JP2013016610A - 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料 - Google Patents

有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料 Download PDF

Info

Publication number
JP2013016610A
JP2013016610A JP2011148009A JP2011148009A JP2013016610A JP 2013016610 A JP2013016610 A JP 2013016610A JP 2011148009 A JP2011148009 A JP 2011148009A JP 2011148009 A JP2011148009 A JP 2011148009A JP 2013016610 A JP2013016610 A JP 2013016610A
Authority
JP
Japan
Prior art keywords
group
organic
compound
general formula
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011148009A
Other languages
English (en)
Other versions
JP5637084B2 (ja
Inventor
Osamu Ishige
修 石毛
Tomohiro Oshiyama
智寛 押山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011148009A priority Critical patent/JP5637084B2/ja
Publication of JP2013016610A publication Critical patent/JP2013016610A/ja
Application granted granted Critical
Publication of JP5637084B2 publication Critical patent/JP5637084B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Indole Compounds (AREA)

Abstract

【課題】高輝度発光域において、高い発光効率を示す有機EL素子を提供する。
【解決手段】発光層が、下記一般式(I)で表される化合物を少なくとも1種含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2013016610

【選択図】なし

Description

本発明は、有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料に関する。
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDという)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。
無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
一方、有機EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
しかしながら、今後の実用化に向けた有機EL素子においては、更に低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。
特許第3093796号公報では、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。
また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特開平3−255190号公報)等が知られている。
以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であり、光の取り出し効率が約20%であるため、外部取り出し量子効率(η)の限界は5%とされている。
ところが、プリンストン大より励起三重項からのリン光発光を用いる有機EL素子の報告(M.A.Baldo et al.,Nature、395巻、151〜154頁(1998年))がされて以来、室温でリン光を示す材料の研究が活発になってきている。
例えば、M.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)、また米国特許第6,097,147号明細書等にも開示されている。
励起三重項を使用すると、内部量子効率の上限が100%となるため励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途としても注目されている。
例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている。
また、前述のM.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)においては、ドーパントとしてトリス(2−フェニルピリジン)イリジウムを用いた検討がされている。
その他、M.E.Tompson等は、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてLIr(acac)、例えば、(ppy)Ir(acac)を、またMoon−Jae Youn.0g、Tetsuo Tsutsui等は、やはりThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてトリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)),トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq))等を用いた検討を行っている(なおこれらの金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれている。)。
また、前記S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)や特開2001−247859号公報等においても、各種イリジウム錯体を用いて素子化する試みがされている。
