JP2013014113A - Method of joining fiber-reinforced thermoplastic resin - Google Patents

Method of joining fiber-reinforced thermoplastic resin Download PDF

Info

Publication number
JP2013014113A
JP2013014113A JP2011150100A JP2011150100A JP2013014113A JP 2013014113 A JP2013014113 A JP 2013014113A JP 2011150100 A JP2011150100 A JP 2011150100A JP 2011150100 A JP2011150100 A JP 2011150100A JP 2013014113 A JP2013014113 A JP 2013014113A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced thermoplastic
joining
bonded surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011150100A
Other languages
Japanese (ja)
Other versions
JP5827505B2 (en
Inventor
Akinobu Sasaki
章亘 佐々木
Takahiro Hayashi
崇寛 林
Hitoshi Kitamura
仁志 北村
Hidetoshi Sonoda
秀利 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Toyobo Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011150100A priority Critical patent/JP5827505B2/en
Publication of JP2013014113A publication Critical patent/JP2013014113A/en
Application granted granted Critical
Publication of JP5827505B2 publication Critical patent/JP5827505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0618Linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of joining a fiber-reinforced thermoplastic resin capable of preventing a joining failure due to a phenomenon in which the thermoplastic leaks out of a joining object surface and a reinforcement fiber stands out therefrom, and small in mass of burrs.SOLUTION: In this method of joining a fiber-reinforced thermoplastic resin, at least either of a first joining object surface 1a arranged on a member formed of a fiber-reinforced thermoplastic resin (C1) formed by impregnating a thermoplastic resin (P1) into a reinforcement fiber (F1), and a second joining object surface 2a arranged on a member formed of a fiber-reinforced thermoplastic resin (C3) formed by impregnating the thermoplastic resin (P2) into a material (C2) containing a thermoplastic resin (P2) and without containing a fiber or a reinforcement fiber (F2) is preliminarily heated by a heating means 3, and thereafter both of them are joined to each other by vibration welding. In the method, the surface temperatures of the preliminarily-heated jointing object surfaces 1a, 2a are not higher than the melting point or the glass-transition temperature of the thermoplastic resin constituting the joining object surfaces 1a, 2a.

Description

本発明は、繊維強化熱可塑性樹脂の接合方法に関する。   The present invention relates to a method for joining fiber reinforced thermoplastic resins.

強化繊維に熱可塑性樹脂を含浸してなる繊維強化熱可塑性樹脂を、ビス等の接合部材を使用せずに接合する方法として、振動溶着、熱板溶着、抵抗溶着、超音波溶着等がある。
しかしながら、抵抗溶着は、繊維強化熱可塑性樹脂中に金属線を埋め込む必要があり、超音波溶着は、部材が厚くなると接合不良が生じやすいという問題がある。
As a method for bonding a fiber reinforced thermoplastic resin obtained by impregnating a reinforced fiber with a thermoplastic resin without using a bonding member such as a screw, there are vibration welding, hot plate welding, resistance welding, ultrasonic welding, and the like.
However, resistance welding requires embedding a metal wire in a fiber reinforced thermoplastic resin, and ultrasonic welding has a problem that bonding failure tends to occur when a member becomes thick.

下記特許文献1には、強化繊維が埋没されている熱硬化性樹脂層および強化繊維が埋没されている熱可塑性樹脂層を有する部材と、他の部材とを、熱可塑性樹脂層を溶融させて接合する方法が記載されている。熱可塑性樹脂層を溶融させて接合する手法として、熱溶着、振動溶着、超音波溶着、およびレーザー溶着が一応挙げられているが、これらのうち実施例で用いられている方法は、熱板を用いた熱溶着法だけである。   In the following Patent Document 1, a member having a thermosetting resin layer in which reinforcing fibers are embedded and a thermoplastic resin layer in which reinforcing fibers are embedded and another member are melted in the thermoplastic resin layer. A method of joining is described. Thermal welding, vibration welding, ultrasonic welding, and laser welding are cited as a method for melting and joining the thermoplastic resin layer. Of these, the method used in the examples is a hot plate. Only the heat welding method used.

特開2005−297417号公報JP 2005-297417 A

しかしながら、熱板を用いた熱溶着法では、繊維強化熱可塑性樹脂からなる被接合面に熱板を接触させて融点以上に加熱するため、該被接合面において、熱可塑性樹脂が溶け出して強化繊維が浮き出る現象(スプリングバック現象)が生じやすい。被接合面に繊維が浮き出てしまうと、溶着時に接合不良が生じやすい。   However, in the heat welding method using a hot plate, the hot plate is brought into contact with the surface to be joined made of fiber reinforced thermoplastic resin and heated to the melting point or higher, so that the thermoplastic resin is melted and strengthened on the surface to be joined. The phenomenon that the fiber is raised (spring back phenomenon) is likely to occur. If fibers are raised on the surfaces to be joined, poor bonding is likely to occur during welding.

振動溶着は、被接合面どうしを密着させた状態で振動させることにより、摩擦熱で熱可塑性樹脂を溶融させて溶着する方法であるため、上記のスプリングバック現象は生じない。
しかしながら、振動溶着は、接合に要する振動時間が長く、バリが多く発生しやすいという問題がある。「バリ」とは、接合操作により接合界面からはみ出してくるものを指す。
The vibration welding is a method in which the thermoplastic resin is melted and welded by frictional heat by vibrating in a state where the surfaces to be joined are brought into close contact with each other. Therefore, the above spring back phenomenon does not occur.
However, vibration welding has a problem that vibration time required for joining is long and many burrs are likely to occur. “Burr” refers to an object that protrudes from the bonding interface by the bonding operation.

本発明は前記事情に鑑みてなされたもので、スプリングバック現象による接合不良を防止でき、バリの発生量が少ない、繊維強化熱可塑性樹脂の接合方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for joining fiber-reinforced thermoplastic resins that can prevent poor joining due to a springback phenomenon and that has a small amount of burrs.

前記課題を解決するために、本発明の繊維強化熱可塑性樹脂の接合方法は、強化繊維(F1)に熱可塑性樹脂(P1)を含浸してなる繊維強化熱可塑性樹脂(C1)からなる部材に設けられた第1の被接合面と、熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)または強化繊維(F2)に熱可塑性樹脂(P2)を含浸してなる繊維強化熱可塑性樹脂(C3)からなる部材に設けられた第2の被接合面とを接合する方法であって、第1の被接合面および第2の被接合面の少なくとも一方を加熱する予備加熱工程と、前記予備加熱工程の後、振動溶着により第1の被接合面と第2の被接合面とを接合する振動溶着工程とを有し、前記予備加熱工程において加熱される被接合面の表面温度が、該被接合面を構成する熱可塑性樹脂が結晶性樹脂の場合には融点以下、非晶性樹脂の場合にはガラス転移温度以下であることを特徴とする。   In order to solve the above-mentioned problems, the fiber reinforced thermoplastic resin joining method of the present invention is a member made of a fiber reinforced thermoplastic resin (C1) formed by impregnating a reinforced fiber (F1) with a thermoplastic resin (P1). A fiber reinforced thermoplastic resin obtained by impregnating a thermoplastic resin (P2) into a provided first bonded surface and a material (C2) that does not contain fibers, including a thermoplastic resin (P2), or a reinforcing fiber (F2). (C3) is a method of joining a second joined surface provided on a member comprising: a preheating step of heating at least one of the first joined surface and the second joined surface; After the preheating step, it has a vibration welding step of joining the first bonded surface and the second bonded surface by vibration welding, and the surface temperature of the bonded surface heated in the preheating step is: The thermoplastic resin constituting the bonded surfaces is a crystalline resin. In the case of below the melting point, in the case of amorphous resin is equal to or less than the glass transition temperature.

予備加熱工程において加熱される被接合面の表面温度が、該被接合面を構成する熱可塑性樹脂が結晶性樹脂の場合、融点よりも100℃低い温度以上であり、非晶性樹脂の場合、ガラス転移温度よりも100℃低い温度以上であることが好ましい。
予備加熱工程において、被接合面を非接触で加熱する加熱手段を用いることが好ましい。
非接触で加熱する加熱手段が赤外線ヒーターであることが好ましい。
繊維強化熱可塑性樹脂(C1)における強化繊維(F1)の体積含有率が10〜60%であり、繊維強化熱可塑性樹脂(C3)における強化繊維(F2)の体積含有率が10〜60%であることが好ましい。
When the surface temperature of the bonded surface heated in the preheating step is a crystalline resin when the thermoplastic resin constituting the bonded surface is a crystalline resin, the surface temperature is 100 ° C. lower than the melting point, and in the case of an amorphous resin, The temperature is preferably at least 100 ° C. lower than the glass transition temperature.
In the preheating step, it is preferable to use a heating means for heating the surfaces to be joined in a non-contact manner.
The heating means for heating without contact is preferably an infrared heater.
The volume content of the reinforcing fiber (F1) in the fiber reinforced thermoplastic resin (C1) is 10 to 60%, and the volume content of the reinforcing fiber (F2) in the fiber reinforced thermoplastic resin (C3) is 10 to 60%. Preferably there is.

