JP2013016878A - Receiver and reception method - Google Patents

Receiver and reception method Download PDF

Info

Publication number
JP2013016878A
JP2013016878A JP2009252765A JP2009252765A JP2013016878A JP 2013016878 A JP2013016878 A JP 2013016878A JP 2009252765 A JP2009252765 A JP 2009252765A JP 2009252765 A JP2009252765 A JP 2009252765A JP 2013016878 A JP2013016878 A JP 2013016878A
Authority
JP
Japan
Prior art keywords
signal
calibration
silence
amplitude
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252765A
Other languages
Japanese (ja)
Inventor
Kenji Ishikawa
賢二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009252765A priority Critical patent/JP2013016878A/en
Priority to PCT/JP2010/006158 priority patent/WO2011055495A1/en
Publication of JP2013016878A publication Critical patent/JP2013016878A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Abstract

PROBLEM TO BE SOLVED: To provide a receiver in which calibration is eliminated in the stage of process adjustment, and broadcast can be received without losing the sound period of a broadcast content in a state always adjusted to the optimum reception characteristics, even when the ambient temperature changes while selecting the same broadcasting station after turning power on, and to provide a reception method.SOLUTION: A silent detection circuit 9 detects the silent period of a transmitted broadcast content, and outputs a silent detection signal 9a. A calibration signal generation circuit 4 outputs a calibration signal 4a for detecting the deviation amount between the I path and the Q path of an orthogonal demodulation circuit 5 by using the silent detection signal 9a as a trigger. An IQ deviation detection circuit 11 performs comparison with a reference value when there is no deviation in the IQ path, and outputs the amplitude deviation 11a and the phase deviation 11b of the IQ path. A correction arithmetic circuit 10 generates an amplitude correction signal 10a and a phase correction signal 10b for adjusting the amplitude and phase in the orthogonal demodulation circuit 5.

Description

本発明は、無線システムにおける受信装置及び受信方法に関し、特に直交復調における同相(I)成分と直交(Q)成分との間の振幅及び位相のミスマッチを補正する技術に関するものである。   The present invention relates to a receiving apparatus and a receiving method in a radio system, and more particularly to a technique for correcting an amplitude and phase mismatch between an in-phase (I) component and a quadrature (Q) component in quadrature demodulation.

従来の受信装置では、直交復調におけるI成分とQ成分との間の振幅及び位相のミスマッチを補正することができる。そのため、RF信号を受信してベースバンド信号に変換する受信モードから、スイッチを切り替えて校正信号を入力する校正モードにする(特許文献1参照)。   In the conventional receiving apparatus, it is possible to correct the amplitude and phase mismatch between the I component and the Q component in quadrature demodulation. For this reason, the mode is changed from a reception mode in which an RF signal is received and converted into a baseband signal to a calibration mode in which a calibration signal is input by switching a switch (see Patent Document 1).

特開2007−104522号公報JP 2007-104522 A

上記従来の受信装置では、校正用の信号を入力するためにスイッチを切り替えて校正モードの状態にする必要があり、その期間は実際の放送波を受信することは不可能である。そのため、実際の校正が行われるのは工程調整の段階や電源投入直後、又はユーザによる受信局の切り替え発生時等に限られてしまい、例えば放送の連続受信中に周囲温度の変動で受信特性の調整が必要になった場合には、校正モードに切り替えてしまうと、アナログラジオ放送では、放送される有音期間が消失してしまうという問題点を有していた。   In the above conventional receiving apparatus, it is necessary to switch the switch to enter the calibration mode in order to input the calibration signal, and during this period, it is impossible to receive the actual broadcast wave. For this reason, actual calibration is limited to the stage of process adjustment, immediately after power-on, or when the user changes the receiving station. When adjustment is necessary, switching to the calibration mode has a problem that the sound period to be broadcast disappears in analog radio broadcasting.

本発明は、上記従来の問題点を解決するもので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままで、かつ周囲温度の変化が発生した場合でも、常に最適な受信特性に調整された状態で、放送内容の有音期間を消失することなく、放送受信を可能にする受信装置及び受信方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and calibration at the stage of process adjustment is unnecessary, the same broadcasting station is selected after turning on the power, and a change in ambient temperature occurs However, it is an object of the present invention to provide a receiving apparatus and a receiving method that enable broadcast reception without losing the sound period of the broadcast content in a state that is always adjusted to optimum reception characteristics.

上記課題を解決するために、本発明に係る受信装置は、受信アンテナからの信号を入力とし、その高周波信号を出力する高周波増幅手段と、前記高周波増幅手段の出力を一方の入力とし、他方の入力とのうちいずれか一方の入力を選択して出力する選択手段と、前記選択手段の出力を入力し、ミキサによってI成分とQ成分とに変換する直交復調手段と、前記直交復調手段の復調I信号と復調Q信号とをそれぞれアナログ信号からデジタル信号に変換するアナログ−デジタル変換手段と、前記アナログ−デジタル変換手段の各デジタル出力を入力とし、音声信号を復調するベースバンド復調手段と、前記ベースバンド復調手段の出力信号の無音期間を検出し、前記選択手段に出力する無音検出手段と、前記無音検出手段の出力に応じて、前記選択手段への他方の入力として校正用の信号を生成する校正信号発生手段と、前記アナログ−デジタル変換手段の各デジタル出力を入力とし、デジタルI信号とデジタルQ信号との間の振幅及び位相の偏差を検出するIQ偏差検出手段と、前記IQ偏差検出手段の出力を入力とし、I信号経路とQ信号経路との間の振幅及び位相の各偏差補正量を演算し、前記直交復調手段に出力する補正演算手段とを備えたことを特徴とする。   In order to solve the above problems, a receiving apparatus according to the present invention has a signal from a receiving antenna as an input, a high-frequency amplification unit that outputs the high-frequency signal, an output of the high-frequency amplification unit as one input, and the other Selecting means for selecting and outputting one of the inputs, orthogonal demodulating means for inputting the output of the selecting means and converting it into an I component and a Q component by a mixer, and demodulation of the orthogonal demodulating means Analog-to-digital conversion means for converting each of the I signal and the demodulated Q signal from an analog signal to a digital signal; baseband demodulation means for demodulating an audio signal by using each digital output of the analog-to-digital conversion means; and Detecting a silence period of the output signal of the baseband demodulating means, and outputting to the selection means, and according to the output of the silence detecting means, The calibration signal generating means for generating a calibration signal as the other input to the selection means, and the digital outputs of the analog-digital conversion means are input, and the amplitude and phase between the digital I signal and the digital Q signal are input. An IQ deviation detecting means for detecting a deviation and an output of the IQ deviation detecting means are input, and amplitude and phase deviation correction amounts between the I signal path and the Q signal path are calculated and output to the quadrature demodulating means. And a correction calculation means.

