JP2013024529A - Heat storage hot water supply device - Google Patents

Heat storage hot water supply device Download PDF

Info

Publication number
JP2013024529A
JP2013024529A JP2011162694A JP2011162694A JP2013024529A JP 2013024529 A JP2013024529 A JP 2013024529A JP 2011162694 A JP2011162694 A JP 2011162694A JP 2011162694 A JP2011162694 A JP 2011162694A JP 2013024529 A JP2013024529 A JP 2013024529A
Authority
JP
Japan
Prior art keywords
hot water
heat storage
water supply
heat
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162694A
Other languages
Japanese (ja)
Other versions
JP5755963B2 (en
Inventor
Hiroyuki Ebara
裕行 荏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Co Ltd
Original Assignee
Dainichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Co Ltd filed Critical Dainichi Co Ltd
Priority to JP2011162694A priority Critical patent/JP5755963B2/en
Publication of JP2013024529A publication Critical patent/JP2013024529A/en
Application granted granted Critical
Publication of JP5755963B2 publication Critical patent/JP5755963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage hot water supply device which is made compact by simplifying the constitution and has high heat storage capability.SOLUTION: The heat storage hot water supply device is configured to heat water in a hot water supply tank 9 with exhaust heat from a heat source by arranging a latent heat storage part 10 filled with a latent heat storage material in close contact with the hot water supply tank. The hot water supply tank 9 and latent heat storage part 10 are disposed in close contact with each other to eliminate the need for piping connecting them, so that the device is simplified and when heat is transferred between the hot water supply tank 9 and latent heat storage part 10, heat is not lost to increase heat storage efficiency. Further, a heating path 3 is arranged in the hot water supply tank 9 and then exchanges heat with water of high heat conductivity, as a result, the heat storage device can be efficiently heated and cooled.

Description

本発明は、熱源からの排熱により水および蓄熱体を加熱する蓄熱給湯装置に関するものである。   The present invention relates to a heat storage hot water supply apparatus that heats water and a heat storage body by exhaust heat from a heat source.

従来、内燃機関や外燃機関からの排熱を利用して動力、温熱、冷熱を取り出し、総合エネルギー効率を高めるコジェネレーションシステムが開発されている。このコジェネレーションシステムは、例えば、エンジンやガスタービン等の熱機関と発電機とからなるコジェネレーション装置を備え、燃料を熱機関で燃焼させて発電機を駆動して発電する一方、その熱機関の排熱を利用して暖房や給湯を行うように構成されたものであり、さらに近年においては、コジェネレーション装置として燃料電池を用いたシステムも提案されている。   Conventionally, a cogeneration system has been developed that uses exhaust heat from an internal combustion engine or an external combustion engine to extract power, heat, and cold to increase overall energy efficiency. This cogeneration system includes, for example, a cogeneration device composed of a heat engine such as an engine or a gas turbine and a generator, and burns fuel in the heat engine to drive the generator to generate power. The system is configured to perform heating and hot water supply using exhaust heat, and in recent years, a system using a fuel cell as a cogeneration device has been proposed.

なお、熱機関や燃料電池からの排熱を有効に利用するためにはその熱を蓄熱しておく必要がある。熱を蓄えるための蓄熱材としては、比熱が高く安全かつ安価であるという理由から一般的に水が利用されているが、水を蓄熱材として利用した場合、その顕熱で蓄熱することになるので単位体積あたりの熱容量が十分ではなく、多くの熱を蓄えるためには蓄熱容器が大型化してしまうという問題があった。   In order to effectively use the exhaust heat from the heat engine or the fuel cell, it is necessary to store the heat. As a heat storage material for storing heat, water is generally used because it has a high specific heat, is safe and inexpensive, but when water is used as a heat storage material, it stores heat with its sensible heat. Therefore, the heat capacity per unit volume is not sufficient, and there is a problem that the heat storage container becomes large in order to store a lot of heat.

そこで、この問題を解消するために、潜熱蓄熱材を用いて蓄熱する方法が提案されている。潜熱蓄熱材は水に比べ単位体積あたりの熱容量が大きいため、装置を小型化することが可能となるのである。   In order to solve this problem, a method of storing heat using a latent heat storage material has been proposed. Since the latent heat storage material has a larger heat capacity per unit volume than water, the apparatus can be downsized.

例えば特許文献1では、貯湯タンクと、潜熱蓄熱材を充填した蓄熱タンクを併用しており、これにより蓄熱装置全体で蓄えることのできる熱量を変えずに蓄熱装置を小型化している。   For example, in Patent Document 1, a hot water storage tank and a heat storage tank filled with a latent heat storage material are used in combination, whereby the heat storage device is downsized without changing the amount of heat that can be stored in the entire heat storage device.

特開2010−186668号公報JP 2010-186668 A

しかしながら、従来の蓄熱装置では蓄熱タンクと貯湯タンクが配管で繋がれているので構造が複雑なだけでなく、この配管からも熱が放出されるため蓄熱効率を低下させてしまうおそれがあった。そして、配管を制御する弁も多く使用されるため装置はさらに複雑化してしまうことになる。   However, in the conventional heat storage device, since the heat storage tank and the hot water storage tank are connected by a pipe, not only the structure is complicated, but also heat is released from this pipe, so there is a possibility that the heat storage efficiency may be lowered. And since many valves which control piping are also used, an apparatus will be further complicated.

本発明は、上記課題を解決するためのもので、構成を簡略化して小型化を可能にするとともに、蓄熱能力の高い蓄熱給湯装置を提供することを目的とする。   This invention is for solving the said subject, and it aims at providing the thermal storage hot-water supply apparatus with high heat storage capability while simplifying a structure and enabling size reduction.