繊維強化熱可塑性樹脂(C1)における強化繊維(F1)の長さが5〜100mmであり、繊維強化熱可塑性樹脂(C3)における強化繊維(F3)の長さが5〜100mmであることが好ましい。
第1の被接合面および第2の被接合面の一方または両方が、長さが5〜100mm、厚みが30〜300μm、幅が5〜30mmからなるテープ状の繊維強化熱可塑性樹脂を等方に分散した面であることが好ましい。
The length of the reinforcing fiber (F1) in the fiber reinforced thermoplastic resin (C1) is preferably 5 to 100 mm, and the length of the reinforcing fiber (F3) in the fiber reinforced thermoplastic resin (C3) is preferably 5 to 100 mm. .
One or both of the first bonded surface and the second bonded surface is isotropic tape-like fiber reinforced thermoplastic resin having a length of 5 to 100 mm, a thickness of 30 to 300 μm, and a width of 5 to 30 mm. It is preferable that the surface is dispersed.

繊維強化熱可塑性樹脂(C1)中の強化繊維(F1)、および/または繊維強化熱可塑性樹脂(C3)中の強化繊維(F2)が連続繊維であることが好ましい。
第1の被接合面および第2の被接合面の一方または両方が、連続繊維からなる強化繊維に熱可塑性樹脂を含浸させた、厚み30〜300μmのテープ状の繊維強化熱可塑性樹脂を、繊維の長さ方向が一方向となるように一体化させた基材を1枚以上、強化繊維が所定の方向に配向するように積層した積層物の最表面であることが好ましい。
It is preferable that the reinforcing fiber (F1) in the fiber-reinforced thermoplastic resin (C1) and / or the reinforcing fiber (F2) in the fiber-reinforced thermoplastic resin (C3) is a continuous fiber.
One or both of the first bonded surface and the second bonded surface are made of a fiber reinforced thermoplastic resin having a thickness of 30 to 300 μm in which a reinforcing fiber made of continuous fibers is impregnated with a thermoplastic resin. It is preferable that it is the outermost surface of the laminated body which laminated | stacked so that 1 or more base materials integrated so that the length direction might become one direction, and a reinforced fiber might orient in a predetermined direction.

第1の被接合面が、強化繊維(F1)に予め熱可塑性樹脂(P1)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられており、かつ第2の被接合面が、強化繊維(F2)に予め熱可塑性樹脂(P2)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられており、接合後の接合部における2つの部材の合計厚みが、前記2つの部材が一体化される前よりも小さく、その差が前記第1の被接合面および第2の被接合面をそれぞれ構成するテープ状の繊維強化熱可塑性樹脂の厚みのいずれか大きい方の厚み以上であることが好ましい。   The first bonded surface is provided on a member made of a tape-like fiber-reinforced thermoplastic resin in which the reinforcing fiber (F1) is impregnated with the thermoplastic resin (P1) in advance, and the second bonded surface is The reinforcing fiber (F2) is provided in a member made of a tape-like fiber-reinforced thermoplastic resin in which the thermoplastic resin (P2) is impregnated in advance, and the total thickness of the two members in the bonded portion after bonding is the above two The difference is smaller than before the members are integrated, and the difference is equal to or greater than the larger one of the thicknesses of the tape-like fiber reinforced thermoplastic resins constituting the first and second bonded surfaces, respectively. It is preferable that

熱可塑性樹脂(P1)がポリプロピレンまたはポリアミドであり、熱可塑性樹脂(P2)がポリプロピレンまたはポリアミドであることが好ましい。   It is preferable that the thermoplastic resin (P1) is polypropylene or polyamide, and the thermoplastic resin (P2) is polypropylene or polyamide.

本発明は振動溶着法を利用した方法であって、スプリングバック現象による接合不良を防止でき、接合に要する振動時間が短く、バリの質量が少なく、繊維強化熱可塑性樹脂を接合できる。   The present invention is a method using a vibration welding method, which can prevent bonding failure due to a springback phenomenon, has a short vibration time required for bonding, has a small burr mass, and can bond a fiber-reinforced thermoplastic resin.

実施例にかかる予備加熱工程を説明するための斜視図である。It is a perspective view for demonstrating the preheating process concerning an Example. 実施例にかかる予備加熱工程を説明するための模式断面図である。It is a schematic cross section for demonstrating the preheating process concerning an Example. 実施例にかかる、接合後の試験片を模式的に示す平面図である。It is a top view which shows typically the test piece after joining concerning an Example.

<繊維強化熱可塑性樹脂(C1)>
本発明の方法で互いに接合される2つの被接合面のうち、一方(第1の被接合面)は、強化繊維(F1)に熱可塑性樹脂(P1)を含浸してなる繊維強化熱可塑性樹脂(C1)からなる部材に設けられている。すなわち、第1の被接合面は、繊維強化熱可塑性樹脂(C1)からなる面である。
強化繊維(F1)としては、炭素繊維、アラミド繊維、ガラス繊維等が挙げられる。
強化繊維(F1)の繊維長は5mm以上、100mm以下、或いは連続繊維が好ましい。強化繊維(F1)の繊維長が5mm以上、100mm以下の場合、強化繊維(F1)が、他方(第2の被接合面)の熱可塑性樹脂(P2)に浸透しやすく、及び/または、他方(第2の被接合面)が強化繊維(F2)に熱可塑性樹脂(P2)を含浸してなる繊維強化熱可塑性樹脂(C3)からなる場合には、該強化繊維(F2)と絡み合いやすい。強化繊維(F1)の繊維長のより好ましい範囲は10mm〜50mmである。
<Fiber-reinforced thermoplastic resin (C1)>
Of the two surfaces to be bonded to each other by the method of the present invention, one (first surface to be bonded) is a fiber-reinforced thermoplastic resin obtained by impregnating the reinforcing fiber (F1) with the thermoplastic resin (P1). (C1) is provided on the member. That is, the first bonded surface is a surface made of a fiber reinforced thermoplastic resin (C1).
Examples of the reinforcing fiber (F1) include carbon fiber, aramid fiber, and glass fiber.
The fiber length of the reinforcing fiber (F1) is preferably 5 mm or more and 100 mm or less, or continuous fiber. When the fiber length of the reinforcing fiber (F1) is 5 mm or more and 100 mm or less, the reinforcing fiber (F1) easily penetrates into the thermoplastic resin (P2) of the other (second bonded surface) and / or the other When the (second bonded surface) is made of the fiber reinforced thermoplastic resin (C3) obtained by impregnating the reinforcing fiber (F2) with the thermoplastic resin (P2), it is likely to be entangled with the reinforcing fiber (F2). A more preferable range of the fiber length of the reinforcing fiber (F1) is 10 mm to 50 mm.

強化繊維(F1)の繊維長が5mm以上、100mm以下の場合、繊維強化熱可塑性樹脂(C1)中の強化繊維(F1)は、一本一本開繊された状態であってもよく、または束状であってもよい。強化繊維(F1)が束状の場合には、強化繊維(F1)に予め熱可塑性樹脂(P1)が含浸したテープ状の繊維強化熱可塑性樹脂を、5mm以上、100mm以下に切断した物を用いることが好ましい。テープ状の繊維強化熱可塑性樹脂の厚みは30μm以上、300μm以下が好ましい。この範囲であると、強化繊維(F1)が、他方(第2の被接合面)の熱可塑性樹脂(P2)に浸透しやすく、及び/または、強化繊維(F2)と絡み合いやすい。テープ状の繊維強化熱可塑性樹脂の幅は5mm以上、30mm以下が好ましい。この範囲であると、強化繊維(F1)が、他方(第2の被接合面)の熱可塑性樹脂(P2)に浸透しやすく、及び/または、強化繊維(F2)と絡み合いやすい。   When the fiber length of the reinforcing fiber (F1) is 5 mm or more and 100 mm or less, the reinforcing fibers (F1) in the fiber-reinforced thermoplastic resin (C1) may be in a state of being opened one by one, or It may be a bundle. When the reinforcing fiber (F1) is in the form of a bundle, a tape-like fiber-reinforced thermoplastic resin obtained by impregnating the reinforcing fiber (F1) with the thermoplastic resin (P1) in advance is cut into 5 mm or more and 100 mm or less. It is preferable. The thickness of the tape-like fiber reinforced thermoplastic resin is preferably 30 μm or more and 300 μm or less. Within this range, the reinforcing fiber (F1) tends to penetrate the thermoplastic resin (P2) on the other side (second bonded surface) and / or easily entangle with the reinforcing fiber (F2). The width of the tape-like fiber reinforced thermoplastic resin is preferably 5 mm or more and 30 mm or less. Within this range, the reinforcing fiber (F1) tends to penetrate the thermoplastic resin (P2) on the other side (second bonded surface) and / or easily entangle with the reinforcing fiber (F2).

