank 16 for storing backwash water, a backwash pipe 38 for connecting the backwash water tank 16 and the filter 50 and sending backwash water from the backwash water tank 16 below the support layer 54; A backwash pump 34 for pumping backwash water to the backwash pipe 38, and a discharge pipe 36 provided above the filtration surface of the filter 50,
Furthermore, the fine bubble generating means 60 is provided in the backwashing pipe 38 and is supplied from the outside into a minibubble having a bubble diameter of 100 μm to several mm and a microbubble having a bubble diameter of 1 μm to 100 μm and mixed in the backwash water. The above-described problem is solved by providing a backwashing device 80 comprising an air inflow amount adjusting mechanism for adjusting the amount of each of the micro bubbles and the mini bubbles .

Claims (2)

濾材の充填により構成された濾層と、前記濾層を支持するための支持層と、を有するろ過器の逆洗方法であって、
前記支持層の下方から送水される逆洗水中にマイクロバブル及びミニバブルを混合することを特徴とするろ過器の逆洗方法。
A filter backwash method comprising a filter layer configured by filling a filter medium, and a support layer for supporting the filter layer,
A backwashing method for a filter, wherein microbubbles and minibubbles are mixed in backwash water fed from below the support layer.
濾材の充填により構成された濾層と、前記濾層を支持するための支持層と、を有するろ過器の逆洗装置であって、
逆洗水を貯留する逆洗水槽と、
前記逆洗水槽と前記ろ過器とを繋ぎ、前記逆洗水槽の逆洗水を前記支持層の下方に送出する逆洗配管と、
前記逆洗配管に逆洗水を圧送する逆洗ポンプと、
前記ろ過器のろ過面よりも上方に設けられた排出配管と、を有し、
さらに、前記逆洗配管に設けられ外部から供給されるエアをミニバブル及びマイクロバブル化して逆洗水中に混合する微細気泡生成手段を備えたことを特徴とする逆洗装置。
A filter backwash device having a filter layer configured by filling a filter medium, and a support layer for supporting the filter layer,
A backwash water tank for storing backwash water;
A backwash pipe for connecting the backwash water tank and the filter, and sending backwash water of the backwash water tank below the support layer;
A backwash pump that pumps backwash water into the backwash pipe;
A discharge pipe provided above the filtration surface of the filter, and
The backwashing apparatus further comprises fine bubble generating means that is provided in the backwashing pipe and that is supplied from the outside into minibubbles and microbubbles and mixed in the backwash water.
JP2018102920A 2018-05-30 2018-05-30 Backwashing method and backwashing device for filter Active JP6634116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018102920A JP6634116B2 (en) 2018-05-30 2018-05-30 Backwashing method and backwashing device for filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102920A JP6634116B2 (en) 2018-05-30 2018-05-30 Backwashing method and backwashing device for filter

Publications (2)

Publication Number Publication Date
JP2019205976A true JP2019205976A (en) 2019-12-05
JP6634116B2 JP6634116B2 (en) 2020-01-22

Family

ID=68768227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102920A Active JP6634116B2 (en) 2018-05-30 2018-05-30 Backwashing method and backwashing device for filter

Country Status (1)

Country Link
JP (1) JP6634116B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559589A (en) * 2021-08-03 2021-10-29 上海同臣环保有限公司 Method for optimizing filter cloth use of filter tank by adding water inlet valve positioner
WO2022201709A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Water purification apparatus and operation method thereof
CN117258401A (en) * 2023-11-21 2023-12-22 日丰新材有限公司 Prefilter and application, water supply pipe system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938634A (en) * 1995-07-28 1997-02-10 Ebara Corp Method for clarifying waste water by filtration
JP2004305838A (en) * 2003-04-03 2004-11-04 Ebara Corp Method and apparatus for filtering organic sewage
JP2006224023A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Method and apparatus for treating heavy metal-containing waste water
JP2006231285A (en) * 2005-02-28 2006-09-07 Toyo Constr Co Ltd Gravity filtration apparatus
JP2012217968A (en) * 2011-04-13 2012-11-12 Kansai Electric Power Co Inc:The Wastewater treatment apparatus and method of washing wastewater treatment apparatus
JP2013027862A (en) * 2011-06-21 2013-02-07 Swing Corp Device and method for filtration of suspended water
JP2013508140A (en) * 2009-10-26 2013-03-07 ミラクルウォーター・カンパニー・リミテッド High speed filtration apparatus using porous filter medium and backwash method thereof
JP2017064574A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Water treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938634A (en) * 1995-07-28 1997-02-10 Ebara Corp Method for clarifying waste water by filtration
JP2004305838A (en) * 2003-04-03 2004-11-04 Ebara Corp Method and apparatus for filtering organic sewage
JP2006224023A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Method and apparatus for treating heavy metal-containing waste water
JP2006231285A (en) * 2005-02-28 2006-09-07 Toyo Constr Co Ltd Gravity filtration apparatus
JP2013508140A (en) * 2009-10-26 2013-03-07 ミラクルウォーター・カンパニー・リミテッド High speed filtration apparatus using porous filter medium and backwash method thereof
JP2012217968A (en) * 2011-04-13 2012-11-12 Kansai Electric Power Co Inc:The Wastewater treatment apparatus and method of washing wastewater treatment apparatus
JP2013027862A (en) * 2011-06-21 2013-02-07 Swing Corp Device and method for filtration of suspended water
JP2017064574A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Water treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201709A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Water purification apparatus and operation method thereof
CN113559589A (en) * 2021-08-03 2021-10-29 上海同臣环保有限公司 Method for optimizing filter cloth use of filter tank by adding water inlet valve positioner
CN117258401A (en) * 2023-11-21 2023-12-22 日丰新材有限公司 Prefilter and application, water supply pipe system
CN117258401B (en) * 2023-11-21 2024-04-05 日丰新材有限公司 Prefilter and application, water supply pipe system

Also Published As

Publication number Publication date
JP6634116B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US8828224B2 (en) Device for purifying oily wastewater
JP5576491B2 (en) High speed filtration apparatus using porous filter medium and backwash method thereof
JP2019205976A (en) Filter back washing method and device
KR101820864B1 (en) dissolved air flotation type pretreatment device built-in fiber ball and water treatment methods using the same
CA2810635A1 (en) Upward-type filtering apparatus characterized in laminating method of filtering material
JP5850793B2 (en) Suspended water filtration apparatus and method
KR100955098B1 (en) Treatment apparatus for phosphorus removal from rain water
CN102884009A (en) A method and plant for purifying raw water
JP2006043626A (en) Water treatment apparatus
JP5748338B2 (en) Suspended water filtration apparatus and method
JP3779634B2 (en) Long fiber filtration device
JP2011110533A (en) Upward filtration apparatus
KR101889546B1 (en) Filtering Apparatus Containing Floating Media and Filtering Method
KR200471174Y1 (en) Filtration apparatus having means for recovering filter material
CN209853875U (en) Integrated water purifying device
JP5068279B2 (en) Softening device and operation method thereof
JPH10202281A (en) Waste water treating device
JPH11253704A (en) Flocculator and operation method thereof
WO2019132742A1 (en) System and a method for water treatment by flotation and filtration membrane cleaning
CN101811786B (en) Device and process for producing drinking water
KR20170014549A (en) Filtering Apparatus Containing Floating Media and Filtering Method
JP2000000405A (en) Flocculating and concentrating device and flocculating and concentrating method
KR20030009799A (en) Waterways purification apparatus and method of an upper-direction flowing type of multi-layers structure filling up a gravel and seramic element
CN201825753U (en) Production equipment for drinking water
JP3790857B2 (en) Filtration apparatus and filtration method using floating filter medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6634116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250