また、高い発光効率を得るためにThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)では、Ikai等はホール輸送性の化合物をリン光性化合物のホストとして用いている。
また、M.E.Tompson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。
中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。この種の錯体に関しては、配位子に特徴を持たせた例が多数知られている。
いずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光がリン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の発光寿命については従来の素子よりも低いという問題点があった。
このように、リン光性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しく、実用に耐えうる性能を十分に達成できていないのが現状である。
配位子としてフェニルピラゾールを有する金属錯体は発光波長が短波な発光材料であることが開示されている(例えば、特許文献1、2参照。)。
また、配位子としてフェニルイミダゾールを有する金属錯体も発光波長が短波な発光材料であることが開示されている(例えば、特許文献3、4参照。)。
さらに、フェナンスリジン骨格のような18π電子系の縮合芳香族複素環配位子とする金属錯体についての開示がある(例えば、特許文献5、6参照。)。
有機EL発光素子の低消費電力性に注目し、近年、新たな用途として屋外表示装置用の白色バックライトや事業用の照明光源、あるいは大規模照明装置用の白色発光素子としての応用が検討されている。このような用途に使用するためには、従来以上に高輝度(2000cd/m超)での長時間連続発光が求められることとなり、より一層の発光効率の向上と発光寿命の向上が課題となっている。
従来は、比較的中〜低輝度(1000cd/m以下)での発光効率向上が注目されており、その限りにおいて発光寿命の向上も検討されてきた。しかし、高輝度での発光を前提とした場合には従来の発光素子では十分な発光効率が得られず、発光寿命も大幅に劣化してしまうことが明らかになってきた。
白色のりん光発光素子に前記のフェニルピラゾールを有する金属錯体やフェニルイミダゾールを有する金属錯体などを青色発光ドーパントとして使用した場合、高輝度発光(2000cd/m超)をさせるため高電流を通電すると、従来の素子構成のままでは、高輝度発光域での発光効率が低下し、それと同時に発光寿命も大幅に悪化することが判明した。
従来の素子構成で高輝度発光域での発光効率が低下するのは、発光層内の発光ドーパントのドーピング量が注入されてくる電流に対して十分でないためであり、ドーパントのドーピング量を増やすことで、発光効率を改善できることが見出されている。
しかしながら、ドーパントのドーピング量を増やし過ぎると、濃度消光の影響が大きくなり、十分な発光効率を得ることができないという問題があった。濃度消光を抑える技術として、ドーパントの配位子に立体障害性の置換基を導入し凝集を防止する技術が知られている(例えば、非特許文献1参照)。
また、本発明と同様にアミジナト配位子を副配位子として用いたイリジウム錯体で、ドープ濃度を100%とした場合でも発光する事が知られている(例えば、非特許文献2参照)。
しかしながら、発光寿命に関しては同時に改善することができず、さらなる改善が必要とされている。
国際公開第2004/085450号 特開2005−53912号公報 国際公開第2005/007767号 国際公開第2006/121811号 米国特許20070190359号明細書 国際公開第2007/095118号
J.Phys.Chem.Lett.2010,1,272−276 Chem. Commun., 2009, 3699−3701
本発明は係る課題に鑑みてなされたものであり、本発明の目的は、高輝度発光域(2000cd/m超)において、高い発光効率を示し、且つ発光寿命の長い有機EL素子材料、それを用いた有機EL素子、照明装置及び表示装置を提供することである。
特に、白色発光で、高い発光効率を示し、且つ駆動電圧が低く、発光寿命の長い有機EL素子材料を提供することである。
本発明の上記目的は下記の構成により達成された。
1.陽極と陰極とを有し、少なくとも1層の発光層を有する有機エレクトロルミネッセンス素子において、
該発光層が、下記一般式(I)で表される化合物を少なくとも1種含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2013016610
〔式中、Ra、Rb、Rcは、各々脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。R〜Rは、各々水素原子または置換基を表す。Arは脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。X、Yは、各々窒素原子または置換基を有しても良い炭素原子を表す。R〜R、Arは互いに連結して、環状構造を形成しても良い。X及びYが、置換基を有する炭素原子の場合、炭素上の置換基が互いに連結して環状構造を形成しても良く、Arと連結して環状構造を形成しても良い。Mは元素周期表における8族〜10族の遷移金属元素を表す。m、nは、各々1または2を表し、但し、nはMの原子価よりも小さく、n+mは2または3であり、Mの配位数の半分に等しい。〕
2.前記発光層が、下記一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)で表される化合物を少なくとも1種含有することを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
Figure 2013016610
〔一般式(Ia)〜(Ie)において、Ra、Rb、Rcは、各々脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。R〜R12は、各々水素原子または置換基を表す。Arは脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。Mは元素周期表における8族〜10族の遷移金属元素を表す。m、nは、各々1または2を表すが、nは中心金属Mの原子価よりも小さい。n+mは2または3であり、これはMの配位数の半分に等しい。
また、一般式(Ia)において、RからR及びArは互いに連結して、環状構造を形成しても良い。一般式(Ib)において、R〜R10は、互いに連結して、環状構造を形成しても良い。一般式(Ic)において、R〜R、R11、Arは互いに連結して、環状構造を形成しても良い。一般式(Id)において、R〜R、R12、Arは互いに連結して、環状構造を形成しても良い。一般式(Ie)において、R〜R、Arは互いに連結して、環状構造を形成しても良い。〕
3.前記発光層が少なくとも1種のホスト化合物と少なくとも1種のゲスト化合物を含有しており、前記1に記載の一般式(1)で表される化合物、前記2に記載の一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)で表される化合物の少なくとも1種が該ゲスト化合物として含有されており、且つ、該ホスト化合物全体に対して1質量%以上含有されていることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。
4.前記ホスト化合物が、部分構造としてジベンゾフラン構造、ジベンゾチオフェン構造、またはフルオレン構造のいずれかを有することを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
5.前記Mが白金またはイリジウムであることを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
6.前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
7.前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
8.前記1に記載の一般式(I)で表される化合物、前記2に記載の前記一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子材料。
本発明により、高輝度発光域(2000cd/m超)において、高い発光効率を示し、且つ駆動電圧が低く、発光寿命の長い有機EL素子を提供することができた。
また、当該発明者らの検討の結果、本発明により、素子駆動時の駆動電圧の上昇を大幅に低減する事が出来、さらには素子駆動中の発光素子のダークスポット発生も大幅に低減させる事に成功し、有用な有機EL素子を提供することが出来た。
また、該素子を用いた高効率な白色発光照明装置、表示装置用の白色発光光源を提供することができた。
本発明の照明装置の概略図である。 本発明の照明装置の模式断面図である。
本発明の有機エレクトロルミネッセンス素子においては、請求項1〜5のいずれか1項に規定される構成により、高い発光効率を示し、且つ、発光寿命の長い有機エレクトロルミネッセンス素子、該素子を用いた照明装置及び表示装置を提供することができた。
また、本発明者等は、本発明の有機エレクトロルミネッセンス素子用に有用な有機EL素子材料を分子設計することに成功した。本発明の有機エレクトロルミネッセンス素子材料は、白色発光素子として高輝度発光域において高い発光効率を発揮するとともに、発光寿命を著しく向上させる事ができた。
以下、本発明に係る各構成要素の詳細について、順次説明する。
《金属錯体(金属錯体化合物ともいう)》
本発明に係る金属錯体(金属錯体化合物ともいう)について説明する。
本発明者等は、有機EL素子の発光層に用いる有機EL素子材料に着目、特に発光ドーパントとして用いる金属錯体化合物について種々検討した。
本発明者らは、金属錯体の基本骨格に特定の置換基及び副配位子を導入することで、発光効率の低下原因となる発光ドーパントの励起子の相互作用を抑制し、発光ドーパントへの過剰な電子あるいは正孔の注入による寿命劣化の改善を図るという着目点の下に種々の錯体を検討した。
検討の結果、本発明に係る一般式(I)で表される化合物(金属錯体ともいう)のようなフェニルアゾール系の主配位子及びアミジン系の副配位子を有する金属錯体が、発光ドーパントへの過剰な電子あるいは正孔の注入を抑制しつつ金属錯体上での電荷の再結合による励起子の生成が促進され、さらに、発光ドーパントの励起子の相互作用を抑制することで、発光効率が向上し、同時に発光素子の発光寿命も延すことができた。
さらに、予想外の効果として素子駆動時の駆動電圧の上昇を大幅に低減する事が出来たうえ、さらには発光素子のダークスポットも大幅に低減させる事に成功し、有用な有機EL素子を提供することが出来た。
《一般式(I)で表される化合物(金属錯体)》
本発明に係る一般式(I)で表される化合物(金属錯体)について説明する。
一般式(I)において、Ra、Rb、Rcで表される脂肪族基としては炭素数1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等)、炭素数3〜6のシクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等)、炭素数1〜6のアルケニル基(例えば、ビニル基、1−プロペニル基、2−プロペニル基、2−ブテニル基等)、炭素数1〜6のアルキニル基(例えば、アセチレニル基、1−プロピニル基、2−プロピニル基、2−ブチニル基等)が挙げられる。また、これらの環から導出される基は、更に後述する置換基を有していても良い。
一般式(I)において、Ra、Rb、Rcで表される芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいう)としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から誘導される基が挙げられる。また、これらの環から導出される基は、更に後述する置換基を有してもよい。
一般式(I)において、Ra、Rb、Rcで表される芳香族複素環基としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。また、これらの環から導出される基は、更に後述する置換基を有していても良い。
また、一般式(I)において、Raで表される基としては、炭素数6〜10の芳香族炭化水素基が好ましく、特に好ましくは、置換基を有しても良いフェニル基である。
一般式(I)において、Rb、Rcで表される基としては、分岐状または環状のアルキル基、置換基を有しても良いフェニル基が好ましく、特に好ましくは、分岐状アルキル基、2位または6位にアルキル基の置換したフェニル基である。
《置換基》