繊維強化熱可塑性樹脂(C1)は、熱可塑性樹脂(P1)中に強化繊維(F1)が等方的に分散しているか、擬似等方的に分散している形態が好ましい。
強化繊維(F1)の繊維長が5mm以上、100mm以下の場合、第1の被接合面は、長さが5〜100mm、厚みが30〜300μm、幅が5〜30mmからなるテープ状の繊維強化熱可塑性樹脂を等方に分散した面であることが好ましい。
The fiber-reinforced thermoplastic resin (C1) preferably has a form in which the reinforcing fibers (F1) are isotropically dispersed or pseudo-isotropically dispersed in the thermoplastic resin (P1).
When the fiber length of the reinforcing fiber (F1) is 5 mm or more and 100 mm or less, the first bonded surface has a tape-like fiber reinforcement having a length of 5 to 100 mm, a thickness of 30 to 300 μm, and a width of 5 to 30 mm. It is preferably a surface in which the thermoplastic resin is isotropically dispersed.

繊維強化熱可塑性樹脂(C1)中の強化繊維(F1)が連続繊維の場合、振動溶着時の振動方向が、被接合面における強化繊維(F1)の長さ方向と同じであることが好ましい。
強化繊維(F1)の繊維方向(長さ方向)と同じ方向に振動させて振動溶着を行うことにより、強化繊維(F1)が、他方(第2の被接合面)の熱可塑性樹脂(P2)に浸透しやすく、及び/または、強化繊維(F2)と絡み合いやすいため、良好な接合強度が得られやすい。
強化繊維(F1)が連続繊維の場合、第1の被接合面は、連続繊維からなる強化繊維に熱可塑性樹脂を含浸させた、厚みが30〜300μmのテープ状の繊維強化熱可塑性樹脂を、繊維の長さ方向が一方向となるように一体化させた基材を1枚以上、強化繊維が所定の方向に配向するように積層した積層物の最表面であることが好ましい。
この場合、振動溶着時の振動方向が、被接合面における強化繊維(F1)の配向方向(長さ方向)と同じであることが好ましい。
When the reinforcing fiber (F1) in the fiber-reinforced thermoplastic resin (C1) is a continuous fiber, it is preferable that the vibration direction during vibration welding is the same as the length direction of the reinforcing fiber (F1) on the bonded surface.
By performing vibration welding by vibrating in the same direction as the fiber direction (length direction) of the reinforcing fiber (F1), the reinforcing fiber (F1) is the thermoplastic resin (P2) on the other side (second bonded surface). And / or entangled with the reinforcing fiber (F2), and thus good bonding strength is easily obtained.
When the reinforcing fiber (F1) is a continuous fiber, the first bonded surface is a tape-like fiber reinforced thermoplastic resin having a thickness of 30 to 300 μm, in which a reinforcing fiber made of continuous fibers is impregnated with a thermoplastic resin. It is preferably the outermost surface of a laminate obtained by laminating one or more base materials integrated so that the length direction of the fibers is one direction, and the reinforcing fibers are oriented in a predetermined direction.
In this case, it is preferable that the vibration direction during vibration welding is the same as the orientation direction (length direction) of the reinforcing fibers (F1) on the bonded surface.

熱可塑性樹脂(P1)は、ヒーターによる加熱や振動による加熱で軟化し、かつ溶着可能な熱可塑性樹脂であればよく、特に制限されない。熱可塑性樹脂(P1)として、結晶樹脂や非晶性樹脂が使用できる。結晶性樹脂は融点を有する樹脂の総称であり、非晶性樹脂はガラス転移温度を有する樹脂の総称である。熱可塑性樹脂(P1)は、融点が50〜400℃である結晶性樹脂、またはガラス転移温度が50〜300℃である非晶性樹脂が好ましい。
結晶性樹脂の具体例として、ポリエチレン、ポリプロピレン、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアミド(ナイロン等)、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、等が例示される。
非晶性樹脂の具体例として、ポリスチレン、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、アクリル樹脂、塩化ビニル、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルイミド、等が例示される。
これらのうち、成形加工性に優れる点でポリプロピレンが、物性に優れる点でポリアミド(特にナイロン)がより好ましい。
The thermoplastic resin (P1) is not particularly limited as long as it is a thermoplastic resin that can be softened and welded by heating with a heater or vibration. A crystalline resin or an amorphous resin can be used as the thermoplastic resin (P1). A crystalline resin is a generic term for resins having a melting point, and an amorphous resin is a generic term for resins having a glass transition temperature. The thermoplastic resin (P1) is preferably a crystalline resin having a melting point of 50 to 400 ° C. or an amorphous resin having a glass transition temperature of 50 to 300 ° C.
Specific examples of the crystalline resin include polyethylene, polypropylene, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polyamide (nylon, etc.), polyketone, polyetherketone, polyetheretherketone, and the like.
Specific examples of the amorphous resin include polystyrene, acrylonitrile / butadiene / styrene copolymer (ABS), acrylic resin, vinyl chloride, polycarbonate, polyphenylene ether, polyether sulfone, polysulfone, and polyetherimide. .
Of these, polypropylene is more preferable from the viewpoint of excellent molding processability, and polyamide (particularly nylon) is more preferable from the viewpoint of excellent physical properties.

繊維強化熱可塑性樹脂(C1)を構成する熱可塑性樹脂(P1)は1種でもよく、2種以上の混合物でもよい。また熱可塑性樹脂(P1)は添加剤、フィラー、着色剤等を含んでいてもよい。
なお、熱可塑性樹脂(P1)が樹脂のほかに添加物等を含む組成物である場合、該熱可塑性樹脂(P1)の融点またはガラス転移温度は、該組成物における融点またはガラス転移温度とする。
また熱可塑性樹脂(P1)が2種以上の混合物である場合、混合される前の各熱可塑性樹脂の融点またはガラス転移温度のうち最も低い温度を、混合後の熱可塑性樹脂(P1)の融点またはガラス転移温度とする。
The thermoplastic resin (P1) constituting the fiber reinforced thermoplastic resin (C1) may be one type or a mixture of two or more types. The thermoplastic resin (P1) may contain additives, fillers, colorants and the like.
When the thermoplastic resin (P1) is a composition containing an additive in addition to the resin, the melting point or glass transition temperature of the thermoplastic resin (P1) is the melting point or glass transition temperature of the composition. .
When the thermoplastic resin (P1) is a mixture of two or more, the lowest temperature among the melting points or glass transition temperatures of the thermoplastic resins before being mixed is set to the melting point of the thermoplastic resin (P1) after being mixed. Or it is set as the glass transition temperature.

繊維強化熱可塑性樹脂(C1)における強化繊維(F1)の割合(体積含有率)は、10〜60体積%が好ましい。10体積%以上であると、強化繊維に由来する物性を発揮させることができる。60体積%以下であると、溶着による良好な接合状態が得られやすい。該強化繊維(F1)の割合のより好ましい範囲は25〜55体積%である。   The proportion (volume content) of the reinforcing fibers (F1) in the fiber-reinforced thermoplastic resin (C1) is preferably 10 to 60% by volume. The physical property derived from a reinforced fiber can be exhibited as it is 10 volume% or more. When it is 60% by volume or less, a good bonded state by welding is easily obtained. A more preferable range of the proportion of the reinforcing fibers (F1) is 25 to 55% by volume.

<材料(C2)または繊維強化熱可塑性樹脂(C3)>
本発明の方法で互いに接合される2つの被接合面のうち、他方(第2の被接合面)は、熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)または強化繊維(F2)に熱可塑性樹脂(P2)を含浸してなる繊維強化熱可塑性樹脂(C3)からなる部材に設けられている。すなわち、第2の被接合面は、材料(C2)または繊維強化熱可塑性樹脂(C3)からなる面である。
強化繊維(F2)は、上記強化繊維(F1)と好ましい態様も含めて同様である。
熱可塑性樹脂(P2)は、上記熱可塑性樹脂(P1)と好ましい態様も含めて同様である。
繊維強化熱可塑性樹脂(C3)は、上記繊維強化熱可塑性樹脂(C1)と好ましい態様も含めて同様である。
<Material (C2) or fiber-reinforced thermoplastic resin (C3)>
Of the two surfaces to be bonded to each other by the method of the present invention, the other (second surface to be bonded) is a material (C2) or a reinforcing fiber (F2) that contains a thermoplastic resin (P2) and does not contain fibers. Is provided on a member made of a fiber-reinforced thermoplastic resin (C3) obtained by impregnating a thermoplastic resin (P2). That is, the second bonded surface is a surface made of the material (C2) or the fiber reinforced thermoplastic resin (C3).
The reinforcing fiber (F2) is the same as the reinforcing fiber (F1) including the preferred embodiment.
The thermoplastic resin (P2) is the same as the thermoplastic resin (P1), including preferred embodiments.
The fiber reinforced thermoplastic resin (C3) is the same as the fiber reinforced thermoplastic resin (C1) including the preferred embodiment.