また、本発明に係る受信方法は、受信アンテナから入力された高周波信号をI成分とQ成分とに変換する直交復調工程を行った後に音声信号を復調する受信方法であって、前記音声信号における無音期間を検出し、前記無音期間に校正用の信号を用いて、振幅及び位相の各偏差補正量を演算し、前記直交復調工程に出力することを特徴とする。   A receiving method according to the present invention is a receiving method for demodulating an audio signal after performing an orthogonal demodulation step of converting a high-frequency signal input from a receiving antenna into an I component and a Q component. A silent period is detected, and amplitude and phase deviation correction amounts are calculated using a calibration signal during the silent period and output to the orthogonal demodulation step.

本発明によれば、無音検出の採用によって、無音期間中に校正信号を用いてI信号経路とQ信号経路とのばらつきの補正を行うので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となるという効果を有する。   According to the present invention, by adopting silence detection, the correction between the I signal path and the Q signal path is corrected using the calibration signal during the silence period, so that calibration at the stage of the process adjustment becomes unnecessary. Even when the same broadcasting station is still selected after being turned on, there is an effect that reception is always possible in a state adjusted to optimum reception characteristics.

本発明の実施形態1における受信装置のブロック構成図である。It is a block block diagram of the receiver in Embodiment 1 of this invention. 図1の受信装置における無音検出と校正のタイミングを示すタイミングチャートである。2 is a timing chart showing the timing of silence detection and calibration in the receiving apparatus of FIG. 1. 本発明の実施形態2における受信装置のブロック構成図である。It is a block block diagram of the receiver in Embodiment 2 of this invention. 図3の受信装置における受信状況を示すタイミングチャートである。It is a timing chart which shows the reception condition in the receiver of FIG. 本発明の実施形態3における受信装置のブロック構成図である。It is a block block diagram of the receiver in Embodiment 3 of this invention. 図5の受信装置における校正期間の制御過程を示すタイミングチャートである。6 is a timing chart showing a control process of a calibration period in the receiving apparatus of FIG. 本発明の実施形態4における調整シーケンスの例を示すタイミングチャートである。It is a timing chart which shows the example of the adjustment sequence in Embodiment 4 of this invention. 本発明の実施形態5における受信装置のブロック構成図である。It is a block block diagram of the receiver in Embodiment 5 of this invention. 図8の受信装置における時間経過判定回路の制御の関係を示すタイミングチャートである。9 is a timing chart showing a control relationship of a time passage determination circuit in the receiving apparatus of FIG. 本発明の実施形態6における受信装置のブロック構成図である。It is a block block diagram of the receiver in Embodiment 6 of this invention. 図10の受信装置における温度変化判定回路の制御の関係を示すタイミングチャートである。11 is a timing chart showing a control relationship of a temperature change determination circuit in the receiving apparatus of FIG. 10. 本発明の実施形態7における受信方法を示すフローチャートである。It is a flowchart which shows the reception method in Embodiment 7 of this invention. 本発明の実施形態8における受信方法を示すフローチャートである。It is a flowchart which shows the reception method in Embodiment 8 of this invention. 本発明の実施形態9における受信方法を示すフローチャートである。It is a flowchart which shows the reception method in Embodiment 9 of this invention. 本発明の実施形態10における受信方法を示すフローチャートである。It is a flowchart which shows the receiving method in Embodiment 10 of this invention. 本発明の実施形態11における受信方法を示すフローチャートである。It is a flowchart which shows the receiving method in Embodiment 11 of this invention. 本発明の実施形態12における受信方法を示すフローチャートである。It is a flowchart which shows the receiving method in Embodiment 12 of this invention.

以下、本発明の実施形態について図面を参照しながら説明する。各実施形態では特に必要な時以外は、同一又は同様の部分の説明を原則として繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the description of the same or similar parts will not be repeated in principle unless particularly necessary.

《実施形態1》
図1は、本発明の実施形態1の受信装置のブロック構成図である。図1において、1は放送波1aを受信する受信アンテナ、2は受信アンテナ1からの信号を増幅し、高周波増幅信号2aを出力する高周波増幅回路、4は無音検出信号9aをトリガとして、直交復調回路5のIQ信号経路の振幅及び位相のばらつきを調整するための校正信号4aを発生する校正信号発生回路、3は無音検出信号9aに応じて、高周波増幅信号2a又は校正信号4aのいずれか一方を選択し、選択出力信号3aを出力する選択回路、5は選択出力信号3aを入力として直交復調を行い同相成分I信号5aと直交成分Q信号5bとを出力する直交復調回路、6、7は同相成分I信号5aと直交成分Q信号5bとをアナログ−デジタル変換し、デジタルIデータ6aとデジタルQデータ7aとを出力するA/D変換回路(ADC)、8はデジタルIデータ6aとデジタルQデータ7aとを入力とし、システムの受信モードに応じて音声復調を行い、再生L信号8aと再生R信号8bとを出力するベースバンド復調回路、9は再生L信号8aと再生R信号8bとを入力して、無音期間を検出し、無音検出信号9aを出力する無音検出回路、11はA/D変換回路6,7の出力である、デジタルIデータ6aとデジタルQデータ7aとを入力とし、I成分とQ成分との間の振幅及び位相の偏差を検出し、振幅偏差11aと位相偏差11bとを出力するIQ偏差検出回路、10はIQ偏差検出回路11より出力される振幅偏差11aと位相偏差11bとから直交復調回路5で発生する振幅及び位相の偏差が小さくなるように振幅及び位相を補正するための演算を行い、振幅補正信号10aと位相補正信号10bとを出力する補正演算回路である。
Embodiment 1
FIG. 1 is a block configuration diagram of a receiving apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1 is a receiving antenna that receives a broadcast wave 1a, 2 is a high-frequency amplifier circuit that amplifies a signal from the receiving antenna 1 and outputs a high-frequency amplified signal 2a, and 4 is quadrature demodulated using a silence detection signal 9a as a trigger. A calibration signal generating circuit 3 for generating a calibration signal 4a for adjusting variations in amplitude and phase of the IQ signal path of the circuit 5, 3 is either one of the high frequency amplified signal 2a or the calibration signal 4a according to the silence detection signal 9a. And a selection circuit 5 for outputting a selection output signal 3a, a quadrature demodulation circuit for performing quadrature demodulation with the selection output signal 3a as an input and outputting an in-phase component I signal 5a and a quadrature component Q signal 5b; An A / D conversion circuit (ADC) that converts the in-phase component I signal 5a and the quadrature component Q signal 5b from analog to digital and outputs digital I data 6a and digital Q data 7a. 8 is a baseband demodulating circuit that receives the digital I data 6a and the digital Q data 7a, performs audio demodulation according to the reception mode of the system, and outputs a reproduction L signal 8a and a reproduction R signal 8b; A silence detection circuit that receives the signal 8a and the reproduction R signal 8b, detects a silence period, and outputs a silence detection signal 9a, 11 is the output of the A / D conversion circuits 6 and 7, and the digital I data 6a The IQ deviation detection circuit 10 receives the digital Q data 7a, detects the amplitude and phase deviation between the I component and the Q component, and outputs the amplitude deviation 11a and the phase deviation 11b. Calculation for correcting the amplitude and phase is performed so as to reduce the amplitude and phase deviation generated in the quadrature demodulation circuit 5 from the amplitude deviation 11a and the phase deviation 11b that are output more, thereby correcting the amplitude. No. 10a and a correction operation circuit for outputting a phase correction signal 10b.