上記の脂肪族基、芳香族炭化水素基または芳香族複素環基が更に有していても良い置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、複素芳香族基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。また、これらの基は、更に置換基を有していても良い。
一般式(I)において、R〜Rで表される置換基は、一般式(I)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基が更に有していても良い置換基と同義である。
また、一般式(I)において、R〜Rとして好ましいのは、水素原子または炭素数1〜6のアルキル基、フェニル基である。
一般式(I)において、Arで表される脂肪族基、芳香族炭化水素基または芳香族複素環基は、各々、一般式(I)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基と同義である。
中でも、Arで表される基としては、置換フェニル基が好ましく、特に好ましくは、2位または6位に炭素数1〜6のアルキル基、シクロアルキル基が置換したフェニル基が好ましい。
一般式(I)において、X、Yは、各々窒素原子または置換基を有しても良い炭素原子を表すが、X及びYの合計として、窒素原子は0、1または2を取り得るが、0、1で有る場合が好ましく、特に好ましくは0の場合である。
また、一般式(I)において、RからR及びArは互いに連結して、環状構造を形成しても良い。またX及びYが、置換基を有する炭素原子の場合、炭素上の置換基が互いに連結して環状構造を形成しても良く、Arと連結して環状構造を形成しても良い。
一般式(I)において、Mで表される元素周期表における8族〜10族の遷移金属元素としては、具体的にはルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金等が例示されるが、好ましくは、イリジウム、白金である。
また、Mがイリジウムを表す時、m=2、n=1が好ましい。
続いて、本発明に係る上記一般式(I)で表される化合物(金属錯体)の中でも、好ましく用いられる前記一般式(Ia)〜(Ie)で各々表される化合物(金属錯体)について説明する。
《一般式(Ia)〜(Ie)のいずれかで表される化合物(金属錯体)》
一般式(Ia)〜(Ie)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基は、一般式(I)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基と同義である。
一般式(Ia)〜(Ie)において、R〜R12で表される置換基は、一般式(I)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基と同義である。
一般式(Ia)〜(Ie)において、Arで表される脂肪族基、芳香族炭化水素基または芳香族複素環基は、一般式(I)において、Ra、Rb、Rcで表される脂肪族基、芳香族炭化水素基または芳香族複素環基と同義である。
一般式(Ia)〜(Ie)において、Mで表される元素周期表における8族〜10族の遷移金属元素は、一般式(I)において、Mで表される元素周期表における8族〜10族の遷移金属元素と同義である。
次に、一般式(Ia)〜(Ie)で各々表される化合物(金属錯体)の好ましい態様について説明する。
一般式(Ia)において、R、Rとしては、水素原子または脂肪族基が好ましく、特に好ましくは、水素原子または炭素数4以下のアルキル基である。
また、Arとしては芳香族炭化水素基が好ましく、更に好ましくは、置換フェニル基であり、特に好ましくは、2位または6位に炭素数6以下の直鎖または分岐アルキル基が置換したフェニル基またはシクロアルキル基が置換したフェニル基である。
一般式(1b)において、R〜R10が置換基を表す場合、置換基としては脂肪族基または芳香族炭化水素基が好ましく、更に好ましくは、炭素数6以下の直鎖または分岐アルキル基、シクロアルキル基が好ましく、特に好ましくは、炭素数6以下の分岐アルキル基である。
一般式(1c)において、R11としては、水素原子または脂肪族基が好ましく、特に好ましくは、水素原子または炭素数4以下のアルキル基である。
また、Arとしては芳香族炭化水素基が好ましく、更に好ましくは、置換フェニル基であり、特に好ましくは、2位または6位に炭素数6以下の直鎖または分岐アルキル基が置換したフェニル基またはシクロアルキル基が置換したフェニル基である。
一般式(1d)において、R12としては、水素原子または脂肪族基が好ましく、特に好ましくは、水素原子または炭素数4以下のアルキル基である。
また、Arとしては芳香族炭化水素基が好ましく、更に好ましくは、置換フェニル基であり、特に好ましくは、2位または6位に炭素数6以下の直鎖または分岐アルキル基が置換したフェニル基またはシクロアルキル基が置換したフェニル基である。
一般式(1e)において、Arとしては芳香族炭化水素基が好ましく、更に好ましくは、置換フェニル基であり、特に好ましくは、2位または6位に炭素数6以下の直鎖または分岐アルキル基が置換したフェニル基またはシクロアルキル基が置換したフェニル基である。
本発明に係る前記一般式(Ia)〜(Ie)で表される化合物(金属錯体)の中でも、更に好ましいのは、前記一般式(Ia)、(Ib)、または(Id)で表される化合物(金属錯体)である。
以下、本発明に係る前記一般式(I)、(Ia)〜(Ie)のいずれかで表される化合物(金属錯体、金属錯体化合物ともいう)の具体例を示すが、本発明はこれらに限定されない。
Figure 2013016610
Figure 2013016610
Figure 2013016610
Figure 2013016610
Figure 2013016610
下記に表1〜表5に記載以外の化合物を示す。
Figure 2013016610
尚、表1〜表5において、表中の記号は、各々下記に示すとおりである。
Ph:フェニル基
CHPh:ベンジル基
Me:メチル基
i−Pr:イソプロピル基
t−Bu:ターシャリーブチル基
11:シクロペンチル基
13:シクロヘキシル基
Ar−1〜Ar−8:(*印は結合位置を表す)
Figure 2013016610
Ra−1からRa−3:(*印は結合位置を表す)
Figure 2013016610
Rb−1からRb−4:(*印は結合位置を表す)
Figure 2013016610
これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、Organic Letter誌、vol8、No.3、415〜418頁(2006)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