第2の被接合面が繊維強化熱可塑性樹脂(C3)からなる部材に設けられているとき、互いに接合される第1の被接合面と第2の被接合面をそれぞれ構成する繊維強化熱可塑性樹脂(C1)と(C3)とは、互いに同じであってもよく、異なっていてもよい。
(C1)と(C3)とが異なる場合は、繊維強化熱可塑性樹脂(C1)に含まれる熱可塑性樹脂(P1)と、繊維強化熱可塑性樹脂(C3)に含まれる熱可塑性樹脂(P2)との、融点またはガラス転移温度の差が小さいことが好ましい。具体的に、該融点またはガラス転移温度の差が100℃以内であることが好ましく、50℃以内であることがより好ましい。熱可塑性樹脂(P1)と(P2)とが同じであることが特に好ましい。
When the second bonded surface is provided on the member made of the fiber reinforced thermoplastic resin (C3), the fiber reinforced thermoplastics that respectively constitute the first bonded surface and the second bonded surface to be bonded to each other. Resins (C1) and (C3) may be the same as or different from each other.
When (C1) and (C3) are different, the thermoplastic resin (P1) contained in the fiber reinforced thermoplastic resin (C1) and the thermoplastic resin (P2) contained in the fiber reinforced thermoplastic resin (C3) It is preferable that the difference in melting point or glass transition temperature is small. Specifically, the difference in melting point or glass transition temperature is preferably within 100 ° C., more preferably within 50 ° C. It is particularly preferable that the thermoplastic resins (P1) and (P2) are the same.

<繊維強化熱可塑性樹脂の接合方法>
[予備加熱工程]
まず、振動溶着工程に先立って、第1の被接合面および第2の被接合面の少なくとも一方を加熱する(予備加熱工程)。予備加熱工程を設けることにより、振動溶着において、被接合面を振動させる時間を短縮することができ、バリの質量を低減することができる。
<Joint method of fiber reinforced thermoplastic resin>
[Preheating process]
First, prior to the vibration welding step, at least one of the first bonded surface and the second bonded surface is heated (preliminary heating step). By providing the preheating step, it is possible to reduce the time for vibrating the surface to be bonded in vibration welding, and to reduce the mass of burrs.

予備加熱工程で加熱される被接合面の表面温度は、該被接合面を構成する熱可塑性樹脂が結晶性樹脂の場合には該樹脂の融点(Tm℃)以下、非晶性樹脂の場合にはガラス転移温度(Tg℃)以下とする。
加熱される被接合面が繊維強化熱可塑性樹脂(C1)または(C3)からなる場合、該被接合面の表面温度が、該繊維強化熱可塑性樹脂に含まれる熱可塑性樹脂の融点以下またはガラス転移温度以下となるように加熱することによって、表面の熱可塑性樹脂が溶け出して強化繊維が浮き出る現象(スプリングバック現象)を防止しつつ、該被接合面の熱可塑性樹脂を軟化させることができる。これにより、スプリングバック現象による接合不良を防止しつつ、接合に要する振動時間を短縮する効果、およびバリ質量の低減効果を得ることができる。
また加熱される被接合面が熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)からなる場合、該被接合面の表面温度が該熱可塑性樹脂(P2)の融点以下またはガラス転移温度以下となるように加熱することによって、樹脂が軟化、或いは溶融することによる樹脂垂れを防止しつつ、該被接合面の熱可塑性樹脂を軟化させることができる。
The surface temperature of the surface to be joined heated in the preheating step is equal to or lower than the melting point (Tm ° C.) of the resin when the thermoplastic resin constituting the surface to be joined is a crystalline resin. Is below the glass transition temperature (Tg ° C.).
When the bonded surface to be heated is made of fiber reinforced thermoplastic resin (C1) or (C3), the surface temperature of the bonded surface is equal to or lower than the melting point of the thermoplastic resin contained in the fiber reinforced thermoplastic resin, or glass transition. By heating to below the temperature, the thermoplastic resin on the surface to be joined can be softened while preventing the phenomenon that the thermoplastic resin on the surface is melted and the reinforcing fibers are lifted off (spring back phenomenon). Thereby, it is possible to obtain the effect of shortening the vibration time required for joining and the effect of reducing the burr mass while preventing the joining failure due to the springback phenomenon.
Moreover, when the to-be-joined surface heated consists of thermoplastic resin (P2) and the material (C2) which does not contain a fiber, the surface temperature of this to-be-joined surface is below melting | fusing point of this thermoplastic resin (P2), or a glass transition temperature. By heating to the following, the thermoplastic resin on the bonded surfaces can be softened while preventing the resin from dripping due to softening or melting of the resin.

予備加熱工程における被接合面の表面温度は、(Tm−3)℃以下または(Tg−3)℃以下が好ましく、(Tm−10)℃以下または(Tg−10)℃以下がより好ましい。
該被接合面の表面温度の下限は特に限定されないが、予備加熱を行うことによる、接合に要する振動時間の短縮効果およびバリ質量の低減効果が充分に得られやすい点で、(Tm−100)℃以上または(Tg−100)℃以上がより好ましい。
The surface temperature of the bonded surface in the preheating step is preferably (Tm-3) ° C. or lower or (Tg-3) ° C. or lower, more preferably (Tm-10) ° C. or lower or (Tg-10) ° C. or lower.
The lower limit of the surface temperature of the surfaces to be joined is not particularly limited, but (Tm-100) in that the effect of shortening the vibration time required for joining and the effect of reducing the burr mass can be sufficiently obtained by preheating. More preferably, it is higher than or equal to (Tg-100) ° C.

予備加熱工程で用いる加熱手段は、被接合面を非接触で加熱できるものが好ましい。かかる加熱手段として、赤外線ヒーター、電気ヒーター等が例示される。中でも加熱の効率の観点から赤外線ヒーターが好ましい。被接合面を非接触で加熱することにより、加熱による被接合面の変形を防止できる。特に被接合面が平滑な面である場合、該被接合面の表面を平滑に保つことができるため好ましい。   The heating means used in the preheating step is preferably one that can heat the bonded surfaces in a non-contact manner. Examples of such heating means include an infrared heater and an electric heater. Among these, an infrared heater is preferable from the viewpoint of heating efficiency. By heating the surface to be bonded in a non-contact manner, deformation of the surface to be bonded due to heating can be prevented. In particular, when the surface to be joined is a smooth surface, the surface of the surface to be joined can be kept smooth, which is preferable.

[振動溶着工程]
予備加熱を終えた後、振動溶着により第1の被接合面と第2の被接合面を接合する(振動溶着工程)。振動溶着は、公知の振動溶着装置を適宜用いて行うことができる。
すなわち、第1の被接合面と第2の被接合面を密着させた状態で、被接合面に平行な一方向(振動方向)に沿って、両者を相対的に振動させる。かかる振動を与えることによって、第1の被接合面および第2の被接合面に摩擦熱が発生し、熱可塑性樹脂が溶融する。第1の被接合面と第2の被接合面の厚みの合計が所定の厚みになった時点で振動を停止する。振動が停止すると、第1の被接合面と第2の被接合面との間の溶融樹脂が冷えて硬化し、第1の被接合面と第2の被接合面とが接合、一体化される。
[Vibration welding process]
After finishing the preheating, the first bonded surface and the second bonded surface are bonded by vibration welding (vibration welding step). The vibration welding can be performed using a known vibration welding apparatus as appropriate.
That is, in a state where the first bonded surface and the second bonded surface are in close contact with each other, the two are relatively vibrated along one direction (vibration direction) parallel to the bonded surface. By applying such vibration, frictional heat is generated on the first bonded surface and the second bonded surface, and the thermoplastic resin is melted. The vibration is stopped when the total thickness of the first bonded surface and the second bonded surface reaches a predetermined thickness. When the vibration stops, the molten resin between the first bonded surface and the second bonded surface is cooled and cured, and the first bonded surface and the second bonded surface are bonded and integrated. The

第1の被接合面が、強化繊維(F1)に予め熱可塑性樹脂(P1)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられており、かつ第2の被接合面が、強化繊維(F2)に予め熱可塑性樹脂(P2)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられている場合、接合後の接合部における2つの部材の合計厚みが前記2つの部材が一体化される前よりも小さく、その差が前記第1の被接合面および第2の被接合面をそれぞれ構成するテープ状の繊維強化熱可塑性樹脂の厚みのいずれか大きい方の厚み以上であると、第1の被接合面と第2の被接合面とが充分な強度で接合、一体化される点で好ましい。
この場合のテープ状の繊維強化熱可塑性樹脂は、例えば、長さが5〜100mm、厚みが30〜300μm、幅が5〜30mmからなるテープ状の繊維強化熱可塑性樹脂でもよく、連続繊維からなる強化繊維に熱可塑性樹脂を含浸させた、厚さ30〜300μmのテープ状の繊維強化熱可塑性樹脂でもよい。
The first bonded surface is provided on a member made of a tape-like fiber-reinforced thermoplastic resin in which the reinforcing fiber (F1) is impregnated with the thermoplastic resin (P1) in advance, and the second bonded surface is When the reinforcing fiber (F2) is provided on a member made of a tape-like fiber-reinforced thermoplastic resin impregnated with the thermoplastic resin (P2) in advance, the total thickness of the two members at the joined portion after joining is the two The difference is smaller than before the members are integrated, and the difference is equal to or greater than the larger one of the thicknesses of the tape-like fiber reinforced thermoplastic resins constituting the first and second bonded surfaces, respectively. It is preferable in that the first bonded surface and the second bonded surface are bonded and integrated with sufficient strength.
The tape-like fiber reinforced thermoplastic resin in this case may be, for example, a tape-like fiber reinforced thermoplastic resin having a length of 5 to 100 mm, a thickness of 30 to 300 μm, and a width of 5 to 30 mm, and is composed of continuous fibers. A tape-like fiber-reinforced thermoplastic resin having a thickness of 30 to 300 μm in which a reinforcing fiber is impregnated with a thermoplastic resin may be used.