本発明は、水を貯える給湯タンクと、熱源からの排熱により前記給湯タンクの水を加熱する加熱経路と、前記給湯タンクに水を供給する給水経路と、前記加熱経路により加熱された前記給湯タンクの水を吐出する出湯経路と、前記給湯タンクと密接して設けられた潜熱蓄熱部とを有することを特徴とする蓄熱給湯装置である。   The present invention provides a hot water supply tank for storing water, a heating path for heating water in the hot water supply tank by exhaust heat from a heat source, a water supply path for supplying water to the hot water supply tank, and the hot water supply heated by the heating path. A heat storage and hot water supply apparatus having a hot water discharge path for discharging water from a tank and a latent heat storage section provided in close contact with the hot water supply tank.

また、前記潜熱蓄熱部は前記給湯タンクの外周に設けられていることを特徴とする請求項1記載の蓄熱給湯装置である。   2. The heat storage and hot water supply apparatus according to claim 1, wherein the latent heat storage unit is provided on an outer periphery of the hot water supply tank.

また、前記潜熱蓄熱部は前記給湯タンクの内部に設けられていることを特徴とする請求項1記載の蓄熱給湯装置である。   2. The heat storage and hot water supply apparatus according to claim 1, wherein the latent heat storage unit is provided in the hot water supply tank.

また、前記潜熱蓄熱部は前記給湯タンクの外周および内部に設けられていることを特徴とする請求項1記載の蓄熱給湯装置である。   2. The heat storage and hot water supply apparatus according to claim 1, wherein the latent heat storage unit is provided on an outer periphery and an inside of the hot water supply tank.

また、前記給湯タンクと前記潜熱蓄熱部からなる蓄熱ユニットとの間に空気通路を介して設けられたケースと、前記空気通路と蓄熱給湯装置外部とを連通する連通口と、前記連通口を開閉する開閉部材を有し、前記開閉部材は前記潜熱蓄熱部に蓄えられた熱量によって制御されることを特徴とする請求項1から4のいずれかに記載の蓄熱給湯装置である。   A case provided between the hot water supply tank and the heat storage unit including the latent heat storage unit via an air passage; a communication port communicating the air passage with the outside of the heat storage hot water supply device; and opening and closing the communication port. The heat storage and hot water supply device according to any one of claims 1 to 4, further comprising an opening / closing member that is controlled by an amount of heat stored in the latent heat storage unit.

上述のように構成することにより、複雑な配管を必要としないため構成が簡単であり、さらに給湯タンクから潜熱蓄熱部へと熱が効率よく伝わるため、熱の損失が少なくなり蓄熱効率を上げることができる。   By configuring as described above, the configuration is simple because it does not require complicated piping, and heat is efficiently transmitted from the hot water supply tank to the latent heat storage unit, so heat loss is reduced and heat storage efficiency is increased. Can do.

本発明の蓄熱給湯装置を使用したコジェネレーションシステムの概略図である。It is the schematic of the cogeneration system which uses the thermal storage hot-water supply apparatus of this invention. 本発明の実施例1の蓄熱ユニットの平面−断面図である。It is a top view-sectional view of the heat storage unit of Example 1 of the present invention. 本発明の実施例1蓄熱装置の断面図である。It is sectional drawing of Example 1 heat storage apparatus of this invention. 本発明の実施例2の蓄熱ユニットの平面−断面図である。It is plane-sectional drawing of the heat storage unit of Example 2 of this invention. 本発明の実施例3の蓄熱ユニットの平面−断面図である。It is plane-sectional drawing of the thermal storage unit of Example 3 of this invention. 本発明の実施例4の蓄熱ユニットの平面−断面図である。It is a top-sectional view of the heat storage unit of Example 4 of the present invention.

好適と考える本発明の最良の形態を、本発明の作用効果を示して簡単に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode of the present invention, which is considered preferable, will be briefly described by showing the effects of the present invention.

本発明の蓄熱給湯装置は、熱源からの排熱により給湯タンク内の水を加熱し、さらにその熱を潜熱蓄熱材を充填した潜熱蓄熱部に蓄熱するものであって、潜熱蓄熱部を給湯タンクに密接して配置している。   The heat storage hot water supply apparatus of the present invention heats water in a hot water supply tank by exhaust heat from a heat source, and further stores the heat in a latent heat storage section filled with a latent heat storage material, the latent heat storage section being a hot water storage tank. Closely placed.

つまり、給湯タンクと潜熱蓄熱部を密接させることでこれらを繋ぐ配管が不要になるため、装置が簡略化できるとともに、給湯タンクと潜熱蓄熱部との間で熱を伝達する際に熱の損失がなくなり蓄熱効率を高めることができる。   In other words, since the piping connecting the hot water supply tank and the latent heat storage unit becomes unnecessary, the apparatus can be simplified, and there is no heat loss when transferring heat between the hot water tank and the latent heat storage unit. The heat storage efficiency can be improved.

また、潜熱蓄熱材は水に比べて熱伝導率が低い。そのため、潜熱蓄熱部を給湯タンクの外周に設けることで、装置外部へ熱が放出されるのを抑えられるので蓄熱効率を上げることができる。   In addition, the latent heat storage material has a lower thermal conductivity than water. Therefore, by providing the latent heat storage unit on the outer periphery of the hot water supply tank, it is possible to suppress the release of heat to the outside of the apparatus, so that the heat storage efficiency can be increased.

また、潜熱蓄熱材は熱伝導率が低いため熱を吸収するのに時間がかかるが、潜熱蓄熱部を給湯タンクの内部に設けることにより、潜熱蓄熱部は周囲から加熱されることになるので熱の吸収効率を上げることができる。   Also, since the latent heat storage material has a low thermal conductivity, it takes time to absorb the heat. However, by providing the latent heat storage part inside the hot water tank, the latent heat storage part is heated from the surroundings, so The absorption efficiency of can be increased.

また、給湯タンクの外周および内部に潜熱蓄熱部を設けたので、装置外部への熱の放出を抑えることと、熱の吸収効率を上げることが同時に可能となる。   In addition, since the latent heat storage unit is provided on the outer periphery and inside of the hot water tank, it is possible to simultaneously suppress the release of heat to the outside of the apparatus and increase the heat absorption efficiency.

また、給湯タンクと潜熱蓄熱部からなる蓄熱ユニットの外周は空気通路を介して断熱性能を有するケースで囲われているので、潜熱蓄熱部に熱を蓄えているときはケースと空気通路により装置外部への放熱を抑えることができる。一方で、この空気通路は装置外部と連通する連通口を有しているので、潜熱蓄熱部に蓄えた熱を放熱するときは連通口を開放して通気を行うことで強制的に潜熱蓄熱部から放熱させることも可能となる。   In addition, since the outer periphery of the heat storage unit consisting of the hot water supply tank and the latent heat storage unit is surrounded by a case with heat insulation performance through an air passage, when the heat is stored in the latent heat storage unit, the case and the air passage Heat dissipation to the can be suppressed. On the other hand, since this air passage has a communication port communicating with the outside of the apparatus, when the heat stored in the latent heat storage unit is radiated, the latent heat storage unit is forcibly opened by venting the communication port. It is also possible to dissipate heat from.

以下本発明の一実施例を図面により説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は本発明の蓄熱給湯装置を使用したコジェネレーションシステムの概略図である。蓄熱給湯装置1は、水を貯える給湯タンク9および潜熱蓄熱体を収容した潜熱蓄熱部10からなる蓄熱ユニット2、給湯タンク9内の水を加熱する加熱経路3、給湯タンク9に水を供給する給水経路4、給湯タンク9内の湯を吐出する出湯経路5より構成されている。   FIG. 1 is a schematic view of a cogeneration system using the heat storage hot water supply apparatus of the present invention. The heat storage hot water supply device 1 supplies water to a heat storage unit 2 including a hot water supply tank 9 for storing water and a latent heat storage unit 10 containing a latent heat storage body, a heating path 3 for heating water in the hot water supply tank 9, and a hot water supply tank 9. A water supply path 4 and a hot water discharge path 5 for discharging hot water in the hot water supply tank 9 are configured.

加熱経路3には循環ポンプ6が設けられていて、熱交換器21を介して熱源である発電ユニット20から発生する排熱と熱交換を行い、その熱により給湯タンク9内の水を加熱して湯に変換するようになっている。   A circulation pump 6 is provided in the heating path 3 to exchange heat with the exhaust heat generated from the power generation unit 20 as a heat source via the heat exchanger 21, and heat the water in the hot water supply tank 9 with the heat. It is designed to convert to hot water.

発電ユニット20は発電に伴い熱を発生するため、冷却しなければ発電に支障をきたしてしまうが、熱交換器21で加熱経路3と熱交換することにより冷却されるので、発電を継続して行うことができる。なお、この発電ユニット20としては、例えばエンジンやガスタービン、燃料電池など発電の際に熱を発生させるものであればよく、特にその種類を限定するものではない。   Since the power generation unit 20 generates heat along with power generation, it will interfere with power generation unless it is cooled. However, the power generation unit 20 is cooled by exchanging heat with the heating path 3 in the heat exchanger 21, so power generation is continued. It can be carried out. The power generation unit 20 may be any unit that generates heat during power generation, such as an engine, a gas turbine, or a fuel cell, and the type of the power generation unit 20 is not particularly limited.

また、給水経路4の途中には水を送出するための給水ポンプ7が設けられている。   In addition, a water supply pump 7 for sending water is provided in the middle of the water supply path 4.

図2は本発明の蓄熱給湯装置を構成する蓄熱ユニットの平面−断面図であり、蓄熱ユニット2はその中心に給湯タンク9を備え、給湯タンク9の外周には潜熱蓄熱部10が配置されている。そして、給湯タンク9の内部に略U字型の加熱経路3と、直線型の給水経路4と出湯経路5が配置されている。   FIG. 2 is a plan-sectional view of a heat storage unit constituting the heat storage hot water supply apparatus of the present invention. The heat storage unit 2 includes a hot water supply tank 9 at its center, and a latent heat storage unit 10 is disposed on the outer periphery of the hot water supply tank 9. Yes. An approximately U-shaped heating path 3, a linear water supply path 4, and a hot water supply path 5 are arranged inside the hot water supply tank 9.

加熱経路3は筒状のパイプ部材に、放熱面積を広げるための多数の伝熱フィン11aが設けられた形状であり、その内部には不凍液が循環しており、この不凍液が発電ユニット20からの排熱と熱交換して昇温し、熱を放出する。そして給湯タンク9内の水は、伝熱フィン11aを通じて加熱経路3から放出される熱を吸収することで湯となる。   The heating path 3 has a shape in which a large number of heat transfer fins 11a for expanding the heat radiation area are provided in a cylindrical pipe member, and an antifreeze liquid circulates in the heat path 3 from the power generation unit 20. Heat is raised by exchanging heat with exhaust heat, and heat is released. The water in the hot water supply tank 9 becomes hot water by absorbing heat released from the heating path 3 through the heat transfer fins 11a.

一方、潜熱蓄熱部10を構成する潜熱蓄熱体には、例えば酢酸ナトリウム水和物などが用いられ、熱が加わることによって潜熱蓄熱体が融解されると、このときに加えられた熱量が潜熱として潜熱蓄熱部10に蓄熱される。潜熱蓄熱体は、熱伝導率は低いが熱容量が大きいため、蓄えた熱を長時間放出することができる。   On the other hand, for example, sodium acetate hydrate is used as the latent heat storage body constituting the latent heat storage unit 10. When the latent heat storage body is melted by the application of heat, the amount of heat applied at this time becomes latent heat. Heat is stored in the latent heat storage unit 10. Although the latent heat storage body has a low thermal conductivity but a large heat capacity, the stored heat can be released for a long time.

潜熱蓄熱部10の内部には伝熱部材12が設けられており、給湯タンク9内の湯が蓄える熱をこの伝熱部材12を介して潜熱蓄熱体に伝達することで、潜熱蓄熱部10の加熱効率が向上する。   A heat transfer member 12 is provided inside the latent heat storage unit 10, and the heat stored in the hot water supply tank 9 is transferred to the latent heat storage body via the heat transfer member 12. Heating efficiency is improved.

また、給湯タンク9と潜熱蓄熱部10は熱が伝達する際に熱損失が発生しないよう互いに密接して設けられている。   The hot water supply tank 9 and the latent heat storage unit 10 are provided in close contact with each other so that heat loss does not occur when heat is transmitted.

給水経路4と出湯経路5は、長さの異なる筒状のパイプ部材からなり、長いパイプが給水経路4、短いパイプが出湯経路5となっている。給水経路4は給水ポンプ7の動作によりパイプ部材の内部に水を導入して、この水を給湯タンク9の底部付近に供給する。また、給湯タンク9内の水は加熱経路3が放出する熱により加熱されて湯となるので、この湯は給湯の要求があると出湯経路5を通って吐出される。   The water supply path 4 and the hot water supply path 5 are made of cylindrical pipe members having different lengths. The long pipe is the water supply path 4 and the short pipe is the hot water supply path 5. The water supply path 4 introduces water into the pipe member by the operation of the water supply pump 7 and supplies this water to the vicinity of the bottom of the hot water supply tank 9. Further, since the water in the hot water supply tank 9 is heated by the heat released from the heating path 3 to become hot water, the hot water is discharged through the hot water supply path 5 when there is a request for hot water supply.

そして、図3は蓄熱装置の断面図であり、蓄熱ユニット2を囲うように断熱材からなるケース13が設けられ、蓄熱ユニット2とケース13の間には空気が通過する空気通路14が形成されている。また、ケース13の所定位置には空気通路14と蓄熱給湯装置1の外部とを連通し空気が出入りする連通口15a、15bが設けられるとともに、この連通口15a、15bを開閉する開閉部材16が設置されており、この開閉部材16は潜熱蓄熱部10に蓄えられた熱量によって動作が制御される。   FIG. 3 is a cross-sectional view of the heat storage device, in which a case 13 made of a heat insulating material is provided so as to surround the heat storage unit 2, and an air passage 14 through which air passes is formed between the heat storage unit 2 and the case 13. ing. In addition, communication ports 15a and 15b through which the air passage 14 communicates with the outside of the heat storage hot water supply device 1 are provided at predetermined positions of the case 13, and an opening / closing member 16 that opens and closes the communication ports 15a and 15b is provided. The operation of the opening / closing member 16 is controlled by the amount of heat stored in the latent heat storage unit 10.

蓄熱ユニット2の外周には伝熱フィン11cが形成されており、連通口15aから流入した空気は空気通路14を通過する間に伝熱フィン11cと熱交換することで潜熱蓄熱部10から熱を奪い、もう一方の連通口15bから排出される。   Heat transfer fins 11 c are formed on the outer periphery of the heat storage unit 2, and the air flowing in from the communication ports 15 a exchanges heat with the heat transfer fins 11 c while passing through the air passage 14, so that heat is transferred from the latent heat storage unit 10. It steals and is discharged from the other communication port 15b.

次に、前述した構成からなる蓄熱給湯装置1の動作について説明する。本発明の蓄熱給湯装置1は、給湯タンク9の水を加熱し潜熱蓄熱部10に熱を蓄える蓄熱貯湯動作、給湯タンク9内の湯を吐出する給湯動作、潜熱蓄熱部10の熱を強制的に放熱させる放熱動作の3つの動作を行うものであり、以下それぞれについて説明する。   Next, operation | movement of the thermal storage hot-water supply apparatus 1 which consists of the structure mentioned above is demonstrated. The heat storage hot water supply apparatus 1 of the present invention heats the water in the hot water supply tank 9 and stores the heat in the latent heat storage unit 10, the hot water supply operation that discharges hot water in the hot water supply tank 9, and the heat of the latent heat storage unit 10. The following three operations are performed.

蓄熱貯湯動作:熱源となる発電ユニット20が発電動作を行うと、これに伴って熱を排出するので、加熱経路3内を循環する不凍液はこの排熱と熱交換器21で熱交換を行うことにより昇温して、加熱経路3から熱が放出されるようになる。加熱経路3は内部に水を貯えた給湯タンク9内に配置されているので、加熱経路3から放出される熱は給湯タンク9内の水に吸収され、水はこの熱を受けて湯となる。   Thermal storage hot water storage operation: When the power generation unit 20 serving as a heat source performs a power generation operation, heat is discharged along with this, so that the antifreeze liquid circulating in the heating path 3 exchanges heat with the exhaust heat. As a result, the temperature is raised and heat is released from the heating path 3. Since the heating path 3 is disposed in the hot water tank 9 that stores water therein, the heat released from the heating path 3 is absorbed by the water in the hot water tank 9, and the water receives this heat and becomes hot water. .

一方、加熱経路3内を循環する不凍液は、給湯タンク9の水と熱交換することで熱を奪われ、給湯タンク9を出る際には温度が低下した状態となっている。したがって、熱交換器21には温度の低い不凍液が流入することにより、発電ユニット20が冷却されて、発電を継続して行うことができる。   On the other hand, the antifreezing liquid circulating in the heating path 3 is deprived of heat by exchanging heat with the water in the hot water tank 9, and the temperature is lowered when leaving the hot water tank 9. Therefore, when the antifreeze liquid having a low temperature flows into the heat exchanger 21, the power generation unit 20 is cooled and power generation can be continued.

給湯タンク9内の水が湯になると、この湯に蓄えられた熱はさらにその外周の潜熱蓄熱部10に供給される。潜熱蓄熱部10は給湯タンク9に密接して配置されているので、給湯タンク9から放出される熱は全て潜熱蓄熱部10に吸収される。また潜熱蓄熱部10の内部に設けられた伝熱部材12が給湯タンク9が放出する熱を潜熱蓄熱部10の内部から伝達するので、潜熱蓄熱部10は給湯タンク9との境界面からだけでなく内部からも加熱されることとなり、加熱効率が向上する。   When the water in the hot water supply tank 9 becomes hot water, the heat stored in the hot water is further supplied to the latent heat storage section 10 on the outer periphery thereof. Since the latent heat storage unit 10 is disposed in close contact with the hot water supply tank 9, all the heat released from the hot water supply tank 9 is absorbed by the latent heat storage unit 10. Further, since the heat transfer member 12 provided inside the latent heat storage unit 10 transmits the heat released from the hot water supply tank 9 from the inside of the latent heat storage unit 10, the latent heat storage unit 10 is transmitted only from the boundary surface with the hot water supply tank 9. Without being heated from inside, the heating efficiency is improved.

そして、潜熱蓄熱体の温度が融解温度に達すると、潜熱蓄熱体が融解してこの潜熱が潜熱蓄熱部10に蓄熱される。   When the temperature of the latent heat storage body reaches the melting temperature, the latent heat storage body is melted and this latent heat is stored in the latent heat storage section 10.

潜熱蓄熱材は熱伝導率が低いため、給湯タンク9の外周に潜熱蓄熱部10を設けることで蓄熱ユニット2に蓄えられた熱が外部に放出されにくくなり、また、このときケース13の開閉部材16は閉じられているので、潜熱蓄熱部10に蓄えられた熱は、空気通路14およびケース13によっても外部への放出が抑えられるため、潜熱蓄熱部10は高温を維持することが可能となる。   Since the latent heat storage material has a low thermal conductivity, it is difficult to release the heat stored in the heat storage unit 2 to the outside by providing the latent heat storage section 10 on the outer periphery of the hot water supply tank 9. Since 16 is closed, the heat stored in the latent heat storage unit 10 is suppressed from being released to the outside also by the air passage 14 and the case 13, so that the latent heat storage unit 10 can maintain a high temperature. .

給湯動作:蓄熱貯湯動作により給湯タンク9に湯が貯えられ、この状態で給湯の要求があると、給水ポンプ7を作動させて給水経路4から給湯タンク9に水を供給し、出湯経路5からは給湯タンク9内に貯えられた湯を吐出させる。出湯経路5は長さが短く、給湯タンク9内の上方の湯を汲み上げるため、高温の湯が吐出する。   Hot water supply operation: Hot water is stored in the hot water supply tank 9 by the heat storage and hot water storage operation. When there is a request for hot water supply in this state, the water supply pump 7 is operated to supply water from the water supply path 4 to the hot water supply tank 9 and from the hot water supply path 5 Discharges the hot water stored in the hot water supply tank 9. The hot water supply path 5 is short in length and pumps up the hot water in the hot water supply tank 9 so that hot water is discharged.

また、給水経路4は長さが長く、給水タンク9の底面付近に水を供給するようになっており、さらに、給水タンク9内の水は温度成層化されているため、温度の低い水は底部に溜まり、加熱されて温度が高くなった湯が上部に溜まる。そのため、温度の低い水が出湯経路5から汲み上げられてしまうことはない。   The water supply path 4 is long and supplies water near the bottom surface of the water supply tank 9, and the water in the water supply tank 9 is temperature stratified. Hot water that has accumulated at the bottom and heated to accumulate at the top. Therefore, water having a low temperature is not pumped from the hot water supply path 5.

給水経路4から供給された水は、給湯タンク9の外周に設けられた潜熱蓄熱部10が放出する熱を奪うことにより加熱されて湯となる。   The water supplied from the water supply path 4 is heated to become hot water by taking away the heat released by the latent heat storage unit 10 provided on the outer periphery of the hot water supply tank 9.

なお、給湯動作と同時に蓄熱貯湯動作も行われることもあるが、この場合、給湯タンク9の水は加熱経路3によっても加熱される。   In addition, although the heat storage and hot water storage operation may be performed simultaneously with the hot water supply operation, the water in the hot water supply tank 9 is also heated by the heating path 3.

また、蓄熱貯湯動作時と同様、給湯動作時においてもケース13の開閉部材16は閉じられているので、潜熱蓄熱部10に蓄えられた熱は、空気通路14およびケース13によって外部への放出が抑えられる。   Further, since the open / close member 16 of the case 13 is closed during the hot water supply operation as in the case of the heat storage hot water storage operation, the heat stored in the latent heat storage unit 10 is released to the outside by the air passage 14 and the case 13. It can be suppressed.

このように蓄熱貯湯動作を行うことで潜熱蓄熱部10が加熱され、給湯動作を行うことで潜熱蓄熱部10が熱を奪われ冷却される。蓄熱貯湯動作と給湯動作のバランスが取れていると、給湯動作で潜熱蓄熱部10が冷却された分、蓄熱貯湯動作で潜熱蓄熱部10に熱を蓄えることができるので、加熱経路3を循環する不凍液は給湯タンク9に熱を奪われて給湯タンク9通過後には温度が低下した状態となる。したがって、加熱経路3は熱交換器21を介して発電ユニット20を冷却することができる。   The latent heat storage unit 10 is heated by performing the heat storage hot water operation in this manner, and the latent heat storage unit 10 is deprived of heat and cooled by performing the hot water supply operation. If the heat storage hot water operation and the hot water supply operation are balanced, heat can be stored in the latent heat storage unit 10 by the heat storage hot water operation as much as the latent heat storage unit 10 is cooled by the hot water operation. The antifreeze is deprived of heat by the hot water supply tank 9, and after passing through the hot water supply tank 9, the temperature is lowered. Therefore, the heating path 3 can cool the power generation unit 20 via the heat exchanger 21.

しかし、通常は給湯動作で奪われる熱量と蓄熱貯湯動作で蓄える熱量とは一致するものではなく、蓄熱貯湯動作で蓄える熱量が多くなることが予想される。そして、潜熱蓄熱部10の蓄熱量が所定量に達すると、給湯タンク9は加熱経路3から熱を奪うことができなくなるため、給湯タンク9を通過後の加熱経路3内の不凍液は高温を維持したままの状態となる。すると、不凍液は温度が高いまま熱交換器21に流れ込むので、発電ユニット20を冷却することができず、発電動作に支障をきたし、発電動作を規制しなければならなくなる。そこで、このような状態を回避するために、蓄熱量が所定の値に達すると、強制的に潜熱蓄熱部10を放熱させる放熱動作が行われる。   However, the amount of heat normally taken away by the hot water supply operation and the amount of heat stored by the heat storage hot water storage operation are not the same, and it is expected that the amount of heat stored by the heat storage hot water storage operation will increase. When the amount of heat stored in the latent heat storage unit 10 reaches a predetermined amount, the hot water supply tank 9 cannot take heat away from the heating path 3, so that the antifreeze liquid in the heating path 3 after passing through the hot water tank 9 maintains a high temperature. It will be in a state as it is. Then, since the antifreeze liquid flows into the heat exchanger 21 with the temperature being high, the power generation unit 20 cannot be cooled, the power generation operation is hindered, and the power generation operation must be regulated. Therefore, in order to avoid such a state, when the heat storage amount reaches a predetermined value, a heat radiation operation for forcibly radiating the latent heat storage unit 10 is performed.

放熱動作:潜熱蓄熱部10に蓄えられた熱量が所定量を超えたと判断された場合、ケース13の開閉部材16を開き、連通口15aから蓄熱給湯装置内部に空気を流入させる。すると、連通口15aより流入した空気は、空気通路14を通過する間に潜熱蓄熱部10から放出される熱を受けて昇温し、もう一方の連通口15bより排出される。これにより、潜熱蓄熱部10は冷却されて温度が低下するので、給湯タンク9は加熱経路3から熱を奪うことができるようになる。   Heat release operation: When it is determined that the amount of heat stored in the latent heat storage unit 10 has exceeded a predetermined amount, the opening / closing member 16 of the case 13 is opened, and air is caused to flow into the heat storage hot water supply device from the communication port 15a. Then, the air flowing in from the communication port 15 a receives the heat released from the latent heat storage unit 10 while passing through the air passage 14, rises in temperature, and is discharged from the other communication port 15 b. Thereby, the latent heat storage unit 10 is cooled and the temperature is lowered, so that the hot water supply tank 9 can take heat from the heating path 3.

そして、放熱動作を続けることで潜熱蓄熱部10に蓄えられた熱量が所定量以下になったと判断されると、開閉部材16を閉じて以降の放熱を遮断する。   When it is determined that the amount of heat stored in the latent heat storage unit 10 has become equal to or less than a predetermined amount by continuing the heat dissipation operation, the open / close member 16 is closed to block subsequent heat dissipation.

ケース13は、蓄熱貯湯動作および給湯動作時には潜熱蓄熱部10から外部への熱の放出を抑えて高温に維持する役割を果たすものであるが、放熱動作時においては開閉部材16を開くことで潜熱蓄熱部10を放熱させて冷却することができる。つまり、潜熱蓄熱部10を冷却するためにラジエーター等の冷却装置を別途設ける必要がないため、より装置を小型かつ安価に構成することが可能となる。   The case 13 plays a role of suppressing the release of heat from the latent heat storage unit 10 to the outside during the heat storage hot water storage operation and the hot water supply operation, and maintaining it at a high temperature. The heat storage part 10 can be radiated and cooled. That is, since it is not necessary to separately provide a cooling device such as a radiator for cooling the latent heat storage unit 10, it is possible to make the device more compact and inexpensive.

図4は本発明の実施例2の蓄熱ユニットの平面−断面図であって、加熱経路3は熱交換器21と連通する長短の2本のパイプ3a、3bより構成されていて、長い方のパイプ3aにより給湯タンク9内の水を吸い上げて発電ユニット20の冷却に用いるようになっている。   FIG. 4 is a plan-sectional view of the heat storage unit according to the second embodiment of the present invention. The heating path 3 is composed of two long and short pipes 3 a and 3 b communicating with the heat exchanger 21. The water in the hot water supply tank 9 is sucked up by the pipe 3 a and used for cooling the power generation unit 20.

給湯タンク9内は温度成層化されているので、加熱経路3のうち、長い方のパイプ3aが給湯タンク9内の水を吸い上げると、温度の低い底部の水が吸い上げられて熱交換器21へ向かい、発電ユニット20からの排熱と熱交換器21で熱交換を行うことにより熱を吸収して昇温し高温の湯となる。   Since the temperature of the hot water supply tank 9 is stratified, when the longer pipe 3 a in the heating path 3 sucks up the water in the hot water supply tank 9, the water at the bottom of the lower temperature is sucked up to the heat exchanger 21. On the other hand, heat exchange is performed with the exhaust heat from the power generation unit 20 and the heat exchanger 21, thereby absorbing heat and raising the temperature to become hot water.

熱交換器21を通過した後の高温の湯は、短い方のパイプ3bから給湯タンク9に供給されるので、これを繰り返すことにより給湯タンク9内の水が加熱されて温度が上昇し、この熱が潜熱蓄熱部10に伝わって潜熱蓄熱部10に熱が蓄えられる。なお、熱交換器21を通過した後の高温の湯は、給湯タンク9の上部に供給されるので、給湯タンク9内部で温度の低い水と完全に混ざり合うことがなく、長い方のパイプ3aから吸い上げられる水は低温の状態とすることができる。   The hot water after passing through the heat exchanger 21 is supplied to the hot water supply tank 9 from the shorter pipe 3b. By repeating this, the water in the hot water supply tank 9 is heated and the temperature rises. Heat is transmitted to the latent heat storage unit 10, and heat is stored in the latent heat storage unit 10. Since the hot water after passing through the heat exchanger 21 is supplied to the upper part of the hot water supply tank 9, it does not completely mix with the low temperature water inside the hot water supply tank 9, and the longer pipe 3a. The water sucked up from can be kept at a low temperature.

そして、給湯の要求があった場合には、給湯タンク9上部の高温の湯が出湯経路5から吐出される。さらに給水経路4からは給水タンク9の底面付近に水が供給されるので、この低温の水がパイプ3aから吸い上げられるため発電ユニット20を効率よく冷却することができる。   When there is a request for hot water supply, hot hot water in the upper part of the hot water supply tank 9 is discharged from the hot water supply path 5. Furthermore, since water is supplied from the water supply path 4 to the vicinity of the bottom surface of the water supply tank 9, since this low temperature water is sucked up from the pipe 3a, the power generation unit 20 can be efficiently cooled.

図5は本発明の実施例3の蓄熱ユニットの平面−断面図であって、給湯タンク9は第一給湯タンク9aと第二給湯タンク9bの二つのタンクから構成されている。   FIG. 5 is a plan-sectional view of the heat storage unit according to the third embodiment of the present invention, and the hot water tank 9 is composed of two tanks, a first hot water tank 9a and a second hot water tank 9b.

蓄熱ユニット2はその中心に第一給湯タンク9aを備え、第一給湯タンク9aの外周に潜熱蓄熱部10が配置され、さらに潜熱蓄熱部10の外周には第二給湯タンク9bが配置されており、第一給湯タンク9aと第二給湯タンク9bは潜熱蓄熱部10の各所に設けられた開口通路17によって連通する構成となっている。そして、第一給湯タンク9aの内部に加熱経路3、給水経路4、出湯経路5が配置されている。   The heat storage unit 2 includes a first hot water tank 9a at its center, a latent heat storage unit 10 is disposed on the outer periphery of the first hot water tank 9a, and a second hot water tank 9b is disposed on the outer periphery of the latent heat storage unit 10. The first hot water supply tank 9 a and the second hot water supply tank 9 b are configured to communicate with each other through open passages 17 provided at various locations in the latent heat storage unit 10. And the heating path 3, the water supply path 4, and the hot water path 5 are arrange | positioned inside the 1st hot water supply tank 9a.

加熱経路3によって第一給湯タンク9a内の水が加熱されて湯になると、第一給湯タンク9a内の湯は潜熱熱蓄熱部10を内側から加熱するとともに、開口通路17を介して第二給湯タンク9bへ流入し、そして潜熱蓄熱部10を外側からも加熱する。   When the water in the first hot water supply tank 9a is heated by the heating path 3 to become hot water, the hot water in the first hot water supply tank 9a heats the latent heat storage part 10 from the inside, and the second hot water supply through the opening passage 17. It flows into the tank 9b and the latent heat storage unit 10 is also heated from the outside.

潜熱蓄熱材は熱伝導率が低いため熱を吸収するのに時間がかかるが、潜熱蓄熱部10を給湯タンク9の内部(第一給湯タンク9aと第二給湯タンク9bの間)に設けることにより、潜熱蓄熱部10は周囲から加熱されることになるので潜熱蓄熱材の熱吸収の効率を上げることができる。   Since the latent heat storage material has a low thermal conductivity, it takes time to absorb heat, but by providing the latent heat storage unit 10 inside the hot water supply tank 9 (between the first hot water supply tank 9a and the second hot water supply tank 9b). Since the latent heat storage unit 10 is heated from the surroundings, the efficiency of heat absorption of the latent heat storage material can be increased.

図6は本発明の実施例4の蓄熱ユニットの平面−断面図であって、潜熱蓄熱部10は中央の第一蓄熱部10aと外周の第二蓄熱部10bからなり、蓄熱ユニット2の底部で第一蓄熱部10aと第二蓄熱部10bが連通する構成となっている。そして、給湯タンク9の内部に第一蓄熱部10a、外周に第二蓄熱部10bが配置されることにより蓄熱ユニット2が形成され、給湯タンク9の内部に加熱経路3、給水経路4、出湯経路5が配置されている。   FIG. 6 is a plan-sectional view of the heat storage unit according to the fourth embodiment of the present invention. The latent heat storage unit 10 includes a central first heat storage unit 10a and an outer peripheral second heat storage unit 10b. The first heat storage unit 10a and the second heat storage unit 10b are configured to communicate with each other. And the heat storage unit 2 is formed by arrange | positioning the 1st heat storage part 10a inside the hot water supply tank 9, and the 2nd heat storage part 10b on the outer periphery, and the heating path 3, the water supply path 4, and the hot water path inside the hot water supply tank 9 5 is arranged.

第一蓄熱部10aを給湯タンク9の内部に設けることにより、第一蓄熱部10aは周囲から加熱されるので熱吸収の効率が上がり、さらに第二蓄熱部10bを給湯タンク9の外周に設けたことにより、蓄熱ユニット2に蓄えられた熱が外部放出されにくくなる。つまり、熱の吸収効率を上げることと、装置外部への熱の放出を抑えることが同時に可能となるのである。   By providing the 1st heat storage part 10a in the hot water supply tank 9, since the 1st heat storage part 10a is heated from the circumference, the efficiency of heat absorption goes up, and also the 2nd heat storage part 10b was provided in the outer periphery of the hot water supply tank 9 This makes it difficult for the heat stored in the heat storage unit 2 to be released to the outside. That is, it is possible to simultaneously increase the heat absorption efficiency and suppress the release of heat to the outside of the apparatus.

2 蓄熱ユニット
3 加熱経路
4 給水経路
5 出湯経路
9 給湯タンク
10 潜熱蓄熱部
13 ケース
14 空気通路
15a,15b 連通口
16 開閉部材
DESCRIPTION OF SYMBOLS 2 Heat storage unit 3 Heating path 4 Water supply path 5 Hot water supply path 9 Hot water supply tank 10 Latent heat storage part 13 Case 14 Air path 15a, 15b Communication port 16 Opening / closing member

Claims (5)