図2は、無音検出及び校正のタイミングを示すタイミングチャートである。本実施形態によれば、通常の受信モードの際には、放送波1aを高周波増幅回路2によって増幅した高周波増幅信号2aが選択回路3を介して直交復調回路5に入力される。直交復調回路5では高周波増幅信号2aが同相成分I信号5aと直交成分Q信号5bとに変換され、A/D変換回路6,7によってデジタルデータに変換され、ベースバンド復調回路8にて受信モードに応じた再生信号8a,8bが出力される。   FIG. 2 is a timing chart showing silence detection and calibration timing. According to the present embodiment, in the normal reception mode, the high frequency amplified signal 2 a obtained by amplifying the broadcast wave 1 a by the high frequency amplifier circuit 2 is input to the quadrature demodulation circuit 5 via the selection circuit 3. In the quadrature demodulation circuit 5, the high frequency amplified signal 2 a is converted into an in-phase component I signal 5 a and a quadrature component Q signal 5 b, converted into digital data by the A / D conversion circuits 6 and 7, and received in the reception mode by the baseband demodulation circuit 8. The reproduction signals 8a and 8b corresponding to the above are output.

無音検出回路9では送信される放送内容の無音期間を検出し、その無音期間がシステムの設定値以上連続した場合、無音期間がスタートしたと判定し、無音検出信号9aを出力する。ここで言う「無音」とは、ある閾値レベル以下の音声信号だけが検出される状態ではなくて、放送の搬送波のみが検出される状態を意味する。ただし、この場合の無音としての判定条件や、判定後から無音検出信号9aの発生までの時間は、運用されるシステムによって設定可能とする。   The silence detection circuit 9 detects the silence period of the broadcast content to be transmitted. If the silence period continues for a system set value or more, it is determined that the silence period has started, and the silence detection signal 9a is output. Here, “silence” means a state in which only a carrier wave of a broadcast is detected, not a state in which only an audio signal below a certain threshold level is detected. However, the determination condition as silence in this case and the time from the determination to the generation of the silence detection signal 9a can be set by the operated system.

校正信号発生回路4では、無音検出信号9aをトリガとして直交復調回路5のI経路とQ経路との偏差を検出するための校正信号4aを出力する。選択回路3では無音検出信号9aを受信した場合は、選択出力を高周波増幅信号2aから校正信号4aに切り替えて、直交復調回路5に入力する。直交復調回路5にて、I経路及びQ経路を通過したアナログ信号がA/D変換回路6,7でデジタルIデータ6aとデジタルQデータ7aとに変換される。IQ偏差検出回路11ではIQ経路に偏差が無い場合の基準値との比較を行いIQ経路の振幅偏差11aと位相偏差11bとを出力し、補正演算回路10によって直交復調回路5での振幅及び位相の調整を行うための振幅補正信号10aと位相補正信号10bとを生成する。直交復調回路5では振幅補正信号10aと位相補正信号10bとに応じてIQ経路の振幅調整と直交ミキサの位相調整とを行うことで偏差を補正している。   The calibration signal generation circuit 4 outputs a calibration signal 4a for detecting a deviation between the I path and the Q path of the quadrature demodulation circuit 5 using the silence detection signal 9a as a trigger. When the selection circuit 3 receives the silence detection signal 9a, the selection output is switched from the high frequency amplified signal 2a to the calibration signal 4a and input to the orthogonal demodulation circuit 5. In the quadrature demodulation circuit 5, analog signals that have passed through the I path and Q path are converted into digital I data 6a and digital Q data 7a by A / D conversion circuits 6 and 7, respectively. The IQ deviation detection circuit 11 compares with the reference value when there is no deviation in the IQ path, outputs the IQ path amplitude deviation 11a and the phase deviation 11b, and the correction arithmetic circuit 10 causes the amplitude and phase in the quadrature demodulation circuit 5 to be output. An amplitude correction signal 10a and a phase correction signal 10b are generated for performing the adjustment. The quadrature demodulation circuit 5 corrects the deviation by adjusting the amplitude of the IQ path and the phase of the quadrature mixer in accordance with the amplitude correction signal 10a and the phase correction signal 10b.

なお、ベースバンド復調部8では校正信号4aが復調されてしまうので、最終出力部に対しては音声ミュートを掛けながら前述した校正を行うものとする。   Since the calibration signal 4a is demodulated in the baseband demodulating unit 8, the above-described calibration is performed with the audio output muted on the final output unit.

このように、本実施形態によれば、無音期間を検出してIQ経路の振幅調整と位相調整とを行うので、工程調整の段階での校正が不要になり、電源投入してから同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となる。   As described above, according to the present embodiment, since the silence period is detected and the amplitude adjustment and the phase adjustment of the IQ path are performed, calibration at the stage of the process adjustment becomes unnecessary, and the same broadcasting station is turned on after the power is turned on. Even in a state in which is selected, reception is always possible in a state adjusted to optimum reception characteristics.

《実施形態2》
図3は、本発明の実施形態2の受信装置のブロック構成図である。図3における受信装置の構成は実施形態1に対し、ベースバンド復調回路8の出力として受信電界の強弱・マルチパス発生有無の受信状況信号8cを追加したものであり、その他の構成及び各ブロックの機能は同じである。
<< Embodiment 2 >>
FIG. 3 is a block diagram of the receiving apparatus according to the second embodiment of the present invention. The configuration of the receiving apparatus in FIG. 3 is the same as that of the first embodiment except that a reception status signal 8c indicating whether the received electric field is strong or multipath is present is added as an output of the baseband demodulation circuit 8. The function is the same.

図4は、受信状況を示すタイミングチャート例であるが、無音から有音に変化した後に、マルチパスの影響で再生信号8a,8bの振幅が無音レベルまで極端に下がってしまった場合、振幅だけで検出すると無音期間として判定してしまう場合でも、受信状況信号8cが無音検出回路9に入力されているので、無音ではなく有音と判定することが可能であり、誤判定を防ぐことができ、通常受信電界のみならず、弱電界状況やマルチパス状況でも常に最適な受信特性に調整された状態で受信可能となる。   FIG. 4 is an example of a timing chart showing the reception status. When the amplitude of the reproduced signals 8a and 8b is extremely lowered to the silence level due to the influence of multipath after changing from silence to sound, only the amplitude is shown. Even if it is determined as a silence period when detected at, the reception status signal 8c is input to the silence detection circuit 9, so that it can be determined that there is no sound, and there is no misjudgment. In addition to the normal reception electric field, reception is possible in a state in which the reception characteristic is always adjusted to the optimum reception characteristic even in a weak electric field situation or a multipath situation.

《実施形態3》
図5は、本発明の実施形態3の受信装置のブロック構成図である。図5における受信装置の構成は実施形態2に対し、有音消失検出回路12を新たに設け、校正期間中に無音期間が終了してしまい有音期間が消失してしまった場合は、校正期間制御信号12aを校正信号発生回路4に対して出力し、次回の校正期間を短くするような制御を行うものであり、その他の構成及び各ブロックの機能は同じである。
<< Embodiment 3 >>
FIG. 5 is a block diagram of the receiving apparatus according to the third embodiment of the present invention. The configuration of the receiving apparatus in FIG. 5 is the same as that of the second embodiment in that a voiced disappearance detection circuit 12 is newly provided, and when the silent period ends and the voiced period disappears during the calibration period, the calibration period The control signal 12a is output to the calibration signal generation circuit 4 to perform control so as to shorten the next calibration period, and other configurations and functions of the respective blocks are the same.