振動を与える際、第1の被接合面と第2の被接合面とが互いに近づく方向に加圧力を加えることが好ましい。これにより接合に要する振動時間をより短縮できる。また接合強度の向上効果が期待できる。
加圧することによる効果を充分に得るためには、第1の被接合面と第2の被接合面とが接触している領域において、単位面積当たりの加圧力が0.1MPa以上であることが好ましく、0.5MPa以上がより好ましい。一方、振動溶着機に過大な荷重機構を設置する必要を生じさせない点では30MPa以下が好ましく、20MPa以下がより好ましい。
When applying vibration, it is preferable to apply pressure in a direction in which the first bonded surface and the second bonded surface approach each other. Thereby, the vibration time required for joining can be further shortened. Moreover, the improvement effect of joining strength can be expected.
In order to sufficiently obtain the effect of pressurization, the pressing force per unit area is 0.1 MPa or more in the region where the first bonded surface and the second bonded surface are in contact with each other. Preferably, 0.5 MPa or more is more preferable. On the other hand, 30 MPa or less is preferable and 20 MPa or less is more preferable in that it does not cause the necessity to install an excessive load mechanism in the vibration welding machine.

第1の被接合面と、第2の被接合面とを振動溶着する際には、一方を固定して、他方を振動させることが好ましい。
第1の被接合面が、熱可塑性樹脂(P1)中に長さ5mm〜100mmの強化繊維(F1)が等方的に分散しているか、擬似等方的に分散している面であって、第2の被接合面が熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)からなる面である場合、振動方向は特に限定されない。
第1の被接合面と第2の被接合面の両方が、熱可塑性樹脂中に長さ5mm〜100mmの強化繊維が等方的に分散しているか、擬似等方的に分散している面である場合、振動方向は特に限定されない。
When vibration welding the first bonded surface and the second bonded surface, it is preferable to fix one and vibrate the other.
The first bonded surface is a surface in which reinforcing fibers (F1) having a length of 5 mm to 100 mm are isotropically dispersed or pseudo-isotropically dispersed in the thermoplastic resin (P1). When the second bonded surface is a surface made of a material (C2) that includes the thermoplastic resin (P2) and does not include fibers, the vibration direction is not particularly limited.
Both the first bonded surface and the second bonded surface are surfaces in which reinforcing fibers having a length of 5 mm to 100 mm are isotropically dispersed or pseudo-isotropically dispersed in the thermoplastic resin. In this case, the vibration direction is not particularly limited.

第1の被接合面が熱可塑性樹脂(P1)中に長さ5mm〜100mmの強化繊維(F1)が等方的に分散しているか、擬似等方的に分散している面であって、第2の被接合面における強化繊維(F2)が連続繊維である場合、振動方向は特に限定されない。
第1の被接合面における強化繊維(F1)が連続繊維であり、第2の被接合面が、熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)からなる面である場合、振動方向は、第1の被接合面における強化繊維(F1)の長さ方向と同じとするのが好ましい。
第1の被接合面における強化繊維(F1)が連続繊維であり、第2の被接合面が熱可塑性樹脂(P2)中に長さ5mm〜100mmの強化繊維(F2)が等方的に分散しているか、擬似等方的に分散している面である場合、振動方向は特に限定されない。
第1の被接合面における強化繊維(F1)、および第2の被接合面における強化繊維(F2)が連続繊維である場合、振動方向は、第1の被接合面における強化繊維(F1)の長さ方向または第2の被接合面における強化繊維(F2)の長さ方向と同じとするのが好ましい。この場合、第1の被接合面における強化繊維(F1)の長さ方向と第2の被接合面における強化繊維(F2)の長さ方向とが同じであることがより好ましい。
なお、被接合面における強化繊維が連続繊維である形態は、連続繊維からなる強化繊維に熱可塑性樹脂を含浸させたテープ状の繊維強化熱可塑性樹脂を、繊維の長さ方向が一方向となるように一体化させた基材を1枚以上、強化繊維が所定の方向に配向するように積層した積層物の最表面に被接合面を設けた形態が好ましい。
The first bonded surface is a surface in which the reinforcing fibers (F1) having a length of 5 mm to 100 mm are isotropically dispersed in the thermoplastic resin (P1), or are quasi-isotropically dispersed, When the reinforcing fiber (F2) on the second bonded surface is a continuous fiber, the vibration direction is not particularly limited.
When the reinforcing fiber (F1) on the first bonded surface is a continuous fiber and the second bonded surface is a surface made of a material (C2) that includes a thermoplastic resin (P2) and does not include a fiber, vibration The direction is preferably the same as the length direction of the reinforcing fiber (F1) on the first bonded surface.
The reinforcing fiber (F1) on the first surface to be bonded is a continuous fiber, and the reinforcing fiber (F2) having a length of 5 to 100 mm isotropically dispersed in the thermoplastic resin (P2) on the second surface to be bonded. The vibration direction is not particularly limited when the surface is quasi-isotropically dispersed.
When the reinforcing fiber (F1) on the first bonded surface and the reinforcing fiber (F2) on the second bonded surface are continuous fibers, the vibration direction is that of the reinforcing fiber (F1) on the first bonded surface. It is preferable that the length direction or the length direction of the reinforcing fiber (F2) on the second bonded surface be the same. In this case, it is more preferable that the length direction of the reinforcing fiber (F1) on the first bonded surface and the length direction of the reinforcing fiber (F2) on the second bonded surface are the same.
The form in which the reinforcing fibers on the bonded surfaces are continuous fibers is a tape-like fiber reinforced thermoplastic resin obtained by impregnating a thermoplastic fiber into a reinforcing fiber composed of continuous fibers, and the length direction of the fibers is one direction. The form which provided the to-be-joined surface in the outermost surface of the laminated body which laminated | stacked one or more base materials integrated in this way so that a reinforced fiber may orient in a predetermined direction is preferable.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
接合させる部材として、下記の試験片A、試験片Bおよび試験片Cを用意した。
[試験片A]
炭素繊維(三菱レイヨン社製、製品名:TR50S)12,000本にポリプロピレン樹脂(プライムポリマー社製、製品名:J108M、融点:170℃)が含浸したテープ状物(幅12mm、長さ25mm、厚み0.2mm)が等方的に分散した、一辺の長さが40cmの正方形で厚み2mmの繊維強化熱可塑性樹脂シートから、幅25mm、長さ130mm、厚み2mmの試験片Aを切り出した。この繊維強化熱可塑性樹脂における炭素繊維の含有割合は50体積%である。
[試験片B]
試験片Aに使用したのと同じポリプロピレン樹脂からなり、炭素繊維を含まない試験片Bを用意した。試験片Bの大きさは、試験片Aと同じである。
[試験片C]
炭素繊維(三菱レイヨン社製、製品名:TR50S)12,000本からなる連続繊維にポリプロピレン樹脂(プライムポリマー社製、製品名:J108M、融点:170℃)が含浸したテープ状物を、炭素繊維の長さ方向が一方向となるように一体化させた基材を積層して、一辺の長さが40cmの正方形で厚み2mmの繊維強化熱可塑性樹脂シートを形成した。該シートから、繊維長さが130mmになるように、幅25mm、長さ130mm、厚み2mmの試験片Cを切り出した。この繊維強化熱可塑性樹脂における炭素繊維の含有割合は50体積%である。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
The following test piece A, test piece B, and test piece C were prepared as members to be joined.
[Specimen A]
12,000 carbon fibers (product name: TR50S, manufactured by Mitsubishi Rayon Co., Ltd.) tape-like material impregnated with polypropylene resin (product name: J108M, melting point: 170 ° C.) (width 12 mm, length 25 mm, A test piece A having a width of 25 mm, a length of 130 mm, and a thickness of 2 mm was cut out from a 2 mm thick fiber-reinforced thermoplastic resin sheet having an isotropically dispersed thickness of 0.2 mm and a side length of 40 cm. The content rate of the carbon fiber in this fiber reinforced thermoplastic resin is 50 volume%.
[Specimen B]
A test piece B made of the same polypropylene resin as used for the test piece A and containing no carbon fiber was prepared. The size of the test piece B is the same as that of the test piece A.
[Specimen C]
Carbon fiber (made by Mitsubishi Rayon Co., Ltd., product name: TR50S) Tape-like material impregnated with polypropylene resin (product name: J108M, melting point: 170 ° C.) impregnated with 12,000 continuous fibers, The base materials that were integrated so that the length direction of each were in one direction were laminated, and a fiber-reinforced thermoplastic resin sheet having a square length of 40 cm on one side and a thickness of 2 mm was formed. A test piece C having a width of 25 mm, a length of 130 mm, and a thickness of 2 mm was cut out from the sheet so that the fiber length was 130 mm. The content rate of the carbon fiber in this fiber reinforced thermoplastic resin is 50 volume%.

[振動溶着機]
振動溶着機として、振動溶着機(日本エマソン社製、製品名:M512―STHJ)を使用した。
[バリの質量の測定]
バリの質量として、接合界面からはみ出た部分を採集し、その合計の質量を測定した。接合面積当たりのバリの質量(単位:g/cm)を、以下の式により求めた。
接合面積当たりのバリの質量=バリの質量(単位:g)/接合面積(単位:cm
[Vibration welding machine]
As the vibration welder, a vibration welder (manufactured by Nippon Emerson, product name: M512-STHJ) was used.
[Measurement of burr mass]
As the mass of the burr, the portion protruding from the bonding interface was collected, and the total mass was measured. The mass (unit: g / cm 2 ) of burrs per bonding area was determined by the following equation.
Mass of burrs per bonding area = mass of burrs (unit: g) / bonding area (unit: cm 2 )

[実施例1]
本例では、試験片Aの端部どうしを接合した。すなわち、まず図1、2に示すように、2つの試験片1、2の端部どうしを、空間を隔てて重ね合わせた。両試験片1、2の重なり部分が接合部10となる。図中符号1は上側の試験片、2は下側の試験片を示す。両試験片1、2が重なっている接合部10において、対向している面が被接合面1a、2aである。被接合面1a、2aは平滑な面である。
両試験片1、2の重なり部分の長さ、すなわち接合部10の長さLは5mmとした。接合面積は25mm×5mm=1.25cmとなる。
次いで、両試験片1、2の被接合面1a、2aの間に赤外線ヒーター3を挿入し、被接合面1a、2aを同時に加熱した。加熱時間は10秒とした。被接合面1a、2aから赤外線ヒーターまでの距離はそれぞれ5mmとした。加熱終了直後の被接合面1a、2aの表面温度を、サーモグラフィー(ミノルタ社製、製品名:TA−0510F)で測定したところ、上側の試験片1の被接合面1aは80℃、下側の試験片2の被接合面2aは78℃であった。なお、赤外線ヒーター3で加熱する前の被接合面1a、2aの表面温度はいずれも20℃であった。
[Example 1]
In this example, the ends of the test piece A were joined together. That is, first, as shown in FIGS. 1 and 2, the ends of the two test pieces 1 and 2 were overlapped with a space therebetween. The overlapping portion of both test pieces 1 and 2 becomes the joint 10. In the figure, reference numeral 1 denotes an upper test piece, and 2 denotes a lower test piece. In the joint portion 10 where the two test pieces 1 and 2 are overlapped, the facing surfaces are the joined surfaces 1a and 2a. The joined surfaces 1a and 2a are smooth surfaces.
The length of the overlapping part of the two test pieces 1 and 2, that is, the length L of the joint 10 was 5 mm. The bonding area is 25 mm × 5 mm = 1.25 cm 2 .
Subsequently, the infrared heater 3 was inserted between the to-be-joined surfaces 1a and 2a of both the test pieces 1 and 2, and the to-be-joined surfaces 1a and 2a were heated simultaneously. The heating time was 10 seconds. The distance from the bonded surfaces 1a and 2a to the infrared heater was 5 mm. When the surface temperature of the bonded surfaces 1a and 2a immediately after the heating was measured by thermography (product name: TA-0510F, manufactured by Minolta), the bonded surface 1a of the upper test piece 1 was 80 ° C. The bonded surface 2a of the test piece 2 was 78 ° C. The surface temperatures of the bonded surfaces 1a and 2a before heating with the infrared heater 3 were both 20 ° C.

続いて、試験片1、2の間から赤外線ヒーター3を抜き取り、両試験片の被接合面1a、2aを密着させ、荷重をかけた状態で、試験片2を固定し、試験片1を試験片の長さ方向に振動させた。溶着条件は、振動周波数240Hz、長さ方向における振動振幅1.5mm、荷重1500N、単位面積当たりの加圧力12MPaとした。
振動を開始すると、被接合面1a、2aの熱可塑性樹脂が摩擦熱で溶融し、加圧力によって接合部10の全体の厚みが減少する。振動を開始する前の状態において、接合部10の全体の厚みが4mmであったのが、3.5mmになった時点で振動を停止する。振動を停止すると、被接合面1a、2aの間の溶融樹脂が短時間で硬化して、両者の接合が完了する。振動を開始してから停止するまでの時間を「接合に要する振動時間」として計測したところ、2.4秒であった。
Subsequently, the infrared heater 3 is extracted from between the test pieces 1 and 2, the bonded surfaces 1a and 2a of both test pieces are brought into close contact with each other, the test piece 2 is fixed in a state where a load is applied, and the test piece 1 is tested. Vibrated in the length direction of the piece. The welding conditions were a vibration frequency of 240 Hz, a vibration amplitude of 1.5 mm in the length direction, a load of 1500 N, and a pressure of 12 MPa per unit area.
When the vibration is started, the thermoplastic resin of the surfaces to be joined 1a and 2a is melted by frictional heat, and the entire thickness of the joint portion 10 is reduced by the applied pressure. In the state before starting the vibration, when the total thickness of the joint portion 10 is 4 mm, the vibration is stopped when it becomes 3.5 mm. When the vibration is stopped, the molten resin between the surfaces to be joined 1a and 2a is cured in a short time, and the joining of both is completed. The time from the start of vibration to the stop was measured as “vibration time required for joining” and found to be 2.4 seconds.

図3は、2つの試験片1、2が接合された状態を、上側から見た平面図である。図中符号4は接合部10に生じたバリを示す。接合完了後、接合部10のバリ4をカッターナイフで切り出し、その合計の質量を測定したところ0.045gであった。接合面積当たりのバリ質量は、0.045g/1.25cm=0.036(g/cm)であった。
接合条件および結果を表1に示す。接合の加否については、被接合面1a、2aが溶着一体化された場合は「可」とし、被接合面1a、2aを一体化できなかった場合は「否」とした。
FIG. 3 is a plan view of the state in which the two test pieces 1 and 2 are joined as seen from above. Reference numeral 4 in the figure indicates a burr generated at the joint 10. After the joining was completed, the burr 4 of the joined part 10 was cut out with a cutter knife, and the total mass was measured to be 0.045 g. The burr mass per bonding area was 0.045 g / 1.25 cm 2 = 0.036 (g / cm 2 ).
The joining conditions and results are shown in Table 1. With regard to whether or not to join, “Yes” was given when the welded surfaces 1a, 2a were fused and integrated, and “No” was given when the welded surfaces 1a, 2a could not be integrated.

[実施例2〜8]
接合条件を表1に示すとおりに変更し、それ以外は実施例1と同様にして溶着を行った。結果を表1に示す。
実施例2は、赤外線ヒーターで加熱する時間を20秒に変更した例である。
実施例3は、接合部の長さLを10mmに変更した例である。
実施例4は、接合部の長さLを10mmに変更し、かつ赤外線ヒーターで加熱する時間を20秒に変更した例である。
実施例5は、接合部の長さLを20mmに変更した例である。
実施例6は、接合部の長さLを20mmに変更し、かつ赤外線ヒーターで加熱する時間を20秒に変更した例である。
実施例7は、下側の試験片2を試験片Bに変更した例である。
実施例8は、下側の試験片2の接合面2aだけを赤外線ヒーターで加熱し、上側の試験片の接合面1aは加熱しなかった例である。
[Examples 2 to 8]
The welding conditions were changed as shown in Table 1, and welding was performed in the same manner as in Example 1 except that. The results are shown in Table 1.
In Example 2, the heating time with the infrared heater is changed to 20 seconds.
Example 3 is an example in which the length L of the joint is changed to 10 mm.
Example 4 is an example in which the length L of the joint is changed to 10 mm and the time for heating with the infrared heater is changed to 20 seconds.
Example 5 is an example in which the length L of the joint is changed to 20 mm.
Example 6 is an example in which the length L of the joint is changed to 20 mm and the time for heating with the infrared heater is changed to 20 seconds.
Example 7 is an example in which the lower test piece 2 is changed to the test piece B.
Example 8 is an example in which only the joining surface 2a of the lower test piece 2 was heated with an infrared heater, and the joining surface 1a of the upper test piece was not heated.

[比較例1〜8]
接合条件を表2に示すとおりに変更し、それ以外は実施例1と同様にして溶着を行った。結果を表2に示す。比較例1〜4は、実施例1、3、5、7において、それぞれ赤外線ヒーターによる加熱を行わなかった例である。
比較例5〜8は、実施例1、3、5、7において、それぞれ赤外線ヒーターで加熱する時間を60秒に変更した例である。加熱時間が長いため、接合部の温度が、試験片を構成している樹脂の融点以上に上昇した。
[Comparative Examples 1-8]
The welding conditions were changed as shown in Table 2, and welding was performed in the same manner as in Example 1 except that. The results are shown in Table 2. Comparative Examples 1-4 are examples in which heating with an infrared heater was not performed in Examples 1, 3, 5, and 7, respectively.
Comparative Examples 5 to 8 are examples in which the time for heating with the infrared heater in Examples 1, 3, 5, and 7 was changed to 60 seconds. Since the heating time was long, the temperature of the joint rose to the melting point of the resin constituting the test piece.

[実施例9]
試験片Cの端部どうしを接合し、振動を開始する前の状態において、接合部10の全体の厚みが4mmであったのが、3.7mmになった時点で振動を停止する以外は実施例1と同様な操作を実施した。なお、試験片Cの振動方向は、試験片Cの繊維方向と同じである。結果を表3に示す。
[比較例9、10]
比較例9は、実施例9において、赤外線ヒーターによる加熱を行わなかった例である。比較例10は、実施例9において、赤外線ヒーターで加熱する時間を60秒に変更した例である。結果を表3に示す。
[Example 9]
Before joining the ends of the test piece C and starting the vibration, the entire thickness of the joint 10 was 4 mm, but the vibration was stopped when it became 3.7 mm. The same operation as in Example 1 was performed. The vibration direction of the test piece C is the same as the fiber direction of the test piece C. The results are shown in Table 3.
[Comparative Examples 9 and 10]
Comparative Example 9 is an example in which heating by the infrared heater was not performed in Example 9. Comparative Example 10 is an example in which the heating time with the infrared heater in Example 9 was changed to 60 seconds. The results are shown in Table 3.

Figure 2013014113
Figure 2013014113

Figure 2013014113
Figure 2013014113

Figure 2013014113
Figure 2013014113

表1、2の結果より、以下のことがわかる。
比較例1と実施例1、2、比較例2と実施例3、4、比較例3と実施例5、6、比較例4と実施例7をそれぞれ比べると、振動溶着に先立って赤外線ヒーター3による予備加熱を行った実施例1〜7は、該予備加熱を行わない比較例1〜4よりも、接合に要する振動時間が短く、バリ質量が少ない。特に予備加熱の時間を20秒とした実施例2、4、6は、比較例1、2、3とそれぞれ比べてバリ質量が半分程度に減少した。
実施例1〜6を比べると、接合部の長さLが短いほど、また予備加熱終了直後の被接合面の表面温度が高いほど、接合に要する振動時間が短く、バリ質量が少ない。
また比較例1と実施例8を比べると、2つの試験片のうちの一方だけを予備加熱する方法でも、該予備加熱を行わない場合より、接合に要する振動時間を短縮し、バリ質量を低減できる。
比較例5〜8では、予備加熱により、被接合面において樹脂が溶け出して、繊維が浮き出てしまったため、振動溶着により接合しようとしたが被接合面どうしを一体化することができなかった。
From the results of Tables 1 and 2, the following can be understood.
Comparing Comparative Example 1 with Examples 1 and 2, Comparative Example 2 with Examples 3 and 4, Comparative Example 3 with Examples 5 and 6, and Comparative Example 4 with Example 7, respectively, infrared heater 3 prior to vibration welding In Examples 1 to 7 in which the preheating was performed according to, the vibration time required for joining was shorter and the burr mass was less than those in Comparative Examples 1 to 4 in which the preheating was not performed. In particular, in Examples 2, 4, and 6 in which the preheating time was 20 seconds, the burr mass was reduced to about half as compared with Comparative Examples 1, 2, and 3, respectively.
Comparing Examples 1 to 6, the shorter the length L of the bonded portion and the higher the surface temperature of the bonded surface immediately after the completion of the preheating, the shorter the vibration time required for bonding and the smaller the burr mass.
Further, comparing Comparative Example 1 and Example 8, even with the method of preheating only one of the two test pieces, the vibration time required for joining is shortened and the burr mass is reduced as compared with the case where the preheating is not performed. it can.
In Comparative Examples 5 to 8, the resin was melted on the surfaces to be joined due to the preheating, and the fibers were raised. Therefore, although joining was attempted by vibration welding, the surfaces to be joined could not be integrated.

表3の結果より、以下のことがわかる。
比較例9と実施例9を比べると、振動溶着に先立って赤外線ヒーター3による予備加熱を行った実施例9は、該予備加熱を行わない比較例9よりも、接合に要する振動時間が短く、バリ質量が少ない。
比較例10では、予備加熱時間が長いため、被接合面において樹脂が溶け出して、繊維が浮き出てしまい、振動溶着により接合しようとしたが被接合面どうしを一体化することができなかった。
From the results in Table 3, the following can be understood.
Comparing Comparative Example 9 and Example 9, Example 9 in which preheating with the infrared heater 3 was performed prior to vibration welding was shorter in vibration time required for joining than Comparative Example 9 in which the preheating was not performed. Low burr mass.
In Comparative Example 10, since the preheating time was long, the resin melted out on the surfaces to be joined, and the fibers rose, so that joining was attempted by vibration welding, but the surfaces to be joined could not be integrated.

1 上側の試験片、
1a 被接合面、
2 下側の試験片、
2a 被接合面、
3 赤外線ヒーター(加熱手段)、
4 バリ、
10 接合部。
1 Upper specimen,
1a surface to be joined,
2 Lower specimen,
2a surface to be joined,
3 Infrared heater (heating means),
4 Bali,
10 Junction.

Claims (11)

強化繊維(F1)に熱可塑性樹脂(P1)を含浸してなる繊維強化熱可塑性樹脂(C1)からなる部材に設けられた第1の被接合面と、熱可塑性樹脂(P2)を含み繊維を含まない材料(C2)または強化繊維(F2)に熱可塑性樹脂(P2)を含浸してなる繊維強化熱可塑性樹脂(C3)からなる部材に設けられた第2の被接合面とを接合する方法であって、
第1の被接合面および第2の被接合面の少なくとも一方を加熱する予備加熱工程と、
前記予備加熱工程の後、振動溶着により第1の被接合面と第2の被接合面とを接合する振動溶着工程とを有し、
前記予備加熱工程において加熱される被接合面の表面温度が、該被接合面を構成する熱可塑性樹脂が結晶性樹脂の場合には融点以下、非晶性樹脂の場合にはガラス転移温度以下である、繊維強化熱可塑性樹脂の接合方法。
A first bonded surface provided on a member made of a fiber reinforced thermoplastic resin (C1) formed by impregnating a reinforced fiber (F1) with a thermoplastic resin (P1), and a fiber including the thermoplastic resin (P2). A method of joining a second joined surface provided on a member made of a fiber-reinforced thermoplastic resin (C3) formed by impregnating a thermoplastic resin (P2) into a material (C2) or a reinforcing fiber (F2) not included Because
A preheating step of heating at least one of the first bonded surface and the second bonded surface;
After the preheating step, the vibration welding step of joining the first bonded surface and the second bonded surface by vibration welding,
The surface temperature of the bonded surface heated in the preheating step is not higher than the melting point when the thermoplastic resin constituting the bonded surface is a crystalline resin, and is not higher than the glass transition temperature in the case of an amorphous resin. A method for joining fiber reinforced thermoplastic resins.
予備加熱工程において加熱される被接合面の表面温度が、該被接合面を構成する熱可塑性樹脂が結晶性樹脂の場合、融点よりも100℃低い温度以上であり、非晶性樹脂の場合、ガラス転移温度よりも100℃低い温度以上である、請求項1に記載の繊維強化熱可塑性樹脂の接合方法。   When the surface temperature of the bonded surface heated in the preheating step is a crystalline resin when the thermoplastic resin constituting the bonded surface is a crystalline resin, the surface temperature is 100 ° C. lower than the melting point, and in the case of an amorphous resin, The method for joining fiber-reinforced thermoplastic resins according to claim 1, which is at least 100 ° C. lower than the glass transition temperature. 予備加熱工程において、被接合面を非接触で加熱する加熱手段を用いる、請求項1または2に記載の繊維強化熱可塑性樹脂の接合方法。   The fiber-reinforced thermoplastic resin joining method according to claim 1 or 2, wherein a heating means for heating the joined surfaces in a non-contact manner is used in the preheating step. 非接触で加熱する加熱手段が赤外線ヒーターである、請求項3に記載の繊維強化熱可塑性樹脂の接合方法。   The method for joining fiber reinforced thermoplastic resins according to claim 3, wherein the heating means for heating in a non-contact manner is an infrared heater. 繊維強化熱可塑性樹脂(C1)における強化繊維(F1)の体積含有率が10〜60%であり、繊維強化熱可塑性樹脂(C3)における強化繊維(F2)の体積含有率が10〜60%である、請求項1〜4の何れか一項に記載の繊維強化熱可塑性樹脂の接合方法。   The volume content of the reinforcing fiber (F1) in the fiber reinforced thermoplastic resin (C1) is 10 to 60%, and the volume content of the reinforcing fiber (F2) in the fiber reinforced thermoplastic resin (C3) is 10 to 60%. The joining method of the fiber reinforced thermoplastic resin as described in any one of Claims 1-4. 繊維強化熱可塑性樹脂(C1)における強化繊維(F1)の長さが5〜100mmであり、繊維強化熱可塑性樹脂(C3)における強化繊維(F3)の長さが5〜100mmである、請求項1〜5の何れか一項に記載の繊維強化熱可塑性樹脂の接合方法。   The length of the reinforcing fiber (F1) in the fiber reinforced thermoplastic resin (C1) is 5 to 100 mm, and the length of the reinforcing fiber (F3) in the fiber reinforced thermoplastic resin (C3) is 5 to 100 mm. The joining method of the fiber reinforced thermoplastic resin as described in any one of 1-5. 第1の被接合面および第2の被接合面の一方または両方が、長さが5〜100mm、厚みが30〜300μm、幅が5〜30mmからなるテープ状の繊維強化熱可塑性樹脂を等方に分散した面である、請求項6に記載の繊維強化熱可塑性樹脂の接合方法。   One or both of the first bonded surface and the second bonded surface is isotropic tape-like fiber reinforced thermoplastic resin having a length of 5 to 100 mm, a thickness of 30 to 300 μm, and a width of 5 to 30 mm. The method for bonding fiber-reinforced thermoplastic resin according to claim 6, wherein the surface is dispersed in the surface. 繊維強化熱可塑性樹脂(C1)中の強化繊維(F1)、および/または繊維強化熱可塑性樹脂(C3)中の強化繊維(F2)が連続繊維である、請求項1〜5の何れか一項に記載の繊維強化熱可塑性樹脂の接合方法。   The reinforcing fiber (F1) in the fiber reinforced thermoplastic resin (C1) and / or the reinforcing fiber (F2) in the fiber reinforced thermoplastic resin (C3) is a continuous fiber. The joining method of the fiber reinforced thermoplastic resin as described in 2. 第1の被接合面および第2の被接合面の一方または両方が、連続繊維からなる強化繊維に熱可塑性樹脂を含浸させた、厚み30〜300μmのテープ状の繊維強化熱可塑性樹脂を、繊維の長さ方向が一方向となるように一体化させた基材を1枚以上、強化繊維が所定の方向に配向するように積層した積層物の最表面である、請求項8に記載の繊維強化熱可塑性樹脂の接合方法。   One or both of the first bonded surface and the second bonded surface are made of a fiber reinforced thermoplastic resin having a thickness of 30 to 300 μm in which a reinforcing fiber made of continuous fibers is impregnated with a thermoplastic resin. The fiber according to claim 8, which is an outermost surface of a laminate in which at least one base material integrated so that the length direction of the fiber is in one direction is laminated so that the reinforcing fibers are oriented in a predetermined direction. Bonding method of reinforced thermoplastic resin. 第1の被接合面が、強化繊維(F1)に予め熱可塑性樹脂(P1)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられており、かつ第2の被接合面が、強化繊維(F2)に予め熱可塑性樹脂(P2)が含浸したテープ状の繊維強化熱可塑性樹脂からなる部材に設けられており、接合後の接合部における2つの部材の合計厚みが、前記2つの部材が一体化される前よりも小さく、その差が前記第1の被接合面および第2の被接合面をそれぞれ構成するテープ状の繊維強化熱可塑性樹脂の厚みのいずれか大きい方の厚み以上である、請求項7または9に記載の繊維強化熱可塑性樹脂の接合方法。   The first bonded surface is provided on a member made of a tape-like fiber-reinforced thermoplastic resin in which the reinforcing fiber (F1) is impregnated with the thermoplastic resin (P1) in advance, and the second bonded surface is The reinforcing fiber (F2) is provided in a member made of a tape-like fiber-reinforced thermoplastic resin in which the thermoplastic resin (P2) is impregnated in advance, and the total thickness of the two members in the bonded portion after bonding is the above two The difference is smaller than before the members are integrated, and the difference is equal to or greater than the larger one of the thicknesses of the tape-like fiber reinforced thermoplastic resins constituting the first and second bonded surfaces, respectively. The method for joining fiber reinforced thermoplastic resins according to claim 7 or 9, wherein 熱可塑性樹脂(P1)がポリプロピレンまたはポリアミドであり、熱可塑性樹脂(P2)がポリプロピレンまたはポリアミドである、請求項1〜10の何れか一項に記載の繊維強化熱可塑性樹脂の接合方法。   The fiber-reinforced thermoplastic resin joining method according to any one of claims 1 to 10, wherein the thermoplastic resin (P1) is polypropylene or polyamide, and the thermoplastic resin (P2) is polypropylene or polyamide.
JP2011150100A 2011-07-06 2011-07-06 Joining method of fiber reinforced thermoplastic resin Active JP5827505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011150100A JP5827505B2 (en) 2011-07-06 2011-07-06 Joining method of fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150100A JP5827505B2 (en) 2011-07-06 2011-07-06 Joining method of fiber reinforced thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2013014113A true JP2013014113A (en) 2013-01-24
JP5827505B2 JP5827505B2 (en) 2015-12-02

Family

ID=47687262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150100A Active JP5827505B2 (en) 2011-07-06 2011-07-06 Joining method of fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP5827505B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148099A (en) * 2013-02-01 2014-08-21 Koito Mfg Co Ltd Preheating vibration deposition method
JP2015074099A (en) * 2013-10-07 2015-04-20 ブランソン・ウルトラソニックス・コーポレーション Infrared radiation device
JP2016068474A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member, and resin member used in the method
WO2017179167A1 (en) * 2016-04-14 2017-10-19 帝人株式会社 Method for manufacturing bonded body
US10894366B2 (en) 2015-10-16 2021-01-19 Henkel Ag & Co. Kgaa Method for welding polyamide and poly(meth)acrylate plastics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148099A (en) * 2013-02-01 2014-08-21 Koito Mfg Co Ltd Preheating vibration deposition method
JP2015074099A (en) * 2013-10-07 2015-04-20 ブランソン・ウルトラソニックス・コーポレーション Infrared radiation device
JP2016068474A (en) * 2014-09-30 2016-05-09 マツダ株式会社 Method for bonding metallic member and resin member, and resin member used in the method
US10894366B2 (en) 2015-10-16 2021-01-19 Henkel Ag & Co. Kgaa Method for welding polyamide and poly(meth)acrylate plastics
WO2017179167A1 (en) * 2016-04-14 2017-10-19 帝人株式会社 Method for manufacturing bonded body
JPWO2017179167A1 (en) * 2016-04-14 2018-10-04 帝人株式会社 Manufacturing method of joined body
US20190118487A1 (en) * 2016-04-14 2019-04-25 Teijin Limited Method for Producing Joined Body

Also Published As

Publication number Publication date
JP5827505B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
JP5622929B2 (en) Manufacturing method of joined body
KR101643114B1 (en) Layered substrate and method for manufacturing same
JP5915780B2 (en) Laminated substrate using fiber reinforced thermoplastics
US10773470B2 (en) Method and device for stamping an unconsolidated composite blank with a thermoplastic matrix
WO2013084963A1 (en) Method for manufacturing joint member
KR20150132190A (en) Composite-material joining device, method for producing joined body, and joined body
WO2017210504A1 (en) Welding head and method for use with polymeric components
JP2015120359A (en) Method of joining composite materials and method of manufacturing joined body
JP2013233729A (en) Method for manufacturing joint member
JP2015051629A (en) Method for producing laminate substrate and laminate substrate
JPWO2015163218A1 (en) Fiber reinforced plastic joined body, method for producing fiber reinforced plastic joined body, and fiber reinforced molded body
JP2017001371A (en) Manufacturing method of fiber reinforced plastic molded sheet
WO2019111571A1 (en) Method for bonding composite material, and composite material
JP6093131B2 (en) Method for producing thermoplastic resin fiber reinforced composite material for press molding
US20050184053A1 (en) Method for bonding thermoplastics
JP6184069B2 (en) Manufacturing method of fiber reinforced thermoplastic resin molded article
JP5787150B2 (en) Joining method of fiber reinforced thermoplastic resin
KR101804661B1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP6463642B2 (en) Resin member joining method
JP2013023171A (en) Interior trim part for vehicle and method of manufacturing the same
Tsiangou et al. Ultrasonic welding of CF/Epoxy to CF/PEEK composites: Effect of the energy director material on the welding process
JP2013129159A (en) Manufacturing method of joined body
JP2014169411A (en) Prepreg, and production method thereof
JP2002039558A (en) Method for manufacturing waterproof floor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151016

R150 Certificate of patent or registration of utility model

Ref document number: 5827505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250