JP2013129159A - Manufacturing method of joined body - Google Patents

Manufacturing method of joined body Download PDF

Info

Publication number
JP2013129159A
JP2013129159A JP2011281510A JP2011281510A JP2013129159A JP 2013129159 A JP2013129159 A JP 2013129159A JP 2011281510 A JP2011281510 A JP 2011281510A JP 2011281510 A JP2011281510 A JP 2011281510A JP 2013129159 A JP2013129159 A JP 2013129159A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
joined body
carbon fiber
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011281510A
Other languages
Japanese (ja)
Inventor
Takumi Kato
卓巳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011281510A priority Critical patent/JP2013129159A/en
Publication of JP2013129159A publication Critical patent/JP2013129159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a joined body having favorable joining strength by using a simple method which heats and melts complex materials containing carbon fibers by applying a voltage to a resistance heating element.SOLUTION: In the manufacturing method of the joined body for heat-melting and joining two or more molded products which are molded of thermoplastic resin containing the carbon fibers and each of which has at least one surface, (i) the resistance heating element is arranged between surfaces (joining surfaces) of the mutually-opposing molded products via an insulation resin layer, and the joining surfaces are pressed, (ii) the arranged resistance heating element is applied with a voltage and made to generate heat, and (iii) the thermoplastic resin of the joining surfaces are heated and melted.

Description

本発明は、炭素繊維を含む成形品同士で構成される接合体の製造方法に関する。より詳しくは、炭素繊維を含有する2以上の成形品の接合面に抵抗発熱体を配置し、これに電圧を印加することにより接合させて接合体を製造する方法に関する。   The present invention relates to a method for manufacturing a joined body composed of molded articles containing carbon fibers. More specifically, the present invention relates to a method of manufacturing a joined body by disposing a resistance heating element on a joining surface of two or more molded products containing carbon fibers and joining them by applying a voltage thereto.

プラスチック、特に熱可塑性樹脂は種々の成形方法が可能であり、今日の我々の生活には欠かせない材料である。それらの成形体は多くの場合、別の部品と組合せて製品となり使用されている。特に、炭素繊維などの強化繊維を含む複合材料は高強度かつ軽量である点から優れた物性を持っている。   Plastics, especially thermoplastic resins, which can be molded in various ways, are indispensable materials for our daily lives. These molded bodies are often used as products in combination with other parts. In particular, a composite material containing reinforcing fibers such as carbon fibers has excellent physical properties from the viewpoint of high strength and light weight.

これら熱可塑性樹脂をマトリックスとした成形品(以下、熱可塑性樹脂強化繊維複合材料、単に複合材料ということがある)の接合方法としては、一般的に、接着剤、溶着、ボルトナットやリベットによる締結などが知られている。特に溶着は、素材をそのまま一体化させるため、接合による重量増加もなく、高い強度が得られるため、熱可塑性樹脂からなる成形品においては非常に有利な接合手法といえる。溶着方法は様々な方法が検討されてきており、例えば、特許文献1、特許文献2には、抵抗発熱体に電圧を印加して樹脂を加熱溶融させ溶着させる方法が記載されている。特許文献1には接合面に抵抗発熱体を挟みこれに電圧を印加させることで溶着する方法が記載されている。特許文献2には電圧の印加方法について記載されている。   In general, as a joining method of a molded product using the thermoplastic resin as a matrix (hereinafter, sometimes referred to as a thermoplastic resin reinforced fiber composite material, or simply a composite material), fastening with an adhesive, welding, bolt nut or rivet is used. Etc. are known. In particular, welding is a very advantageous joining method for a molded article made of a thermoplastic resin because the raw materials are integrated as they are, so that a high strength is obtained without an increase in weight due to joining. Various welding methods have been studied. For example, Patent Document 1 and Patent Document 2 describe a method in which a voltage is applied to a resistance heating element to heat and melt a resin for welding. Patent Document 1 describes a method of welding by sandwiching a resistance heating element between joint surfaces and applying a voltage thereto. Patent Document 2 describes a voltage application method.

また、炭素繊維自身を抵抗発熱体として接合する方法として特許文献3、特許文献4がある。特許文献3には、対面する溶着すべき熱可塑性樹脂成形品の接合面に、炭素繊維を主体とする発熱体を挟み込み、適宜な力で加圧しながら前記発熱体へ電圧を印加して発熱させて接合面の樹脂を溶融し、その後、電圧の印加を止めて樹脂を冷却し、硬化させる炭素繊維に電流を通しアクリル樹脂同士を溶着する方法が記載されている。また特許文献4には、炭素繊維に電流を通しアクリル樹脂同士を溶着する方法が記載されている。   Further, Patent Literature 3 and Patent Literature 4 are methods for joining carbon fibers themselves as resistance heating elements. In Patent Document 3, a heating element mainly composed of carbon fiber is sandwiched between bonding surfaces of thermoplastic resin moldings to be welded facing each other, and a voltage is applied to the heating element while applying pressure with an appropriate force to generate heat. A method is described in which the resin on the joining surface is melted, and then the application of voltage is stopped to cool the resin, and an acrylic resin is welded together by passing an electric current through carbon fibers to be cured. Patent Document 4 describes a method of welding an acrylic resin by passing an electric current through carbon fibers.

特開昭58−59050号公報JP 58-59050 A 特開2000−52434号公報JP 2000-52434 A 特開平11−300836号公報Japanese Patent Laid-Open No. 11-300836 特開2002−46185号公報JP 2002-46185 A

熱可塑性樹脂炭素繊維複合材料を溶着により接合するには、抵抗発熱体に電圧を印加する等により加熱して少なくとも複合材料中の樹脂を溶融させて接合する必要がある。ここで、上記特許文献3、特許文献4に記載されているような、複合材料に強化繊維として炭素繊維が含まれていると、炭素繊維は電気を流しやすい材料であることから、抵抗発熱体に通電させた電気が炭素繊維に流れてしまうことが懸念される。そうすると、抵抗発熱体に十分な電流が流れず、抵抗発熱体が十分に加熱されないため溶着することができないという問題がある。
本発明の目的は、炭素繊維を含む複合材料同士を、抵抗発熱体に電圧を印加して加熱溶融する簡便な方法により、良好な接合強度を有する接合体の製造方法を提供することにある。
In order to join the thermoplastic resin carbon fiber composite material by welding, it is necessary to heat and heat at least a resin in the composite material by applying a voltage to the resistance heating element. Here, when carbon fiber is contained as a reinforcing fiber in the composite material as described in Patent Document 3 and Patent Document 4, since the carbon fiber is a material that easily conducts electricity, the resistance heating element There is a concern that the electricity energized to flow into the carbon fiber. Then, there is a problem that a sufficient current does not flow through the resistance heating element, and the resistance heating element is not sufficiently heated, so that it cannot be welded.
An object of the present invention is to provide a method for producing a bonded body having good bonding strength by a simple method in which a composite material containing carbon fibers is heated and melted by applying a voltage to a resistance heating element.

本発明者らは、鋭意検討を重ねた結果、抵抗発熱体と、炭素繊維を含む熱可塑性樹脂で成形された少なくとも2つの成形品の接合面の間に電気絶縁層として樹脂層を設けることにより良好な接合強度を有する接合体を製造することを見出した。   As a result of intensive studies, the present inventors have provided a resin layer as an electrical insulating layer between the joining surface of the resistance heating element and at least two molded products molded of a thermoplastic resin containing carbon fiber. It has been found that a bonded body having good bonding strength is produced.

すなわち、本発明は、炭素繊維を含む熱可塑性樹脂で成形され、少なくとも1つの面を有する2以上の成形品を熱溶着して接合する接合体の製造方法であって、
(i)たがいに向き合う当該成形品の面(接合面)の間に絶縁樹脂層を介して抵抗発熱体を配置して、当該接合面を加圧し、
(ii)配置した抵抗発熱体に電圧を印加して発熱させ、
(iii)当該接合面の熱可塑性樹脂を加熱溶融し、熱溶着する接合体の製造方法、である。
That is, the present invention is a method for manufacturing a joined body in which two or more molded products having at least one surface formed by thermoplastic resin containing carbon fibers are thermally welded and joined.
(I) disposing a resistance heating element via an insulating resin layer between the surfaces of the molded product facing each other (joint surface), and pressurizing the joint surface;
(Ii) A voltage is applied to the arranged resistance heating element to generate heat,
(Iii) A method for manufacturing a joined body in which a thermoplastic resin on the joint surface is heated and melted and thermally welded.

本発明では以上のように、抵抗発熱体と複合材料との間に複合材料に含まれるマトリックス樹脂と同一または相溶する樹脂を用いてなる絶縁層を設け、抵抗発熱体に電圧を印加して加圧し、溶着を行うようにした。
この結果、接合面において抵抗発熱体に通電した際に、複合材料中の炭素繊維に電気が流れてしまうことが実質的になく、抵抗発熱体を均一に加熱することが可能となる。特に成形品中に炭素繊維を含有するので、接合面の全体に比較的短い時間で熱が広範囲に伝わる。したがって、接合面積が広く、高い接合強度を効率的に達成することができる。
In the present invention, as described above, an insulating layer made of a resin that is the same as or compatible with the matrix resin contained in the composite material is provided between the resistance heating element and the composite material, and a voltage is applied to the resistance heating element. Pressure was applied to perform welding.
As a result, when the resistance heating element is energized at the bonding surface, electricity hardly flows to the carbon fibers in the composite material, and the resistance heating element can be heated uniformly. In particular, since carbon fiber is contained in the molded product, heat is transmitted over a wide range to the entire joint surface in a relatively short time. Therefore, the bonding area is large, and high bonding strength can be achieved efficiently.

以下本発明の実施形態について説明する。
[成形品]
本発明に用いられる成形品は、炭素繊維を含む熱可塑性樹脂で成形されたものである。すなわち、熱可塑性樹脂をマトリックス成分とし、これに炭素繊維を含有してなる熱可塑性樹脂複合材料である。かかる成形品は接合面となる少なくとも1つの面を有する。
Embodiments of the present invention will be described below.
[Molding]
The molded product used in the present invention is molded from a thermoplastic resin containing carbon fibers. That is, it is a thermoplastic resin composite material in which a thermoplastic resin is used as a matrix component and carbon fibers are contained therein. Such a molded article has at least one surface to be a bonding surface.

[熱可塑性樹脂]
複合材料を構成する熱可塑性樹脂としては、特に限定はなく、例えば、ポリアミド、ポリカーボネート、ポリオキシメチレン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、AS樹脂およびABS樹脂などの熱可塑性樹脂が挙げられる。これらは2種類混合して用いてもよい。
[Thermoplastic resin]
The thermoplastic resin constituting the composite material is not particularly limited. For example, polyamide, polycarbonate, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polystyrene, poly Examples thereof include thermoplastic resins such as methyl methacrylate, AS resin, and ABS resin. Two of these may be used in combination.

[炭素繊維]
本発明では、炭素繊維を用いるので、軽量かつ高強度、高剛性の成形品を得ることができる。平均繊維径は好ましくは3〜12μmであり、より好ましくは5〜7μmである。また、かかる炭素繊維は、1種類を単独で用いてもよいし、径が異なる2種類以上を併用してもよい。
ここで用いる炭素繊維の形態は、特に限定されず、連続繊維であっても、不連続繊維であっても良い。連続繊維の場合は、例えば、1軸方向に炭素繊維を引き揃えた1方向基材や不織布のような形態が挙げられるがこの限りではない。また、不連続繊維の場合には、繊維長に関して特に限定されない。
[Carbon fiber]
In the present invention, since carbon fibers are used, a molded product having a light weight, high strength, and high rigidity can be obtained. The average fiber diameter is preferably 3 to 12 μm, more preferably 5 to 7 μm. Moreover, this carbon fiber may be used individually by 1 type, and may use together 2 or more types from which a diameter differs.
The form of the carbon fiber used here is not particularly limited, and may be a continuous fiber or a discontinuous fiber. In the case of continuous fibers, for example, a form such as a unidirectional substrate or a nonwoven fabric in which carbon fibers are aligned in a uniaxial direction can be mentioned, but this is not restrictive. Moreover, in the case of a discontinuous fiber, it does not specifically limit regarding fiber length.

また、前記炭素繊維には、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などの表面処理が施されていてもよい。これらの炭素繊維は、殆どの場合、サイジング剤を付着させたものが用いられる。サイジング剤の付着量は、炭素繊維100重量部に対し0.01〜10重量部であることが好ましい。
例えば、不連続の炭素繊維を用いる場合には、かかる炭素繊維が等方的にランダムに分散して重なるように配置したものがよい。この場合の繊維長は好ましくは平均繊維長が5mm以上100mm以下であり、より好ましくは5mmを超え100mm未満であり、さらに平均繊維長の上限値は好ましくは50mmである。なお、本発明で用いる強化材は、平均繊維長が前記範囲であればよいが、長さが5mm未満の不連続繊維や100mmを超える不連続繊維は炭素繊維全体の20重量%以下の割合で含んでもよいが、接合に影響を及ぼすことがあるので、実質的には含まないことが好ましい。
The carbon fiber may be subjected to a surface treatment such as a treatment with a coupling agent, a treatment with a sizing agent, or an adhesion treatment of an additive. In most cases, those carbon fibers to which a sizing agent is attached are used. The adhesion amount of the sizing agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the carbon fiber.
For example, when discontinuous carbon fibers are used, it is preferable that such carbon fibers are disposed so as to be isotropically randomly dispersed and overlapped. In this case, the fiber length is preferably 5 mm or more and 100 mm or less, more preferably more than 5 mm and less than 100 mm, and the upper limit of the average fiber length is preferably 50 mm. The reinforcing material used in the present invention may have an average fiber length in the above range, but the discontinuous fiber having a length of less than 5 mm or the discontinuous fiber exceeding 100 mm is a ratio of 20% by weight or less of the total carbon fiber. Although it may be included, since it may affect the bonding, it is preferable that it is not substantially included.

また、炭素繊維の単糸繊度は、好ましくは100〜5,000dtex、より好ましくは1,000〜2,000dtexである。さらに、炭素繊維の場合は、フィラメント数が3,000〜6,0000本集束した実質的に無撚の糸条(ストランド)からなる連続繊維、あるいはこれをカットしてなる短繊維束が用いられる。   The single yarn fineness of the carbon fiber is preferably 100 to 5,000 dtex, more preferably 1,000 to 2,000 dtex. Further, in the case of carbon fiber, a continuous fiber made of substantially untwisted yarn (strand) in which the number of filaments is bundled between 3,000 and 6,000, or a short fiber bundle formed by cutting the continuous fiber is used. .

[熱可塑性樹脂と炭素繊維の割合]
上記熱可塑性樹脂と炭素繊維の配合割合としては、炭素繊維100重量部に対し熱可塑性樹脂が50〜1,000重量部含まれていることが好ましい。より好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜400重量部、更に好ましくは、炭素繊維100重量部に対し、熱可塑性樹脂50〜100重量部である。前記割合とすることにより、成形品の成形性が良好で、最終的に得られる接合体の機械的強度も高い。
なお、本発明における成形品には、本発明の目的を損なわない範囲(例えば全体の20重量%以下の範囲)で、各種添加剤を含んでも良い。添加剤としては、例えば難燃剤、熱安定剤、紫外線吸収剤、造核剤、可塑剤などが挙げられる。
成形品の炭素繊維体積含有率(Vf=100×炭素繊維の体積/(炭素繊維の体積+熱可塑性樹脂の体積)が5%から80%であることが望ましい。
[Ratio of thermoplastic resin to carbon fiber]
The blending ratio of the thermoplastic resin and the carbon fiber is preferably 50 to 1,000 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber. More preferably, it is 50 to 400 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber, and further preferably 50 to 100 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the carbon fiber. By setting the ratio, the moldability of the molded product is good, and the finally obtained joined body has high mechanical strength.
The molded product according to the present invention may contain various additives within a range that does not impair the object of the present invention (for example, a range of 20% by weight or less). Examples of the additive include a flame retardant, a heat stabilizer, an ultraviolet absorber, a nucleating agent, and a plasticizer.
The carbon fiber volume content (Vf = 100 × carbon fiber volume / (carbon fiber volume + thermoplastic resin volume)) of the molded product is preferably 5% to 80%.

[成形品の形状]
本発明で用いる成形品の形状としては、シート状、直方体などの6面構造体を含め、種々の形状のものに対して適用できる。板状などの面状体の場合、厚みとしては例えば0.5mm〜10mmの範囲である。厚みは、さらに好ましくは1〜8mmである。ただし、当該成形品は複数の成形品を接合させるために、接合面となる少なくとも1つの平面を有する形状である必要がある。かかる接合面は凹凸がなく基本的に表面性が良好であることが望ましい。したがって、接合面以外の面は、種々の形状のものであってよい。例えば、三次元曲面を持つ形状であってもよい。
[Shape of molded product]
The shape of the molded product used in the present invention can be applied to various shapes including a six-sided structure such as a sheet and a rectangular parallelepiped. In the case of a planar body such as a plate, the thickness is, for example, in the range of 0.5 mm to 10 mm. The thickness is more preferably 1 to 8 mm. However, in order to join a plurality of molded products, the molded product needs to have a shape having at least one plane serving as a bonding surface. It is desirable that such a joining surface is basically free from irregularities and has good surface properties. Therefore, the surfaces other than the bonding surface may have various shapes. For example, a shape having a three-dimensional curved surface may be used.

[成形品の製造方法]
本発明における成形品は、炭素繊維を含む熱可塑性樹脂で成形されたものであれば従来の方法で製造することができる。特に、本発明により機械強度にいっそう優れた成形品を得ようとする場合、好ましくは炭素繊維の開繊程度をコントロールし、特定本数以上からなる強化繊維束と、それ以外の開繊された炭素繊維を特定の割合で含むプリプレグを用いて成形された成形品であることが望ましい。すなわち、本発明に用いるプリプレグにおいては、下記式(1)
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される炭素繊維束(A)について、炭素繊維全量に対する割合が20Vol%以上99Vol%以下であることが、より優れた機械物性を得る目的において好ましい。なお、かかるプリプレグには、炭素繊維束(A)以外の炭素繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在する。よりいっそう機械物性に優れた成形体を得ようとする場合の、炭素繊維束(A)の割合はより好ましくは30Vol%以上90Vol%未満であり、さらに好ましくは30Vol%以上80Vol%未満である。
[Production method of molded products]
The molded article in the present invention can be produced by a conventional method as long as it is molded from a thermoplastic resin containing carbon fibers. In particular, when trying to obtain a molded article with further improved mechanical strength according to the present invention, preferably the degree of carbon fiber opening is controlled, and a reinforcing fiber bundle consisting of a specific number or more and other opened carbon A molded article formed using a prepreg containing a specific ratio of fibers is desirable. That is, in the prepreg used in the present invention, the following formula (1)
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
With respect to the carbon fiber bundle (A) composed of the number of critical single yarns or more defined in the above, it is preferable for the purpose of obtaining more excellent mechanical properties that the ratio with respect to the total amount of carbon fibers is 20 Vol% or more and 99 Vol% or less. In addition, in this prepreg, the fiber bundle comprised by the state of a single yarn or less than a critical single yarn number exists as carbon fibers other than a carbon fiber bundle (A). The ratio of the carbon fiber bundle (A) in the case of obtaining a molded body having further excellent mechanical properties is more preferably 30 Vol% or more and less than 90 Vol%, and further preferably 30 Vol% or more and less than 80 Vol%.

さらに臨界単糸数以上で構成される炭素繊維束(A)中の平均繊維数(N)が下記式(2)
0.7×10/D<N<1×10/D (2)
(ここでDは強化繊維の平均繊維径(μm)である)
を満たすことが好ましい。上記式(2)は、下記式(2’)
0.7×10/D<N<6.0×10/D (2’)
を満たすことがより好ましい。
Further, the average number of fibers (N) in the carbon fiber bundle (A) composed of the number of critical single yarns or more is represented by the following formula (2).
0.7 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
It is preferable to satisfy. The above formula (2) is expressed by the following formula (2 ′)
0.7 × 10 4 / D 2 <N <6.0 × 10 4 / D 2 (2 ′)
It is more preferable to satisfy.

炭素繊維束(A)中の平均繊維数(N)が0.7×10/D以下の場合、高い繊維体積含有率(Vf)を得ることが困難となる。また炭素繊維束(A)中の平均繊維数(N)が6.0×10/D以上、特に1×10以上の場合、プリプレグや最終製品である成形体において局部的に厚い部分が生じ、ボイド生成の原因となりやすい。 When the average number of fibers (N) in the carbon fiber bundle (A) is 0.7 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). Further, in the case where the average number of fibers (N) in the carbon fiber bundle (A) is 6.0 × 10 4 / D 2 or more, particularly 1 × 10 5 or more, a locally thick portion in a molded body which is a prepreg or a final product. This is likely to cause void formation.

なお、上記プリプレグは、通常、成形体製造用のシート材料であり、厚みが0.1mm〜10mmの範囲内のものである。かかるプリプレグは熱可塑性樹脂が完全に含浸したものを用いなくても良く、含浸率50%〜100%のものを用いることが出来るが、好ましくは70%〜100%の含浸率であり、90%〜100%の含浸率がより好ましい。ここで、含浸率とはプリプレグの体積を100%とし、プリプレグに含まれる空気の体積を求め、プリプレグの体積から減算することで求めることが出来る。またかかるプリプレグは複数用いて成形することもできる。   In addition, the said prepreg is a sheet | seat material for a molded object manufacture normally, and the thing within the range whose thickness is 0.1 mm-10 mm. Such a prepreg does not need to be completely impregnated with a thermoplastic resin, and an impregnation rate of 50% to 100% can be used. Preferably, the impregnation rate is 70% to 100%, and 90% An impregnation rate of ˜100% is more preferable. Here, the impregnation ratio can be obtained by setting the volume of the prepreg to 100%, obtaining the volume of air contained in the prepreg, and subtracting from the volume of the prepreg. A plurality of such prepregs can be used.

さらに上記プリプレグは、面内方向において、適当に分散するように配置させると、物性、例えば、強度・弾性率等が面内方向の異方性を実質的に有しない成形品となる。そのような成形品を用いて接合面が当該面内方向に対し平行であれば、最終的に得られる接合体は、一方向の強度に優れたものとなり、用途によっては好都合である。またかかる接合体は、例えば、一部分または全体として三次元曲面を持つ形状であってもよい。   Further, when the prepreg is disposed so as to be appropriately dispersed in the in-plane direction, the molded product has substantially no physical properties, for example, strength, elastic modulus, etc., and in-plane direction anisotropy. If the joint surface is parallel to the in-plane direction using such a molded product, the finally obtained joined body has excellent strength in one direction, which is advantageous depending on the application. Further, such a joined body may have a shape having a three-dimensional curved surface as a part or as a whole.

[抵抗発熱体]
本発明で使用する抵抗発熱体としては、電圧を一定時間印加して前記の熱可塑性樹脂を溶融するまで昇温ができれば、材質についての制限はなく、例えば、鉄、銅などの金属、ステンレス、ニッケルクロム、鉄クロム、鉄ニッケルなどの合金や、炭素繊維などが挙げられる。これらの材料は2種類以上組み合わせて用いてもよい。
[Resistance heating element]
As the resistance heating element used in the present invention, as long as the temperature can be raised until the thermoplastic resin is melted by applying a voltage for a certain period of time, there is no limitation on the material, for example, metals such as iron and copper, stainless steel, Alloys such as nickel chrome, iron chrome, and iron nickel, and carbon fibers can be used. Two or more of these materials may be used in combination.

抵抗発熱体の形状については、上記材質からなる成形体であれば特に制限はなく、例えばロッド、針金、ワイヤーのような棒状のものや、箔、シートなどの板状のものを挙げることができる。なお、棒状の場合でも、一部分または全体的に曲がっていてもよい。抵抗発熱体の断面から見た形状としては、丸、矩形、多角形、などが挙げられる。抵抗発熱体の太さ(厚さ)としては、接合形状(接合部(面)の形状))に沿わせるようにして対応させる必要があり、扱いやすさの点から5mm以下とすることが好ましい。下限値としては、特に制限はないが0.1mmが好ましい。抵抗発熱体の長さについては、接合面の長さに合わせればよい。   The shape of the resistance heating element is not particularly limited as long as it is a molded body made of the above materials, and examples thereof include rod-shaped objects such as rods, wires, and wires, and plate-shaped objects such as foils and sheets. . Even in the case of a rod shape, it may be bent partially or entirely. Examples of the shape viewed from the cross section of the resistance heating element include a circle, a rectangle, and a polygon. The thickness (thickness) of the resistance heating element needs to be matched with the joint shape (shape of the joint (surface)), and is preferably 5 mm or less from the viewpoint of ease of handling. . Although there is no restriction | limiting in particular as a lower limit, 0.1 mm is preferable. About the length of a resistance heating element, what is necessary is just to match | combine with the length of a joint surface.

また、抵抗発熱体は、接合面の大きさにより適宜選択することができ、棒状の場合には1本であっても複数本であってもよい。特に炭素繊維を抵抗発熱体として使用する場合、24000本、12000本、3000本といった本数を使用する。抵抗発熱体が板状の場合には、接合面の大きさにより、1または複数用いることが出来る。上から見た場合の形状は多角形でも円形状、楕円形状もよい。   Further, the resistance heating element can be appropriately selected depending on the size of the joint surface, and in the case of a rod shape, it may be one or plural. In particular, when carbon fiber is used as a resistance heating element, a number such as 24000, 12000, 3000 is used. When the resistance heating element is plate-shaped, one or more can be used depending on the size of the joint surface. The shape when viewed from above may be polygonal, circular, or elliptical.

[接合面の形状]
本発明では、複雑な3次元曲面といった接合部形状にも対応できるため、接合面の形状に制限はないが、抵抗発熱体の位置決めの点から、接合する複数の成形品の少なくとも一方に抵抗発熱体をセットする溝や凹部を予め設けておくことが好ましい。溝や凹部の形状としては、特に制限はないが、良好な強度と外観を持つ接合体を得るためには、設けた溝や凹部の断面積が、抵抗発熱体と接合する複合材料間の絶縁層として設ける後述の絶縁樹脂層の断面積の20%から200%であることが好ましい。
また、接合面の形状としては、例えば2つの成形品を接合する場合には、四角形状であることが好ましいが、円形状であったり、平行四辺形やひし形であってもよい。
[Shape of joint surface]
In the present invention, since it is possible to cope with a joint shape such as a complicated three-dimensional curved surface, there is no limitation on the shape of the joint surface. It is preferable to provide a groove or a recess for setting the body in advance. There are no particular restrictions on the shape of the groove or recess, but in order to obtain a joined body with good strength and appearance, the cross-sectional area of the groove or recess provided is insulated between the composite materials to be joined to the resistance heating element. It is preferably 20% to 200% of the cross-sectional area of an insulating resin layer described later provided as a layer.
In addition, as the shape of the joining surface, for example, when two molded products are joined, a quadrangular shape is preferable, but a circular shape, a parallelogram, or a rhombus may be used.

[絶縁樹脂層]
本発明においては、互いに向き合う上記複数の成形品が接合する面(接合面)の間に、絶縁樹脂層を介して前記した抵抗発熱体が配置された状態で加圧する。ここで絶縁樹脂層は、かかる抵抗発熱体に電圧を印加した際に当該複数の成形品に実質的に電流が流れることを防ぐ。これにより、抵抗発熱体を均一に加熱することができ、その結果、成形品の接合面付近の熱可塑性樹脂が均一に加熱され溶融する。
ここで、絶縁樹脂層を形成する樹脂としては、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、前記したものと同じものを用いることができる。その中でも、成形品と同じもの、同類のもの、または相溶する熱可塑性樹脂を用いると、接着性に優れ、強度特性が良好な接合体が得られるので好ましい。
[Insulating resin layer]
In the present invention, pressure is applied in a state in which the resistance heating element is disposed between the surfaces (joint surfaces) where the plurality of molded products facing each other are joined (joint surfaces). Here, the insulating resin layer substantially prevents current from flowing through the plurality of molded articles when a voltage is applied to the resistance heating element. Thereby, the resistance heating element can be heated uniformly, and as a result, the thermoplastic resin in the vicinity of the joint surface of the molded product is uniformly heated and melted.
Here, examples of the resin forming the insulating resin layer include a thermoplastic resin and a thermosetting resin. As the thermoplastic resin, the same ones as described above can be used. Among these, it is preferable to use a thermoplastic resin that is the same as or similar to the molded product, or a compatible thermoplastic resin because a bonded body having excellent adhesion and excellent strength characteristics can be obtained.

本発明における絶縁樹脂層は、上記成形品と抵抗発熱体との間に存在し、抵抗発熱体が成形品と直接接しないようにする。
かかる絶縁樹脂層としては、例えば、厚みが0.1mmから5mmの範囲のシートからなる層、あるいは、前記抵抗発熱体を、例えば厚さ0.1mmから5mmの上記絶縁樹脂で覆った被覆層を挙げることができる。さらには、前記絶縁樹脂層からなるシート状物を、前記抵抗発熱体の周囲を周回するようにして巻き、成形品の接合面に配置した層とすることもできる。これらの絶縁樹脂層は2種類以上併用してもよい。
絶縁樹脂層の厚さとしては、0.1mmから5mmの範囲であることが好ましい。複雑な形状に沿わせるという点からは0.1mmから2mmの範囲であることがより好ましい。
The insulating resin layer in the present invention exists between the molded product and the resistance heating element so that the resistance heating element does not directly contact the molding product.
As such an insulating resin layer, for example, a layer made of a sheet having a thickness in the range of 0.1 mm to 5 mm, or a coating layer in which the resistance heating element is covered with the insulating resin having a thickness of 0.1 mm to 5 mm, for example. Can be mentioned. Furthermore, a sheet-like material composed of the insulating resin layer may be wound around the resistance heating element so as to be a layer disposed on the joint surface of the molded product. Two or more of these insulating resin layers may be used in combination.
The thickness of the insulating resin layer is preferably in the range of 0.1 mm to 5 mm. From the viewpoint of conforming to a complicated shape, a range of 0.1 mm to 2 mm is more preferable.

[接合手順]
本発明の接合体の好ましい製造方法について、以下に説明するが、本発明はこれらに限定されるものではない。
接合する炭素繊維複合材料である成形品を2以上準備する。絶縁樹脂層としてシートを用いる場合には、成形品、シート、抵抗発熱体、シート、成形品の順に配置して加圧する。言い換えると、成形品及びシートで抵抗発熱体を挟んで押さえる。
また、絶縁樹脂層として抵抗発熱体を被覆した場合には、2つの成形品の間にある接合面に抵抗発熱体を挟み込むようにして配置して加圧することができる。
このときの加圧力としては抵抗発熱体と絶縁樹脂層を形成するシートが動かない程度でよいが、例えば、0.02〜0.2MPaである。
[Jointing procedure]
Although the preferable manufacturing method of the conjugate | zygote of this invention is demonstrated below, this invention is not limited to these.
Two or more molded articles that are carbon fiber composite materials to be joined are prepared. When a sheet is used as the insulating resin layer, the molded product, the sheet, the resistance heating element, the sheet, and the molded product are arranged and pressed in this order. In other words, the resistance heating element is sandwiched and held between the molded product and the sheet.
Further, when the resistance heating element is coated as the insulating resin layer, the resistance heating element can be arranged and pressed so as to be sandwiched between the joint surfaces between the two molded products.
The applied pressure at this time may be such that the sheet that forms the resistance heating element and the insulating resin layer does not move, but is, for example, 0.02 to 0.2 MPa.

次に抵抗発熱体の両端に電圧を印加する。印加する電圧に制限はないが、10Vから400Vの範囲が好ましい。良好な強度を有する接合体を得るためには、抵抗発熱体を溶着に適した温度に均一に加熱することが好ましく、このための通電方法としては、一定電圧にしてON,OFFを繰り返してもよく、電圧を増減させてもよい。
抵抗発熱体が溶着に十分な温度に加熱されたところで再度加圧し、十分に冷却するまで加圧保持する。このときの加圧力は溶着面積あたり0.5MPa以上であることが好ましい。上限値は接合体の大きさ等によるが、例えば100MPaである。
Next, a voltage is applied across the resistance heating element. Although there is no restriction | limiting in the voltage to apply, The range of 10V to 400V is preferable. In order to obtain a joined body having good strength, it is preferable to uniformly heat the resistance heating element to a temperature suitable for welding. As a method for energizing, it is possible to repeat ON and OFF at a constant voltage. The voltage may be increased or decreased.
When the resistance heating element is heated to a temperature sufficient for welding, the pressure is applied again, and the pressure is maintained until the resistance heating element is sufficiently cooled. The applied pressure at this time is preferably 0.5 MPa or more per welding area. The upper limit depends on the size of the joined body, but is, for example, 100 MPa.

しかして本発明によれば、強化繊維を含む熱可塑性樹脂からなる2つ以上の成形品から構成され、少なくとも2つの該成形品の間に、絶縁樹脂層を介して、金属、合金または炭素繊維からなる抵抗発熱体を有する接合体が得られる。かかる抵抗発熱体は、2つの成形品の間に存在するものであり、2以上の成形品は良好な接着性を示し、機械的強度、剛性に優れている。   Thus, according to the present invention, a metal, an alloy, or a carbon fiber is composed of two or more molded articles made of a thermoplastic resin containing reinforcing fibers, and an insulating resin layer is interposed between at least two molded articles. A joined body having a resistance heating element is obtained. Such a resistance heating element exists between two molded articles, and two or more molded articles exhibit good adhesiveness and are excellent in mechanical strength and rigidity.

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらに限定されるものではない。評価結果は表1に示した。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these. The evaluation results are shown in Table 1.

[評価方法]
(引張試験)
得られた接合体をインストロン社製万能試験機5578 300kN容量床置型試験機を用い、JISK6850に基づいて引張せん断試験を実施した。引張速度は1mm/minとした。
[Evaluation method]
(Tensile test)
The obtained bonded body was subjected to a tensile shear test based on JISK6850 using an universal testing machine 5578 300 kN capacity floor type testing machine manufactured by Instron. The tensile speed was 1 mm / min.

[参考例1]
(複合材料の作成1)
平均繊維長20mmにカットした炭素繊維(東邦テナックス製テナックスSTS40、平均繊維径7μm)を平均目付け540g/m、炭素繊維の重量割合で52%、体積で35%になるようランダムに配置し、マトリックスをユニチカ株式会社製ユニチカナイロン6とした炭素繊維複合材料を準備した。この複合材料のサイズは100mmx100mmx厚み1.6mmとした。
[Reference Example 1]
(Creation of composite material 1)
Carbon fibers (Tenax STS40 manufactured by Toho Tenax, average fiber diameter 7 μm) cut to an average fiber length of 20 mm are randomly arranged so that the average basis weight is 540 g / m 2 , the carbon fiber weight ratio is 52%, and the volume is 35%. A carbon fiber composite material having a matrix made of Unitika nylon 6 manufactured by Unitika Ltd. was prepared. The size of the composite material was 100 mm × 100 mm × thickness 1.6 mm.

(複合材料の作成2)
上記複合材料の作成1におけるユニチカナイロン6の代わりに、酸変性ポリプロピレン樹脂(プライムポリマー製プライムポリプロ J108Mを96重量%、無水マレイン酸変性ポリプロピレン(東洋紡社製 トーヨータック PMAH1000P)を4重量%でペレット同士を回転式ブンレンダーで混合したもの)を用いた以外は上記複合材料の作成1と同様にして複合材料を作成した。
(Creation of composite material 2)
In place of Unitika nylon 6 in the preparation of the composite material 1 described above, acid-modified polypropylene resin (Prime Polymer Prime Polypro J108M is 96% by weight, maleic anhydride-modified polypropylene (Toyobo Co., Ltd. Toyotac PMA1000P)) is 4% by weight. A composite material was prepared in the same manner as in Preparation 1 of the composite material, except that the mixture was mixed with a rotary blender.

[参考例2]
(接合方法(1))
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、抵抗発熱体としてφ0.8長さ120mmのステンレスワイヤーを準備した。複合材料間にワイヤーの両端が出るように挟み、また複合材料とワイヤーの間に絶縁層として厚さ2mmのナイロン6のシートを1枚ずつ挟んだ。このとき複合材料の重ね代は25mmとし、接合部に挟んだナイロン6シートのサイズは100mmx25mmとした。
ついで、ワイヤーに100Vの電圧をおよそ20秒間印加し複合材料中のマトリックス樹脂およびナイロン6のシートを溶融させ、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却し、接合体を得た。
[Reference Example 2]
(Joining method (1))
Two identical composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a stainless steel wire having a length of φ0.8 and a length of 120 mm was prepared as a resistance heating element. Both ends of the wire were sandwiched between the composite materials, and a sheet of nylon 6 having a thickness of 2 mm was sandwiched between the composite material and the wires as an insulating layer. At this time, the overlap margin of the composite material was 25 mm, and the size of the nylon 6 sheet sandwiched between the joints was 100 mm × 25 mm.
Then, a voltage of 100 V was applied to the wire for about 20 seconds to melt the matrix resin and the nylon 6 sheet in the composite material, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature to obtain a joined body.

(接合方法(2))
参考例1の複合材料の作成2に基づいて作成した同一の複合材料を2つ準備し、抵抗発熱体としてφ0.8長さ120mmのステンレスワイヤーを準備した。複合材料間にワイヤーの両端が出るように挟み、また複合材料とワイヤーの間に絶縁層として厚さ2mmのポリプロピレンのシートを1枚ずつ挟んだ。このとき複合材料の重ね代は25mmとし、接合部に挟んだポリプロピレンシートのサイズは100mmx25mmとした。
ついで、ワイヤーに100Vの電圧をおよそ18秒間印加し複合材料中のマトリックス樹脂およびポリプロピレンのシートを溶融させ、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却し、接合体を得た。
(Joining method (2))
Two identical composite materials prepared based on preparation 2 of the composite material of Reference Example 1 were prepared, and a stainless steel wire having a length of φ0.8 and a length of 120 mm was prepared as a resistance heating element. Both ends of the wire were sandwiched between the composite materials, and a polypropylene sheet having a thickness of 2 mm was sandwiched between the composite material and the wires as an insulating layer. At this time, the overlap margin of the composite material was 25 mm, and the size of the polypropylene sheet sandwiched between the joints was 100 mm × 25 mm.
Next, a voltage of 100 V was applied to the wire for about 18 seconds to melt the matrix resin and polypropylene sheets in the composite material, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature to obtain a joined body.

[参考例3:接合方法]
(接合方法(3))
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、マトリックス樹脂と同じナイロン6(ユニチカ株式会社製ユニチカナイロン6)で被覆した抵抗発熱体を準備した。このとき、抵抗発熱体はφ0.7長さ120mmのステンレスワイヤーとし、被覆厚さは2mmとした。また、被覆した抵抗発熱体の両端は、それぞれ長さ5mmにわたって被覆した樹脂を剥がした。次いで、複合材料間に被覆したワイヤーの両端が出るように挟んだ。このとき複合材料の重ね代は25mmとした。
ついで、ワイヤーに100Vの電圧をおよそ20秒間印加し複合材料中のマトリックス樹脂および抵抗発熱体を被覆しているナイロン6を溶融させ、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却し、接合体を得た。
[Reference Example 3: Joining Method]
(Joining method (3))
Two of the same composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a resistance heating element coated with the same nylon 6 (Unitika nylon 6 manufactured by Unitika Ltd.) as the matrix resin was prepared. At this time, the resistance heating element was a stainless wire of φ0.7 length 120 mm, and the coating thickness was 2 mm. The coated resin was peeled off at both ends of the coated resistance heating element over a length of 5 mm. Next, the both ends of the coated wire were sandwiched between the composite materials. At this time, the overlap margin of the composite material was set to 25 mm.
Next, a voltage of 100 V was applied to the wire for about 20 seconds to melt the nylon 6 covering the matrix resin and the resistance heating element in the composite material, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature to obtain a joined body.

(接合方法(4))
参考例1の複合材料の作成2に基づいて作成した同一の複合材料を2つ準備し、マトリックス樹脂と同じポリプロピレン(プライムポリマー製プライムポリプロ J108M)で被覆した抵抗発熱体を準備した。このとき、抵抗発熱体はφ0.7長さ120mmのステンレスワイヤーとし、被覆厚さは2mmとした。また、被覆した抵抗発熱体の両端は、それぞれ長さ5mmにわたって被覆した樹脂を剥がした。次いで、複合材料間に被覆したワイヤーの両端が出るように挟んだ。このとき複合材料の重ね代は25mmとした。
ついで、ワイヤーに100Vの電圧をおよそ18秒間印加し複合材料中のマトリックス樹脂および抵抗発熱体を被覆しているポリプロピレンを溶融させ、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却し、接合体を得た。
(Joining method (4))
Two identical composite materials prepared based on Preparation 2 of the composite material of Reference Example 1 were prepared, and a resistance heating element coated with the same polypropylene as the matrix resin (Prime Polymer Prime Polypro J108M) was prepared. At this time, the resistance heating element was a stainless wire of φ0.7 length 120 mm, and the coating thickness was 2 mm. The coated resin was peeled off at both ends of the coated resistance heating element over a length of 5 mm. Next, the both ends of the coated wire were sandwiched between the composite materials. At this time, the overlap margin of the composite material was set to 25 mm.
Next, a voltage of 100 V was applied to the wire for about 18 seconds to melt the polypropylene covering the matrix resin and the resistance heating element in the composite material, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature to obtain a joined body.

[参考例4:接合方法]
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、マトリックス樹脂と同じナイロン6(ユニチカ株式会社製ユニチカナイロン6)で被覆した抵抗発熱体を準備した。このとき、抵抗発熱体は長さ120mmの炭素繊維(東邦テナックス製テナックスSTS40、24K、平均繊維径7μm)とし、被覆厚さは2mmとした。また、被覆した炭素繊維の両端は、それぞれ長さ5mmにわたって被覆した樹脂を剥がした。次いで、複合材料間に被覆した炭素繊維の両端が出るように挟んだ。このとき複合材料の重ね代は25mmとした。
ついで、炭素繊維に100Vの電圧をおよそ25秒間印加し複合材料中のマトリックス樹脂および炭素繊維を被覆しているナイロン6を溶融させ、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却し、接合体を得た。
[Reference Example 4: Joining Method]
Two of the same composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a resistance heating element coated with the same nylon 6 (Unitika nylon 6 manufactured by Unitika Ltd.) as the matrix resin was prepared. At this time, the resistance heating element was 120 mm long carbon fiber (Tenax STS40, 24K manufactured by Toho Tenax, average fiber diameter 7 μm), and the coating thickness was 2 mm. Further, the coated resin was peeled off at both ends of the coated carbon fiber over a length of 5 mm. Subsequently, the carbon fiber covered between the composite materials was sandwiched so that both ends would come out. At this time, the overlap margin of the composite material was set to 25 mm.
Next, a voltage of 100 V was applied to the carbon fibers for approximately 25 seconds to melt the matrix resin in the composite material and the nylon 6 covering the carbon fibers, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature to obtain a joined body.

[比較例1]
(接合)
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、抵抗発熱体としてφ0.7長さ120mmのステンレスワイヤーを準備した。複合材料間にワイヤーの両端が出るように挟んだ。このとき複合材料の重ね代は25mmとした。
ついで、ワイヤーに100Vの電圧をおよそ20秒間印加し、通電を停止した直後に2MPaで接合部を加圧した。約30秒程度加圧保持したまま室温まで冷却した。
(評価)
上記比較例1において、接合体を得ることはできなかった。このとき、ワイヤーを配置した部分の樹脂が加熱された様子は見られなかった。
[Comparative Example 1]
(Joining)
Two identical composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a stainless steel wire having a φ0.7 length of 120 mm was prepared as a resistance heating element. The wire was sandwiched between the composite materials so that both ends would come out. At this time, the overlap margin of the composite material was set to 25 mm.
Next, a voltage of 100 V was applied to the wire for about 20 seconds, and immediately after the energization was stopped, the joint was pressurized at 2 MPa. While maintaining the pressure for about 30 seconds, it was cooled to room temperature.
(Evaluation)
In Comparative Example 1, a joined body could not be obtained. At this time, the state where the resin of the part which has arrange | positioned the wire was heated was not seen.

[実施例1]
(接合)
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、参考例2の接合方法1に基づいて接合体を得た。
(評価)
得られた接合体を、上記評価方法にて引張せん断強度を測定すると、破壊荷重は11.3kNであった。
[Example 1]
(Joining)
Two identical composite materials prepared based on the composite material preparation 1 of Reference Example 1 were prepared, and a joined body was obtained based on the joining method 1 of Reference Example 2.
(Evaluation)
When the obtained bonded body was measured for tensile shear strength by the above evaluation method, the breaking load was 11.3 kN.

[実施例2]
(接合)
参考例1の複合材料の作成2に基づいて作成した同一の複合材料を2つ準備し、参考例2の接合方法2に基づいて接合体を得た。
(評価)
得られた接合体を、上記評価方法にて引張せん断強度を測定すると、破壊荷重は10.3kNであった。
[Example 2]
(Joining)
Two identical composite materials prepared based on the composite material preparation 2 of Reference Example 1 were prepared, and a joined body was obtained based on the joining method 2 of Reference Example 2.
(Evaluation)
When the obtained bonded body was measured for tensile shear strength by the above evaluation method, the breaking load was 10.3 kN.

[実施例3]
(接合)
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、参考例3の接合方法3に基づいて接合体を得た。
(評価)
得られた接合体を、上記評価方法にて引張せん断強度を測定すると、破壊荷重は10.6kNであった。
[Example 3]
(Joining)
Two identical composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a joined body was obtained based on the joining method 3 of Reference Example 3.
(Evaluation)
When the obtained bonded body was measured for tensile shear strength by the above evaluation method, the breaking load was 10.6 kN.

[実施例4]
(接合)
参考例1の複合材料の作成2に基づいて作成した同一の複合材料を2つ準備し、参考例3の接合方法4に基づいて接合体を得た。
(評価)
得られた接合体を、上記評価方法にて引張せん断強度を測定すると、破壊荷重は10.0kNであった。
[Example 4]
(Joining)
Two identical composite materials prepared based on Preparation 2 of the composite material of Reference Example 1 were prepared, and a joined body was obtained based on the joining method 4 of Reference Example 3.
(Evaluation)
When the obtained bonded body was measured for tensile shear strength by the above evaluation method, the breaking load was 10.0 kN.

[実施例5]
(接合)
参考例1の複合材料の作成1に基づいて作成した同一の複合材料を2つ準備し、参考例4に基づいて接合体を得た。
(評価)
得られた接合体を、上記評価方法にて引張せん断強度を測定すると、破壊荷重は10.9kNであった。
[Example 5]
(Joining)
Two identical composite materials prepared based on Preparation 1 of the composite material of Reference Example 1 were prepared, and a joined body was obtained based on Reference Example 4.
(Evaluation)
When the obtained bonded body was measured for tensile shear strength by the above evaluation method, the breaking load was 10.9 kN.

Figure 2013129159
Figure 2013129159

Claims (10)

炭素繊維を含む熱可塑性樹脂で成形され、少なくとも1つの面を有する2以上の成形品を熱溶着して接合する接合体の製造方法であって、
(i)たがいに向き合う当該成形品の面(接合面)の間に絶縁樹脂層を介して抵抗発熱体を配置して、当該接合面を加圧し、
(ii)配置した抵抗発熱体に電圧を印加して発熱させ、
(iii)当該接合面の熱可塑性樹脂を加熱溶融し、熱溶着する接合体の製造方法。
A method for producing a joined body, which is formed of a thermoplastic resin containing carbon fiber and is formed by heat-welding and joining two or more molded articles having at least one surface,
(I) disposing a resistance heating element via an insulating resin layer between the surfaces of the molded product facing each other (joint surface), and pressurizing the joint surface;
(Ii) A voltage is applied to the arranged resistance heating element to generate heat,
(Iii) A method for manufacturing a joined body in which the thermoplastic resin on the joining surface is heated and melted and thermally welded.
抵抗発熱体が、金属、合金または炭素繊維からなる成形体である、請求項1記載の接合体の製造方法。   The method for manufacturing a joined body according to claim 1, wherein the resistance heating element is a molded body made of a metal, an alloy, or carbon fiber. 絶縁樹脂層が、前記熱可塑性樹脂と同一であるか、または相溶する絶縁樹脂からなるものであることを特徴とする請求項1または2に記載の接合体の製造方法。   The method for producing a joined body according to claim 1 or 2, wherein the insulating resin layer is made of an insulating resin that is the same as or compatible with the thermoplastic resin. 絶縁樹脂層が、厚みが0.1mmから5mmの範囲のシートであることを特徴とする請求項1〜3のいずれかに記載の接合体の製造方法。   The method for manufacturing a joined body according to any one of claims 1 to 3, wherein the insulating resin layer is a sheet having a thickness in a range of 0.1 mm to 5 mm. 絶縁樹脂層を介した抵抗発熱体は、厚さ0.1mmから5mmの絶縁樹脂で被覆したものであることを特徴とする請求項1〜3のいずれかに記載の接合体の製造方法。   The method of manufacturing a joined body according to any one of claims 1 to 3, wherein the resistance heating element via the insulating resin layer is coated with an insulating resin having a thickness of 0.1 mm to 5 mm. 成形品の炭素繊維体積含有率(Vf=100×炭素繊維の体積/(炭素繊維の体積+熱可塑性樹脂の体積)が5%から80%であることを特徴とする請求項1から請求項5のいずれかに記載の接合体の製造方法。   6. The carbon fiber volume content (Vf = 100 × carbon fiber volume / (carbon fiber volume + thermoplastic resin volume)) of the molded product is 5% to 80%. The manufacturing method of the conjugate | zygote in any one of. 成形品における熱可塑性樹脂の存在量が、炭素繊維100重量部に対し、50重量部から1000重量部であることを特徴とする請求項1から請求項6のいずれかに記載の接合体の製造方法。   The production of the joined body according to any one of claims 1 to 6, wherein the thermoplastic resin is present in the molded product in an amount of 50 to 1000 parts by weight with respect to 100 parts by weight of the carbon fiber. Method. 炭素繊維が、平均繊維径3μmから12μmの炭素繊維である請求項1から請求項7のいずれかに記載の接合体の製造方法。   The method for producing a joined body according to any one of claims 1 to 7, wherein the carbon fibers are carbon fibers having an average fiber diameter of 3 µm to 12 µm. 炭素繊維の平均繊維長が5mmから100mmであることを特徴とする請求項1から請求項8のいずれかに記載の接合体の製造方法。   The method for producing a joined body according to any one of claims 1 to 8, wherein an average fiber length of the carbon fibers is 5 mm to 100 mm. 少なくとも1つの成形品は、平行する2つの面を有し、当該面の面内方向に対し等方性である、請求項1〜9のいずれかに記載の接合体の製造方法。   The method for manufacturing a joined body according to claim 1, wherein at least one molded article has two parallel surfaces and is isotropic with respect to an in-plane direction of the surfaces.
JP2011281510A 2011-12-22 2011-12-22 Manufacturing method of joined body Pending JP2013129159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281510A JP2013129159A (en) 2011-12-22 2011-12-22 Manufacturing method of joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281510A JP2013129159A (en) 2011-12-22 2011-12-22 Manufacturing method of joined body

Publications (1)

Publication Number Publication Date
JP2013129159A true JP2013129159A (en) 2013-07-04

Family

ID=48907147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281510A Pending JP2013129159A (en) 2011-12-22 2011-12-22 Manufacturing method of joined body

Country Status (1)

Country Link
JP (1) JP2013129159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168137A (en) * 2014-03-06 2015-09-28 学校法人近畿大学 Method for fusing fiber-reinforced thermoplastic resin member
WO2020054215A1 (en) * 2018-09-14 2020-03-19 三菱重工業株式会社 Joining heating circuit, joint, method for manufacturing joining heating circuit, and joining method
JPWO2022024921A1 (en) * 2020-07-28 2022-02-03
JP7513097B2 (en) 2020-07-28 2024-07-09 株式会社レゾナック Joining member, joint structure, intermediate structure for joining, and method for manufacturing joint structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168137A (en) * 2014-03-06 2015-09-28 学校法人近畿大学 Method for fusing fiber-reinforced thermoplastic resin member
WO2020054215A1 (en) * 2018-09-14 2020-03-19 三菱重工業株式会社 Joining heating circuit, joint, method for manufacturing joining heating circuit, and joining method
JPWO2022024921A1 (en) * 2020-07-28 2022-02-03
WO2022024921A1 (en) * 2020-07-28 2022-02-03 昭和電工マテリアルズ株式会社 Bonding member, bonding structure, intermediate structure for bonding, and method for manufacturing bonding structure
JP7513097B2 (en) 2020-07-28 2024-07-09 株式会社レゾナック Joining member, joint structure, intermediate structure for joining, and method for manufacturing joint structure

Similar Documents

Publication Publication Date Title
JP5622929B2 (en) Manufacturing method of joined body
JP5604590B2 (en) Zygote
JP5694386B2 (en) Bonded carbon fiber reinforced composite material
JP5135616B2 (en) Thermoplastic resin reinforced sheet material, thermoplastic resin multilayer reinforced sheet material and method for producing the same, and thermoplastic resin multilayer reinforced molded product
US20150013898A1 (en) Method for Joining Composite Materials
JP2018080442A (en) Plane composite material
JP5749343B2 (en) Method for producing composite molded body having undercut portion
WO2013084963A1 (en) Method for manufacturing joint member
EP3135715B1 (en) Fiber-reinforced plastic joined body, method for producing fiber-reinforced plastic joined body, and fiber-reinforced molded article
JP5827771B2 (en) Composite material joining apparatus and method for producing joined body
KR102474952B1 (en) Method and apparatus for forming composite ribs and rib-and-sheets
JP2013233729A (en) Method for manufacturing joint member
JP2013129159A (en) Manufacturing method of joined body
JPH04504386A (en) How to join composite materials
JP7043290B2 (en) CFRP sheet, FRP-metal composite and its manufacturing method
JP5827505B2 (en) Joining method of fiber reinforced thermoplastic resin
JP2013043321A (en) Method for joining fiber reinforced thermoplastic resin
US9981447B2 (en) Fiber-reinforced resin joined body having caulked part and manufacturing method thereof
JP2023101237A (en) Fiber-reinforced resin jointed body
JP2013132790A (en) Joined body having joint with both surfaces of molded product adhered thereat with molded products fitted