アミジナト配位子及びそれを用いた金属錯体の合成は、前記非特許文献2及びその文献中に記載の参考文献等の方法を適用することにより合成できる。
以下に、本発明に係る金属錯体の合成例を示すが、本発明はこれらに限定されない。
以下に、代表的な化合物の合成例を示す。
《例示化合物Ia−1の合成》
Figure 2013016610
工程1:錯体(A)の合成
窒素雰囲気下で2−フェニル−(2,4,6−トリメチルフェニル)−1H−イミダゾール18gを2−エトキシエタノール350mlに溶解した溶液に、塩化イリジウム3水和物8.1g及び100mlの水を加え、窒素雰囲気下で5時間還流した。
反応液を冷却し、メタノール500mlを加え、析出した結晶を濾取した。得られた結晶を更にメタノールで洗浄し、乾燥後15.2gの錯体(A)を得た。
工程2:例示化合物Ia−1の合成
アルゴン雰囲気化、1−ブロモベンゼン260mgをヘキサン40mlに溶解した溶液に、n−BuLiのヘキサン溶液0.6mlを滴下した。
室温で1時間撹拌した後、N,N−ジイソプロピルカルボジイミド200mgを滴下した。更に30分撹拌を継続した後、先に合成した錯体(A)1.2gのヘキサン溶液(60ml)を滴下した。
80℃で8時間撹拌を継続した後、反応液を冷却し、次いで溶媒を減圧留去した。
残渣をジエチルエーテルで洗浄し、乾燥した。更に塩化メチレンを用い、シリカゲルクロマトグラフィーで精製する事により、400mgの例示化合物Ia−1を得た。
例示化合物Ia−12の構造は、NMR(核磁気共鳴法)及びマススペクトルで確認した。
本発明に係る一般式(I)、一般式(Ia)〜(Ie)のいずれかで表されるその他の化合物(金属錯体)についても、上記の合成例と同様の合成方法を用い、適切な原料を用いることで収率良く合成することができる。
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
本発明の有機EL素子においては、青色発光層の発光極大波長は430nm〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm〜550nm、赤色発光層は発光極大波長が600nm〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
本発明の有機EL素子を構成する各層について説明する。
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、さらに好ましくは2nm〜200nmの範囲に調整され、特に好ましくは、10nm〜20nmの範囲である。
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。
本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。
(ホスト化合物(発光ホスト等ともいう))
本発明に用いられるホスト化合物について説明する。
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で併用してもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子をさらに高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられる発光ホストは、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよく、このような化合物を1種または複数種用いても良い。
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
有機EL素子の発光寿命を改善する上で、理由は定かではないが、ホスト化合物が、部分構造としてジベンゾフラン構造若しくは、ジベンゾチオフェン構造、フルオレン構造の何れかを有するホスト化合物である事が好ましい。
以下に、本発明に好ましく用いられるホスト化合物の具体例を示すが、本発明はこれらに限定されない。
Figure 2013016610
Figure 2013016610
Figure 2013016610
Figure 2013016610
(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
(リン光ドーパント)
本発明に係るリン光ドーパントについて説明する。
本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に係るリン光ドーパントは、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
本発明に係るリン光ドーパントとして用いられる化合物としては、上記の本発明に係る一般式(I)及び(Ia)〜(Ie)のいずれかで表される遷移金属錯体化合物が用いられるが、以下に示すような従来公知の発光ドーパントを併用してもよい。
Figure 2013016610
Figure 2013016610
Figure 2013016610
(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げたカルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(カルボリン誘導体のカルボリン環を構成する炭素原子のいずれかひとつが窒素原子で置き換わったものを示す)を含有することが好ましい。
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。
《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3ml/(m・24h・atm)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。
封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物薄膜を形成させる。
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。
本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。また、実施例において用いられる化合物の構造を下記に示す。
Figure 2013016610
Figure 2013016610
化合物E−1は、Chem. Commun.,2009,3699-3701に記載の化合物であり、化合物E−2は、国際公開第2006/121811号のcompound Eとして記載の化合物である。
実施例1
《単色発光有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてH−2を200mg入れ、別のモリブデン製抵抗加熱ボートにBAlqを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物Ir−1を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、膜厚40nmの正孔輸送層を設けた。
更に、H−2と比較化合物Ir−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
更に、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。
その上に、更に、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層の上に蒸着して更に膜厚40nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
次に、電子輸送層の上にステンレス鋼製の透明電極とほぼ同じ形状の正方形穴あきマスクを設置し、陰極バッファー層としてフッ化リチウム0.5nm及び陰極としてアルミニウム110nmを蒸着、成膜して陰極を形成し、有機EL素子1−1を作製した。
《有機EL素子1−2〜1−25の作製》
有機EL素子1−1の作製において、発光層のホスト化合物であるH−2、ドーパント化合物である比較化合物Ir−1を表6に示す化合物に置き換え、表6記載のドーピング濃度となるように蒸着速度を調整した以外は同様にして、有機EL素子1−2〜1−25を作製した。
《有機EL素子の評価》
得られた有機EL素子1−1〜1−25を評価するに際しては、作製後の各有機EL素子の非発光面(陰極側)を、厚み300μmのガラス基板を封止用ガラスカバーとして用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラスカバー側からUV光を照射して、硬化させて、封止して、図1、図2に示すような照明装置を形成して評価した。
図1は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。
図2は照明装置の断面図を示し、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
《外部取り出し量子効率及び駆動電圧の評価》
各有機EL素子を室温(約23〜25℃)、初期輝度4000cd/mを与える電流で定電流駆動して、点灯開始直後の駆動電流[mA]を測定することにより、外部取り出し量子効率(η)を算出した。ここで、発光輝度の測定はCS−1000(コニカミノルタセンシング製)を用いた。
また、同時に点灯開始直後の駆動電圧を測定した。
《半減寿命》
下記に示す測定法に従って、半減寿命の評価を行った。
各有機EL素子を室温(約23〜25℃)、初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2(2000cd/m)になる時間を求め、これを半減寿命の尺度とした。
《駆動電圧上昇》
半減寿命の評価を行った素子について、輝度半減時の駆動電圧を測定し、評価開始時の駆動電圧との差を求め駆動電圧上昇とした。
《DS発生(ダークスポット)評価》
各有機EL素子を室温下、初期輝度4000cd/mを与える電流で定電流駆動して連続点灯を行った際の発光面を目視で評価した。無作為に抽出した10人による目視評価で連続点灯時間10時間経過後の各素子において
×:ダークスポットを確認した人数が5人以上の場合
△:ダークスポットを確認した人数が1−4人の場合
○:ダークスポットを確認した人数が0人の場合
とした。
評価結果を表6に示す。
Figure 2013016610
表6から、比較の素子に比べて、本発明の有機EL素子は、外部取り出し量子効率が高く、駆動電圧も低い、それに伴って長寿命であることが明らかである。また、半減寿命評価後の駆動電圧の上昇が抑えられ、ダークスポットの生成も抑えられていることもわかる。
特に、高濃度にドーピングした際に、発光時の効率が向上し、さらに高輝度駆動時の発光寿命の改善がみられる。
実施例2
《白色発光有機EL素子2−1の作製》
実施例1の有機EL素子1−1の作製に用いた透明電極基板の電極を50mm×50mmにパターニングし、その上に実施例1と同様に正孔輸送層としてα−NPDを25nmの厚さで成膜し、更に、H−10の入った前記加熱ボートと比較化合物E−2の入ったボート及びIr−9の入ったボートを各々独立に通電して、発光ホストであるH−6と発光ドーパントとして比較化合物E−2、及びIr−9の蒸着速度が100:6:0.6になるように調節し、膜厚30nmの厚さになるように蒸着し、発光層を設けた。
次いで、BAlqを10nm成膜して正孔阻止層を設けた。更に、Alqを40nmで成膜し電子輸送層を設けた。
次に、実施例1と同様に電子輸送層の上にステンレス鋼製の透明電極とほぼ同じ形状の正方形穴あきマスクを設置し、陰極バッファー層としてフッ化リチウム0.5nm及び陰極としてアルミニウム150nmを蒸着、成膜した。
《有機EL素子2−2〜2−23の作製》
有機EL素子2−1の作製において、発光層のホスト化合物であるH−6、ドーパント化合物であるIr−9および比較化合物E−2の中、H−6及びE−2を表7に示す化合物に置き換え、Ir−9は一定とし、表7記載のドーピング濃度となるように蒸着速度を調整した以外は同様にして、有機EL素子2−2〜2−23を作製した。
《有機EL素子の評価》
得られた有機EL素子2−2〜2−23を評価するに際しては、実施例1と同様にして白色照明装置を作製し、同様の評価を行った。
得られた結果を表7に示す。
Figure 2013016610
表7から、比較の素子に比べて、本発明の有機EL素子は、外部取り出し量子効率が高く、駆動電圧も低い、それに伴って長寿命であることがわかる。さらに、半減寿命評価後の駆動電圧の上昇が抑えられ、ダークスポットの生成も抑えられていることもわかる。
特に、高濃度にドーピングした際に、高輝度発光時の効率が向上し、さらに高輝度駆動時の発光寿命の改善がみられる。
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤

Claims (8)

  1. 陽極と陰極とを有し、少なくとも1層の発光層を有する有機エレクトロルミネッセンス素子において、
    該発光層が、下記一般式(I)で表される化合物を少なくとも1種含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure 2013016610
    〔式中、Ra、Rb、Rcは、各々脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。R〜Rは、各々水素原子または置換基を表す。Arは脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。X、Yは、各々窒素原子または置換基を有しても良い炭素原子を表す。R〜R、Arは互いに連結して、環状構造を形成しても良い。X及びYが、置換基を有する炭素原子の場合、炭素上の置換基が互いに連結して環状構造を形成しても良く、Arと連結して環状構造を形成しても良い。Mは元素周期表における8族〜10族の遷移金属元素を表す。m、nは、各々1または2を表し、但し、nはMの原子価よりも小さく、n+mは2または3であり、Mの配位数の半分に等しい。〕
  2. 前記発光層が、下記一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)で表される化合物を少なくとも1種含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure 2013016610
    〔一般式(Ia)〜(Ie)において、Ra、Rb、Rcは、各々脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。R〜R12は、各々水素原子または置換基を表す。Arは脂肪族基、芳香族炭化水素基または芳香族複素環基を表す。Mは元素周期表における8族〜10族の遷移金属元素を表す。m、nは、各々1または2を表すが、nは中心金属Mの原子価よりも小さい。n+mは2または3であり、これはMの配位数の半分に等しい。
    また、一般式(Ia)において、RからR及びArは互いに連結して、環状構造を形成しても良い。一般式(Ib)において、R〜R10は、互いに連結して、環状構造を形成しても良い。一般式(Ic)において、R〜R、R11、Arは互いに連結して、環状構造を形成しても良い。一般式(Id)において、R〜R、R12、Arは互いに連結して、環状構造を形成しても良い。一般式(Ie)において、R〜R、Arは互いに連結して、環状構造を形成しても良い。〕
  3. 前記発光層が少なくとも1種のホスト化合物と少なくとも1種のゲスト化合物を含有しており、請求項1に記載の一般式(1)で表される化合物、請求項2に記載の一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)で表される化合物の少なくとも1種が該ゲスト化合物として含有されており、且つ、該ホスト化合物全体に対して1質量%以上含有されていることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
  4. 前記ホスト化合物が、部分構造としてジベンゾフラン構造、ジベンゾチオフェン構造、またはフルオレン構造のいずれかを有することを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
  5. 前記Mが白金またはイリジウムであることを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6. 請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
  7. 請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
  8. 請求項1に記載の一般式(I)で表される化合物、請求項2に記載の前記一般式(Ia)、(Ib)、(Ic)、(Id)または(Ie)のいずれかで表されることを特徴とする有機エレクトロルミネッセンス素子材料。
JP2011148009A 2011-07-04 2011-07-04 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料 Expired - Fee Related JP5637084B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148009A JP5637084B2 (ja) 2011-07-04 2011-07-04 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148009A JP5637084B2 (ja) 2011-07-04 2011-07-04 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料