水を貯える給湯タンクと、熱源からの排熱により前記給湯タンクの水を加熱する加熱経路と、前記給湯タンクに水を供給する給水経路と、前記加熱経路により加熱された前記給湯タンクの水を吐出する出湯経路と、前記給湯タンクと密接して設けられた潜熱蓄熱部とを有することを特徴とする蓄熱給湯装置。   A hot water tank for storing water, a heating path for heating water in the hot water tank by exhaust heat from a heat source, a water supply path for supplying water to the hot water tank, and water in the hot water tank heated by the heating path. A heat storage and hot water supply apparatus comprising a discharge hot water path and a latent heat storage section provided in close contact with the hot water supply tank. 前記潜熱蓄熱部は前記給湯タンクの外周に設けられていることを特徴とする請求項1記載の蓄熱給湯装置。   The said latent heat storage part is provided in the outer periphery of the said hot-water supply tank, The thermal storage hot-water supply apparatus of Claim 1 characterized by the above-mentioned. 前記潜熱蓄熱部は前記給湯タンクの内部に設けられていることを特徴とする請求項1記載の蓄熱給湯装置。   The heat storage hot water supply apparatus according to claim 1, wherein the latent heat storage unit is provided in the hot water supply tank. 前記潜熱蓄熱部は前記給湯タンクの外周および内部に設けられていることを特徴とする請求項1記載の蓄熱給湯装置。   The heat storage hot water supply apparatus according to claim 1, wherein the latent heat storage unit is provided on an outer periphery and an inside of the hot water supply tank. 前記給湯タンクと前記潜熱蓄熱部からなる蓄熱ユニットとの間に空気通路を介して設けられたケースと、前記空気通路と蓄熱給湯装置外部とを連通する連通口と、前記連通口を開閉する開閉部材を有し、前記開閉部材は前記潜熱蓄熱部に蓄えられた熱量によって制御されることを特徴とする請求項1から4のいずれかに記載の蓄熱給湯装置。   A case provided via an air passage between the hot water storage tank and the heat storage unit comprising the latent heat storage unit, a communication port for communicating the air passage with the outside of the heat storage hot water supply device, and an open / close for opening and closing the communication port 5. The heat storage hot water supply apparatus according to claim 1, further comprising a member, wherein the opening / closing member is controlled by an amount of heat stored in the latent heat storage unit.
JP2011162694A 2011-07-26 2011-07-26 Thermal storage water heater Expired - Fee Related JP5755963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162694A JP5755963B2 (en) 2011-07-26 2011-07-26 Thermal storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162694A JP5755963B2 (en) 2011-07-26 2011-07-26 Thermal storage water heater

Publications (2)

Publication Number Publication Date
JP2013024529A true JP2013024529A (en) 2013-02-04
JP5755963B2 JP5755963B2 (en) 2015-07-29

Family

ID=47783087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162694A Expired - Fee Related JP5755963B2 (en) 2011-07-26 2011-07-26 Thermal storage water heater

Country Status (1)

Country Link
JP (1) JP5755963B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026224A (en) * 2018-10-17 2018-12-18 中国船舶重工集团公司第七0三研究所 A kind of list tank heat accumulating type energy storage cogeneration system
WO2022244195A1 (en) * 2021-05-20 2022-11-24 三菱電機株式会社 Water heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611949A (en) * 1984-06-14 1986-01-07 Kaoru Tsuda Heat accumulating material utilizing latent heat for hot water supply and hot well for hot water supply
JP2003240465A (en) * 2002-02-20 2003-08-27 Toho Gas Co Ltd Latent heat storage device
JP2006284070A (en) * 2005-03-31 2006-10-19 Daiwa House Ind Co Ltd Hot water storage device
JP2009103430A (en) * 2007-10-02 2009-05-14 Panasonic Corp Heat pump water heater
JP2009138984A (en) * 2007-12-05 2009-06-25 Dainichi Co Ltd Heat storage device
JP2009281629A (en) * 2008-05-21 2009-12-03 Panasonic Corp Heat pump water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611949A (en) * 1984-06-14 1986-01-07 Kaoru Tsuda Heat accumulating material utilizing latent heat for hot water supply and hot well for hot water supply
JP2003240465A (en) * 2002-02-20 2003-08-27 Toho Gas Co Ltd Latent heat storage device
JP2006284070A (en) * 2005-03-31 2006-10-19 Daiwa House Ind Co Ltd Hot water storage device
JP2009103430A (en) * 2007-10-02 2009-05-14 Panasonic Corp Heat pump water heater
JP2009138984A (en) * 2007-12-05 2009-06-25 Dainichi Co Ltd Heat storage device
JP2009281629A (en) * 2008-05-21 2009-12-03 Panasonic Corp Heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026224A (en) * 2018-10-17 2018-12-18 中国船舶重工集团公司第七0三研究所 A kind of list tank heat accumulating type energy storage cogeneration system
WO2022244195A1 (en) * 2021-05-20 2022-11-24 三菱電機株式会社 Water heater

Also Published As

Publication number Publication date
JP5755963B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
CN108011158A (en) A kind of immersion cell bag heat management system and the automobile including the heat management system
CN109361036A (en) A kind of energy-efficient battery modules heat management device
CN102751451B (en) Auxiliary constant-temperature battery box
WO2010109757A1 (en) Fuel cell cogeneration system
JP2010243118A (en) Heat storage unit and vehicle air conditioner
JP4316527B2 (en) Regenerative heat supply device
JP4657226B2 (en) Heat storage device
JP2015017780A5 (en)
JP2004087301A (en) Fuel cell apparatus
JP2011149385A (en) Cooling water circulating device
JP5755963B2 (en) Thermal storage water heater
CN113169354A (en) Fuel cell system comprising a plurality of fuel cells
JP2007134519A (en) Exhaust heat recovery utilization system
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
KR200435845Y1 (en) Closing Solar Heater
CN208862064U (en) Battery pack structure
JP5749999B2 (en) Heat storage device
CN209515765U (en) A kind of thermal management device of battery that novel temperature-uniforming plate is coupled with phase-change material
JP5730722B2 (en) Heat exchanger
CN201242257Y (en) Heating unit for instant-heating electric water heater
CN114373603A (en) Vegetable oil transformer with heating function
CN209843904U (en) Temperature control system and energy storage battery cabinet
CN111383782B (en) Passive safety system and pressurized water reactor with same
JP5854369B2 (en) Cogeneration system
CN206458521U (en) A kind of oil radiator structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5755963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees