JP2013233729A - Method for manufacturing joint member - Google Patents

Method for manufacturing joint member Download PDF

Info

Publication number
JP2013233729A
JP2013233729A JP2012107573A JP2012107573A JP2013233729A JP 2013233729 A JP2013233729 A JP 2013233729A JP 2012107573 A JP2012107573 A JP 2012107573A JP 2012107573 A JP2012107573 A JP 2012107573A JP 2013233729 A JP2013233729 A JP 2013233729A
Authority
JP
Japan
Prior art keywords
composite material
fibers
carbon fiber
joining member
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012107573A
Other languages
Japanese (ja)
Inventor
Masaki Takeuchi
正基 竹内
Katsuyuki Hagiwara
克之 萩原
Takumi Kato
卓巳 加藤
Shigeki Hirata
滋己 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012107573A priority Critical patent/JP2013233729A/en
Publication of JP2013233729A publication Critical patent/JP2013233729A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a joint member having excellent joining strength by directly joining composite materials including carbon fibers and thermoplastic resin by a simple method without using a method for mechanical fastening or the like.SOLUTION: A method for manufacturing a joint member is characterized by including respective processes of: (i) preparing two or more composite materials which include carbon fibers of an average fiber length in a range of 10-100 mm and thermoplastic resin at a ratio of 30-200 pts.wt. of the thermoplastic resin to 100 pts.wt. of the carbon fibers; (ii) forming an energy director having a void on at least one of the composite materials; and (iii) overlapping a part to be joined which has the energy director to a part to be joined of the other composite material, and carrying out frictional press-bonding.

Description

本発明は接合部材の製造方法に関する。特に詳しくは、炭素繊維と熱可塑性樹脂とを含有する複数の複合材料を接合した接合部材の製造方法に関する。   The present invention relates to a method for manufacturing a joining member. In particular, the present invention relates to a method for manufacturing a joining member obtained by joining a plurality of composite materials containing carbon fibers and a thermoplastic resin.

一般に樹脂を接合する場合にはボルト・ナット、リベットなどの機械的な接合や、接着剤、溶着などを用いた接合法が用いられている。ボルト・ナットなどによる機械的な接合は一般に重量増が嵩むほか、樹脂のクリープ現象による締結力低下、接合点への応力集中により、最悪の場合、最初の応力集中点を起点として次々に破壊が進行していく懸念がある。接着剤を用いる接合では一般に実用強度を得るまでに時間が掛かるため養生工程を考慮しなければならないほか、強度を確保するため一定厚の接着剤層を確保することが必要であり、特に大型部材を接合する場合には相当量の接着剤を要し、結果として得られた部材の大幅な重量増が懸念される。さらにその強度も接着剤のみでは必ずしも充分でないという欠点があった。   In general, when joining resins, mechanical joining such as bolts / nuts and rivets, and joining methods using adhesives, welding, and the like are used. In general, mechanical joints with bolts and nuts increase in weight, and in the worst case, due to the decrease in fastening force due to the creep phenomenon of resin and stress concentration at the joint point, fractures occur one after another starting from the first stress concentration point. There are concerns going on. In joining with adhesives, it generally takes time to obtain practical strength, so it is necessary to consider the curing process, and it is necessary to secure an adhesive layer with a certain thickness to ensure strength, especially large members When joining these, a considerable amount of adhesive is required, and there is a concern about a significant increase in weight of the resulting member. Further, the strength of the adhesive alone is not always sufficient.

樹脂が熱可塑性の場合は接合部を溶融させることにより該樹脂そのものの強度が得られる上、接合による重量増がなく、処理時間も短く、極めて有効な方法である。溶着方法には熱板、熱線、赤外線など熱を加えて密着させる方法もあるが、機械的振動を接合面に加えその摩擦熱によって温度上昇させ、溶融・冷却して被接合体を固着する、振動溶着、超音波溶着は高効率、ハイサイクルで知られ極めて有用な接合方法であることが知られている。これら溶着を行う場合、より効率的に行われるために、溶着のきっかけとして、特許文献1ではリブ状の、特許文献2では円錐状のエネルギーダイレクタと呼ばれる突起を形成することが記載されている。溶着の際には、圧着力がダイレクタを介して接合面に十分伝える必要があるため、エネルギーダイレクタは中密な突起である。   In the case where the resin is thermoplastic, the strength of the resin itself can be obtained by melting the joint, and the weight is not increased by the joining, and the processing time is short, which is an extremely effective method. There is also a method of welding by adding heat such as a hot plate, heat rays, infrared rays, etc., but the mechanical vibration is applied to the bonding surface and the temperature is increased by the frictional heat, and the object to be bonded is fixed by melting and cooling. It is known that vibration welding and ultrasonic welding are highly useful and highly useful joining methods. In order to perform these weldings more efficiently, it is described that, as a trigger for welding, a rib-shaped protrusion is formed in Patent Document 1 and a conical energy director is formed in Patent Document 2. In welding, the energy director is a dense protrusion because the pressure-bonding force needs to be sufficiently transmitted to the joint surface via the director.

一方、これら振動溶着・超音波溶着を行うと擦れた樹脂が溶融されないと樹脂屑がバリとなって広がるため、例えば特許文献3のようにあらかじめバリ溜まりを設置して外部にバリが出ないようにすることが記されている。   On the other hand, when these vibration welding and ultrasonic welding are performed, if the rubbed resin is not melted, the resin waste spreads as burrs. Therefore, for example, as in Patent Document 3, a burr pool is set in advance so that burrs do not appear outside. It is written to be.

特開平5−100364号公報Japanese Patent Laid-Open No. 5-100364 特開平8−294972号公報JP-A-8-294972 特開平6−134866号公報JP-A-6-134866

炭素繊維と熱可塑性樹脂を含む複合材料は、それ同士を機械締結などで接合すると、接合部にかかる力が集中したときに該部の炭素繊維が破壊、ついには接合部全体が破壊されるため、複合材料本来の強度が生かされない。   When composite materials containing carbon fiber and thermoplastic resin are joined together by mechanical fastening or the like, when the force applied to the joint is concentrated, the carbon fiber in the part is destroyed, and eventually the entire joint is destroyed. The original strength of the composite material is not utilized.

さて、溶着しようとする2以上の前記複合材料を加圧密着し、加振等することによって密着面が昇温し溶融され、その後冷却することにより固着、接合される。中密な突起であるエネルギーダイレクタを有する複合材料を用いるとエネルギーダイレクタ面が優先的に接触するため、超音波や振動エネルギーが集中することで溶融しやすくなり、効率的な溶着が実施される。   Now, the two or more composite materials to be welded are pressed and adhered, and the adhesion surface is heated and melted by vibration or the like, and then fixed and bonded by cooling. When a composite material having an energy director that is a dense projection is used, the energy director surface is preferentially brought into contact. Therefore, the ultrasonic wave and vibration energy are concentrated to facilitate melting and efficient welding is performed.

しかしながら、炭素繊維等の充填材を含む熱可塑性樹脂複合材料において、充填材は基本的に溶融しないため、エネルギーダイレクタ上で樹脂を含む大量の屑が発生する。その結果、接合界面に不溶の屑が大量に存在するため、そもそも溶融・固着が阻害され、効率的な接合ができず期待する接合強度が発現しない不具合があった。   However, in a thermoplastic resin composite material including a filler such as carbon fiber, the filler does not basically melt, so that a large amount of waste containing the resin is generated on the energy director. As a result, since a large amount of insoluble debris is present at the bonding interface, the melting / fixing is hindered in the first place, and there is a problem that the expected bonding strength is not exhibited because efficient bonding cannot be performed.

本発明の目的は、炭素繊維と熱可塑性樹脂を含む複合材料同士を、機械締結などの方法を用いずに、簡便な方法で直接接合し、接合強度に優れた接合部材を製造する方法を提供することにある。   The object of the present invention is to provide a method for producing a joining member excellent in joining strength by directly joining composite materials containing carbon fiber and thermoplastic resin by a simple method without using a method such as mechanical fastening. There is to do.

本発明者らは、上記のような複合材料同士を接合する際には上述のように振動溶着や超音波溶着が極めて有用であり、かつ溶着しようとする部分にエネルギーダイレクタを付与することにより効率的に溶着が達成されることに着目した。そして、エネルギーダイレクタ自体の表または裏に空隙を設けることにより屑が該空隙に収納され、そのため接合が阻害されず、効率的な溶着ができることを見出した。   When joining the composite materials as described above, the inventors of the present invention are extremely useful for vibration welding and ultrasonic welding as described above, and by adding an energy director to the portion to be welded, the efficiency is improved. We focused on the fact that welding was achieved. And it discovered that a waste was accommodated in this space | gap by providing a space | gap in the front or back of energy director itself, and, therefore, joining was not inhibited and efficient welding could be performed.

すなわち、本発明は、次のとおりのものである。
[1](i)平均繊維長が10〜100mmの範囲の炭素繊維と熱可塑性樹脂とを、炭素繊維100重量部に対し、熱可塑性樹脂を30〜200重量部の割合で含む複数の複合材料を準備し、
(ii)少なくとも一方の複合材料に、空隙を有し嵩密度が0.4g/cm以上1.4g/cm以下であるエネルギーダイレクタを設け、
(iii)当該エネルギーダイレクタを有する接合予定部を、他方の複合材料の接合予定部と重ね、圧着する
各工程を含むことを特徴とする、接合部材の製造方法。
[2]振動溶着または超音波溶着によって圧着する、上記の接合部材の製造方法。
[3]複合材料はシート状であって、炭素繊維はシートの面内方向にランダムに配置されている、上記の接合部材の製造方法。
[4]複合材料は、目付けが25〜4500g/mの範囲であり、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束について、当該熱可塑性樹脂複合材料中の繊維全量に対する割合が体積割合で20%以上99%未満であり、かつ、強化繊維束中の平均繊維数(N)が下記式(2)を満たす、上記の接合部材の製造方法。
臨界単糸数=600/D (1)
0.6×10/D<N<1×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
[5]接合部材以外の接着剤または接合部品を用いない、上記の接合部材の製造方法。
[6]上記の接合部材の製造方法によって製造された、接合部分の破壊強度が15MPa以上である接合部材。
That is, the present invention is as follows.
[1] (i) A plurality of composite materials containing carbon fiber and thermoplastic resin having an average fiber length of 10 to 100 mm in a proportion of 30 to 200 parts by weight with respect to 100 parts by weight of carbon fiber Prepare
(Ii) At least one composite material is provided with an energy director having voids and a bulk density of 0.4 g / cm 3 or more and 1.4 g / cm 3 or less,
(Iii) A method for manufacturing a bonding member, comprising: a step of overlapping and bonding a planned bonding portion having the energy director with a predetermined bonding portion of the other composite material.
[2] The method for manufacturing the joining member, wherein the bonding is performed by vibration welding or ultrasonic welding.
[3] The method for manufacturing the joining member, wherein the composite material is in a sheet form, and the carbon fibers are randomly arranged in an in-plane direction of the sheet.
[4] The composite material has a weight per unit area in the range of 25 to 4500 g / m 2 , and the reinforcing fiber bundle composed of the number of critical single yarns defined by the following formula (1) is within the thermoplastic resin composite material. The manufacturing method of said joining member whose ratio with respect to the fiber whole quantity is 20% or more and less than 99% by volume ratio, and the average number of fibers (N) in a reinforcing fiber bundle satisfy | fills following formula (2).
Critical number of single yarns = 600 / D (1)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
[5] The method for manufacturing a joining member described above, in which an adhesive or a joining component other than the joining member is not used.
[6] A joining member produced by the above-described method for producing a joining member, wherein the joint portion has a breaking strength of 15 MPa or more.

本発明によれば、溶着の際に発生するバリが溶着を妨げることなく空隙に収納することができる。これにより、溶着効率が上がり、溶着接合強度が非常に増大した接合部材を提供することができる。また、接着剤または接合部品等の第三の異種材料を用いないで、簡便な方法で接合強度の高い複合材料からなる接合部材を得ることができる。   According to the present invention, burrs generated during welding can be accommodated in the gap without hindering the welding. As a result, it is possible to provide a joining member with improved welding efficiency and greatly increased weld joint strength. Further, a joining member made of a composite material having a high joining strength can be obtained by a simple method without using a third dissimilar material such as an adhesive or a joining part.

本発明におけるエネルギーダイレクタの斜視図の一例である。It is an example of the perspective view of the energy director in this invention. 本発明におけるエネルギーダイレクタの断面図の一例である。It is an example of sectional drawing of the energy director in this invention. 本発明におけるエネルギーダイレクタの断面図の一例である。It is an example of sectional drawing of the energy director in this invention. 本発明の実施例1で作製した接合片の概略図である。It is the schematic of the joining piece produced in Example 1 of this invention.

以下、本発明の実施形態について説明する。
[熱可塑性複合材料]
本発明で使用する複合材料は、炭素繊維と、マトリクスとして熱可塑性樹脂を含むシート形態のものである。ここで、厚みとしては、成形性、特に金型との賦形性を考慮すると、例えば0.5〜5mmの範囲のものが好適である。また、かかる複合材料は、2枚以上積層して使用することができる。炭素繊維は、繊維長が10〜100mm、好ましくは10mm超50mm未満の範囲のものである。
Hereinafter, embodiments of the present invention will be described.
[Thermoplastic composite material]
The composite material used in the present invention is in the form of a sheet containing carbon fibers and a thermoplastic resin as a matrix. Here, the thickness is preferably in the range of, for example, 0.5 to 5 mm in consideration of moldability, particularly shapeability with a mold. In addition, two or more of such composite materials can be laminated and used. The carbon fiber has a fiber length in the range of 10 to 100 mm, preferably more than 10 mm and less than 50 mm.

複合材料は、炭素繊維が、該複合材料中に実質的に2次元ランダムに配向しているものが好ましい。ここで、実質的に2次元ランダムに配向している、とは、炭素繊維が、複合材料の面内方向において、一方向のような特定の方向に配向していることなく、無秩序で、全体的には特定の方向性を示すことなくシート面内に配置されていることをいう。したがって、本発明における複合材料は、面内に異方性を有しない、実質的に等方性の材料である。   The composite material is preferably one in which carbon fibers are substantially two-dimensionally oriented in the composite material. Here, the orientation is substantially two-dimensionally random means that the carbon fibers are disordered in the in-plane direction of the composite material without being oriented in a specific direction such as one direction. Specifically, it means that they are arranged in the sheet surface without showing a specific directionality. Therefore, the composite material in the present invention is a substantially isotropic material having no in-plane anisotropy.

上記複合材料は、目付けが25〜4500g/mの範囲であって、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)について、炭素繊維全量に対する割合が体積で20%以上99%未満であり、かつ強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことが、成形性と機械強度のバランスが良好である。
臨界単糸数=600/D (1)
0.6×10/D<N<1×10/D (2)
ここでDは炭素繊維の平均繊維径(μm)である。
The composite material has a basis weight in the range of 25 to 4500 g / m 2 , and the ratio of the reinforcing fiber bundle (A) composed of the number of critical single yarns defined by the following formula (1) to the total amount of carbon fibers is When the volume is 20% or more and less than 99% and the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2), the balance between moldability and mechanical strength is good.
Critical number of single yarns = 600 / D (1)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
Here, D is the average fiber diameter (μm) of the carbon fibers.

好ましくは、上記式(1)で定義される臨界単糸数未満の繊維束および単糸と、臨界単糸数以上で構成される炭素繊維束(A)が同時に存在し、炭素繊維束(A’)について、マットの繊維全量に対する割合が体積で50%以上90%未満であり、かつ炭素繊維束(A’)中の平均繊維数(N)が下記式(3)を満たす。
0.7×10/D<N<6×10/D (3)
(ここでDは炭素繊維の平均繊維径(μm)である)
Preferably, the fiber bundle and the single yarn having a number less than the critical single yarn defined by the above formula (1) and the carbon fiber bundle (A) composed of the critical single yarn or more are simultaneously present, and the carbon fiber bundle (A ′) The ratio of the mat to the total amount of fibers is 50% or more and less than 90% by volume, and the average number of fibers (N) in the carbon fiber bundle (A ′) satisfies the following formula (3).
0.7 × 10 4 / D 2 <N <6 × 10 4 / D 2 (3)
(Where D is the average fiber diameter (μm) of the carbon fiber)

上記したように、本発明における複合材料の面内において、炭素繊維は特定の方向に配向しておらず、無作為な方向に分散して配置されている。
このように、本発明で使用する複合材料は面内等方性の材料である。複合材料より成形体を得た場合に、複合材料中の炭素繊維の等方性は、成形体においても維持される。複合材料からプレス成形等により成形体を得て、互いに直交する二方向の引張弾性率の比を求めることで、複合材料およびそれからの成形体の等方性を定量的に評価できる。複合材料から得られた成形体における2方向の弾性率の値のうち大きいものを小さいもので割った比が2を超えないときに等方性であるとする。比が1.3を超えないときは等方性に優れているとする。
As described above, in the plane of the composite material according to the present invention, the carbon fibers are not oriented in a specific direction and are dispersed and arranged in a random direction.
Thus, the composite material used in the present invention is an in-plane isotropic material. When a molded body is obtained from the composite material, the isotropy of the carbon fibers in the composite material is maintained in the molded body. By obtaining a molded body from the composite material by press molding or the like, and determining the ratio of the tensile elastic modulus in two directions orthogonal to each other, the isotropy of the composite material and the molded body therefrom can be quantitatively evaluated. It is assumed that it is isotropic when the ratio of the modulus of elasticity in the two directions in the molded body obtained from the composite material divided by the smaller one does not exceed 2. When the ratio does not exceed 1.3, the isotropic property is considered excellent.

本発明で使用する複合材料における炭素繊維の目付けとしては、好ましくは25〜4500g/mの範囲である。複合材料はプリプレグとして有用であり、所望の成形に合わせて各種目付けが選択できる。複合材料を構成する炭素繊維は不連続であり、ある程度長い炭素繊維を含んで強化機能が発現できる。繊維長は、得られた複合材料における炭素繊維の繊維長を測定して求めた平均繊維長で表現される。平均繊維長の測定方法としては無作為に抽出した100本の繊維の繊維長をノギス等を用いて1mm単位まで測定し、その平均を求める方法が挙げられる。炭素繊維の平均繊維長は好ましくは10mm超50mm以下である。繊維長の分布としては、単一であっても構わないし、2種類以上の混合であっても構わない。複合材料を構成する炭素繊維は、軽量でありながら強度に優れた複合材料が提供できる。 The basis weight of the carbon fiber in the composite material used in the present invention is preferably in the range of 25 to 4500 g / m 2 . The composite material is useful as a prepreg, and various basis weights can be selected in accordance with a desired molding. The carbon fibers constituting the composite material are discontinuous, and the reinforcing function can be expressed by including carbon fibers that are somewhat long. The fiber length is expressed by an average fiber length obtained by measuring the fiber length of carbon fibers in the obtained composite material. As a method for measuring the average fiber length, there is a method of measuring the fiber length of 100 randomly extracted fibers up to 1 mm using calipers or the like, and obtaining the average. The average fiber length of the carbon fibers is preferably more than 10 mm and 50 mm or less. The fiber length distribution may be single or a mixture of two or more. The carbon fiber constituting the composite material can provide a composite material having excellent strength while being lightweight.

炭素繊維の平均繊維径は好ましくは3〜12μmである。炭素繊維とマトリクスである熱可塑性樹脂との密着強度は、ストランド引張りせん断試験における強度が5MPa以上であることが望ましい。この強度は、マトリクス樹脂の選択に加え、炭素繊維の表面酸素濃度比(O/C)を変更する方法や、炭素繊維にサイジング剤を付与して、繊維とマトリクス樹脂との密着強度を高める方法などの改質が挙げられる。
なお、本発明に用いる複合材料は、耐衝撃性を付与する等のためにガラス繊維やアラミド繊維などを含んでも構わない。
The average fiber diameter of the carbon fibers is preferably 3 to 12 μm. The adhesion strength between the carbon fiber and the thermoplastic resin as the matrix is desirably 5 MPa or more in the strand tensile shear test. In addition to the selection of the matrix resin, this strength is a method of changing the surface oxygen concentration ratio (O / C) of the carbon fiber, or a method of increasing the adhesion strength between the fiber and the matrix resin by applying a sizing agent to the carbon fiber. And the like.
Note that the composite material used in the present invention may include glass fiber, aramid fiber, or the like for imparting impact resistance.

[炭素繊維の開繊程度]
前述したように、本発明における複合材料は、好適には、下記式(1)
臨界単糸数=600/D (1)
(ここでDは炭素繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される炭素繊維束(A)について、マットの繊維全量に対する割合が20Vol%以上99Vol%未満であり、マット中には炭素繊維束(A)以外の炭素繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在する。
[Carbon fiber opening degree]
As described above, the composite material in the present invention preferably has the following formula (1):
Critical number of single yarns = 600 / D (1)
(Where D is the average fiber diameter (μm) of the carbon fiber)
In the carbon fiber bundle (A) composed of the number of critical single yarns or more defined in, the ratio of the mat to the total amount of fibers is 20 vol% or more and less than 99 vol%, and the mat contains carbon fibers other than the carbon fiber bundle (A). There are fiber bundles composed of a single yarn state or less than the critical number of single yarns.

さらに臨界単糸数以上で構成される炭素繊維束(A)中の平均繊維数(N)が下記式(2)を満たしている。
0.6×10/D<N<1×10/D (2)
(ここでDは炭素繊維の平均繊維径(μm)である)
Furthermore, the average fiber number (N) in the carbon fiber bundle (A) composed of the number of critical single yarns or more satisfies the following formula (2).
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Where D is the average fiber diameter (μm) of the carbon fiber)

炭素繊維束(A)中の平均繊維数(N)を上記範囲とするには、後述する好ましい製法において、カット工程に供する繊維束の大きさ、例えば束の幅や幅当たりの繊維数を調整することでコントロールすることができる。具体的には開繊するなどして繊維束の幅を広げてカット工程に供すること、カット工程の前にスリット工程を設ける方法が挙げられる。また繊維束をカットと同時に、スリットしても良い。   In order to make the average number of fibers (N) in the carbon fiber bundle (A) within the above range, the size of the fiber bundle to be subjected to the cutting process, for example, the width of the bundle and the number of fibers per width are adjusted in the preferred production method described later. You can control it. Specifically, there are a method of expanding the width of the fiber bundle by opening the fiber and using it for the cutting process, and a method of providing a slit process before the cutting process. Further, the fiber bundle may be slit simultaneously with the cutting.

具体的には、複合材料を構成する炭素繊維の平均繊維径が5〜7μmの場合、臨界単糸数は86〜120本となり、炭素繊維の平均繊維径が5μmの場合、繊維束中の平均繊維数は240超〜4000本未満の範囲となるが、なかでも300〜2500本であることが好ましい。より好ましくは400〜1600本である。炭素繊維の平均繊維径が7μmの場合、繊維束中の平均繊維数は122超〜2040本未満の範囲となるが、なかでも150〜1500本であることが好ましい。より好ましくは200〜800本である。   Specifically, when the average fiber diameter of the carbon fiber constituting the composite material is 5 to 7 μm, the critical single yarn number is 86 to 120, and when the average fiber diameter of the carbon fiber is 5 μm, the average fiber in the fiber bundle The number is in the range of more than 240 to less than 4000, but 300 to 2500 is particularly preferable. More preferably, it is 400-1600. When the average fiber diameter of the carbon fibers is 7 μm, the average number of fibers in the fiber bundle is in the range of more than 122 to less than 2040, and in particular, 150 to 1500 is preferable. More preferably, the number is 200 to 800.

炭素繊維束(A)中の平均繊維数(N)が0.6×10/D以下の場合、高い繊維体積含有率(Vf)を得ることが困難となる。また炭素繊維束(A)中の平均繊維数(N)が1×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。 When the average number of fibers (N) in the carbon fiber bundle (A) is 0.6 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the carbon fiber bundle (A) is 1 × 10 5 / D 2 or more, a locally thick portion is generated, which tends to cause voids.

さらに、炭素繊維束(A)の形態としては、厚さが100μm以上である炭素繊維束の割合が、全炭素繊維束(A)数の3%未満であることが好ましい。厚さが100μm以上である炭素繊維束が3%未満であれば、熱可塑性樹脂が繊維束内部に含浸しやすくなるので好ましい。より好ましくは厚さが100μm以上である炭素繊維束の割合は1%未満である。厚さが100μm以上である炭素繊維束の割合を3%未満とするには、使用する繊維を拡幅し、薄肉にした繊維を用いる等によりコントロールすることができる。   Furthermore, as a form of the carbon fiber bundle (A), the ratio of the carbon fiber bundles having a thickness of 100 μm or more is preferably less than 3% of the total number of carbon fiber bundles (A). If the carbon fiber bundle having a thickness of 100 μm or more is less than 3%, it is preferable because the thermoplastic resin is easily impregnated into the fiber bundle. More preferably, the proportion of carbon fiber bundles having a thickness of 100 μm or more is less than 1%. In order to make the proportion of carbon fiber bundles having a thickness of 100 μm or more less than 3%, it is possible to control by widening the fibers used and using thin fibers.

[マトリクス樹脂]
本発明に用いる複合材料に含まれるマトリクス樹脂としては特に限定はないが、下記のものを例示することができる。
すなわち、熱可塑性樹脂の種類としては、例えば、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。
これらの熱可塑性樹脂は、単独で用いてもよいし、2種以上を併用してもよい。
[Matrix resin]
Although there is no limitation in particular as matrix resin contained in the composite material used for this invention, the following can be illustrated.
That is, as a kind of thermoplastic resin, for example, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin) , Acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate Resin, polybutylene naphthalate resin, boribylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylenesulfur De resins, polysulfone resins, polyethersulfone resins, polyether ether ketone resins, such as polylactic acid resins.
These thermoplastic resins may be used alone or in combination of two or more.

マトリクス樹脂の存在量としては、炭素繊維100重量部に対し、30〜200重量部であることが好ましい。より好ましくは、炭素繊維100重量部に対し、マトリクス樹脂30〜150重量部、さらに好ましくは炭素繊維100重量部に対し、マトリクス樹脂35〜100重量部である。
また、本発明で用いる複合材料中には、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
The amount of the matrix resin is preferably 30 to 200 parts by weight with respect to 100 parts by weight of the carbon fiber. More preferably, it is 30 to 150 parts by weight of the matrix resin with respect to 100 parts by weight of the carbon fiber, and further preferably 35 to 100 parts by weight of the matrix resin with respect to 100 parts by weight of the carbon fiber.
Further, in the composite material used in the present invention, various fibrous or non-fibrous fillers, flame retardants, UV-resistant agents, pigments, mold release agents of organic fibers or inorganic fibers within the range not detracting from the object of the present invention. , Softeners, plasticizers, surfactant additives may be included.

[エネルギーダイレクタ]
本発明で用いるエネルギーダイレクタとは、複合材料を溶着する平面上に形成される突状のものである。このエネルギーダイレクタは、複合材料の成形と同時、または平坦な複合材料の表面に別途接合または接着するなどによって付与できるが、成形と同時に設けることが好ましい。エネルギーダイレクタの形状としては、円柱、円錐、円錐台、角柱、角錐、角錐台などであり、その大きさは任意に設定すればよいがそれぞれ概ね高さが0.5mm〜100mmが好ましく、円柱、円錐、円錐台の場合は根元の直径が1mm〜100mmが好ましく、角柱、角錐、角錐台の場合は、長さが1mm〜3000mmが好ましく、幅は1mm〜100mmが好ましい。他の複合材料の接着予定部に、一度に(一回で)溶着するエネルギーダイレクタの個数は任意に設定すればよいが、一度に溶着するエネルギーダイレクタの根元の面積の合計が概ね0.8mm〜20mが好ましい。
[Energy Director]
The energy director used in the present invention is a protrusion formed on a plane on which a composite material is welded. The energy director can be applied simultaneously with the molding of the composite material, or by being separately bonded or adhered to the surface of the flat composite material, but is preferably provided at the same time as the molding. The shape of the energy director is a cylinder, a cone, a truncated cone, a prism, a pyramid, a truncated pyramid, etc., and the size may be arbitrarily set, but the height is preferably about 0.5 mm to 100 mm. In the case of a cone or a truncated cone, the base diameter is preferably 1 mm to 100 mm. In the case of a prism, a pyramid, or a truncated pyramid, the length is preferably 1 mm to 3000 mm, and the width is preferably 1 mm to 100 mm. The number of energy directors to be welded at one time (at a time) to any part to be bonded of another composite material may be arbitrarily set, but the total area of the roots of the energy directors to be welded at one time is approximately 0.8 mm 2. ˜20 m 2 is preferred.

本発明で使用する複合材料中には溶融しない炭素繊維が含まれているため、後述する振動溶着あるいは超音波溶着を行なう際に接合界面に大量の炭素繊維屑が発生する。本発明で熱可塑性複合材料に付与するエネルギーダイレクタには空隙部分を設けてあるので、溶着で生じた屑をこの空隙部分に収納することができる。空隙はエネルギーダイレクタ内部でもよいが、製造の簡易さからエネルギーダイレクタの接合面または接合の反対面またはそれら両方に設けることができる。   Since the composite material used in the present invention contains carbon fibers that do not melt, a large amount of carbon fiber waste is generated at the joint interface when vibration welding or ultrasonic welding described later is performed. Since the void portion is provided in the energy director applied to the thermoplastic composite material in the present invention, the waste generated by welding can be accommodated in the void portion. The air gap may be inside the energy director, but can be provided on the joining surface of the energy director, the opposite surface of the joining, or both for the sake of simplicity of manufacturing.

エネルギーダイレクタの空隙率としては、屑が十分収納され、かつ加圧によりエネルギーダイレクタが変形しない程度の剛性が必要であることから、15容積%以上65容積%以下であり、好ましくは20容積%以上60容積%以下であり、より好ましくは25容積%以上55容積%以下が好ましいが、エネルギーダイレクタの嵩密度で換算すれば0.40g/cm以上1.40g/cm以下、好ましくは0.43g/cm以上1.05g/cm以下、0.47g/cm以上0.84g/cm以下である。ダイレクタの空隙は連続であっても、独立気泡の形で存在していても良い。エネルギーダイレクタの嵩密度は、例えば図1に示すようにエネルギーダイレクタ裏側に空隙がある場合、点線の部分の体積と重量を実測することによって嵩密度が算出できる。 The porosity of the energy director is 15% by volume or more and 65% by volume or less, preferably 20% by volume or more, because the scraps are sufficiently stored and the rigidity of the energy director is not deformed by pressurization. is 60 volume% or less, more but preferably is preferably below 55 volume% to 25 volume%, the energy director 0.40 g / cm 3 or more 1.40 g / cm 3 when converted in the bulk density of less, preferably 0. 43 g / cm 3 or more 1.05 g / cm 3 or less, 0.47 g / cm 3 or more 0.84 g / cm 3 or less. The voids in the director may be continuous or may exist in the form of closed cells. The bulk density of the energy director can be calculated by actually measuring the volume and weight of the dotted line portion when there is a gap on the back side of the energy director as shown in FIG.

なお、このエネルギーダイレクタを構成する材料としては、前記複合材料を構成する熱可塑性樹脂を挙げることができるが、前記複合材料で用いた熱可塑性樹脂と同じものを用いることが、下記溶着において好適である。より好ましくは、前記複合材料と同じ材料である。   As a material constituting this energy director, the thermoplastic resin constituting the composite material can be mentioned, but it is preferable to use the same thermoplastic resin used in the composite material in the following welding. is there. More preferably, it is the same material as the composite material.

[溶着方法]
本発明においては、例えば、2枚の複合材料を準備し、上述した方法により、一方の複合材料にエネルギーダイレクタを設ける。次に、エネルギーダイレクタを設けた部分の一部または全部を接合予定部とし、この接着予定部を、溶着したいもう一方の複合材料の接合予定部と重ね、圧着して接合する。もう一方の複合材料にもエネルギーダイレクタが設けられていてもよい。また、例えば3枚の複合材料を用意し、そのうち1枚の複合材料にエネルギーダイレクタを設けそこの2ヶ所を接合予定部とし、その2ヶ所の接合予定部を他の2枚の複合材料の接合予定部と重ねて接合することもできる。
[Welding method]
In the present invention, for example, two composite materials are prepared, and an energy director is provided in one composite material by the above-described method. Next, a part or the whole of the part provided with the energy director is used as a part to be joined, and this part to be bonded is overlapped with the part to be joined of the other composite material to be welded and bonded by pressure bonding. The other composite material may also be provided with an energy director. Also, for example, three composite materials are prepared, and one of the composite materials is provided with an energy director, two of which are to be joined, and the two joints are joined to the other two composite materials. It can also be overlapped and joined with the planned portion.

溶着時の圧着条件としては溶着面に、0.01〜2MPaの圧力をかけることが好ましく、0.02〜1.5MPaがより好ましく、0.05〜1MPaがさらに好ましい。圧力が0.01MPa未満では良好な接合力が得られないことがあり、また加熱時に複合材料がスプリングバックして形状を保持できず素材強度も低下する場合がある。また圧力が2MPaを超えると加圧部分が潰れ、形状保持が困難となったり、素材強度が低下したりすることがある。   As pressure-bonding conditions at the time of welding, it is preferable to apply a pressure of 0.01 to 2 MPa to the welding surface, more preferably 0.02 to 1.5 MPa, and even more preferably 0.05 to 1 MPa. If the pressure is less than 0.01 MPa, a good bonding force may not be obtained, and the composite material may spring back during heating and the shape may not be maintained, resulting in a decrease in material strength. On the other hand, when the pressure exceeds 2 MPa, the pressurized part may be crushed, making it difficult to maintain the shape or reducing the material strength.

溶着方法としては、振動溶着や超音波溶着が好ましい。振動溶着は100〜300Hz程度が好ましく、超音波振動の場合は10〜50kHzが好ましい。また総振動回数は振動溶着の場合300〜10000回が好ましく、超音波振動の場合は1万〜15万回が好ましい。   As the welding method, vibration welding or ultrasonic welding is preferable. Vibration welding is preferably about 100 to 300 Hz, and in the case of ultrasonic vibration, 10 to 50 kHz is preferable. The total number of vibrations is preferably 300 to 10,000 in the case of vibration welding, and preferably 10,000 to 150,000 in the case of ultrasonic vibration.

[接合部材]
本発明における接合部材は、上記方法により熱可塑性複合材料が2以上組み合わされて接合されたものであり、用いられる熱可塑性複合材料の形状はその用途、接合部位に合わせたものとなる。本発明により複合材料同士が効率よく強固に接合され、15MPa以上の強度を得ることができ、構造部材として好適に用いることができる。かかる構造部材としては、例えば自動車などの移動体を構成する部品などが挙げられる。接合強度は引っ張り試験等で評価することができる。
[Joint material]
The joining member in the present invention is obtained by combining and joining two or more thermoplastic composite materials by the above-described method, and the shape of the thermoplastic composite material to be used is adapted to its use and joining site. According to the present invention, the composite materials can be bonded together efficiently and with a strength of 15 MPa or more, and can be suitably used as a structural member. Examples of such a structural member include parts constituting a moving body such as an automobile. The bonding strength can be evaluated by a tensile test or the like.

すなわち、本発明は以下のものも包含される。
平均繊維長が10〜100mmの範囲の炭素繊維と熱可塑性樹脂とを、炭素繊維100重量部に対し、熱可塑性樹脂を30〜200重量部の割合で含んでなる、複数の複合材料から構成され、接合部分の破壊強度が15MPa以上である接合部材であって、
当該複合材料は
(i)シート状であって、
(ii)当該炭素繊維は面内方向にランダムに配置されており、
(iii)目付けが25〜4500g/mの範囲であり、下記式(1)で定義される臨界単糸数以上で構成される炭素繊維束について、当該複合材料中の炭素繊維全量に対する割合が体積割合で20%以上99%未満であり、かつ、炭素繊維束中の平均繊維数(N)が下記式(2)を満たす、接合部材。
臨界単糸数=600/D (1)
0.6×10/D<N<1×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
That is, the present invention includes the following.
It is composed of a plurality of composite materials comprising carbon fiber having an average fiber length of 10 to 100 mm and thermoplastic resin in a proportion of 30 to 200 parts by weight of thermoplastic resin with respect to 100 parts by weight of carbon fiber. A joining member having a fracture strength of 15 MPa or more at the joining portion,
The composite material is (i) a sheet,
(Ii) The carbon fibers are randomly arranged in the in-plane direction,
(Iii) For carbon fiber bundles having a basis weight in the range of 25 to 4500 g / m 2 and composed of the number of critical single yarns defined by the following formula (1), the ratio to the total amount of carbon fibers in the composite material is volume. The joining member which is 20% or more and less than 99% by a ratio, and the average number of fibers (N) in the carbon fiber bundle satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these.

[参考例]
炭素繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(繊維径7μm 繊維幅10mm 引張強度4000MPa)を使用し、マトリクス樹脂として、ユニチカ社製のナイロン6樹脂A1030を用い、炭素繊維目付1800g/m、ナイロン樹脂目付1500g/mであるランダムに炭素繊維が配向したマットを作成した。このマットを260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=2.3mmの成形板(複合材料)を得た。
得られた複合材料について、前記式(1)で定義される臨界単糸数は86、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は420であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は体積で85Vol%であった。得られた複合材料の繊維体積含有率は43Vol%であった。
[Reference example]
Carbon fiber “Tenax” (registered trademark) STS40-24KS (fiber diameter: 7 μm, fiber width: 10 mm, tensile strength: 4000 MPa) manufactured by Toho Tenax Co., Ltd. is used as the carbon fiber, and nylon 6 resin A1030 manufactured by Unitika is used as the matrix resin. A mat having carbon fibers oriented at random with a carbon fiber basis weight of 1800 g / m 2 and a nylon resin basis weight of 1500 g / m 2 was prepared. The mat was heated at 2.0 MPa for 5 minutes with a press apparatus heated to 260 ° C. to obtain a molded plate (composite material) with t = 2.3 mm.
About the obtained composite material, the number of critical single yarns defined by Formula (1) is 86, the average number of single yarns (N) in the carbon fiber bundle (A) composed of the number of critical single yarns or more is 420, The ratio of the carbon fiber bundle (A) constituted by the number of single yarns or more was 85 Vol%. The fiber volume content of the obtained composite material was 43 Vol%.

成形板より0度と90度方向からn=5ずつ250×25mmの試験片を切り出しJIS K 7164に準拠し測定した結果、引張弾性率の比Eδ=1.02であり、引張強度は510MPaであった。
また、得られたランダムマットの炭素繊維の平均繊維長は12mmであり、厚さ100μm以上の繊維束は観測されなかった。使用した繊維とマトリクス樹脂の密着強度を測定したところ、50MPaであった。
As a result of cutting out test pieces of 250 × 25 mm each from n = 5 from 0 ° and 90 ° directions according to JIS K 7164, the tensile modulus ratio Eδ = 1.02 and the tensile strength was 510 MPa. there were.
Moreover, the average fiber length of the carbon fibers of the obtained random mat was 12 mm, and a fiber bundle having a thickness of 100 μm or more was not observed. The adhesion strength between the used fiber and the matrix resin was measured and found to be 50 MPa.

[実施例1]
(A片)参考例で得られた平板をそのまま長手100mm、短手25mmに切り出した。
(B片)参考例で得られた平板を、図2で示すような10φのエネルギーダイレクタが形成されるよう彫りこんだ金型を用いて260℃、2.5MPaでプレスしたのち、エネルギーダイレクタの中心が短手方向の中心、長手方向の端から12.5mmの交点になるよう長手100mm、短手25mmに切り出した。
(接合片)A片とB片のエネルギーダイレクタ側とを長さ25mmオーバーラップするようにセットし、エマソン社製超音波溶着機2000Xdtのホーンを150Nの力で加圧した。ついで、20kHzの超音波振動を振幅設定値80%で3秒間かけ溶着し、10秒間常温で冷却して接合片を取り出した(図4参照)。かかる接合片を5枚製作し、インストロン社製5587万能試験機を用いて(JIS K 7164に準拠して試験)1本ずつ1mm/分で引張試験を行い、接合部の破壊強度を求めたところ、5本の測定値の平均は71.2MPaであった。エネルギーダイレクタ部を切り出して嵩密度を測定したところ0.92g/cmであった。
[Example 1]
(A piece) The flat plate obtained in the reference example was directly cut into a length of 100 mm and a width of 25 mm.
(B piece) The flat plate obtained in the reference example was pressed at 260 ° C. and 2.5 MPa using a die engraved so as to form a 10φ energy director as shown in FIG. The center was cut into a length of 100 mm and a width of 25 mm so that the center was the center in the short direction and the intersection of 12.5 mm from the end in the long direction.
(Junction piece) The A piece and the B piece energy director side were set to overlap by 25 mm in length, and the horn of an ultrasonic welding machine 2000Xdt manufactured by Emerson was pressed with a force of 150 N. Next, 20 kHz ultrasonic vibration was welded for 3 seconds at an amplitude setting value of 80%, and cooled at room temperature for 10 seconds to take out the joined piece (see FIG. 4). Five such pieces were manufactured, and a tensile test was performed at 1 mm / min one by one using an Instron 5587 universal testing machine (tested in accordance with JIS K 7164) to determine the fracture strength of the joint. However, the average of the five measured values was 71.2 MPa. When the energy director part was cut out and the bulk density was measured, it was 0.92 g / cm 3 .

[実施例2]
B片のエネルギーダイレクタ形状は図3の通りである。A片とB片のエネルギーダイレクタ側を長さ25mmオーバーラップするようにセットし、エマソン社製振動溶着機M−107を用い、110Nの力で加圧し、振幅1.5mmで240Hzの振動を3秒間掛け溶着し、10秒間常温で冷却して接合片を取り出した。かかる接合片を5枚製作し、実施例1と同様に、インストロン社製5587万能試験機1本ずつ1mm/分で引張試験を行い、接合部の破壊強度を求めたところ、5本の測定値の平均は68.7MPaであった。エネルギーダイレクタ部を切り出して嵩密度を測定したところ1.02g/cmであった。
[Example 2]
The shape of the energy director of the B piece is as shown in FIG. Set the energy director side of the A piece and B piece so as to overlap each other by 25 mm, pressurize with a force of 110 N using a vibration welding machine M-107 manufactured by Emerson, and vibrate at 240 Hz with an amplitude of 1.5 mm. It was welded for 2 seconds, cooled at room temperature for 10 seconds, and the joined piece was taken out. Five such pieces were manufactured, and in the same manner as in Example 1, a tensile test was conducted at 1 mm / min for each of 5587 universal testing machines manufactured by Instron, and the fracture strength of the joint was determined. The average value was 68.7 MPa. When the energy director part was cut out and the bulk density was measured, it was 1.02 g / cm 3 .

[実施例3]
B片のエネルギーダイレクタ形状が図2で示す10φのものである以外は実施例1と同様にして接合片を5枚製作し、実施例1と同様に、インストロン社製5587万能試験機1本ずつ1mm/分で引張試験を行い、接合部の破壊強度を求めたところ、5本の測定値の平均は28.0MPaであった。
[Example 3]
Except that the shape of the energy director of the B piece is 10φ shown in FIG. 2, five joining pieces were produced in the same manner as in Example 1, and one Instron 5587 universal testing machine was produced in the same manner as in Example 1. Tensile tests were performed at 1 mm / min at a time, and the fracture strength of the joint was determined. The average of the five measured values was 28.0 MPa.

[比較例]
B片を用いず、A片を2つ用いた以外は実施例1と同様にして接合片を5枚製作し、実施例1と同様に、インストロン社製5587万能試験機1本ずつ1mm/分で引張試験を行い、接合部の破壊強度を求めたところ、5本の測定値の平均は9.8MPaであった。
[Comparative example]
Except for using B pieces and using two A pieces, five joining pieces were produced in the same manner as in Example 1, and in the same manner as in Example 1, one 5587 universal testing machine manufactured by Instron, 1 mm / When a tensile test was performed in minutes to determine the fracture strength of the joint, the average of the five measured values was 9.8 MPa.

Claims (7)

(i)平均繊維長が10〜100mmの範囲の炭素繊維と熱可塑性樹脂とを、炭素繊維100重量部に対し、熱可塑性樹脂を30〜200重量部の割合で含む複数の複合材料を準備し、
(ii)少なくとも一方の複合材料に、空隙を有し嵩密度が0.4g/cm以上1.4g/cm以下であるエネルギーダイレクタを設け、
(iii)当該エネルギーダイレクタを有する接合予定部を、他方の複合材料の接合予定部と重ね、圧着する
各工程を含むことを特徴とする、接合部材の製造方法。
(I) preparing a plurality of composite materials containing carbon fiber and thermoplastic resin having an average fiber length of 10 to 100 mm in a proportion of 30 to 200 parts by weight with respect to 100 parts by weight of carbon fiber; ,
(Ii) At least one composite material is provided with an energy director having voids and a bulk density of 0.4 g / cm 3 or more and 1.4 g / cm 3 or less,
(Iii) A method for manufacturing a bonding member, comprising: a step of overlapping and bonding a planned bonding portion having the energy director with a predetermined bonding portion of the other composite material.
振動溶着または超音波溶着によって圧着する、請求項1に記載の接合部材の製造方法。   The manufacturing method of the joining member of Claim 1 crimped | bonded by vibration welding or ultrasonic welding. 複合材料はシート状であって、炭素繊維はシートの面内方向にランダムに配置されている、請求項1または2に記載の接合部材の製造方法。   The method for manufacturing a joining member according to claim 1 or 2, wherein the composite material is in a sheet form, and the carbon fibers are randomly arranged in an in-plane direction of the sheet. 複合材料は、目付けが25〜4500g/mの範囲であり、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束について、当該熱可塑性樹脂複合材料中の繊維全量に対する割合が体積割合で20%以上99%未満であり、かつ、強化繊維束中の平均繊維数(N)が下記式(2)を満たす、請求項3に記載の接合部材の製造方法。
臨界単糸数=600/D (1)
0.6×10/D<N<1×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
The composite material has a basis weight in the range of 25 to 4500 g / m 2 , and the reinforcing fiber bundle composed of the number of critical single yarns defined by the following formula (1) is based on the total amount of fibers in the thermoplastic resin composite material. The manufacturing method of the joining member according to claim 3, wherein the ratio is 20% or more and less than 99% by volume, and the average number of fibers (N) in the reinforcing fiber bundle satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
接合部材以外の接着剤または接合部品を用いない、請求項1〜4のいずれかに記載の接合部材の製造方法。   The manufacturing method of the joining member in any one of Claims 1-4 which does not use adhesive agents or joining components other than a joining member. 請求項1〜5のいずれかに記載の接合部材の製造方法によって製造された、接合部分の破壊強度が15MPa以上である接合部材。   A joining member produced by the method for producing a joining member according to any one of claims 1 to 5, wherein the fracture strength of the joined portion is 15 MPa or more. 平均繊維長が10〜100mmの範囲の炭素繊維と熱可塑性樹脂とを、炭素繊維100重量部に対し、熱可塑性樹脂を30〜200重量部の割合で含んでなる、複数の複合材料が接合された接合部材であって、接合部分の破壊強度が15MPa以上であり、かつ当該複合材料は
(i)シート状であって、
(ii)当該炭素繊維はシートの面内方向にランダムに配置されており、
(iii)目付けが25〜4500g/mの範囲であり、下記式(1)で定義される臨界単糸数以上で構成される炭素繊維束について、当該複合材料中の炭素繊維全量に対する割合が体積割合で20%以上99%未満であり、かつ、炭素繊維束中の平均繊維数(N)が下記式(2)を満たす、接合部材。
臨界単糸数=600/D (1)
0.6×10/D<N<1×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
A plurality of composite materials comprising carbon fiber having an average fiber length of 10 to 100 mm and thermoplastic resin in a proportion of 30 to 200 parts by weight with respect to 100 parts by weight of carbon fiber are joined. The fracture strength of the joined portion is 15 MPa or more, and the composite material is (i) sheet-like,
(Ii) The carbon fibers are randomly arranged in the in-plane direction of the sheet,
(Iii) For carbon fiber bundles having a basis weight in the range of 25 to 4500 g / m 2 and composed of the number of critical single yarns defined by the following formula (1), the ratio to the total amount of carbon fibers in the composite material is volume. The joining member which is 20% or more and less than 99% by a ratio, and the average number of fibers (N) in the carbon fiber bundle satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
0.6 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
JP2012107573A 2012-05-09 2012-05-09 Method for manufacturing joint member Pending JP2013233729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107573A JP2013233729A (en) 2012-05-09 2012-05-09 Method for manufacturing joint member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107573A JP2013233729A (en) 2012-05-09 2012-05-09 Method for manufacturing joint member

Publications (1)

Publication Number Publication Date
JP2013233729A true JP2013233729A (en) 2013-11-21

Family

ID=49760236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107573A Pending JP2013233729A (en) 2012-05-09 2012-05-09 Method for manufacturing joint member

Country Status (1)

Country Link
JP (1) JP2013233729A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104879A1 (en) * 2014-01-10 2015-07-16 ユニ・チャーム株式会社 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
WO2015104881A1 (en) * 2014-01-10 2015-07-16 ユニ・チャーム株式会社 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
JP2015131394A (en) * 2014-01-09 2015-07-23 東レ株式会社 Integrated structure of fiber-reinforced thermoplastic resin
WO2015163218A1 (en) * 2014-04-25 2015-10-29 帝人株式会社 Fiber-reinforced plastic joined body, method for producing fiber-reinforced plastic joined body, and fiber-reinforced molded article
JP2015189177A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Method for bonding metallic member to resin member, and resin member for use in the method
WO2017179167A1 (en) * 2016-04-14 2017-10-19 帝人株式会社 Method for manufacturing bonded body
FR3063672A1 (en) * 2017-03-13 2018-09-14 Arkema France PROCESS FOR MANUFACTURING THERMOPLASTIC POLYMERIC COMPOSITE PARTS, AND OBJECT OBTAINED BY SAID METHOD
JP2019166668A (en) * 2018-03-22 2019-10-03 フタバ産業株式会社 Manufacturing method of resin component
JP7475915B2 (en) 2020-03-24 2024-04-30 スタンレー電気株式会社 Ultrasonic bonding method and ultrasonic bonding structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131394A (en) * 2014-01-09 2015-07-23 東レ株式会社 Integrated structure of fiber-reinforced thermoplastic resin
CN105992575A (en) * 2014-01-10 2016-10-05 尤妮佳股份有限公司 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
WO2015104881A1 (en) * 2014-01-10 2015-07-16 ユニ・チャーム株式会社 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
JP2015130940A (en) * 2014-01-10 2015-07-23 ユニ・チャーム株式会社 Ultrasonic welding apparatus of sheet-like member related to absorptive article and ultrasonic welding method
WO2015104879A1 (en) * 2014-01-10 2015-07-16 ユニ・チャーム株式会社 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
CN106029022A (en) * 2014-01-10 2016-10-12 尤妮佳股份有限公司 Ultrasonic welding device and ultrasonic welding method of sheet-shaped member associated with absorbent article
JP2015189177A (en) * 2014-03-28 2015-11-02 マツダ株式会社 Method for bonding metallic member to resin member, and resin member for use in the method
WO2015163218A1 (en) * 2014-04-25 2015-10-29 帝人株式会社 Fiber-reinforced plastic joined body, method for producing fiber-reinforced plastic joined body, and fiber-reinforced molded article
JP5973690B2 (en) * 2014-04-25 2016-08-23 帝人株式会社 Fiber reinforced plastic joined body, method for producing fiber reinforced plastic joined body, and fiber reinforced molded body
US10155341B2 (en) 2014-04-25 2018-12-18 Teijin Limited Fiber-reinforced plastic joined body, method for producing fiber-reinforced plastic joined body, and fiber-reinforced molded article
WO2017179167A1 (en) * 2016-04-14 2017-10-19 帝人株式会社 Method for manufacturing bonded body
JPWO2017179167A1 (en) * 2016-04-14 2018-10-04 帝人株式会社 Manufacturing method of joined body
FR3063672A1 (en) * 2017-03-13 2018-09-14 Arkema France PROCESS FOR MANUFACTURING THERMOPLASTIC POLYMERIC COMPOSITE PARTS, AND OBJECT OBTAINED BY SAID METHOD
WO2018172657A1 (en) * 2017-03-13 2018-09-27 Arkema France Process for manufacturing thermoplastic polymer composite parts, and object obtained by said process
US11623412B2 (en) 2017-03-13 2023-04-11 Arkema France Process for manufacturing thermoplastic polymer composite parts, and object obtained by said process
JP2019166668A (en) * 2018-03-22 2019-10-03 フタバ産業株式会社 Manufacturing method of resin component
JP6993271B2 (en) 2018-03-22 2022-01-13 フタバ産業株式会社 Manufacturing method of resin parts
JP7475915B2 (en) 2020-03-24 2024-04-30 スタンレー電気株式会社 Ultrasonic bonding method and ultrasonic bonding structure

Similar Documents

Publication Publication Date Title
JP2013233729A (en) Method for manufacturing joint member
WO2013084963A1 (en) Method for manufacturing joint member
JP5604590B2 (en) Zygote
US20140154494A1 (en) Method of manufacturing a bonded body
JP5770395B2 (en) Fiber reinforced plastic joined body and method for producing the same
JP2007313778A (en) Joining method of fiber-reinforced thermoplastic resin composite material
JP5973690B2 (en) Fiber reinforced plastic joined body, method for producing fiber reinforced plastic joined body, and fiber reinforced molded body
JP5827771B2 (en) Composite material joining apparatus and method for producing joined body
WO2015162998A1 (en) Fiber-reinforced resin joined object, intermediate and fastening rod
US20150013898A1 (en) Method for Joining Composite Materials
JP6341156B2 (en) Resin bonded body, resin bonded body manufacturing method, and vehicle structure
JP6302606B1 (en) Manufacturing method of joined body
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
KR101804661B1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP5864038B1 (en) FIBER-REINFORCED RESIN BODY HAVING CACHED UNIT AND METHOD FOR PRODUCING THE SAME
JP6488584B2 (en) Carbon fiber reinforced thermoplastic resin molded product and metal welded joint
Kiss et al. Investigation of the weldability of the self-reinforced polypropylene composites
JP2013129159A (en) Manufacturing method of joined body
Rao et al. Natural fiber composites and their hollow core Panels
JP2017030325A (en) Resin joined body
JP2013132790A (en) Joined body having joint with both surfaces of molded product adhered thereat with molded products fitted