図6は、校正期間の制御過程を示すタイミングチャートである。図6において、最初の無音検出信号9aによってIQ経路の偏差を補正するための校正信号4aが直交復調回路5に入力され、IQ偏差検出回路11によって偏差が検出され、補正演算回路10によって、直交復調回路5内の偏差の補正が行われる。   FIG. 6 is a timing chart showing the control process of the calibration period. In FIG. 6, the calibration signal 4a for correcting the deviation of the IQ path by the first silence detection signal 9a is input to the quadrature demodulation circuit 5, the deviation is detected by the IQ deviation detection circuit 11, and the orthogonality is obtained by the correction arithmetic circuit 10. The deviation in the demodulation circuit 5 is corrected.

有音消失検出回路12では、校正が終了し校正期間信号4bがHレベルからLレベルに変化した直後のベースバンド復調回路8の出力である再生L信号8aと再生R信号8bとの振幅を検出して、有音か無音かを判定する。図6の場合は直後の振幅検出の結果は有音と判定され、校正期間制御信号12aが出力され、2回目の無音期間での校正期間長を短くすることで有音期間の消失を防いでいる様子を示している。   The voiced disappearance detection circuit 12 detects the amplitude of the reproduction L signal 8a and the reproduction R signal 8b, which are the outputs of the baseband demodulation circuit 8 immediately after the calibration is completed and the calibration period signal 4b changes from the H level to the L level. Then, it is determined whether the sound is sound or not. In the case of FIG. 6, the result of amplitude detection immediately after is determined to be sound, the calibration period control signal 12a is output, and the disappearance of the sound period is prevented by shortening the calibration period length in the second silent period. It shows how it is.

このように校正時間を短くすることで実際に放送される有音期間の消失頻度を下げることが可能となる。   By shortening the calibration time in this way, it is possible to reduce the frequency of disappearance of the sound period actually broadcast.

《実施形態4》
図7は、本発明の実施形態4の調整シーケンスの例を示すタイミング図である。受信装置のブロック構成図は実施形態3と同様であるが、校正信号発生回路4で発生させる校正信号4aの期間を短く設定しておき、複数回の無音期間に渡ってI信号経路とQ信号経路との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように校正信号発生回路4、IQ偏差検出回路11、及び補正演算回路10を制御している。
<< Embodiment 4 >>
FIG. 7 is a timing chart showing an example of an adjustment sequence according to the fourth embodiment of the present invention. The block diagram of the receiving apparatus is the same as that of the third embodiment, but the period of the calibration signal 4a generated by the calibration signal generating circuit 4 is set short, and the I signal path and the Q signal are set over a plurality of silent periods. The calibration signal generation circuit 4, the IQ deviation detection circuit 11, and the correction calculation circuit 10 are controlled so that an adjustment sequence that completes the deviation adjustment of the amplitude and phase between the paths is completed.

図7では、2回の無音期間で振幅の調整を行い、続く2回の無音期間で位相調整を行うシーケンスの例を示している。複数回の無音期間に渡って校正することを前提としているので、図7において校正信号4aの期間は通常の無音期間に比べて十分に短い期間であるから、校正が終了し校正期間信号4bがHレベルからLレベルに変化した直後のベースバンド復調回路8の出力である再生L信号8aと再生R信号8bとの振幅は無音状態のままである。   FIG. 7 shows an example of a sequence in which the amplitude is adjusted in two silent periods and the phase is adjusted in the subsequent two silent periods. Since it is assumed that the calibration is performed over a plurality of silent periods, the period of the calibration signal 4a in FIG. 7 is sufficiently shorter than the normal silent period. The amplitudes of the reproduction L signal 8a and the reproduction R signal 8b, which are the outputs of the baseband demodulation circuit 8 immediately after the change from the H level to the L level, remain silent.

なお、複数回に渡る無音の回数とその調整内容は一例であり、それぞれのシステムに応じた無音の回数や調整順で構わない。   It should be noted that the number of times of silence over a plurality of times and the adjustment contents thereof are examples, and the number of silences and the order of adjustment according to each system may be used.

このような調整シーケンスとすることで、校正期間を短くし、複数回の無音期間に渡って校正を完了させるので、各期間で校正信号4aを入力し終わった時点でも無音期間が継続しており、放送される有音期間の消失はほとんど発生しない。   By making such an adjustment sequence, the calibration period is shortened and the calibration is completed over a plurality of silent periods. Therefore, the silent period continues even when the calibration signal 4a is input in each period. There is almost no loss of the broadcast sound period.

《実施形態5》
図8は、本発明の実施形態5の受信装置のブロック構成図である。図8における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する時間経過判定回路13を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。
<< Embodiment 5 >>
FIG. 8 is a block diagram of a receiving apparatus according to the fifth embodiment of the present invention. The configuration of the receiving device in FIG. 8 is a configuration in which a time passage determination circuit 13 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.

図9は、無音検出信号9aに対する時間経過判定回路13の制御の関係を示すタイミングチャートである。電源投入直後は、無音期間が検出される毎(t0、t1、t2、t3)に無音検出信号9aは時間経過判定信号13aとしてそのまま選択回路3及び校正信号発生回路4へそれぞれ入力され、校正信号4aによって直交復調回路5のI信号経路とQ信号経路との間の振幅及び位相の偏差調整を実施する。   FIG. 9 is a timing chart showing the relationship of control of the time passage determination circuit 13 with respect to the silence detection signal 9a. Immediately after the power is turned on, every time a silence period is detected (t0, t1, t2, t3), the silence detection signal 9a is directly input to the selection circuit 3 and the calibration signal generation circuit 4 as the time lapse determination signal 13a, and the calibration signal The amplitude and phase deviation adjustment between the I signal path and the Q signal path of the quadrature demodulation circuit 5 is performed by 4a.

更に、電源投入から十分に時間経過し、システムの設定時間(図9の場合t3)を超えた場合には、十分な偏差調整が実施されている状態なので無音検出信号9aが出力されても、偏差の調整を毎回行う必要はなく、図9のようにt4、t5及びt10のタイミングでは偏差調整を実行せず、t6及びt17のタイミングで偏差調整を実行するので、放送される有音期間の消失頻度を更に低下させることが可能になる。   Furthermore, when sufficient time has elapsed since the power was turned on and the system set time (t3 in FIG. 9) has been exceeded, sufficient deviation adjustment has been performed, so even if the silence detection signal 9a is output, It is not necessary to adjust the deviation every time. As shown in FIG. 9, the deviation adjustment is not performed at the timings t4, t5, and t10, and the deviation adjustment is performed at the timings t6 and t17. It becomes possible to further reduce the disappearance frequency.

なお、時間経過のシステム設定値や調整の頻度は適用するシステム毎に設定できるものとする。   It should be noted that the system setting value and the frequency of adjustment over time can be set for each applied system.

《実施形態6》
図10は、本発明の実施形態6の受信装置のブロック構成図である。図10における受信装置の構成は実施形態3に対し、無音検出信号9aを制御する温度変化判定回路14を新たに設けたものであり、その他の構成及び各ブロックの構成は同じである。
Embodiment 6
FIG. 10 is a block diagram of a receiving apparatus according to the sixth embodiment of the present invention. The configuration of the receiving apparatus in FIG. 10 is a configuration in which a temperature change determination circuit 14 for controlling the silence detection signal 9a is newly provided in the third embodiment, and the other configurations and the configurations of the respective blocks are the same.

図11は、無音検出信号9aに対する温度変化判定回路14の制御の関係を示すタイミングチャートである。周囲温度が一定の時(図11においてはt0〜t5、t14〜t20)には無音検出信号9aは温度変化判定信号14aとして、システムとして設定される一定の頻度で選択回路3及び校正信号発生回路4へそれぞれ入力され、校正信号4aによって直交復調回路5のI信号経路とQ信号経路との間の振幅及び位相の偏差調整を実施する。   FIG. 11 is a timing chart showing the relationship of control of the temperature change determination circuit 14 with respect to the silence detection signal 9a. When the ambient temperature is constant (t0 to t5 and t14 to t20 in FIG. 11), the silence detection signal 9a is used as the temperature change determination signal 14a, and the selection circuit 3 and the calibration signal generation circuit are set at a certain frequency set as a system. 4, and the deviation of the amplitude and phase between the I signal path and the Q signal path of the orthogonal demodulation circuit 5 is adjusted by the calibration signal 4 a.

一方、周囲温度の変化が発生した場合(図11においてはt8〜t13)は、回路でのばらつきが温度特性を持っているので、これまでの調整頻度では受信特性が不十分となるから、システムで設定される一定の頻度よりも高い頻度で調整が実施されるように無音検出信号9aを選択回路3及び校正信号発生回路4へ反映させることで、十分に偏差を調整することが可能となる。したがって、システム電源投入後の調整から十分な時間経過後に、更に周囲温度が変化したような場合でも、温度変化が発生する度に偏差調整の実行が可能になるので、常に最適な受信特性に調整された状態で受信可能になる。   On the other hand, when a change in the ambient temperature occurs (t8 to t13 in FIG. 11), since the variation in the circuit has a temperature characteristic, the reception characteristic becomes insufficient with the adjustment frequency so far. By reflecting the silence detection signal 9a to the selection circuit 3 and the calibration signal generation circuit 4 so that the adjustment is performed at a frequency higher than the fixed frequency set in step 1, the deviation can be sufficiently adjusted. . Therefore, even if the ambient temperature changes after a sufficient amount of time has elapsed since the system power was turned on, deviation adjustment can be performed whenever a temperature change occurs. It becomes possible to receive in the state that has been done.

なお、システムとして設定される一定の頻度や、温度変化量等は適用するシステム毎に設定できるものとする。   It should be noted that a certain frequency set as a system, a temperature change amount, and the like can be set for each applied system.

《実施形態7》
図12は、本発明の実施形態7の受信方法における制御動作例を示すフローチャートである。図12において、システムに電源が投入されシステムが受信スタートすると、受信された信号は直交復調されて同相(I)成分と直交(Q)成分とに変換された後、ベースバンドでの音声復調が行われる(S121)。
<< Embodiment 7 >>
FIG. 12 is a flowchart illustrating an example of a control operation in the reception method according to the seventh embodiment of the present invention. In FIG. 12, when the system is turned on and the system starts receiving, the received signal is quadrature demodulated and converted into an in-phase (I) component and a quadrature (Q) component. Performed (S121).

このとき、復調音声信号が無音であるかどうかを調べるためにI成分とQ成分との信号振幅を検出しておき、設定値との大小比較を行い、有音又は無音の判断を行う(S122)。有音であれば継続して受信モードの状態を維持し、無音と判断した場合はS123からS127にて校正用信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。ここで、S123では校正信号期間Tを設定し、S124では校正用信号を発生させ、S125では偏差補正量を演算し、S126では直交復調回路の振幅及び位相を調整し、S127では校正終了のチェックを実行する。   At this time, in order to check whether or not the demodulated sound signal is silent, the signal amplitudes of the I component and the Q component are detected and compared with a set value to determine whether sound is present or not (S122). ). If there is sound, the state of the reception mode is continuously maintained. If it is determined that there is no sound, a calibration signal is generated from S123 to S127, and the amplitude between the I component and the Q component in the orthogonal demodulation circuit and Correct the phase deviation. Here, a calibration signal period T is set in S123, a calibration signal is generated in S124, a deviation correction amount is calculated in S125, the amplitude and phase of the quadrature demodulation circuit are adjusted in S126, and a calibration end check is performed in S127. Execute.

S123からS127を繰り返すことでI成分とQ成分とについて偏差のない状態にすることが可能となり、同じ放送局を選択したままの状態であっても、常に最適な受信特性に調整された状態で受信可能となる。   By repeating S123 to S127, it becomes possible to make the I component and the Q component have no deviation, and even when the same broadcasting station is still selected, it is always adjusted to the optimum reception characteristics. It becomes possible to receive.

《実施形態8》
図13は、本発明の実施形態8の受信方法における制御動作例を示すフローチャートである。図13において、S132以外は実施形態7と同様の制御動作を行うものである。
Embodiment 8
FIG. 13 is a flowchart illustrating a control operation example in the reception method according to the eighth embodiment of the present invention. In FIG. 13, the same control operation as in the seventh embodiment is performed except for S132.

復調音声信号が無音であるかどうかを調べるためにI成分とQ成分との信号振幅を検出しておき、設定値との大小比較を行う際に、振幅情報以外の受信状況に関する情報を加味して判断する(S132)ことで、誤った無音判定を防止することが可能となり、通常受信電界のみならず、弱電界状況やマルチパス状況の時でも常に最適な受信特性に調整された状態で受信可能となる。   In order to check whether the demodulated audio signal is silent, the signal amplitude of the I component and the Q component is detected, and when comparing the magnitude with the set value, the information about the reception status other than the amplitude information is taken into account. (S132), it is possible to prevent erroneous silence determination, and reception is performed in a state in which the reception characteristic is always adjusted to the optimum reception characteristic not only in a normal reception electric field but also in a weak electric field situation or a multipath situation. It becomes possible.

《実施形態9》
図14は、本発明の実施形態9の受信方法における制御動作例を示すフローチャートである。図14においてS141、S142以外は実施形態8と同様の制御動作を行うものである。
Embodiment 9
FIG. 14 is a flowchart illustrating an example of a control operation in the reception method according to the ninth embodiment of the present invention. In FIG. 14, the same control operation as in the eighth embodiment is performed except for S141 and S142.

無音期間を検出(S132)し、S123からS127にて校正用信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を終了した直後に、S141にて復調音声が有音又は無音の判定を行う。このとき無音であるならば校正の正常終了とみなす。反対に有音であるならば、校正期間中に無音期間が終了したと判断し、次回の校正信号の期間Tを短くするために、S142にて校正信号期間Tの長さを更新する(T=T−α)。   Immediately after the silence period is detected (S132), a calibration signal is generated in S123 to S127, and the correction of the amplitude and phase deviation between the I component and the Q component in the quadrature demodulation circuit is completed. Then, the demodulated sound is judged to be voiced or silent. At this time, if there is no sound, it is considered that calibration is completed normally. On the other hand, if there is sound, it is determined that the silent period has ended during the calibration period, and the length of the calibration signal period T is updated in S142 to shorten the period T of the next calibration signal (T = T-α).

このように校正時間を短くすることで、実際に放送される有音期間の消失頻度を下げることが可能となる。   By shortening the calibration time in this way, it is possible to reduce the frequency of disappearance of the sound period actually broadcast.

《実施形態10》
図15は、本発明の実施形態10の受信方法における制御動作例を示すフローチャートである。図15においてS151、S152、S153、S154、S155以外は実施形態7と同様の制御動作を行うものである。
<< Embodiment 10 >>
FIG. 15 is a flowchart illustrating a control operation example in the reception method according to the tenth embodiment of the present invention. In FIG. 15, the same control operation as in the seventh embodiment is performed except for S151, S152, S153, S154, and S155.

まず、復調音声信号の無音期間を検出(S122)すると、校正回数Nをカウント(S151)し、システムで設定した校正信号期間Tを設定する。そして、S124からS126、S153にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。   First, when the silent period of the demodulated audio signal is detected (S122), the number of calibrations N is counted (S151), and the calibration signal period T set by the system is set. Then, calibration signals are generated from S124 to S126 and S153, and the amplitude and phase deviations between the I component and the Q component in the quadrature demodulation circuit are corrected.

1無音期間での校正が終了したかどうか判断(S153)し、終了ならば校正回数Nがシステムで設定された回数と一致するかどうか判断(S154)し、一致しなければ次の無音期間にて継続して校正を行う。一致すれば、校正が終了したとみなして校正回数Nをリセット(S155)し、通常の受信動作(S121)フローに戻る。   It is determined whether the calibration in one silence period has been completed (S153). If it has been completed, it is determined whether the number of calibrations N matches the number set in the system (S154). Continue calibration. If they match, it is considered that the calibration has been completed, the number N of calibrations is reset (S155), and the flow returns to the normal reception operation (S121) flow.

このような動作制御を行うことで、校正期間を短くし、複数回の無音期間に渡って校正を完了させるので、各期間で校正信号を入力し終わった時点でも無音期間が継続しており、放送される有音期間の消失頻度を大幅に減少させることが可能となる。   By performing such operation control, the calibration period is shortened and the calibration is completed over a plurality of silent periods, so the silent period continues even when the calibration signal is input in each period, It is possible to significantly reduce the frequency of disappearance of the broadcast sound period.

《実施形態11》
図16は、本発明の実施形態11の受信方法における制御動作例を示すフローチャートである。図16においてS161、S162、S163、S164以外は実施形態7と同様の制御動作を行うものである。
<< Embodiment 11 >>
FIG. 16 is a flowchart illustrating an example of a control operation in the reception method according to the eleventh embodiment of the present invention. In FIG. 16, the same control operation as in the seventh embodiment is performed except for S161, S162, S163, and S164.

復調音声信号の無音期間を検出(S122)すると、無音検出回数Mをカウント(S161)する。S162では電源投入直後からの時間経過を計測しており、システムで設定される設定時間との比較を行い、設定時間よりも小さければ(電源投入してからあまり時間がたっていない場合)、S123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。校正が終了した場合は無音検出回数Mをリセット(S164)し、通常の受信動作(S121)フローに戻る。   When the silence period of the demodulated audio signal is detected (S122), the number of silence detections M is counted (S161). In S162, the time elapsed immediately after the power is turned on is measured and compared with the set time set in the system. If the time is shorter than the set time (when the time has not passed since the power was turned on), the process starts from S123. In S127, a calibration signal is generated, and the amplitude and phase deviation between the I component and the Q component in the quadrature demodulation circuit is corrected. When the calibration is completed, the silence detection count M is reset (S164), and the flow returns to the normal reception operation (S121) flow.

また、S162にて電源投入直後からの時間経過が設定時間よりも大きければ(電源投入してから十分に時間が経過している場合)、無音検出回数Mとシステムで設定した回数との一致を判断(S163)し、無音検検出回数Mが設定回数以上になった場合は校正を実行するが、設定回数より少ない場合は、無音期間でも校正を実施しないで通常の受信動作(S121)フローに戻る。   If the elapsed time immediately after the power is turned on in S162 is longer than the set time (when the time has passed sufficiently since the power is turned on), the silence detection count M matches the number set by the system. If the silent detection detection count M is equal to or greater than the set number, calibration is executed. If the number is less than the set number, the normal reception operation (S121) flow is performed without performing calibration even during the silent period. Return.

このような動作制御を行うことで、システム電源投入後から十分時間経過した場合は、システムの動作環境の周囲温度も十分に一定になっていると想定されるので、校正タイミングを毎回の無音検出結果毎に対応させる必要はなく、校正の実行頻度を下げることが可能になり、放送される有音期間の消失頻度を更に低下させることが可能になる。   By performing such operation control, it is assumed that the ambient temperature of the system operating environment is sufficiently constant when sufficient time has elapsed since the system power was turned on. It is not necessary to correspond to each result, and the execution frequency of calibration can be lowered, and the frequency of disappearance of the broadcast sound period can be further reduced.

《実施形態12》
図17は、本発明の実施形態12の受信方法における制御動作例を示すフローチャートである。図17においてS171、S172、S173、S174以外は実施形態7と同様の制御動作を行うものである。
<< Embodiment 12 >>
FIG. 17 is a flowchart illustrating a control operation example in the reception method according to the twelfth embodiment of the present invention. In FIG. 17, control operations similar to those in the seventh embodiment are performed except for S171, S172, S173, and S174.

復調音声信号の無音期間を検出(S122)すると、無音検出回数Mをカウント(S171)する。S172では電源投入直後からの周囲の温度変化を計測しており、検出された温度変化量とシステムで設定される温度変化量との比較を行い、温度変化量が設定値よりも大きい時は、S123からS127にて校正信号を発生させ、直交復調回路でのI成分とQ成分との間の振幅及び位相の偏差の補正を行う。校正が終了した場合は無音検出回数Mをリセット(S174)し、通常の受信動作(S121)フローに戻る。   When the silence period of the demodulated audio signal is detected (S122), the number of silence detections M is counted (S171). In S172, the ambient temperature change immediately after the power is turned on is measured, and the detected temperature change amount is compared with the temperature change amount set in the system. When the temperature change amount is larger than the set value, A calibration signal is generated from S123 to S127, and the deviation of the amplitude and phase between the I component and Q component in the quadrature demodulation circuit is corrected. When the calibration is completed, the silence detection count M is reset (S174), and the flow returns to the normal reception operation (S121) flow.

また、S172にて温度変化量が設定値よりも小さい時は、無音検出回数Mとシステムで設定した回数との一致を判断(S173)し、無音検検出回数Mが設定回数以上になった場合は校正を実行するが、設定回数より少ない場合は、無音期間でも校正を実施しないで通常の受信動作(S121)フローに戻る。   When the temperature change amount is smaller than the set value in S172, it is determined whether the silence detection count M matches the system set count (S173), and the silence detection detection count M exceeds the set count. Performs calibration, but if the number is less than the set number of times, the flow returns to the normal reception operation (S121) flow without performing calibration even in the silent period.

このような動作制御を行うことで、システム電源投入後の調整から十分な時間が経過した後に、更に周囲温度が変化したような場合でも、温度変化が発生する度に校正による調整の実行が可能になるので、常に最適な受信特性に調整された状態で受信可能になる。   By performing this kind of operation control, calibration can be performed every time a temperature change occurs even if the ambient temperature changes after sufficient time has elapsed since the system power was turned on. Therefore, reception is always possible with the optimum reception characteristics adjusted.

以上説明してきたとおり、本発明の受信装置及び受信方法は、無線システムにおける受信装置の素子ばらつきによって生じる復調特性の調整等の技術として有用である。   As described above, the receiving apparatus and the receiving method of the present invention are useful as techniques for adjusting demodulation characteristics caused by element variations of the receiving apparatus in a wireless system.

1 受信アンテナ
2 高周波増幅回路
3 選択回路
4 校正信号発生回路
5 直交復調回路
6,7 アナログ−デジタル(A/D)変換回路
8 ベースバンド復調回路
9 無音検出回路
10 補正演算回路
11 IQ偏差検出回路
12 有音消失検出回路
13 時間経過判定回路
14 温度変化判定回路
DESCRIPTION OF SYMBOLS 1 Reception antenna 2 High frequency amplifier circuit 3 Selection circuit 4 Calibration signal generation circuit 5 Orthogonal demodulation circuit 6,7 Analog-digital (A / D) conversion circuit 8 Baseband demodulation circuit 9 Silence detection circuit 10 Correction calculation circuit 11 IQ deviation detection circuit 12 Voice disappearance detection circuit 13 Time lapse determination circuit 14 Temperature change determination circuit

Claims (12)

受信アンテナからの信号を入力とし、その高周波信号を出力する高周波増幅手段と、
前記高周波増幅手段の出力を一方の入力とし、他方の入力とのうちいずれか一方の入力を選択して出力する選択手段と、
前記選択手段の出力を入力し、ミキサによってI成分とQ成分とに変換する直交復調手段と、
前記直交復調手段の復調I信号と復調Q信号とをそれぞれアナログ信号からデジタル信号に変換するアナログ−デジタル変換手段と、
前記アナログ−デジタル変換手段の各デジタル出力を入力とし、音声信号を復調するベースバンド復調手段と、
前記ベースバンド復調手段の出力信号の無音期間を検出し、前記選択手段に出力する無音検出手段と、
前記無音検出手段の出力に応じて、前記選択手段への他方の入力として校正用の信号を生成する校正信号発生手段と、
前記アナログ−デジタル変換手段の各デジタル出力を入力とし、デジタルI信号とデジタルQ信号との間の振幅及び位相の偏差を検出するIQ偏差検出手段と、
前記IQ偏差検出手段の出力を入力とし、I信号経路とQ信号経路との間の振幅及び位相の各偏差補正量を演算し、前記直交復調手段に出力する補正演算手段とを備えたことを特徴とする受信装置。
High-frequency amplification means for receiving a signal from the receiving antenna and outputting the high-frequency signal;
The selection means for selecting one of the inputs from the output of the high-frequency amplification means and selecting and outputting the other input;
Orthogonal demodulation means for inputting the output of the selection means and converting it into an I component and a Q component by a mixer;
Analog-to-digital conversion means for converting the demodulated I signal and demodulated Q signal of the orthogonal demodulating means from analog signals to digital signals, respectively;
Baseband demodulation means for demodulating an audio signal with each digital output of the analog-digital conversion means as input,
A silence detecting means for detecting a silence period of the output signal of the baseband demodulating means and outputting to the selecting means;
Calibration signal generating means for generating a calibration signal as the other input to the selection means according to the output of the silence detection means,
IQ deviation detection means for detecting deviations in amplitude and phase between the digital I signal and the digital Q signal, each digital output of the analog-digital conversion means as an input;
A correction calculating means for calculating the amplitude and phase deviation correction amounts between the I signal path and the Q signal path and outputting to the quadrature demodulating means with the output of the IQ deviation detecting means as an input; A receiving device.
請求項1記載の受信装置において、
前記無音検出手段にて、受信電界の強弱・マルチパス発生有無の受信状況に関する情報と併せて無音判定を行うことを特徴とする受信装置。
The receiving device according to claim 1,
A silencer is characterized in that the silence detection means performs silence determination together with information on reception status of reception electric field strength / multipath occurrence / non-occurrence.
請求項1又は2に記載の受信装置において、
前記校正信号発生手段での校正終了タイミング信号を入力し、校正終了直後での復調信号が既に有音であれば、前記校正信号発生手段での校正時間を短くするように校正期間制御信号を出力する有音消失検出手段を更に備えたことを特徴とする受信装置。
The receiving apparatus according to claim 1 or 2,
Input calibration end timing signal at the calibration signal generating means, and output a calibration period control signal to shorten the calibration time at the calibration signal generating means if the demodulated signal immediately after the end of calibration is already sounded A receiving apparatus, further comprising sound loss disappearance detecting means.
請求項1又は2に記載の受信装置において、
複数回の無音期間に渡って前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように前記無音検出手段と前記校正信号発生手段とを制御することを特徴とする受信装置。
The receiving apparatus according to claim 1 or 2,
The silence detecting means and the calibration signal generating means are arranged so as to complete an adjustment sequence in which amplitude and phase deviation adjustment between the I signal path and the Q signal path is completed over a plurality of silence periods. A receiving device that controls the receiving device.
請求項1〜4のいずれか1項に記載の受信装置において、
システム電源投入直後からの時間経過を測定し、電源投入直後は前記無音検出手段で無音が検出される毎に、前記校正信号発生手段からの校正信号によって、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整を行い、更に電源投入後の経過時間がシステムで設定した基準時間以上に達した場合には、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整の実行制御を行う時間経過判定手段を更に備えたことを特徴とする受信装置。
In the receiving device according to any one of claims 1 to 4,
The time elapses immediately after the system power is turned on, and immediately after the power is turned on, every time silence is detected by the silence detection means, the I signal path and the Q signal path are determined by the calibration signal from the calibration signal generation means. The amplitude and phase between the I signal path and the Q signal path when the elapsed time after turning on the power reaches a reference time set by the system or more is adjusted. A receiving apparatus, further comprising time lapse determination means for performing execution control of the deviation adjustment.
請求項1〜5のいずれか1項に記載の受信装置において、
システム電源投入直後から周囲温度変化を検出し、周囲温度の変化が検出され、かつ、前記無音検出手段で無音検出されたときには、前記校正信号発生手段からの校正信号によって、前記I信号経路と前記Q信号経路との間の振幅及び位相の偏差調整を行う温度変化判定手段を更に備えたことを特徴とする受信装置。
The receiving apparatus according to any one of claims 1 to 5,
A change in ambient temperature is detected immediately after the system power is turned on, and when a change in ambient temperature is detected and silence is detected by the silence detection means, the I signal path and the A receiving apparatus, further comprising temperature change determination means for adjusting an amplitude and phase deviation between the Q signal path and the Q signal path.
受信アンテナから入力された高周波信号をI成分とQ成分とに変換する直交復調工程を行った後に音声信号を復調する受信方法であって、
前記音声信号における無音期間を検出し、前記無音期間に校正用の信号を用いて、振幅及び位相の各偏差補正量を演算し、前記直交復調工程に出力することを特徴とする受信方法。
A reception method for demodulating an audio signal after performing an orthogonal demodulation step of converting a high-frequency signal input from a receiving antenna into an I component and a Q component,
A receiving method, comprising: detecting a silent period in the audio signal, calculating a correction amount of each amplitude and phase deviation using a calibration signal during the silent period, and outputting the correction amount to the orthogonal demodulation step.
請求項7記載の受信方法において、
前記無音期間の検出にて、受信電界の強弱・マルチパス発生有無の受信状況に関する情報と併せて無音判定を行うことを特徴とする受信方法。
The receiving method according to claim 7, wherein
A reception method comprising: performing silence determination together with information on reception status of reception electric field strength / multipath occurrence presence / absence in detection of the silence period.
請求項7又は8に記載の受信方法において、
前記校正用の信号を用いて校正が終了した直後の時点で、復調音声信号が既に有音であれば、前記校正用の信号の期間を短くすることを特徴とする受信方法。
The reception method according to claim 7 or 8,
If the demodulated audio signal is already voiced immediately after the calibration is completed using the calibration signal, the reception method is characterized by shortening the period of the calibration signal.
請求項7又は8に記載の受信方法において、
複数回の無音期間に渡って前記I成分と前記Q成分との間の振幅及び位相の偏差調整が完了するような調整シーケンスになるように前記無音期間の回数と前記校正用の信号の期間とを制御することを特徴とする受信方法。
The reception method according to claim 7 or 8,
The number of silence periods and the period of the calibration signal so as to complete an adjustment sequence that completes deviation adjustment of the amplitude and phase between the I component and the Q component over a plurality of silence periods. A receiving method characterized by controlling the above.
請求項7〜10のいずれか1項に記載の受信方法において、
時間経過を測定し、電源投入直後は無音期間毎に、校正用の信号によって前記I成分と前記Q成分との間の振幅及び位相の偏差調整を行い、更に電源投入後の経過時間がシステムで設定した基準時間以上に達した場合には、前記I成分と前記Q成分との間の振幅及び位相の偏差調整の実行制御を行うことを特徴とする受信方法。
The reception method according to any one of claims 7 to 10, wherein:
Measure the passage of time, adjust the amplitude and phase deviation between the I component and the Q component with a calibration signal for each silent period immediately after turning on the power. A receiving method, wherein execution control of amplitude and phase deviation adjustment between the I component and the Q component is performed when a set reference time or more is reached.
請求項7〜11のいずれか1項に記載の受信方法において、
周囲温度を検出し、温度変化が検出され、かつ、無音期間の時に、前記校正用の信号によって、前記I成分と前記Q成分との間の振幅及び位相の偏差調整を行うことを特徴とする受信方法。
The reception method according to any one of claims 7 to 11,
An ambient temperature is detected, a temperature change is detected, and an amplitude and phase deviation adjustment between the I component and the Q component is performed by the calibration signal when there is a silent period. Reception method.
JP2009252765A 2009-11-04 2009-11-04 Receiver and reception method Pending JP2013016878A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009252765A JP2013016878A (en) 2009-11-04 2009-11-04 Receiver and reception method
PCT/JP2010/006158 WO2011055495A1 (en) 2009-11-04 2010-10-18 Receiver apparatus and reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252765A JP2013016878A (en) 2009-11-04 2009-11-04 Receiver and reception method

Publications (1)

Publication Number Publication Date
JP2013016878A true JP2013016878A (en) 2013-01-24

Family

ID=43969739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252765A Pending JP2013016878A (en) 2009-11-04 2009-11-04 Receiver and reception method

Country Status (2)

Country Link
JP (1) JP2013016878A (en)
WO (1) WO2011055495A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014000634B4 (en) 2013-01-31 2019-05-02 Denso Corporation Sensor signal processing device and sensor device
US10581653B2 (en) 2017-02-03 2020-03-03 Jvckenwood Corporation Reception device, reception method, recording medium for receiving signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129840A (en) * 1991-11-05 1993-05-25 Fujitsu Ten Ltd Signal processor for radio using direct conversion receiving system
JP3502336B2 (en) * 2000-07-28 2004-03-02 日本放送協会 Interference wave cancellation device
JP2003110640A (en) * 2001-09-28 2003-04-11 Japan Radio Co Ltd Orthogonal detection circuit
JP4428451B2 (en) * 2008-02-04 2010-03-10 ソニー株式会社 Signal processing apparatus, control method, and wireless communication apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014000634B4 (en) 2013-01-31 2019-05-02 Denso Corporation Sensor signal processing device and sensor device
US10581653B2 (en) 2017-02-03 2020-03-03 Jvckenwood Corporation Reception device, reception method, recording medium for receiving signals

Also Published As

Publication number Publication date
WO2011055495A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4834806B2 (en) Method and apparatus for dynamic gain and phase compensation
JP4843094B2 (en) Receiving device and program
WO2009096132A1 (en) Power amplification device and communication device
US9391814B2 (en) FM receiver that receives FM signal and method for receiving FM signal
JPH1051402A (en) Reception electric field detection circuit
JP2013016878A (en) Receiver and reception method
US9954627B2 (en) Quadrature demodulator and wireless receiver
JP3910775B2 (en) Digital broadcast receiver
JP6812816B2 (en) Receiver, receiving method, program
JP6260746B2 (en) Receiving machine
JP2008228043A (en) Radio communication equipment, radio signal adjustment method and program
JP2007096507A (en) Audio signal amplifying apparatus
JP2009200906A (en) Carrier leak suppressing method of ofdm type wireless transmitter and wireless transmitter using the method
US9118523B2 (en) Signal receiving apparatus and signal receiving method
KR101924906B1 (en) Appratus and method for controlling gain
CN107276604B (en) Method and system for processing Radio Frequency (RF) signals
JP4644823B2 (en) Automatic gain control circuit
JP2008227708A (en) Transmitter unit by direct conversion method
JP7060069B2 (en) DC component fluctuation suppression device, DC component fluctuation suppression method, program
JP2010066116A (en) High-frequency power measurement circuit
JP2010147632A (en) Radio repeater
US20110033013A1 (en) Radio receiver gain control
JP5297487B2 (en) Receiver and gain control method
JP5985931B2 (en) Receiving apparatus and control method thereof
JP2011193287A (en) Agc system