JP2000000405A - Flocculating and concentrating device and flocculating and concentrating method - Google Patents

Flocculating and concentrating device and flocculating and concentrating method

Info

Publication number
JP2000000405A
JP2000000405A JP21845998A JP21845998A JP2000000405A JP 2000000405 A JP2000000405 A JP 2000000405A JP 21845998 A JP21845998 A JP 21845998A JP 21845998 A JP21845998 A JP 21845998A JP 2000000405 A JP2000000405 A JP 2000000405A
Authority
JP
Japan
Prior art keywords
liquid
pipe
tube
spiral
floc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21845998A
Other languages
Japanese (ja)
Inventor
Kazuji Fukunaga
和二 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21845998A priority Critical patent/JP2000000405A/en
Publication of JP2000000405A publication Critical patent/JP2000000405A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the capacity and stability of the flocculating and concentrating device at the time of flocculating fine particles without using any flocculant, to miniaturize the device, to transfer the giantic floc formed in a flocculation tank to a solid-liq. separation chamber without releasing the small particles, to grow the flocs into a concd. sludge and to obtain a closed system without generating excess sludge by setting this flocculating downcomer in the existing solid-liq. separation chamber in an activated-sludge process. SOLUTION: A double hose consisting of a mixing pipe (outer pipe) and an injection pipe (inner pipe) is used, the discharge port of the injection pipe is opened in the mixing pipe, the double hose is spiraled, the discharge port 8 of the mixing pipe is opened in a volume increasing pipe, the discharge port 31 of the volume increasing pipe is opened in a flocculation tank 7, the residence time in the tank is controlled to several min to form the floc having 50 mm diameter, the flocs are transferred to a solid-liq. separation chamber 10 through a spiral downcomer 23 as the flocs easy to concentrate, and a sludge at >=13 kg/m3 is obtained from the bulking sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は微細粒子を濃厚汚濁液ま
たは希薄汚濁液より微細粒子を凝集剤を使用せずに、汚
濁液中の電解質を凝集剤に利用して自然沈降速度の数百
倍の速度で沈降分離して、微細粒子を巨大フロックから
さらに生長させた高濃縮汚泥と清澄な液とに分離濃縮す
る方法およびそれに適した装置であり、一例として浚渫
・掘削・護岸・水路開設等の工事に伴う土砂・粘土・ヘ
ドロの分離除去、またダム・貯水場・海・湖沼の堆積ヘ
ドロの除去、養魚場・栽培漁場の残餌・ヘドロの除去、
上・用水の前処理、赤潮の除去、高濃度活性汚泥法・バ
ルキング活性汚泥の分離、動物、植物プランクトンの濃
縮分離、アオコの除去、排水から有価物質の回収、発酵
液や有価液の濃縮分離、その他生産工程内の固液分離、
生産工程からの排出水の固液分離等に関して清澄液と固
形物を経済的に分離濃縮する装置と方法が上げられる。
BACKGROUND OF THE INVENTION The present invention relates to a method in which fine particles are used as a flocculant without using a flocculant. This method separates and sediments at twice the speed to separate and concentrate fine particles into highly concentrated sludge and clear liquid that have grown further from giant flocs, and a device suitable for it.Examples include dredging, drilling, revetment, and opening of waterways. Separation and removal of sediment, clay, and sludge due to construction work, removal of sludge from dams, reservoirs, seas, lakes and marshes, removal of residual food and sludge from fish farms and cultivation fishing grounds,
Water and water pretreatment, removal of red tide, high-concentration activated sludge method / separation of activated bulking sludge, concentration and separation of animals and phytoplankton, removal of blue-green algae, recovery of valuable substances from wastewater, concentration and separation of fermentation liquor and valuable liquid , Other solid-liquid separation in the production process,
An apparatus and a method for economically separating and concentrating a clarified liquid and a solid matter with respect to solid-liquid separation of discharged water from a production process and the like can be mentioned.

【0002】[0002]

【従来の技術】従来凝集管には、まっすぐな管(直管)
を使用していた。該凝集管は長いほど処理能力(凝集性
能)が高くなるが、大量の液を処理するのに4mを越え
る凝集管を何本も現地で据え付けるには制約が多く、凝
集管を短くして本数を増やして対応すると設備費が嵩む
欠点があった。
2. Description of the Related Art Conventional coagulation tubes include straight tubes (straight tubes).
Was used. The longer the coagulation tube, the higher the processing capacity (coagulation performance). However, there are many restrictions on installing on the site a number of coagulation tubes exceeding 4 m for processing a large amount of liquid. However, there is a drawback that the equipment cost increases when the number of units is increased.

【0003】汚濁液が希薄な場合に凝集するには、無機
凝集剤を添加して凝集する微細な粒子間の衝突効果を高
めるために高速撹はんする反応室を設け、形成するフロ
ックが小さくて固液分離性能が低いと、高分子凝集剤を
更に添加して微細フロック間に高分子凝集剤の橋架けに
よる巨大なフロックを形成した後、沈澱槽で分離する方
法が採られている。この方法の凝集汚泥は凝集濃度が低
く、生命体への利用は出来ず、環境汚染をもたらす恐れ
が大きい。
In order to coagulate when the contaminated liquid is diluted, an inorganic coagulant is added to provide a reaction chamber in which high-speed stirring is performed in order to enhance the collision effect between the coagulated fine particles. If the solid-liquid separation performance is low, a method has been adopted in which a polymer flocculant is further added to form a huge floc by bridging the polymer flocculant between the fine flocs and then separated in a precipitation tank. The coagulated sludge of this method has a low coagulation concentration, cannot be used for living organisms, and has a great risk of causing environmental pollution.

【0004】本発明者は先に醸造廃液、培養増殖液、浚
渫なと微細粒子を含む被処理水より微細粒子[微生物
(活性汚泥)、藻類、無機質、プランクトン等]を凝集
分離する凝集装置および凝集方法を発明した(出願番号
昭和63年特許願第155624号、昭和63年特許願
第176579号)。この凝集装置は注入液16)と被
処理水(浚渫液)の微細粒子が凝集するには電解質濃度
差のある2液を層流接触させることが絶対的条件であ
る。すなわち層流接触させるには一本の混合管に供給す
る被処理液量はRe<10に維持しなければならなか
ったが、さきに増量液(=被処理水)と混合管フロック
含有液(1)と衝突混合させて処理能力を向上させたが
さらに一層の凝集濃縮汚泥の濃度の向上と分離性能を向
上させる装置の小型化が望まれていた。
The present inventor has previously proposed an aggregating apparatus for aggregating and separating fine particles [microorganisms (activated sludge), algae, minerals, plankton, etc.] from the brewery waste liquid, culture growth liquid, and water to be treated containing fine particles. An agglomeration method was invented (application number: 155624, 1988, 176579). In this aggregating apparatus, it is an absolute condition that two liquids having different electrolyte concentrations are brought into laminar flow contact in order to agglomerate fine particles of the injection liquid 16) and the water to be treated (dredge liquid). That is, in order to make laminar flow contact, the amount of the liquid to be treated supplied to one mixing tube had to be maintained at Re <10 5 , but the increasing amount of liquid (= water to be treated) and the liquid containing the mixing tube floc were earlier. Although the processing capacity was improved by collision mixing with (1), it was desired to further reduce the concentration of the coagulated and concentrated sludge and reduce the size of the apparatus for improving the separation performance.

【0005】[0005]

【発明が解決しようとする課題】4mも越える凝集管
(直管)の性能(長い管ほど性能が高い)が高くても層
流を得るには接続部の溶接の凹凸は許されず、装置の据
え付けに制約が多く、工事の所要日数が長く、装置の移
動が出来ず、機動性がなく、凝集性能を維持して移動車
に設置できる小型化への要望が高く、既設の固液分離室
の深さに収まる凝集装置が最大の課題であった。
Even if the performance of a coagulated tube (straight tube) exceeding 4 m (the longer the tube is, the higher the performance) is, the unevenness of the welding at the connection portion is not allowed to obtain laminar flow. There are many restrictions on installation, the length of time required for construction is long, the equipment cannot be moved, there is no mobility, there is a high demand for miniaturization that can be installed on mobile vehicles while maintaining cohesion performance, and the existing solid-liquid separation chamber The most important issue is the coagulation device that fits in the depth of the water.

【0006】本装置の生命である凝集管内の注入液と混
合液との2液の電解質濃度の差を1mV以上に調整、2
液が層流接触して2液の界面で2液の微細粒子の表面電
位1mV以上の差を保ちつつ、2液の粒子間距離が60
〜80Å(オーグストロング)以内の汚泥濃度を継続的
に維持されておれば、衝突凝集してフロックを瞬時に形
成する装置である。欠点は装置への微振動等で2液の層
流界面が破壊されて2液が混合すれば凝集はしなくな
る。長い凝集管への振動を防ぐことが、屋外装置では避
けられない最大の課題であった。
The difference between the electrolyte concentrations of the two liquids, the injection liquid and the mixed liquid in the coagulation tube, which is the life of the apparatus, is adjusted to 1 mV or more.
The liquid is in laminar flow contact and the distance between the particles of the two liquids is 60 while maintaining the difference of the surface potential of the fine particles of the two liquids of 1 mV or more at the interface of the two liquids.
If sludge concentration within 〜80 ° (August Strong) is continuously maintained, it is an apparatus that instantaneously forms flocs by collision and aggregation. The disadvantage is that the laminar interface of the two liquids is destroyed by micro-vibration or the like of the device, and if the two liquids are mixed, no coagulation occurs. Preventing vibration to long coagulation tubes has been the biggest problem that cannot be avoided in outdoor equipment.

【0007】従来のフロック形成槽の溢流堰(4)から
直管,傾斜板方式で取り出すフロック巨大(30〜40
mm径)過ぎて落下速度は速く、静止水との抵抗が大き
く傾斜板を降下する巨大フロックから剥離する小粒子は
多く、巨大フロックが傾斜板を降下し始めると、それま
でフロック形成槽上の清澄な液がフロック形成槽壁と傾
斜板との間隙を上昇しくる剥離小粒子で、フロック形成
槽上の上澄板(21)が俄に濁り同時に、固液分離室底
での濃縮性能をも下げる欠点とがあった。清澄な液を得
る凝集分離を目的とする装置では、剥離小粒子を継続的
処理するシステムが求められている。
A large floc (30 to 40) which is taken out from the overflow weir (4) of the conventional floc forming tank by a straight pipe or an inclined plate method.
mm diameter), the falling speed is high, the resistance to still water is large, and there are many small particles that separate from the giant floc falling down the inclined plate. The clear liquid is the separated small particles that rise in the gap between the wall of the floc forming tank and the inclined plate, and the supernatant plate (21) on the floc forming tank suddenly becomes cloudy, and at the same time, the concentration performance at the bottom of the solid-liquid separation chamber is improved. There was also a drawback to lower. In an apparatus for the purpose of coagulation and separation for obtaining a clear liquid, a system for continuously treating the separated small particles is required.

【0008】(出願番号昭和63年特許願第15562
4号、出願番号昭和63年特許願176579号)混合
管内で形成したフロックはフロック形成槽内(出願番号
平成5年特許願第206793号)で汚濁微細粒子と衝
突してフロックを形成するが、注入液16)と混合液が
層流接触させる制約があり、混合管一本当たりの処理液
フロック含有液(1)量は小さいから大量に被処理液を
処理するには、さきに混合管フロック含有液(1)量の
10倍以上400倍に増量液を増やしてもフロック形成
槽内で巨大フロックを形成し、形成槽上面は清澄液を得
ていたが、フロック形成槽上縁から溢流する巨大フロッ
クが傾斜板上を固液分離室(10)に降下移送中のフロ
ックの直径が25mm以上になるとフロック表面からの
剥離が激しくなり、傾斜板上を巻き上がる剥離小粒子で
フロック形成槽上面が濁り、フロック含有液(1)量の
10〜20倍の増量液との衝突混合で形成する巨大フロ
ック径25mmが剥離許容限界であり、25mm径より
巨大なフロックを剥離の少ない移送手段の開発が望まれ
ていた。
(Application No. 1988 Patent Application No. 15562)
No. 4, application number 1988 Patent Application No. 176579) The floc formed in the mixing tube collides with the polluted fine particles in the floc forming tank (application number 1993 Patent Application No. 206793) to form floc. There is a restriction that the infused solution 16) and the mixed solution come into laminar flow contact, and the amount of the processing solution floc-containing liquid (1) per mixing tube is small. Even if the increasing liquid was increased to 10 times or more and 400 times the amount of the contained liquid (1), a huge floc was formed in the floc forming tank and a clear liquid was obtained on the upper surface of the forming tank, but overflowed from the upper edge of the floc forming tank. When the diameter of the floc during the transfer of the giant floc falling on the inclined plate to the solid-liquid separation chamber (10) becomes 25 mm or more, the detachment from the floc surface becomes severe, and the floc forming tank is formed by the detached small particles rolling up on the inclined plate. Up The diameter of the giant floc formed by collision mixing with an increasing amount of 10 to 20 times the amount of the floc-containing liquid (1) is 25 mm, which is the permissible limit of peeling. Was desired.

【0009】既設の固液分離室には沈降分離した活性
汚泥を循環再使用する系や、微細粒子の食料品の沈降分
離に凝集剤を使用出来ないから、沈降分離に苦慮してい
る。沈降分離した汚泥を再使用しない系では凝集剤を
使用している。とも凝集剤を使用せずに、僅かな改
造費で高濃度の凝集濃縮汚泥を得る技術装置が望まれて
いる。
In the existing solid-liquid separation chamber, there is no system for recycling and recycling the activated sludge that has settled and separated, or a coagulant cannot be used for the settling and separation of fine-particle foodstuffs. A flocculant is used in a system that does not reuse settled sludge. There is a demand for a technical apparatus for obtaining high-concentration coagulated and concentrated sludge with little remodeling cost without using a coagulant.

【0010】[0010]

【課題を解決するための手段】凝集管にスパイラル管
(=蛇管)・渦巻管を使用すると層流を得るための臨界
レイノルズ数は、直管にたいするより3〜5倍以上安定
である。管長が長いほど層流安定性が大きいことから、
スパイラル管・渦巻管の通液処理能力が同一の直管の径
にたいして管長を長くして10〜25倍以上に高めるこ
とが出米る。このことからスパイラル管・渦巻の凝集管
の本数は直管の凝集管の本数を大幅に軽減することもで
きる。スパイラル管・渦巻管の凝集管を長くして通液性
能を高めても装置は高くならないで、コンパクトにな
り、移動車に設置してそのまま移設しうる機動性の高い
ものになり、既設の固液分離室に上から給液室・凝集装
置・スパイラル降下管と順次下に配列しても設置出来る
高さに収まる。
When a spiral tube (= convoluted tube) or a spiral tube is used as a coagulation tube, the critical Reynolds number for obtaining a laminar flow is more than 3 to 5 times more stable than a straight tube. The longer the pipe length, the greater the laminar flow stability.
In the United States, the flow-through processing capacity of the spiral tube and the spiral tube is increased to 10 to 25 times or more by increasing the tube length for the same straight tube diameter. From this, the number of spiral pipes and spiral condensing pipes can be greatly reduced as the number of straight pipe condensing pipes. Even if the condensing tube of the spiral tube and the spiral tube is lengthened to increase the liquid permeation performance, the device does not become high, but it becomes compact, and has high mobility that can be installed on a mobile vehicle and relocated as it is. Even if the liquid supply chamber, coagulation device and spiral downcomer are arranged in this order in the liquid separation chamber from the top, it can be set at the height that can be installed.

【0011】スパイラル管(=蛇管)・渦巻管を使用す
ると旋回流の層流の方が直管内のそれより安定で乱れに
くいから、屋外で使用する場合、スパイラル管では、長
くなっても、上から下に送液されれば1m以内の高さで
収まるので、外部の振動に対する防振設備面積は1.5
の範囲内で効果的に対応できる。スパイラル管(=
蛇管)・渦巻管を使用すると防振設備は従来の横型10
00m日を処理する凝集管(直管長さ5m,8本、そ
の幅は1.8m)の設置面積は9mにおよぶ広い面積
に対応する必要があるが、スパイラル管の凝集管はその
設置面積直径1m高さ1.5mの凝集筒(45)・の中
に、注入管を内蔵する2重管(48)の混合管2〜3本
を蛇管状1mに巻いて格納できる。
[0011] If a spiral tube (= convoluted tube) or a spiral tube is used, the laminar flow of the swirling flow is more stable and less turbulent than that in a straight tube. If the liquid is sent from below, it can be settled at a height of 1 m or less.
It can effectively cope with a range of m 2. Spiral tube (=
If a spiral tube) or a spiral tube is used, the anti-vibration equipment becomes a conventional horizontal type 10
The installation area of a coagulation tube (straight pipe length 5 m, 8 tubes, width 1.8 m) for processing 00 m 3 days needs to correspond to a large area of 9 m 2 , but the spiral tube coagulation tube must be installed. In a coagulation cylinder (45) having an area diameter of 1 m and a height of 1.5 m, two or three mixing tubes of a double tube (48) having a built-in injection tube can be wound and stored in a snake tube 1 m.

【0012】渦巻管の凝集管の直径は移動車に積載する
固液分離室直径1.9mとすると、同じ直径m、の渦巻
管の長さは5mあり、本凝集管2本で500〜1000
日を処理出来る。その凝集管の高さは管直径110
mmの高さ〜巻き上げた円錐高さ+0.5mの凝集管枠
(52)に収まる。混合管の端末(混合管吐出口に衝突
混合部を接続する場合もある)は凝集筒を縦に流れる増
量管(凝集筒内)の分岐管に接属し、フロック移送ポン
プ(34)を経て増量管吐出口は凝集筒外のフロック形
成槽に供給するので、渦巻管の凝集管の防振設備は凝集
管枠(52)を支持する小面積の梁、支柱に効果的に取
り付け、凝集装置の設置場所を選定するための制約条件
はなくなった
Assuming that the diameter of the condensing tube of the spiral tube is 1.9 m in the solid-liquid separation chamber loaded on the moving vehicle, the length of the spiral tube having the same diameter m is 5 m.
m 3 days can be processed. The height of the coagulation tube is 110
It fits in the coagulation tube frame (52) from the height of mm to the height of the conical rolled up +0.5 m. The end of the mixing pipe (sometimes a collision mixing section is connected to the mixing pipe discharge port) is connected to the branch pipe of the expanding pipe (in the coagulating pipe) flowing vertically through the flocculating cylinder, and is increased through the floc transfer pump (34). Since the pipe discharge port is supplied to the floc forming tank outside the coagulation tube, the vibration isolating equipment for the coagulation tube of the spiral tube is effectively attached to a small-area beam or column supporting the coagulation tube frame (52), There are no restrictions for selecting the installation location

【0013】本発明者は特願昭63−155624号、
特願昭63−176579号微細書に記載した凝集装置
の固液分離室内に特願平5−206793号明細書に記
載したフロック形成槽を設け、混合液衝突混合管の吐出
口を増量管内にもうけること、また増量液衝突混合管の
吐出口をフロック形成槽内に位置するように設けた構造
を有する凝集装置は、増量液衝突混合液から吐出する未
凝集微細粒子と残留凝集力をもつフロックとがフロック
形成槽内の滞留時間を2分〜50分の場合、運転停止後
の流動層高を比較して、層高が低いとフロックの密度が
高く、該形成槽上から降下する巨大フロックから小粒子
が剥離しがたいことから、フロック形成槽内の滞留時間
が2〜30分程度で十分である。
The present inventor has disclosed Japanese Patent Application No. 63-155624,
A floc forming tank described in Japanese Patent Application No. 5-206793 is provided in a solid-liquid separation chamber of an aggregating apparatus described in Japanese Patent Application No. 63-176579, and a discharge port of a mixed liquid impingement mixing pipe is provided in an increasing pipe. The aggregating apparatus having a structure in which the discharge port of the expanding liquid impingement mixing pipe is located in the floc forming tank is provided with a floc having unagglomerated fine particles discharged from the expanding liquid impinging mixed liquid and residual cohesive force. When the residence time in the floc forming tank is 2 minutes to 50 minutes, the fluidized bed height after the operation is stopped is compared. When the bed height is low, the density of the floc is high, and the giant floc falling from the forming tank is high. Since it is difficult for the small particles to peel off, a residence time of about 2 to 30 minutes in the floc forming tank is sufficient.

【0014】フロック形成槽で得た緻密な巨大フロック
を移送する降下管は、フロック形成槽上部に開口し、フ
ロック形成槽の内または外をスパイラルに降下してフロ
ック形成槽底より下方の固液分離室に降下管の排出口が
開口し、スパイラル降下管(23)は流動性の高い活性
汚泥では緩傾斜角の5〜45度にし、また比重の大きい
浚渫汚泥等では傾斜角は10〜60度前後の角度を調節
変更できる機構をもつことて降下管内を剥離が少ない流
速を選定出来ることになり、本発明のスパイラル凝集管
の凝集性能は、フロック含有液量の400倍量の増量液
とフロック形成槽内で衝突混合した巨大フロック(直径
30〜55mm)がスパイラル降下管内を緩やかに降下
する空隙のない連続相として移動させると剥離小粒子は
殆ど発生しないほどに飛躍的に高い性能をしめすと同時
に、フロックの濃縮性能を高めることになった。剥離小
粒子が凝集濃縮汚泥層上に堆積する量は極端に減り、該
汚泥を継続して処理する時間は著しく減らす効果があっ
た。
The downcomer pipe for transferring the dense giant floc obtained in the floc forming tank is opened at the top of the floc forming tank, and spirally descends inside or outside the floc forming tank to form a solid liquid below the bottom of the floc forming tank. The outlet of the downcomer is opened in the separation chamber, and the spiral downcomer (23) has a gentle inclination angle of 5 to 45 degrees for activated sludge having a high fluidity, and an inclination angle of 10 to 60 for dredged sludge having a large specific gravity. By having a mechanism that can adjust and change the angle around the degree, it is possible to select a flow rate with little peeling in the downcomer pipe, the flocculation performance of the spiral flocculation pipe of the present invention is 400 times the amount of floc-containing liquid When giant flocs (30-55 mm in diameter) that have collided and mixed in the floc forming tank are moved as a continuous phase without voids that slowly descends in the spiral downcomer, almost no exfoliated small particles are generated. At the same time show a remarkably high performance, it has become possible to increase the concentration performance of the flock. The amount of the separated small particles deposited on the coagulated and concentrated sludge layer was extremely reduced, and the time for continuously treating the sludge was significantly reduced.

【0015】凝集濃縮汚泥液と汚濁液との比重差の大き
い浚渫汚濁液の凝集においては、固液分離室の浚渫凝集
濃縮汚泥上に層状に堆積する僅かに剥離した小粒子群の
汚濁液の比重は1.03〜1.05を示す。この凝集濃
縮汚泥層(22)の小粒子吸引口より引抜きポンプ(1
2)により引き抜き、比重1.10以上の浚渫高濃縮汚
泥層(14)を貯留する再凝集槽(2)内の分散板(1
3)にて1.5m/mmin以下で供給接触させれ
ば、小粒子群は完全に比重1.10以上の巨大な浚諜高
濃縮汚泥層14)に捕促され、再凝集槽上澄液(15)
が汚濁せすに元全に分離され、高濃縮汚泥は希釈される
ことはない。
In the flocculation of a dredged contaminated liquid having a large specific gravity difference between the condensed condensed condensed sludge liquid and the contaminated liquid, the condensed liquid of the slightly separated small particle group deposited on the dredged condensed condensed sludge in the solid-liquid separation chamber is layered. Specific gravity shows 1.03 to 1.05. A pulling pump (1) is pulled out from the small particle suction port of the coagulated concentrated sludge layer (22).
2), the dispersion plate (1) in the re-coagulation tank (2) for storing the highly concentrated sludge layer (14) having a specific gravity of 1.10 or more.
If the particles are supplied and contacted at 1.5 m 3 / m 2 min or less in 3), the small particle groups are completely captured by a huge concentrated sludge layer 14) having a specific gravity of 1.10. Supernatant (15)
The sludge is separated completely in the polluted state, and the highly concentrated sludge is not diluted.

【0016】凝集濃縮汚泥液と小粒子汚濁液の比重差が
少ない活性汚泥処理液の場合は上澄液(21)が濁り、
極端に供給速度を落とすことになり好ましくない。
In the case of an activated sludge treatment liquid having a small specific gravity difference between the flocculated concentrated sludge liquid and the small particle contaminated liquid, the supernatant liquid (21) becomes turbid,
The supply speed is extremely reduced, which is not preferable.

【0017】スパイラル降下管(23)内に巨大フロッ
クの連続する移動層が形成出来ない運転初期には剥離し
た小粒子がスパイラル降下管排出口から僅かに排出する
のが認められるが、経常的に巨大フロックの間隙のない
連続する移動層となって排出されだすと、凝集濃縮汚泥
層(22)上に運転初期には、小粒子群の層を形成する
が、1時間以内に下層の凝集濃縮汚泥層(22)に付着
されて無くなるが、凝集濃縮汚泥層上の小粒子群が消え
なければ、継続的に吸引管より吸引ポンプ(26)にて
増量管、分配室(30)に供給してフロック形成槽内で
フロックを形成させる。
In the initial stage of the operation in which a continuous moving layer of giant flocs cannot be formed in the spiral downcomer (23), small particles separated from the spiral downcomer are slightly discharged from the outlet of the spiral downcomer. When it is discharged as a continuous moving bed without gaps of huge flocs, a small particle group layer is formed on the flocculated and concentrated sludge layer (22) in the initial stage of operation, but the flocculated and concentrated lower layer is formed within one hour. If the small particles on the coagulated and concentrated sludge layer do not disappear, they are continuously supplied from the suction pipe to the expansion pipe and the distribution chamber (30) by the suction pump (26). To form flocs in the floc forming tank.

【0018】糸状性微生物によるバルキング汚泥を多発
する活性汚泥法や既設の固液分離室を装備する固液分離
装置においては、本発明の凝集装置を、既設の固液分離
室内に設置するか、既設の固液分離室外側に固液分離筒
を設置するかして、生物処理した活性汚泥や、被処理液
を本発明の凝集装置を経た凝集汚泥を既設の固液分離室
内に供給して該室内に数時間滞留することにより、従来
の固液分離室では沈降しなかったバルキング汚泥が、本
発明の凝集装置で形成した巨大フロックは自然沈降速度
の10,000倍以上になるから、固液分離室引き抜き
汚泥の濃度が2〜8倍に向上する。活性汚泥法において
は曝気槽内汚泥量を高めることになり、その結果活性汚
泥法の処理能力を高め、BOD汚泥負荷(=BOD負荷
kg/汚泥kg・日)が小さくなり、排出水中の残留基
質濃度が小さくなり、微生物の増殖を抑制し、更に余剰
汚泥の発生量がゼロを期待できるようになった。
In the activated sludge method in which bulking sludge generated by filamentous microorganisms is frequently generated, or in a solid-liquid separation apparatus equipped with an existing solid-liquid separation chamber, the coagulation apparatus of the present invention is installed in the existing solid-liquid separation chamber. By installing a solid-liquid separation cylinder outside the existing solid-liquid separation chamber, supplying activated sludge subjected to biological treatment or coagulated sludge that has passed through the coagulation device of the present invention into the existing solid-liquid separation chamber. By staying in the chamber for several hours, bulking sludge that has not settled in the conventional solid-liquid separation chamber becomes 10,000 times or more the spontaneous sedimentation rate of the huge floc formed by the flocculation apparatus of the present invention. The concentration of the sludge drawn out of the liquid separation chamber is improved 2 to 8 times. In the activated sludge method, the amount of sludge in the aeration tank is increased. As a result, the processing capacity of the activated sludge method is increased, the BOD sludge load (= BOD load kg / sludge kg / day) is reduced, and the residual substrate in the discharged water is reduced. The concentration was reduced, the growth of microorganisms was suppressed, and the amount of excess sludge generated could be expected to be zero.

【0019】[0019]

【実施例1】実施例1について図面を参照して説明す
る。図1に示される実施例において、凝集装置は給液室
と凝集筒(45)と固液分離室(10)から構成されて
いる。凝集筒(45)と固液分離室とは連通管(46)
によって通じ、固液分離室の液面より凝集筒の水位は3
〜50cm高く維持出来るよう調節し、注入液(36)
・混合液(55)・増量液の供給は定量的に供給する。
処理水は凝集筒の放流管(47)より放流する。凝集管
は注入管スパイラル(19)と混合管(32)と増量管
(56)からなり、凝集筒の内部に混合管に内接する支
持具(39)に固定された注入管を挿入した2重管(4
8)が蛇管状に巻かれている。凝集筒の周壁に固定され
た支持金具(50)によって蛇管は固定している。蛇管
の外側の混合管への混合液供給口(35)は給液室の分
散室(18)の室底を貫通して凝集筒の放流口の溢流堰
液面(38)より高い位置に開口し、混合管吐出口
(8)は衝突混合部(49)入口に接合され、凝集筒の
底に凝集筒(45)を縦貫して流れる増量管の分岐管
(37)に衝突混合部出口を接合し、増量管に開口して
いる。注入管の外側に混合管の内面に内接する多数の支
持具(39)を固定し、混合管の管軸と注入管の管軸と
が出来るだけ合一するように装着される。装着個数は蛇
管の直径と混合管の直径によって異にするが、3〜20
個/mとする。注入液供給口(36)は混合管の供給口
より高い位置に開口し、注入液吐出口(20)は混合管
吐出口より混合管直径Dの4〜10D上流の位置に下流
方向に開口している。増量管は凝集筒(45)上の分配
室(30)に開口し、被処理液(増量液)33)は溢流
方式で供給され、分岐管(37)で混合液と衝突混合
し、フロック移送ポンプ(34)を経て固液分離室(1
0)内のフロック形成槽7)内に供給して巨大フロック
と清澄液とに分離する。
Embodiment 1 Embodiment 1 will be described with reference to the drawings. In the embodiment shown in FIG. 1, the coagulation device includes a liquid supply chamber, a coagulation cylinder (45), and a solid-liquid separation chamber (10). The communication pipe (46) connects the coagulation cylinder (45) and the solid-liquid separation chamber.
And the water level of the flocculation cylinder is 3 from the liquid level in the solid-liquid separation chamber.
Adjust so that it can be maintained at ~ 50cm high, infusion solution (36)
The mixed liquid (55) and the supply of the increasing liquid are supplied quantitatively.
The treated water is discharged from the discharge pipe (47) of the aggregation tube. The coagulation tube is composed of an injection tube spiral (19), a mixing tube (32), and an extension tube (56). A double tube having an injection tube fixed to a support (39) inscribed in the mixing tube is inserted inside the coagulation tube. Tube (4
8) is wound in a snake tube. The flexible tube is fixed by a support fitting (50) fixed to the peripheral wall of the coagulation tube. The mixed liquid supply port (35) to the mixing pipe outside the flexible pipe penetrates the bottom of the dispersion chamber (18) of the liquid supply chamber and is located at a position higher than the overflow weir liquid level (38) at the discharge port of the coagulation cylinder. The outlet of the mixing pipe (8) is joined to the inlet of the collision mixing section (49), and the outlet of the collision mixing section is connected to the branch pipe (37) of an intensifier pipe flowing vertically through the condensation pipe (45) at the bottom of the condensation pipe. Are connected to each other and are opened to the expansion tube. A number of supports (39) inscribing the inner surface of the mixing tube are fixed to the outside of the injection tube, and are mounted so that the tube axes of the mixing tube and the injection tube merge as much as possible. The number of attachments varies depending on the diameter of the flexible tube and the diameter of the mixing tube.
Pieces / m. The injection liquid supply port (36) opens at a position higher than the supply port of the mixing pipe, and the injection liquid discharge port (20) opens downstream at a position 4 to 10D upstream of the mixing pipe diameter D from the mixing pipe discharge port. ing. The increasing pipe is opened to the distribution chamber (30) on the aggregating cylinder (45), and the liquid to be treated (extending liquid) 33 is supplied in an overflow manner, and collides and mixes with the mixed liquid in the branch pipe (37). The solid-liquid separation chamber (1) is transferred via the transfer pump (34).
It is fed into a floc forming tank 7) in 0) and separated into a giant floc and a clear solution.

【0020】図2に示される実施例では、固液分離室
(10)と凝集装置を移動車(41)に積載したまま移
設した図を示している。凝集装置は固液分離室上に注入
管(内管)、混合管(外管)の2重管(48)を増量管
に内に挿入した3重管(53)3.5mを円錐状に巻い
た渦巻管(51)の高さは30cmの凝集管枠(52)
に収め、分配室(30)と増量管(56)と、分散室
(18)と混合管(32)との接続管は可撓性の高い管
を使用して、固液分離室の上面に上下に伸縮出来るアコ
ウデオン筒(44)を接続し、固液分離室の溢流放流水
位に対し、分配室・分散室の水位を調節可能にしてい
る。移動時にはアコウデオン筒を畳み、分配室.分散室
は凝集管と切り離し、固液分離室内に格納し、固液分離
室上15cmの高さにアコウデオン筒を下け、移動性を
たかめることが出来た。凝集管枠は移動車(41)から
独立した梯子(42)で支持され、梯子と凝集管枠(5
2)との連結部と梯子(42)の接地部に防振ゴム(4
3)を装着して、固液分離室(10)から凝集汚泥を排
出するレーキ(3)の振動を防止して凝集性能の低下は
認められなかった。
In the embodiment shown in FIG. 2, a diagram is shown in which the solid-liquid separation chamber (10) and the aggregating device are relocated while loaded on the moving vehicle (41). The coagulation device conical-shaped a 3.5 m triple tube (53) in which a double tube (48) of an injection tube (inner tube) and a mixing tube (outer tube) was inserted into an increasing tube on a solid-liquid separation chamber. The height of the wound spiral tube (51) is 30 cm.
The connection pipe between the distribution chamber (30) and the expansion pipe (56), and the connection pipe between the dispersion chamber (18) and the mixing pipe (32) uses a highly flexible pipe, and is provided on the upper surface of the solid-liquid separation chamber. An accordion cylinder (44) that can expand and contract vertically is connected to adjust the water level of the distribution chamber / dispersion chamber with respect to the overflow discharge water level of the solid-liquid separation chamber. When moving, fold the accordion cylinder and place it in the distribution room. The dispersion chamber was separated from the coagulation tube and stored in the solid-liquid separation chamber, and the accordion cylinder was lowered to a height of 15 cm above the solid-liquid separation chamber to enhance the mobility. The coagulation tube frame is supported by a ladder (42) independent of the moving vehicle (41), and the ladder and the coagulation tube frame (5) are supported.
2) and the grounding part of the ladder (42)
By mounting 3), the rake (3) for discharging the coagulated sludge from the solid-liquid separation chamber (10) was prevented from vibrating, and no reduction in the coagulation performance was observed.

【0021】図3に示される実施例では、増量管の分岐
管(37)と混合管端末(混合管吐出口(8)と衝突混
合部(49)とを接続した場合と混合管(32)と注入
液吐出口(20)との関連図である。
In the embodiment shown in FIG. 3, the branch pipe (37) of the expanding pipe and the mixing pipe end (the mixing pipe discharge port (8) and the collision mixing section (49) are connected, and the mixing pipe (32) FIG. 5 is a diagram showing the relationship between the liquid and the injection liquid discharge port (20).

【0022】図4に示される実施例では、注入管に接着
した支持具(39)を混合管の3箇所で内接する支持具
(39)Aの肉厚1.2mmの金属板とし、支持具Aの
先端の内接面の半径は1.5〜2mmとし、管軸方向の
長さは混合管の硬質芯と硬質芯の幅mm(2〜6)+4
mmとし、注入管の外側の円周の45〜55%の長さと
管軸方向は25mmの長さとの積の面積を接着する。混
合管の内径が63mm注入管の外径33mmに装着した
支持具の1例を示す。混合管と増量管に設けた支持具
(39)は合成樹脂製で、増量管の3箇所に内接する支
持具Bは25〜6mmの肉厚をもつ平板で内接する板の
先は接触面積を小さくするために0.5〜1.5mmと
し、先端の軸方向の長さは混合管直径の30%〜2倍と
し流れの上流と下流に向かって渦流の発生を防ぐために
4図−(ハ)のごとく平板の肩を削り落として先端は尖
らしておく。図4(イ)は注入管に固定した支持具Aと
混合管に固定した支持具Bとを組み合わせたが、支持具
Aを注入管に、支持具Aを混合管に固定する組み合わ
せ、支持具Bを注入管に、支持具Bを混合管に固定する
組み合わせ、支持具Aが混合管に支持具Bが注入管に固
定する組み合わせでもよい。
In the embodiment shown in FIG. 4, the support (39) adhered to the injection pipe is made of a 1.2 mm-thick metal plate of the support (39) A inscribed at three places of the mixing pipe. The radius of the inscribed surface at the tip of A is 1.5 to 2 mm, and the length in the tube axis direction is the width of the hard core of the mixing tube and the width of the hard core (2 to 6) +4.
mm, and the area of the product of the length of 45 to 55% of the outer circumference of the injection tube and the length of 25 mm in the tube axis direction is bonded. One example of a supporter having an inner diameter of a mixing tube of 63 mm and an outer diameter of 33 mm of an injection tube is shown. The support (39) provided on the mixing tube and the extension tube is made of a synthetic resin, and the support B inscribed at three places of the extension tube is a flat plate having a thickness of 25 to 6 mm. The length is 0.5 to 1.5 mm in order to reduce the size, the axial length of the tip is 30% to 2 times the diameter of the mixing tube, and in order to prevent the generation of a vortex toward the upstream and downstream of the flow, FIG. Sharp off the shoulder of the flat plate and sharpen the tip as shown in ()). FIG. 4A shows a combination of the support A fixed to the injection tube and the support B fixed to the mixing tube. The combination of fixing the support A to the injection tube and fixing the support A to the mixing tube, and the support A combination in which B is fixed to the injection tube and the support B is fixed to the mixing tube, or a combination in which the support A is fixed to the mixing tube and the support B is fixed to the injection tube.

【実施例2】Embodiment 2

【0023】洗米排水を処理する活性汚泥処理施設の活
性汚泥処理液は糸状性微生物が発生し、その活性汚泥は
自然沈降速度1cm/日、濃度12,000ppmを凝
集濃縮することは不可能とされている。この糸状性バル
キング汚泥を注入液16)として0.05l/min
と、混合液として該活性汚泥3と水道水1の混合液0.
1l/minとを層流接触した混合管から吐出するフロ
ック含有液(1)(0.15l/min)を増量管内で
増量液と衝突混合させ、増量液衝突混合管の吐出口をフ
ロック形成槽(容積150l)内に開口させた。注入管
内径8mm、混合管内径19mm、増量管内径65mm
で3重管を構成し、スパイラル降下管は125mmを使
用した。図5の装置を使用した。 A)フロック含有液(1)量0.15l/minと増量
液量4.85l/minとをフロック形成槽に滞留時間
30分間の速度で供給した。 B)フロック含有液(1)量0.15l/minと増量
液量29.85l/minとを同じフロック形成槽に滞
留時間5分間で供給した。 その結果:増量液の供給を中止したときフロック形成槽
内の流動層高はAよりBの方が低く槽内から汲み上げた
両者の汚泥の沈降速度もAよりBの方が速かった。 C)フロック含有液(1)0.15l/minと増量液
量74.85l/minとを同じフロック形成槽に滞留
時間2分間で供給した。 その結果:フロック形成槽内の流動層高はB)と差がな
かった。 D)フロック含有液(1)量0.15l/minと増量
液37.35l/minとを同じフロック形成槽に滞留
時間4分間で供給した。 その結果:フロック形成槽内の流動槽高はD)はB)よ
り低かった。B)がD)より流動層高が高いのは単位時
間内に供給する増量液が少ないためフロックの成長が遅
いためと判断している。C)がD)より流動槽高が高い
のは、フロック形成槽内の滞留時間が2分と短いことが
影響していると判断している。B)とC)の運転条件で
処理して3時間経過した固液分離室の凝集濃縮汚泥の濃
度は11,600ppmと11,000ppmであっ
た。D)の運転条件で処理し、フロック形成槽からスパ
イラル降下管で固液分離室に供給した後3時間経過した
固液分離室の巨大フロックの凝集濃縮汚泥は供給した増
量液濃度12,000ppmの活性汚泥(自然沈降速度
=1cm/日)が13,000ppmに濃縮していた。
剥離現象は継続運転中は認められなかった。糸状性微生
物の高濃度活性汚泥を濃縮するのは不可能とされていた
が、本発明のスパイラル降下管を備えた凝集濃縮装置を
使用してD)の運転条件であれば、短時間に濃縮するこ
とが可能であることを実証できた。フロック形成槽内で
さらに大量の増量液と衝突して緻密な巨大フロック(3
5〜55mm直径)を形成するには、該形成槽内に高濃
厚汚泥の流動層を形成することと、フロック形成槽内の
滞留時間は4分以上が望ましい。
Activated sludge treatment liquid in an activated sludge treatment facility for treating rice washing wastewater generates filamentous microorganisms, and the activated sludge cannot be coagulated and concentrated at a natural sedimentation rate of 1 cm / day and a concentration of 12,000 ppm. ing. This filamentous bulking sludge is used as an injection liquid 16) at 0.05 l / min.
And a mixed solution of the activated sludge 3 and tap water 1 as a mixed solution.
The floc-containing liquid (1) (0.15 l / min) discharged from the mixing pipe in which laminar flow of 1 l / min is contacted with the bulking liquid in the bulking pipe, and the discharge port of the bulking liquid collision mixing pipe is connected to the floc forming tank. (Volume of 150 l). Injection tube inner diameter 8 mm, mixing tube inner diameter 19 mm, increasing tube inner diameter 65 mm
And a spiral downcomer of 125 mm was used. The apparatus of FIG. 5 was used. A) The floc-containing liquid (1) was supplied at a rate of 0.15 l / min and a quantity of the increasing liquid of 4.85 l / min to the floc forming tank at a residence time of 30 minutes. B) The floc-containing liquid (1) amount of 0.15 l / min and the increasing liquid amount of 29.85 l / min were supplied to the same floc forming tank with a residence time of 5 minutes. Result: When the supply of the bulking liquid was stopped, the height of the fluidized bed in the floc formation tank was lower in B than in A, and the sedimentation speed of both sludges pumped from the tank was higher in B than in A. C) Floc-containing liquid (1) 0.15 l / min and an increasing amount of 74.85 l / min were supplied to the same floc forming tank with a residence time of 2 minutes. Result: The height of the fluidized bed in the floc forming tank was not different from B). D) The floc-containing liquid (1) in an amount of 0.15 l / min and a bulking liquid of 37.35 l / min were supplied to the same floc forming tank with a residence time of 4 minutes. Result: Fluidized tank height in the floc forming tank was lower in D) than in B). It is determined that B) has a higher fluidized bed height than D) because the floc growth is slow because the amount of the liquid to be supplied per unit time is small. It is determined that the reason why C) is higher than that of D) is that the residence time in the floc forming tank is as short as 2 minutes. Three hours after the treatment under the operating conditions of B) and C), the concentrations of the coagulated and concentrated sludge in the solid-liquid separation chamber were 11,600 ppm and 11,000 ppm. The flocculent concentrated sludge of the huge floc in the solid-liquid separation chamber, which was treated under the operating conditions of D) and supplied from the floc formation tank to the solid-liquid separation chamber by a spiral downcomer pipe for 3 hours, had a supplied concentrated liquid concentration of 12,000 ppm. The activated sludge (natural sedimentation rate = 1 cm / day) was concentrated to 13,000 ppm.
No peeling phenomenon was observed during continuous operation. It has been considered impossible to concentrate high-concentration activated sludge of filamentous microorganisms. However, under the operating conditions of D) using the flocculation and concentration device having a spiral downcomer according to the present invention, the concentration can be reduced in a short time. Has been demonstrated to be possible. In the floc formation tank, it collides with a larger amount of the increasing amount of liquid, and a dense giant floc (3
(5 to 55 mm diameter), it is desirable to form a fluidized bed of highly concentrated sludge in the formation tank and the residence time in the floc formation tank is 4 minutes or more.

【0024】[0024]

【実施例3】本発明の凝集装置に上記活性汚泥に使用し
た図5の装置のうち降下管径を60%にして使用し、図
6の再凝集槽(2)を設置した。用水を目的とする河川
水MLSS80〜600ppm汚濁液を衝突凝集するに
は、微細粒子の木節粘土(比重2.6、水道水を1lの
シリンダにとり、供試体100gを添加して、24時間
後の沈降界面は248ml、供試体粒径加積曲線1ミク
ロン以下は22%)を添加して衝突凝集するに十分な汚
濁濃度をもったテスト用汚濁液MLSS110,000
ppm比重1.082に調整した。該汚濁液を注入液,
混合液,増量液とに分け、注入液に電解質濃度の低い水
道水を汚濁液の20%添加し、混合液との電解質濃度に
1ppm以上の差を設け、分散室内に開口する混合管を
設け、混合管内に注入管を管軸を合一して挿入し、注入
液(16)0.05l/minを注入管吐出口より混合
管内を流れる混合液0.1l/minの流れにそって下
流方向に0.05l/minを層流速度で供給する。混
合管を内蔵または接続する増量管にMLSS110,0
00ppmフロック含有液(1)量の約200倍の2
9.85l/minを分配室から供給した。フロック形
成槽150lには滞留時間5min槽上部の開口部(直
径45cm)を通過する速度は0.315cm/sec
であった。運転初期には図6の剥離小粒子含有液は凝集
濃縮汚泥層(22)の吸引口から吸引ポンプ(26)に
て引き抜き比重1.13以上の水節粘土を貯留している
再凝集槽(2)に0.4m/minの速度で供給し捕捉
したが、1時間後には降下管吐出口が固液分離室の堆積
汚泥に埋もれてから、剥離小粒子が凝集濃縮汚泥層上に
認められず、再凝集槽への運転を中止したが捕捉効果は
期待出来るものであった。固液分離室の底からの引き抜
きは運転開始後30min、1時間、3.5時間の凝集
濃縮汚泥のSS、比重、上澄液MLSSを表−1に示
す。 、表−1 引き抜き時間 SS 比重 上澄液MLSS 30 min 145g/l 1.102 18ppm 1 時間 180 〃 1.122 12 〃 3.5時間 270 〃 1.158 9 〃 木節粘土の水面積負荷0.01m/日における、原水濃
度100g/l、余水濃度0.1g/lである。本発明
の装置は固液分離室(0.6mの直径)に30l/m供
給した。其のときの水面積負荷は152m/m日で
あり、其の性能の差は15,200倍である。 152m/日/0.01m/日=15,200倍 希薄汚濁液から清澄な上澄液採取を目的とする場合に
は、木節粘土、フライアッシュ、珪藻土等を大量に添加
して、衝突凝集を容易にし、凝集濃縮分離した上で、上
記実施例のように上澄液21)を得て、添加した凝集助
剤水(希薄汚濁液)に循環添加再使用して、希薄汚濁液
の清澄を図ることができる。
EXAMPLE 3 The coagulation device of the present invention was used with the downcomer diameter of 60% of the device of FIG. 5 used for the activated sludge, and the recoagulation tank (2) of FIG. 6 was installed. In order to collide and coagulate the 80-600 ppm river water MLSS polluted water for the purpose of service water, fine particles of Kibushi clay (specific gravity: 2.6, tap water is taken in a 1-liter cylinder, 100 g of a specimen is added, and 24 hours later 248 ml of the sedimentation interface, and 22% for the sample particle size accumulation curve of 1 micron or less) and a test contaminant MLSS 110,000 having a sufficient contaminant concentration for collisional aggregation.
It adjusted to 1.082 ppm specific gravity. Inject the contaminated liquid,
Separate into a mixed liquid and a bulking liquid, add 20% of the polluted liquid with tap water with low electrolyte concentration to the injection liquid, provide a difference of 1 ppm or more in the electrolyte concentration with the mixed liquid, and provide a mixing pipe that opens into the dispersion chamber. Then, the injection pipe is inserted into the mixing pipe with its pipe axis united, and 0.05 l / min of the injection liquid (16) is downstream from the discharge outlet of the injection pipe along the flow of 0.1 l / min of the mixed liquid flowing through the mixing pipe. In the direction, 0.05 l / min is supplied at a laminar flow rate. The MLSS 110,0 is added to the extension tube that incorporates or connects the mixing tube.
200 ppm of 200 ppm floc-containing liquid (1) 2
9.85 l / min was supplied from the distribution chamber. The speed of passing through the opening (diameter: 45 cm) at the top of the tank in the floc forming tank 150 l for a residence time of 5 min is 0.315 cm / sec.
Met. In the initial stage of the operation, the separated small particle-containing liquid shown in FIG. 6 is drawn out from the suction port of the coagulation-concentrated sludge layer (22) by the suction pump (26), and the re-coagulation tank storing the water-grained clay having a specific gravity of 1.13 or more ( In 2), it was supplied and captured at a speed of 0.4 m / min, but after 1 hour, the discharge port of the downcomer pipe was buried in the sediment sludge in the solid-liquid separation chamber, and then the separated small particles were observed on the coagulated and concentrated sludge layer. The operation to the re-coagulation tank was stopped, but the trapping effect was expected. Table 1 shows the SS, specific gravity, and supernatant MLSS of the coagulated and concentrated sludge for 30 minutes, 1 hour, and 3.5 hours after the start of the operation for pulling out from the bottom of the solid-liquid separation chamber. Table 1 Extraction time SS Specific gravity Supernatant MLSS 30 min 145 g / l 1.102 18 ppm 1 hour 180 1.1 1.122 12 〃 3.5 hours 270 1.1 1.158 9 〃 Water area load of Kibushi clay 0. At 01 m / day, the concentration of raw water is 100 g / l and the concentration of residual water is 0.1 g / l. The apparatus of the present invention supplied 30 l / m to the solid-liquid separation chamber (0.6 m diameter). The water area load at that time was 152 m 2 / m 2 days, and the difference in performance was 15,200 times. 152 m / day / 0.01 m / day = 15,200 times For the purpose of collecting a clear supernatant from a dilute contaminant, a large amount of Kibushi clay, fly ash, diatomaceous earth, etc. is added and collisional coagulation is performed. After the coagulation, concentration, and separation, a supernatant 21) was obtained as in the above example, and the coagulation aid was added to the added water (diluted contaminant), circulated and reused to clarify the dilute contaminated liquid. Can be achieved.

【0025】[0025]

【実施例4】実施例2のバルキング活性汚泥(沈降速度
2.3cm/日)を処理している直径3m深さ4mの固
液分離室の外側に吸液室、スパイラル凝集管、フロック
形成槽、スパイラル降下管を内蔵する固液分離筒(5
4)を設置し、固液分離室の側壁を固液分離筒のスパイ
ラル降下管が貫通し、その端末の拡大管ノズルが巨大フ
ロックの吐出口となって接合している。図7に示す。注
入液0.05l/mと混合液:活性汚泥3水道水1の混
合液0.1l/mとを層流接触した混合液0.15l/
mを増量管内で増量液と衝突してフロック形成槽150
l内で滞留時間4分衝突混合して形成した巨大フロック
は、該槽上に開口するスパイラル降下管で固液分離室に
フロックを拡大管を経て移送した。凝集管は注入管内径
8mm,混合管内径19mm,増量管内径65mm、ス
パイラル降下管内150mmで構成している。実施例2
のD)の運転条件フロック含有液0.15l/minと
増量管37.35l/minとをフロック形成槽150
lに滞留時間4分で36時間継続供給し、スパイラル降
下管150mm径でフロック形成槽から固液分離室に9
mm/secで固液分離室に供給した後10時間経過し
た後濃縮汚泥は増量液濃度3200ppmのバルキング
活性汚泥が16,400ppmを得た。5.13倍に濃
縮している。固液分離室からの放流水のMLSSは5〜
13ppmであった。
Embodiment 4 A liquid absorption chamber, a spiral coagulation tube, and a floc forming tank are provided outside a solid-liquid separation chamber having a diameter of 3 m and a depth of 4 m which is treating the bulking activated sludge of Example 2 (sedimentation velocity: 2.3 cm / day). Solid-liquid separation tube with built-in spiral downcomer (5
4) is installed, the spiral downcomer of the solid-liquid separation tube penetrates the side wall of the solid-liquid separation chamber, and the enlarged pipe nozzle at the end thereof is joined as the discharge port of the huge floc. As shown in FIG. 0.15 l / m of a mixed solution obtained by laminar flow contact of 0.05 l / m of the injection solution and 0.1 l / m of the mixture of activated sludge 3 tap water 1
m collides with the bulking liquid in the bulking pipe, and
The giant floc formed by collision mixing for 4 minutes in 1 was transferred to the solid-liquid separation chamber through a magnifying tube by a spiral downcomer tube opened on the tank. The coagulation tube has an inner diameter of the injection tube of 8 mm, an inner diameter of the mixing tube of 19 mm, an inner diameter of the increasing tube of 65 mm, and a 150 mm inside the spiral downcomer. Example 2
(D) Operating conditions The floc-containing liquid (0.15 l / min) and the increasing pipe (37.35 l / min) were placed in the floc forming tank 150.
to the solid-liquid separation chamber from the floc forming tank with a spiral downcomer 150 mm in diameter.
After 10 hours had passed from the supply to the solid-liquid separation chamber at mm / sec, the concentrated sludge obtained 16,400 ppm of bulking activated sludge having a bulking liquid concentration of 3200 ppm. It is concentrated 5.13 times. The MLSS of the effluent from the solid-liquid separation chamber is 5 to 5.
13 ppm.

【0026】[0026]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0027】スパイラル管・渦巻管を使用すると直管に
比べ、層流安定性が高く、通液処理能力が3〜5倍高い
から、凝集装置は高さにおいて1/5に、容積において
1/3〜1/10に小型化できる。そのため、殆どの既
設の固液分離室に凝集−降下管を設置出来、また移動車
に積載することが可能となり、長期間・短期間の汚濁液
処理に対応して移動・移設することも容易になった。
When a spiral tube or a spiral tube is used, the stability of laminar flow is higher and the flow-through capacity is 3 to 5 times higher than that of a straight tube. The size can be reduced to 3 to 1/10. Therefore, it is possible to install a coagulation-downcomer pipe in most existing solid-liquid separation chambers, and it is possible to load on a mobile vehicle, and it is easy to move and relocate for long-term and short-term treatment of polluted liquid. Became.

【0028】上記の層流安定性、通液処理能力が直管型
に比べ3〜5倍高く、凝集設備費を20〜50%に低減
出来る。
The above-mentioned laminar flow stability and liquid passing capacity are 3 to 5 times higher than those of the straight pipe type, and the cost of the coagulation equipment can be reduced to 20 to 50%.

【0029】1基当たり3000m日までの凝集装置
は工場内で製作し、現地では前後の配管接続が主たる工
事となり施設工事が短期間となり、環境施設として、望
ましくない運転停止期間を短時間に完了することが出来
る。
The agglomerator to 3000 m 3 days per group is manufactured in the factory, facility construction becomes principal construction piping connection around the site becomes short as environmental facilities, in a short time undesired outage Can be completed.

【0030】フロック形成槽からスパイラル降下管を使
用することにより、フロックの性状に対応して巨大フロ
ックの降下速度を傾斜角度をもって調整することが可能
となり、巨大フロック間のフロック間隙の無い連続する
移動層となって連続的に排出することが出基、微細粒子
の剥離現象がほとんど無くなった。
By using the spiral downcomer from the floc forming tank, it is possible to adjust the descending speed of the giant floc with the inclination angle in accordance with the properties of the floc, and to continuously move without the floc gap between the giant flocs. As a result of continuous discharge as a layer, the peeling phenomenon of fine particles almost disappeared.

【0031】固液分離室に堆積する凝集濃縮汚泥と上澄
液(21)との界面は凝集濃縮汚泥層22)表面と呼称
する。該汚泥層表面上の剥離小粒子含有液を吸引ポンプ
(26)により吸引し、増量液供給管に返送して、フロ
ック形成槽内で再凝集するシステムに継続供給処理する
こと、前述のスパイラル降下管内の移送速度の低減が剥
離の減少をもたらし、剥離小粒子による上澄液の汚濁防
止に好ましい成果を得た。
The interface between the coagulated concentrated sludge deposited in the solid-liquid separation chamber and the supernatant (21) is referred to as the coagulated concentrated sludge layer 22) surface. The liquid containing the separated small particles on the surface of the sludge layer is sucked by a suction pump (26), returned to the filler supply pipe, and continuously supplied to a system for re-aggregation in the floc forming tank. The reduction in the transfer speed in the tube resulted in a decrease in peeling, and a favorable result was obtained in preventing the supernatant from being polluted by the peeled small particles.

【0032】固液分離室の降下管排出口は凝集濃縮汚泥
層(22)表面より降下管直径の2〜数倍下方に開口
し、凝集濃縮汚泥の性状(比重・濃度・摩擦係数)降下
管の傾斜降下管の長さ、汚泥量によって排出口の位置は
上下するが、凝集濃縮汚泥層表面が上昇して、降下管か
らの排出が止まると、固液分離室底の引抜きポンプ(1
2)を稼働して凝集濃縮汚泥を排出し、凝集濃縮汚泥層
表面が降下管排出口より降下管径の2倍上の位置に来れ
ば、引抜きポンプ(12)の稼働を中止する。排出口よ
り下の固液分離室容積は凝集濃縮汚泥の所要滞留時間を
常に確保しておけば、剥離小粒子の排出のない安定継続
運転ができる。
The outlet of the downcomer pipe of the solid-liquid separation chamber is opened two to several times below the diameter of the downcomer pipe from the surface of the coagulated and concentrated sludge layer (22), and the properties of the coagulated and concentrated sludge (specific gravity, concentration, friction coefficient) The position of the discharge port rises and falls according to the length of the inclined downcomer and the amount of sludge. However, when the surface of the coagulated and concentrated sludge layer rises and the discharge from the downcomer stops, the pulling pump (1) at the bottom of the solid-liquid separation chamber is used.
2) is operated to discharge the coagulated concentrated sludge, and when the surface of the coagulated concentrated sludge reaches a position twice the diameter of the downcomer pipe from the outlet of the downcomer pipe, the operation of the drawing pump (12) is stopped. If the required residence time of the coagulated and concentrated sludge is always ensured in the volume of the solid-liquid separation chamber below the discharge port, stable continuous operation without discharge of separated small particles can be performed.

【0033】既設の活性汚泥装置の固液分離室に凝集−
降下管を設置した実験において 活性汚泥12,000ppmの処埋汚泥の自然沈降速度
は0.012m/m日のバルキング汚泥をフロック
形成槽直径0.45m,容積0.15m滞留時間4m
in,フロック形成槽への供給液量0.0375m
minとした。 1)フロック形成槽負荷340m/m日 自然沈降速度 0.012m/m日 本発明の装置の性能は一般沈澱槽の340/0.012=28.333倍 2)固液分離室(直径0.6m×2.5m)への水面積負荷 191m /m日 本発明の装置の性能は一般沈澱槽の191/0.012=15,923倍 ストークスの式より固液分離室へ降下してきたフロック
の直径は自然沈降フロック径の 15,9230.5
126倍大きくなったことになる。スパイラル降下管内
から小粒子の剥離を無くすることに成功して、初めて固
液分離室への水面積負荷性能を評価できることになっ
た。
Coagulation in solid-liquid separation chamber of existing activated sludge equipment
In the experiment in which a downcomer was installed, the natural settling velocity of the activated sludge of 12,000 ppm of activated sludge was 0.012 m 3 / m 2 days of bulking sludge was converted to a floc forming tank diameter of 0.45 m, a volume of 0.15 m 3 and a residence time of 4 m.
in, the amount of liquid supplied to the floc forming tank 0.0375 m 3 /
min. 1) Floc forming tank load 340 m 3 / m 2 days Natural sedimentation velocity 0.012 m 3 / m 2 days The performance of the apparatus of the present invention is 340 / 0.012 = 28.333 times that of a general sedimentation tank 2) Solid-liquid separation chamber (Area of 0.6 m × 2.5 m) Water area load 191 m 3 / m 2 days The performance of the apparatus of the present invention is 191 / 0.012 = 15,923 times that of a general sedimentation tank. The diameter of the floc that has descended to the natural settled floc diameter is 15,923 0.5 =
That is, it is 126 times larger. The removal of small particles from the spiral downcomer was successfully eliminated, and for the first time it was possible to evaluate the water area load performance on the solid-liquid separation chamber.

【0034】濃縮が不可能とされていたバルキング活性
汚泥12,000ppmの沈降速度1cm/日を2つの
電位の異なるバルキング汚泥に調整し、その2液を層流
接触させたフロック含有液(1)と、150lのフロッ
ク形成槽内でフロック含有液量の250倍量のバキング
活性汚泥とを4分間流動接触して形成した巨大フロック
を、スパイラル降下管で固液分離室にフロック間隙のな
い連続した移動層を形成させ、小粒子の剥離の無い巨人
フロックを排出した後、固液分離室内に3時間滞留して
13,000ppmに、濃縮することができた。
A floc-containing liquid (1) in which the sedimentation rate of 12,000 ppm of bulking activated sludge, which had been considered impossible to be concentrated, at 1 cm / day was adjusted to two different potentials of bulking sludge, and the two liquids were brought into laminar flow contact. And a giant floc formed by flowing and contacting 250 times the amount of the floc-containing liquid in a 150-liter floc forming tank for 4 minutes, and forming a continuous floc without a floc gap in the solid-liquid separation chamber with a spiral downcomer. After forming a moving layer and discharging the giant floc without exfoliation of small particles, the giant floc was retained in the solid-liquid separation chamber for 3 hours and could be concentrated to 13,000 ppm.

【0035】フロック形成槽からのスパイラル降下管
(23)により直径40〜55mmの巨大フロックから
の剥離が無くなったために、フロック含有液(1)量の
400倍以上の増量液量をフロック形成槽への供給が可
能になり、凝集管本数は1/10〜1/20に減った。
スパイラル降下管の傾斜角度を調節して管内を空隙の無
い移動層で緩やか移送することにより、剥離小粒子の発
生を解決したことが凝集装置の凝集性能をたかめ、小型
化をもたらし、既設の固液分離室内外に凝集−降下管を
簡単に設置出来るようになり、凝集装置の微振動対策が
容易になった。本装置を設置すればBOD汚泥負荷が
0.06kg/kg日以下となり、活性汚泥法の開発以
来、70年間必要として来た余剰汚泥の処理処分費が無
くなり、処理水質はBODの除去率99%を達成し、
汚濁液が清澄液となり、CO,Nを排出するだけの
完結した装置となった。当然凝集(剤)装置、汚泥濃縮
槽、濾過装置、焼却施設、汚泥投棄場とその作業者は不
要になる。
Since the separation from the giant floc having a diameter of 40 to 55 mm was eliminated by the spiral downcomer pipe (23) from the floc forming tank, an increased amount of the liquid that is 400 times or more the amount of the floc-containing liquid (1) was transferred to the floc forming tank. Can be supplied, and the number of aggregation tubes is reduced to 1/10 to 1/20.
By adjusting the angle of inclination of the spiral downcomer and gently transporting the inside of the tube with a moving layer without voids, the solution of the generation of small particles peeled off enhances the aggregating performance of the aggregating device, brings downsizing, and reduces the existing solidification. The coagulation-downcomer can be easily installed inside and outside the liquid separation chamber, and the countermeasures against micro-vibration of the coagulation device are facilitated. If this equipment is installed, the BOD 5 sludge load will be 0.06 kg / kg day or less, the disposal and disposal cost of excess sludge which has been required for 70 years since the development of the activated sludge method will be eliminated, and the treated water quality will be the BOD 5 removal rate. Achieve 99%,
The contaminated liquid turned into a clarified liquid, and the apparatus became a complete apparatus only for discharging CO 2 and N 2 . Naturally, the coagulation (agent) device, sludge thickening tank, filtration device, incineration facility, sludge dumping site and its workers are not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蛇管を設けた凝集装置の縦断面図である。FIG. 1 is a longitudinal sectional view of an aggregating device provided with a flexible tube.

【図2】渦巻管を設けた凝集装置の縦断面図である。FIG. 2 is a longitudinal sectional view of an aggregating device provided with a spiral tube.

【図3】混合管の吐出口と増量管の分岐管との接合と混
合管吐出口と注入管吐出口の関係図である。
FIG. 3 is a diagram showing a connection between a discharge port of a mixing pipe and a branch pipe of an increasing pipe, and a relation between a discharge port of a mixing pipe and a discharge port of an injection pipe.

【図4】混合管と注入管の支持具(A)、増量管と混合
管の支持具(B)それぞれの管軸を合一するための支持
具の1例である。
FIG. 4 is an example of a support for unifying the respective tube axes of the support for the mixing tube and the injection tube (A) and the support for the extension tube and the support for the mixing tube (B).

【図5】フロック形成槽の外にスパイラル降下管を備え
る凝集濃縮装置の縦断面図である。
FIG. 5 is a longitudinal sectional view of a coagulating and concentrating apparatus having a spiral downcomer outside a floc forming tank.

【図6】フロック形成槽内にスパイラル降下管を備え、
再凝集槽を装備した凝集濃縮装置の部分縦断面である。
FIG. 6 includes a spiral downcomer in a floc forming tank,
It is a partial longitudinal section of the coagulation concentration apparatus equipped with the recoagulation tank.

【図7】既設の固液分離室の外側の固液分離筒内のフロ
ック形成槽からスパイラル降下管にて固液分離室に凝集
汚泥を移送する凝集濃縮装置の縦断面図である。
FIG. 7 is a longitudinal sectional view of a coagulating and concentrating apparatus for transferring coagulated sludge from a floc forming tank in a solid-liquid separation cylinder outside a solid-liquid separation chamber to a solid-liquid separation chamber by a spiral downcomer.

【符号の説明】[Explanation of symbols]

1 フロック含有液 2 再凝集 3 レーキ 4 溢流堰 5 剥離小粒子含有液 6 フロック形成槽側壁貫通 7 フロック形成槽 8 混合管吐出口 9 フロック形成槽底 10 固液分離室 11 拡大ノズル 12 引抜きポンプ 13 多孔板 14 高濃縮汚泥層 15 再凝集槽上澄液 16 注入液 17 スパイラル混合管 18 分散室 19 スパイラル注入管 20 注入液吐出口 21 上澄液 22 凝集濃縮汚泥層 23 スパイラル降下管 24 スパイラル降下管入口 25 吸引口 26 吸引ポンプ 27 増量液衝突混合管 28 スパイラル増量管 29 増量液供給管 30 分配室 31 増量管吐出口 32 混合管 33 被処理液 34 フロック移送ポンプ 35 混合液供給口 36 注入液供給口 37 増量管分岐管 38 溢流堰(放流水) 39 支持具 40 支持羽根 41 移動車 42 梯子 43 防振ゴム 44 アコーデオン筒 45 凝集筒 46 連通管 47 放流管 48 2重管 49 衝突混合部 50 支持金具 51 渦巻管 52 凝集管枠 53 3重管 54 固液分離筒 55 混合液 56 増量管 REFERENCE SIGNS LIST 1 floc-containing liquid 2 reagglomeration 3 rake 4 overflow weir 5 exfoliated small-particle-containing liquid 6 penetrating side wall of floc forming tank 7 floc forming tank 8 discharge port of mixing tube 9 floc forming tank bottom 10 solid-liquid separation chamber 11 expansion nozzle 12 drawing pump DESCRIPTION OF SYMBOLS 13 Perforated plate 14 Highly concentrated sludge layer 15 Reconcentration tank supernatant liquid 16 Injection liquid 17 Spiral mixing pipe 18 Dispersion chamber 19 Spiral injection pipe 20 Injection liquid discharge port 21 Supernatant liquid 22 Coagulated concentrated sludge layer 23 Spiral downcomer 24 Spiral descent Pipe inlet 25 Suction port 26 Suction pump 27 Volumetric liquid collision mixing pipe 28 Spiral volumetric pipe 29 Volumetric liquid supply pipe 30 Distribution chamber 31 Volumetric pipe discharge port 32 Mixing pipe 33 Liquid to be treated 34 Floc transfer pump 35 Mixed liquid supply port 36 Injected liquid Supply port 37 Increasing pipe Branch pipe 38 Overflow weir (discharge water) 39 Supporting tool 40 Supporting blade 41 Transfer Car 42 ladder 43 anti-vibration rubber 44 accordion cylinder 45 coagulation cylinder 46 communication pipe 47 discharge pipe 48 double pipe 49 collision mixing unit 50 support fitting 51 spiral tube 52 coagulation pipe frame 53 triple pipe 54 solid-liquid separation cylinder 55 mixed liquid 56 Extension tube

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】微細粒子を含む被処理液(33)より微細
粒子の巨大フロックを形成する凝集装置であって a)該被処理液を供給分配する給液室と凝集装置とから
なり、 b)該給液室は微細粒子を含む被処理液(33)を分散
させる分散室(18)と該被処理液を分配する分配室
(30)とからなり、 c)一端が分配室(30)に開口し、他端はフロック形
成槽(7)に開口する増量管(29)を設けるが、混合
管を受けい入れる増量分岐管(37)を途中に備え、 d)一端が分散室(18)に他端が増量管内に開口した
スパイラル混合管(17)を設け、混合管を外側に、内
側に注入管をもつ2重管(47)がスパイラル管=蛇管
(26)・渦巻管(51)の構造を有し、 e)該スパイラル混合管(32)内に注入液(16)を
注入するスパイラル注入管(19)をその注入液吐出口
(20)が混合管内を流れる被処理液(33)の下流方
向に向かって開口させた構造を有することを特徴とする
微細粒子を含む被処理液より微細粒子の巨大フロックと
清澄な液とに分離する凝集装置。
1. An aggregating apparatus for forming a huge floc of fine particles from a liquid to be treated (33) containing fine particles, comprising: a) a liquid supply chamber for supplying and distributing the liquid to be treated; The liquid supply chamber includes a dispersion chamber (18) for dispersing the liquid to be treated (33) containing fine particles and a distribution chamber (30) for distributing the liquid to be treated. C) One end of the distribution chamber (30) An expanding pipe (29) is provided at the other end, and an expanding branch pipe (37) for receiving the mixing pipe is provided in the middle thereof. D) One end of the dispersion chamber (18) is provided. ) Is provided with a spiral mixing tube (17) having the other end opened in the volume increasing tube, and a double tube (47) having the mixing tube on the outside and an injection tube on the inside is a spiral tube = a serpentine tube (26) and a spiral tube (51). E) Injecting the injection liquid (16) into the spiral mixing tube (32) Liquid to be treated containing fine particles, characterized in that the liquid injection port (20) of the spiral injection pipe (19) has a structure opened toward the downstream of the liquid to be treated (33) flowing in the mixing pipe. An aggregating device that separates into giant flocs of finer particles and clear liquid.
【請求項2】微細粒子を含む被処理液(3)より微細粒
子の巨大フロック形成する凝集装置であって a)該被処理液を供給分配する給液室と凝集装置とから
なり、 b)該給液室は微細粒子を含む被処理液(33)を分散
させる分散室(18)と該被処理液を分配する分配室
(30)とからなり、 c)一端が分配室(30)に開口し、他端はフロック形
成槽7)に開口するスパイラル増量管(28)を設け、 d)一端が分散室(18)に開口し、他端が分配室(3
0)を貫通するスパイラル増量管(29)の入口より増
量管の管軸に沿って下流方向に向けて混合管吐出口
(8)が開口する混合管2)を設け、 e)混合管の外側に増量管を、内側に注入管をもつ3重
管(53)のそれぞれの管軸が合一したスパイラル混合
管=蛇管(26)・渦巻管51)の構造を有し、 f)該スパイラル混合管(17)内に注入液を注入する
スパイラル注入管(19)の供給口は混合管の入口より
水位は高く、注入液吐出口(20)が混合管内を流れる
被処理液(33)の下流方向に向かって開口した構造を
有することを特徴とする微細粒子を含む被処理液より微
細粒子の巨大フロックと清澄な液とに分離する凝集装
置。
2. An aggregating apparatus for forming giant flocs of fine particles from a liquid to be treated (3) containing fine particles, comprising: a) a liquid supply chamber for supplying and distributing the liquid to be treated; The liquid supply chamber is composed of a dispersion chamber (18) for dispersing the liquid to be treated (33) containing fine particles and a distribution chamber (30) for distributing the liquid to be treated. C) One end is connected to the distribution chamber (30). A spiral volume increase pipe (28) is provided which is open and the other end is open to the floc forming tank 7). D) One end is open to the dispersion chamber (18) and the other end is the distribution chamber (3).
0) a mixing pipe 2) having a mixing pipe discharge port (8) opening downstream from the inlet of the spiral pipe (29) extending along the pipe axis of the pipe, and e) outside the mixing pipe. A spiral mixing tube in which the respective tube axes of a triple tube (53) having an injection tube on the inside are merged = a serpentine tube (26) and a spiral tube 51). F) The spiral mixing The supply port of the spiral injection pipe (19) for injecting the injection liquid into the pipe (17) has a higher water level than the inlet of the mixing pipe, and the injection liquid discharge port (20) is located downstream of the liquid to be treated (33) flowing through the mixing pipe. An aggregating apparatus for separating a liquid to be treated into a giant floc of fine particles and a clear liquid from a liquid to be treated containing fine particles, wherein the flocculant has a structure opened toward the direction.
【請求項3】スパイラル混合管(17)スパイラル注入
管(19)ともに内壁面が平滑、注入管も混合管もその
外壁は平滑、混合管の内面に内接する支持具(39)を
注入管に固定し、混合管と注入管の管軸を合一にした構
造を維持する請求項第1項、請求項第2項記載の凝集装
置。
3. Spiral mixing pipe (17) The spiral injection pipe (19) has a smooth inner wall surface, the injection pipe and the mixing pipe have smooth outer walls, and the injection pipe has a support (39) inscribed on the inner surface of the mixing pipe. 3. The aggregating apparatus according to claim 1, wherein the aggregating apparatus is fixed to maintain a structure in which the axis of the mixing tube and the axis of the injection tube are united.
【請求項4】スパイラル(=蛇管)混合管を外側に、ス
パイラル注入管を内側にした2重管(6)を円筒の側壁
に沿って巻いて出来る構造よりなる請求項第1項、請求
項第3項記載の凝集装置。
4. A structure in which a double pipe (6) having a spiral (= convoluted) mixing pipe on the outside and a spiral injection pipe on the inside is wound along the side wall of the cylinder. 4. The coagulation device according to claim 3.
【請求項5】渦巻管(51)はスパイラル混合管を外側
に、スパイラル注入管を内側にした2重管(48)を円
錐側面に沿って巻いて出来る構造をもつ管と、2重管4
8)を平面上に内側から外に向かって巻いて出来る構造
よりなる請求項第1項、請求項第3項記載の凝集装置。
5. A spiral tube (51) having a structure formed by winding a double tube (48) having a spiral mixing tube on the outside and a spiral injection tube on the inside along a conical side surface, and a double tube (4).
The aggregating apparatus according to claim 1, wherein the coagulating apparatus has a structure formed by winding 8) from the inside to the outside on a plane.
【請求項6】スパイラル増量管(28)を最外側にし
て、スパイラル混合管とスパイラル注入管の2重管(4
8)を挿入し、管軸を合一した3重管を巻いてスパイラ
ル(=蛇管)、渦巻管(51)構造よりなる請求項第2
項、請求項第3項記載の凝集装置。
6. A double pipe (4) consisting of a spiral mixing pipe and a spiral injection pipe, with the spiral expanding pipe (28) being the outermost.
8) Inserting, winding a triple tube having united tube axes to form a spiral (= convoluted tube), spiral tube (51) structure.
The coagulation apparatus according to claim 3, wherein
【請求項7】スパイラル注入管とスパイラル混合管との
管軸と合一させ、混合管と増量管との管軸も合一させる
支持具(39)の板厚は0.5〜6mmの金属または合
成樹脂を使用し、混合管と増量管の内面に3または4箇
所に内接する支持具(39)を設け、混合管または増量
管に内接する支持具(39)の先端は0.5〜3mmの
半径の曲面とし、管軸方向の長さは混合管直径または増
量管直径それぞれの直径の20%〜100%とし、注入
管と混合管のそれぞれの外側の円周の35〜100%の
長さと注入管と混合管の直径の0.3〜3倍の長さとの
積で得られる面積を注入管と混合管それぞれの外側に接
着保持し、支持具(39)は3〜20個/mを設ける請
求項第1項、請求項第2項、請求項第3項、請求項第4
項、請求項第5項、請求項第6項記載の凝集装置。
7. A metal plate having a thickness of 0.5 to 6 mm for a support (39) for joining the axis of the spiral injection pipe and the axis of the spiral mixing pipe and also joining the axis of the mixing pipe and the extension pipe. Alternatively, using a synthetic resin, a support (39) inscribed at three or four locations is provided on the inner surface of the mixing tube and the extension tube, and the tip of the support (39) inscribed in the mixing tube or the extension tube is 0.5 to A curved surface having a radius of 3 mm, and the length in the axial direction of the tube is 20% to 100% of the diameter of the mixing tube or the expanding tube, and 35 to 100% of the outer circumference of each of the injection tube and the mixing tube. The area obtained by multiplying the length by the length of 0.3 to 3 times the diameter of the injection tube and the mixing tube is adhered and held on the outside of each of the injection tube and the mixing tube. Claim 1, Claim 2, Claim 3, Claim 4, Claim 4
The aggregating device according to claim 5, claim 5, or claim 6.
【請求項8】汚濁液中の微細粒子がフロック形成槽
(7)内で成長した巨大フロックからスパイラル降下管
(23)内で小粒子の剥離を防止する装置であって a)該汚濁液を貯留し分散させる分散室(18)と該汚
濁液を分配させる分配室(30)および該汚濁液より微
細粒子を分離する固液分離室(10)と b)該固液分離室(10)内には、上方に開口したフロ
ック形成槽(7)が設けられており、 c)該分配室(30)と該フロック形成槽(7)との間
には、一端が該分配室内に開口して汚濁液を導入する開
口部と他端が該フロック形成槽(7)内に開口している
増量管吐出口(31)を有するスパイラル増量管(2
8)と、 d)一端が該分散室(18)内に開口して汚濁液を導入
する開口部を有し、他端が該増量管(28)内に開口し
ている混合管吐出口(8)を有するスパイラル混合管
(17)と、 e)さらに該混合管内に注入管(16)を注入するスパ
イラル注入管(19)に注入液吐出口(20)が混合管
を流れる汚濁液の下流方向に向けて開口した構造からな
る凝集装置に、 f)フロック形成槽(7)上部に巨大フロックを固液分
離室に誘導するスパイラル降下管入口(24)が開口
し、 g)フロック形成槽内にスパイラル降下管を設ける場合
は、フロック形成槽底(9)を貫通して固液分離室に巨
大フロックを誘導するスパイラル降下管を設けることに
なり、その端末に拡大ノズル(11)が開口した構造を
もち、 h)またはフロック形成槽外にスパイラル降下管(2
3)を設ける場合は、フロック形成槽側壁を貫通(6)
してフロック形成槽の外側を巻くスパイラル降下管は固
液分離室に巨大フロックを誘導するスパイラル降下管の
端末に拡大ノズルが開口した溝造よりなる巨大フロック
から降下管内で小粒子の剥離を防止する請求項1,請求
項2,請求項3,請求項4,請求項5,請求項6,請求
項7に記載の凝集濃縮装置。
8. An apparatus for preventing fine particles in a contaminated liquid from separating small particles in a spiral downcomer (23) from giant flocs grown in a floc forming tank (7), comprising the steps of: A dispersion chamber (18) for storing and dispersing, a distribution chamber (30) for distributing the contaminated liquid, and a solid-liquid separation chamber (10) for separating fine particles from the contaminated liquid; and b) inside the solid-liquid separation chamber (10). Is provided with a floc forming tank (7) which is open upward, c) between the distribution chamber (30) and the floc forming tank (7), one end of which opens into the distribution chamber. A spiral volume increase pipe (2) having a volume increase pipe discharge port (31) having an opening for introducing the contaminated liquid and the other end opened in the floc forming tank (7).
8) and d) a mixing tube discharge port (one end of which has an opening opening into the dispersion chamber (18) to introduce the contaminated liquid and the other end opening into the volume expansion pipe (28)). 8) a spiral mixing tube (17) having an injecting liquid outlet (20) in the spiral injecting tube (19) for injecting an injecting tube (16) into the mixing tube downstream of the contaminated liquid flowing through the mixing tube; F) a flocculation device having a structure opened toward the direction; f) a spiral downcomer inlet (24) for guiding a huge floc to the solid-liquid separation chamber is opened at the top of the floc forming tank (7); When a spiral downcomer is installed in the solid-liquid separation chamber, a spiral downcomer is introduced to penetrate the bottom (9) of the floc forming tank, and an enlarged nozzle (11) is opened at the end thereof. H) or floc forming Spiral drop tube to the outside (2
When 3) is provided, penetrate the side wall of the flock forming tank (6)
The spiral downcomer that wraps around the outside of the flock forming tank prevents small particles from separating in the downcomer from the huge floc with a grooved structure with an enlarged nozzle at the end of the spiral downcomer that guides the huge floc to the solid-liquid separation chamber The coagulating and concentrating apparatus according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, or claim 7.
【請求項9】 請求項8に記載の凝集濃縮装置を用いて
微細粒子を含む汚濁液より微細粒子を巨大フロックか
ら、さらに生長させた高濃縮汚泥と清澄な液とに分離す
るに当たり イ)該装置のスパイラル注入管(9)から吐出される注
入液(被処理液)(16)とスパイラル混合管(17)
内を流れる混合液(被処理液と電解質濃度を異にする液
を被処理液に添加した液)(32)とを層流接触させる
ことによって汚濁液中の微細粒子がフロックを形成し、 ロ)該装置のスパイラル混合管の吐出口(8)より吐出
されるフロック含有液(1)量に対し、スパイラル増量
管(28)内で増量液衝突混合管内を流れる汚濁液3〜
400倍量と衝突させてフロック群を形成させ、 ハ)次いで増量管吐出口(31)からフロック形成槽
(7)内に吐出して槽内に流動層を形成して、フロック
群間で激しい衝突を繰り返し凝集させて、短時間0.5
〜60分の滞留時間に強固なる巨大フロックへと生長さ
せ、供給液の大半はフロック形成槽の流動層表面上から
上澄液(21)として放出し、 ニ)フロック形成槽内で形成した巨大フロック群は該形
成槽の上部に開口(24)するスパイラル降下管縁を溢
流堰(4)として流下し、降下管の傾斜角度は5〜60
度とし、降下管排出口は拡大角度5〜20度の拡大ノズ
ル(11)とし、 ホ)拡大管ノズルの排出速度は出来ればフロック形成槽
の最上面の開口通過速度以下とし、該ノズル口が固液分
離室に堆積する巨大フロック群の凝集濃縮汚泥層(2
2)界面下に保持し、降下管内を降下する巨大フロック
は空隙の少ないフロックの連続する移動層として移動さ
せると、剥離する小粒子はなくなり、 ヘ)固液分離室に堆積する凝集濃縮汚泥層界面が上昇し
て、降下管の排出口より降下管直径の3〜7倍高い位置
に来て、降下管内汚泥の下降移動が停止すれば、レーキ
(3)に掻き寄せられた凝集濃縮汚泥は引き抜きポンプ
(12)が稼働し、凝集濃縮汚泥層界面がスパイラル降
下管(23)直径の2倍の深さまで排出すれば、引き抜
きポンプを停止させることにより、スパイラル降下管内
の巨大フロックの移動層を空隙の無い連続相として移動
させて剥離小粒子をなくする請求項8に記載の凝集濃縮
装置と凝集濃縮法。
9. Separation of fine particles from a giant floc from a contaminated liquid containing fine particles into a highly concentrated sludge grown further and a clear liquid by using the coagulating / concentrating apparatus according to claim 8) Injection liquid (liquid to be treated) (16) discharged from the spiral injection pipe (9) of the apparatus and a spiral mixing pipe (17)
The mixed liquid flowing through the inside (a liquid obtained by adding a liquid having a different electrolyte concentration to the liquid to be processed) (32) is brought into laminar flow contact, whereby fine particles in the contaminated liquid form flocs. ) The amount of the contaminated liquid 3 to 3 flowing through the expanding liquid collision mixing pipe in the spiral expanding pipe (28) with respect to the amount of the floc-containing liquid (1) discharged from the discharge port (8) of the spiral mixing pipe of the apparatus.
A floc group is formed by colliding with a 400-fold amount. C) Then, a fluidized bed is formed by discharging the floc from the discharge pipe (31) into the floc formation tank (7) and violently between the floc groups. The collision is repeatedly agglomerated for a short time of 0.5
It grows into a huge floc that becomes strong with a residence time of 6060 minutes, and most of the feed solution is released as a supernatant (21) from the surface of the fluidized bed of the floc forming tank. D) A giant floc formed in the floc forming tank The floc group flows down the edge of the spiral downcomer opening (24) at the upper part of the forming tank as an overflow weir (4), and the inclination angle of the downcomer is 5 to 60.
And the outlet of the downcomer pipe is an expansion nozzle (11) with an expansion angle of 5 to 20 degrees. E) The discharge speed of the expansion pipe nozzle is preferably equal to or lower than the opening passage speed of the uppermost surface of the floc forming tank. Agglomerated and concentrated sludge layer (2) of huge flocks deposited in the solid-liquid separation chamber
2) When the giant floc that is held below the interface and descends in the downcomer is moved as a continuous moving layer of flocs with few air gaps, there are no small particles to be separated. F) The coagulated concentrated sludge layer deposited in the solid-liquid separation chamber. If the interface rises and comes to a position 3 to 7 times the diameter of the downcomer pipe from the outlet of the downcomer pipe, and the downward movement of the sludge in the downcomer pipe stops, the coagulated concentrated sludge scraped to the rake (3) will When the drawing pump (12) is operated and the coagulated and concentrated sludge layer interface is discharged to a depth twice the diameter of the spiral downcomer (23), the moving pump of the huge floc in the spiral downcomer is stopped by stopping the drawing pump. The coagulation / concentration apparatus and the coagulation / concentration method according to claim 8, wherein the coagulation / concentration apparatus is moved as a continuous phase without voids to eliminate exfoliated small particles.
【請求項10】イ)固液分離室の凝集濃縮汚泥層(2
2)上に、巨大フロックから剥離して層状に僅かに堆積
する剥離小粒子含有液(5)を吸引口(25)から吸引
ポンプ(26)により吸引し、 ロ)吸引した剥離小粒子含有液は分配室(30)または
増量液の供給管に返送して増量液衝突混合管(27)を
へてフロック形成槽内で再凝集することを特徴とする微
細粒子を含む汚濁液より微細粒子の巨大フロックに生長
させた凝集濃縮汚泥と上澄液21)とに分離する請求項
8,請求項9に記載の凝集濃縮装置と凝集濃縮法。
10. A coagulation-concentrated sludge layer (2) in a solid-liquid separation chamber.
2) Above the separated small particle-containing liquid (5), which is separated from the giant floc and slightly deposited in a layer form, is sucked from the suction port (25) by the suction pump (26). Is returned to the distribution chamber (30) or the supply pipe of the bulk liquid and reaggregated in the floc forming tank through the bulk liquid impingement mixing pipe (27). The coagulating / concentrating apparatus and the coagulating / concentrating method according to claim 8 or 9, wherein the coagulating / concentrating sludge grown on the giant floc is separated into a supernatant liquid 21).
【請求項11】イ)固液分離室の比重が1.1以上の凝
集濃縮汚泥(22)上に、巨大フロックから剥離して層
状に堆積する剥離小粒子含有液(5)を吸引する吸引口
(25)から、吸引ポンプ(26)により吸引し、 ロ)吸引した剥離小粒子を、再凝集槽(2)内に供給さ
れた堆積層高30cm以上の巨大フロックの高濃縮汚泥
層(14)の槽底の全面に細孔を設けた多孔板(13)
から1.5m/mmin以下の速度で槽内に供給し
て、剥離小粒子を巨大フロックの高濃縮汚泥に付着さ
せ、再凝集槽上澄液(15)は槽上から排出する請求項
8,請求項9,請求項10に記載の凝集濃縮装置と凝集
濃縮法。
11. A suction for sucking a separated small particle-containing liquid (5) that separates from giant flocs and deposits in layers on the coagulated and concentrated sludge (22) having a specific gravity of 1.1 or more in the solid-liquid separation chamber. The suctioned small particles are sucked from the mouth (25) by the suction pump (26). B) The sucked exfoliated small particles are supplied to the re-coagulation tank (2). Perforated plate (13) with pores formed on the entire bottom of the tank
To the tank at a speed of 1.5 m 3 / m 3 min or less to cause the detached small particles to adhere to the highly concentrated sludge of the giant floc, and discharge the re-coagulation tank supernatant (15) from the tank. The coagulation / concentration apparatus and the coagulation / concentration method according to claim 8, claim 9, or claim 10.
【請求項12】本発明の凝集装置と給液室とスパイラル
降下管(以下凝集−降下管)を既設の固液分離室に設置
することを特徴とする微細粒子を含む汚濁液より微細粒
子の巨大フロックに成長させた凝集濃縮汚泥と上澄液と
に分離する請求項8,請求項9,請求項10,請求項1
1に記載の凝集濃縮装置と凝集濃縮法。
12. The method according to claim 1, wherein the coagulation device, the liquid supply chamber and the spiral downcomer (hereinafter referred to as coagulation-downcomer) are installed in an existing solid-liquid separation chamber. The flocculated concentrated sludge grown on the giant floc is separated into a supernatant and a supernatant liquid.
2. The coagulation concentration device and coagulation concentration method according to 1.
【請求項13】本発明の凝集装置と給液室とスパイラル
降下管(以下凝集−降下管)を既設の固液分離室(1
0)内に設置するスペースがない場含に、該凝集−降下
管を内蔵する固液分離筒(54)を既設の固液分離室の
外に設置して、既設の固液分離室の側壁または底板にス
パイラル降下管の排出口を既設の固液分離室内に開口さ
せる場合に、高凝集汚泥を長時間滞留する既設の固液分
離室内で高濃縮汚泥と清澄な液とに分離するに当たり、 イ)固液分離筒内のフロック形成槽の槽上にスパイラル
降下管(23)の溢流堰(4)が開口し溢流堰(4)よ
り降下する巨大フロックは空隙の少ないフロックの連続
する移動層として移動させ、 ロ)降下管の排出口は拡大角度5〜40度の拡大管ノズ
ルとし、 ハ)拡大管ノズルの排出速度は出来ればフロック形成槽
の最上面の開口通過速度以下とし、 ニ)該固液分離室に堆積する凝集濃縮汚泥層界面が上昇
して、拡大管ノズル排出口より降下管直径の3〜7倍高
い位置にきて降下管内汚泥の下降移動が停止すれば、凝
集濃縮汚泥は引き抜きポンプ(12)が稼働し、凝集濃
縮汚泥界面がスパイラル降下管の直径の2倍の深さにま
で排出すれば、引き抜きポンプを停止する、 ホ)固液分離筒に接続するスパイラル降下管より管内の
巨大フロックの移動層を空隙の無い連続相として移動さ
せて固液分離室に剥離小粒子を無い凝集汚泥を移送し、 ヘ)既設の固液分離室へのフロック形成槽からの凝集汚
泥の濃度は高く、固液分離室内に長時間滞留した高濃縮
汚泥を規定時間内(脱窒素現象発生しない)に集泥する
のは不可能、既設の固液分離室の全床面積の40〜20
%の中心部床面積の傾斜角は25〜55度の急勾配にし
て高濃縮汚泥を傾斜面上を滑降排出させる請求項8,請
求項9,請求項10,請求項11に記載の凝集濃縮装置
と凝集濃縮法。
13. A solid-liquid separation chamber (1) comprising a coagulation apparatus, a liquid supply chamber and a spiral downcomer (hereinafter referred to as a coagulation-downcomer) according to the present invention.
0) When there is no space for installing the coagulation-downcomer, the solid-liquid separation cylinder (54) incorporating the coagulation-downcomer is installed outside the existing solid-liquid separation chamber, and the side wall of the existing solid-liquid separation chamber is provided. Alternatively, when the outlet of the spiral downcomer is opened in the existing solid-liquid separation chamber on the bottom plate, in separating the highly coagulated sludge into highly concentrated sludge and a clear liquid in the existing solid-liquid separation chamber in which the sludge stays for a long time, B) The overflow weir (4) of the spiral downcomer pipe (23) is opened on the floc forming tank in the solid-liquid separation cylinder, and the huge floc descending from the overflow weir (4) is a series of flocs with few voids. B) The discharge port of the downcomer is an expansion pipe nozzle with an expansion angle of 5 to 40 degrees. C) The discharge speed of the expansion pipe nozzle is preferably equal to or lower than the opening passage speed of the uppermost surface of the floc formation tank. D) The interface of the coagulated and concentrated sludge layer deposited in the solid-liquid separation chamber is When the ascending concentrated sludge is stopped and the descending movement of the sludge in the descending pipe is stopped at a position 3 to 7 times higher than the diameter of the descending pipe from the outlet of the enlarged pipe nozzle, the drawing pump (12) is operated, and the flocculated concentrated sludge is operated. If the interface discharges to a depth of twice the diameter of the spiral downcomer, stop the extraction pump. E) Continuously move the moving bed of huge flocs in the tube from the spiral downcomer connected to the solid-liquid separation tube without voids. Phase, and transfer the flocculated sludge without separated small particles to the solid-liquid separation chamber. F) The concentration of the flocculated sludge from the floc formation tank to the existing solid-liquid separation chamber is high, It is impossible to collect accumulated sludge within a specified time (no denitrification occurs), and the total floor area of the existing solid-liquid separation chamber is 40 to 20.
%, Wherein the slant angle of the central floor area is set to a steep angle of 25 to 55 degrees to discharge the highly concentrated sludge downhill on the inclined surface. Equipment and coagulation concentration method.
JP21845998A 1998-01-26 1998-06-27 Flocculating and concentrating device and flocculating and concentrating method Pending JP2000000405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21845998A JP2000000405A (en) 1998-01-26 1998-06-27 Flocculating and concentrating device and flocculating and concentrating method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP4996198 1998-01-26
JP10-49961 1998-04-13
JP10-140360 1998-04-13
JP14036098 1998-04-13
JP21845998A JP2000000405A (en) 1998-01-26 1998-06-27 Flocculating and concentrating device and flocculating and concentrating method

Publications (1)

Publication Number Publication Date
JP2000000405A true JP2000000405A (en) 2000-01-07

Family

ID=27293791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21845998A Pending JP2000000405A (en) 1998-01-26 1998-06-27 Flocculating and concentrating device and flocculating and concentrating method

Country Status (1)

Country Link
JP (1) JP2000000405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167583A (en) * 2004-12-15 2006-06-29 Taiheiyo Cement Corp Sludge treatment method, sludge treating system, and flocculant addition apparatus for sludge
CN109354246A (en) * 2018-11-15 2019-02-19 山东科技大学 A kind of high-concentration sewage quick treatment device and its processing method
CN111603809A (en) * 2020-07-01 2020-09-01 长沙矿山研究院有限责任公司 Thickener and using method thereof
CN113090536A (en) * 2021-05-10 2021-07-09 江苏省连云港环境监测中心 Special desilting pump of portable groundwater environment monitoring well
US20220177407A1 (en) * 2019-09-19 2022-06-09 Lg Chem, Ltd. Neutralization/water separation device for esterified product and neutralization/water separation method for esterified product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167583A (en) * 2004-12-15 2006-06-29 Taiheiyo Cement Corp Sludge treatment method, sludge treating system, and flocculant addition apparatus for sludge
JP4593259B2 (en) * 2004-12-15 2010-12-08 太平洋セメント株式会社 Sludge treatment system
CN109354246A (en) * 2018-11-15 2019-02-19 山东科技大学 A kind of high-concentration sewage quick treatment device and its processing method
CN109354246B (en) * 2018-11-15 2023-09-26 山东科技大学 High-concentration sewage rapid treatment device and treatment method thereof
US20220177407A1 (en) * 2019-09-19 2022-06-09 Lg Chem, Ltd. Neutralization/water separation device for esterified product and neutralization/water separation method for esterified product
CN111603809A (en) * 2020-07-01 2020-09-01 长沙矿山研究院有限责任公司 Thickener and using method thereof
CN111603809B (en) * 2020-07-01 2023-07-04 长沙矿山研究院有限责任公司 Thickener and use method thereof
CN113090536A (en) * 2021-05-10 2021-07-09 江苏省连云港环境监测中心 Special desilting pump of portable groundwater environment monitoring well
CN113090536B (en) * 2021-05-10 2022-06-21 江苏省连云港环境监测中心 Special desilting pump of portable groundwater environment monitoring well

Similar Documents

Publication Publication Date Title
CN106242041B (en) System and method for enhancing wastewater treatment processes
US5770091A (en) Method of plain sedimentation and physical-chemical sedimentation of domestic or industrial waste water
KR101000742B1 (en) Improvement of Phosphorus Removal Efficiency by Modification of Rectangular Sedimentation Basin
TWI300006B (en) Coagulating and separating apparatus
CN205442919U (en) Oil field extraction water processing system
CN107459213A (en) A kind of drum type brake integrated sewage treating apparatus
JP4707752B2 (en) Water treatment method and water treatment system
CN103930376A (en) Wastewater-purifying apparatus and wastewater-purifying method
JP2003010874A (en) Method and apparatus for high-speed biological treatment of organic sewage
JP3210350B2 (en) Coagulation concentration device and coagulation concentration method
JP2000000405A (en) Flocculating and concentrating device and flocculating and concentrating method
CN103030229B (en) Oily wastewater treatment device and treatment method in steel industry
WO1999033541A1 (en) Coagulation precipitator
CN207986967U (en) A kind of pollutant fluxes for rainfall pumping station combine the unit
US3063938A (en) Method and apparatus for thickening
JP5660598B2 (en) Pollutant flotation separation and recovery device and pollutant flotation separation and recovery method
CN108383349B (en) Device and method for recycling carbon source of residual activated sludge
US5792363A (en) Method for removing solids from a contaminated liquid
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
JP2854543B2 (en) Dredging wastewater treatment method and device
JPH08224588A (en) Biological treatment utilizing carrier stuck with microorganism and device therefor
JP3833741B2 (en) Aggregation concentration apparatus and aggregation concentration method
JPH10202281A (en) Waste water treating device
KR200252229Y1 (en) Dissolved air flotation basin device
JPH11253704A (en) Flocculator and operation method thereof