Publications (2)

Publication Number Publication Date
JP2013016610A true JP2013016610A (ja) 2013-01-24
JP5637084B2 JP5637084B2 (ja) 2014-12-10

Family

ID=47689004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148009A Expired - Fee Related JP5637084B2 (ja) 2011-07-04 2011-07-04 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料

Country Status (1)

Country Link
JP (1) JP5637084B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088573A1 (ja) * 2016-11-14 2018-05-17 住友化学株式会社 発光素子、並びに、それに用いる金属錯体及び組成物
JP2018150309A (ja) * 2010-11-26 2018-09-27 株式会社半導体エネルギー研究所 化合物
CN109155375A (zh) * 2016-05-13 2019-01-04 剑桥显示技术有限公司 磷光发光络合物以及在发光器件中的用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150309A (ja) * 2010-11-26 2018-09-27 株式会社半導体エネルギー研究所 化合物
CN109155375A (zh) * 2016-05-13 2019-01-04 剑桥显示技术有限公司 磷光发光络合物以及在发光器件中的用途
JP2019516695A (ja) * 2016-05-13 2019-06-20 ケンブリッジ ディスプレイ テクノロジー リミテッド 燐光性発光錯体及び発光デバイスにおける使用
JP6994470B2 (ja) 2016-05-13 2022-01-14 ケンブリッジ ディスプレイ テクノロジー リミテッド 燐光性発光錯体及び発光デバイスにおける使用
WO2018088573A1 (ja) * 2016-11-14 2018-05-17 住友化学株式会社 発光素子、並びに、それに用いる金属錯体及び組成物
JPWO2018088573A1 (ja) * 2016-11-14 2018-11-22 住友化学株式会社 発光素子、並びに、それに用いる金属錯体及び組成物
EP3540805A4 (en) * 2016-11-14 2020-06-17 Sumitomo Chemical Company, Limited LIGHT-EMITTING ELEMENT, METAL OXIDE, AND COMPOSITION USED IN IT

Also Published As

Publication number Publication date
JP5637084B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5967057B2 (ja) 有機エレクトロルミネッセンス素子とその製造方法、照明装置及び表示装置
JP5564942B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5482201B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5018891B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5522046B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5629980B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5653617B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5233081B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5724204B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5531446B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置および照明装置
JP5103781B2 (ja) 化合物、該化合物を含む有機エレクトロルミネッセンス素子、照明装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5560517B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5186736B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010267847A (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5278314B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2010040829A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP5652083B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5846119B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2012151266A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2008210941A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5629970B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5482313B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5488053B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5515283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5637084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees