JPH04504386A - How to join composite materials - Google Patents

How to join composite materials

Info

Publication number
JPH04504386A
JPH04504386A JP2501789A JP50178990A JPH04504386A JP H04504386 A JPH04504386 A JP H04504386A JP 2501789 A JP2501789 A JP 2501789A JP 50178990 A JP50178990 A JP 50178990A JP H04504386 A JPH04504386 A JP H04504386A
Authority
JP
Japan
Prior art keywords
fibers
fiber
carbon
carbon fibers
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2501789A
Other languages
Japanese (ja)
Inventor
グリーン,スチュアート
Original Assignee
コートールズ パブリック リミティド カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB898900519A external-priority patent/GB8900519D0/en
Priority claimed from GB898900518A external-priority patent/GB8900518D0/en
Application filed by コートールズ パブリック リミティド カンパニー filed Critical コートールズ パブリック リミティド カンパニー
Publication of JPH04504386A publication Critical patent/JPH04504386A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3684Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic
    • B29C65/3696Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic with a coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3616Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/06PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 複合材料の接合方法 技術分野 本発明は、接合すべき部材間の接触面で材料を溶融、融合、結合、または溶接す るために誘導加熱を利用することによる、プラスチック材料の接合方法に関する 。[Detailed description of the invention] How to join composite materials Technical field The present invention involves melting, fusing, bonding, or welding materials at the interface between parts to be joined. A method for joining plastic materials by using induction heating to .

熱可塑性プラスチック(例えば、ポリエーテルエーテルケトン(PEEK) 、 ポリエーテルスルホン(PES)、及びポリアミドイミド)のようなプラスチッ ク材料と、特に炭素繊維強化複合材料とを、構成材料の強度を損なうことなく且 つ寄生重量を加えることなく接合できることが必要である。Thermoplastics (e.g. polyetheretherketone (PEEK), Plastics such as polyethersulfone (PES) and polyamideimide carbon fiber reinforced composite materials in particular, without compromising the strength of the constituent materials. It is necessary to be able to join without adding parasitic weight.

この目的のために、炭素繊維強化プラスチツク材料を含むプラスチックを誘導溶 接する多くの試みが行われてきたが、今までのところ成功例は限られている。For this purpose, induction melting of plastics, including carbon fiber reinforced plastic materials, is Many attempts have been made to do so, but so far success has been limited.

ここで用いられる語句「熱可塑性プラスチック」は、限界値温度までは熱可塑性 を示しそしてそれ以降は熱硬化性を示す、そのような熱硬化性の熱可塑性材料を 含むものと解釈される。このような材料の一例は、rTo r 1 on」の登 録商標で知られるポリアミドイミドである。As used herein, the term "thermoplastic" refers to and thereafter exhibit thermosetting properties, such thermosetting thermoplastic materials shall be construed as including. An example of such a material is rTor1on's registration. It is a polyamideimide known as a registered trademark.

豆量艮五 周知の先行技術は、材料を溶融且つ融合して接合させるべき接触面で、構成材料 の表面に対して配置された誘導加熱した金属定盤を使用してきた。予備加熱した 定盤が表面から取り除かれ、そして2つの表面は共に押し付けられて接合を形成 する。一般に、この加熱方法で均一な加熱を達成することは、構成材料が非常に 薄(ないかぎり困難であり、それゆえこの周知の先行技術を用いて作製、された 接合の強度は低い。Soybean quantity The well-known prior art involves bonding the constituent materials at the interface where the materials are to be joined by melting and fusing. An induction-heated metal surface plate placed against the surface of the surface has been used. preheated The surface plate is removed from the surface and the two surfaces are pressed together to form a joint. do. In general, achieving uniform heating with this heating method is difficult due to the construction materials being very This is difficult to achieve unless the thin The strength of the bond is low.

プラスチック材料を誘導加熱する別の方法では、線材がプラスチック材料の溶融 されるべき領域近辺に埋め込まれた。Another method of induction heating plastic materials involves a wire being used to melt the plastic material. embedded near the area where it should be.

この方法で適当な接合が形成されうるが、この線材が、寄生重量を加え、例えば 構成材料間に突き出ることにより、腐食を起こしたり、構成材料の安全性を損な う可能性があり、構成材料の電気遮蔽に影響を及ぼしうり、そして構成材料の他 の材料と比較した接合部の熱膨張係数のような物理特性を変化させることによる 問題を引き起こす可能性があるので、線材の使用は非常に不利である。Although a suitable bond may be formed in this manner, the wire adds parasitic weight, e.g. Protruding between component materials may cause corrosion or impair the safety of the component materials. may affect the electrical shielding of the materials of construction, and may affect other materials of construction. By changing the physical properties such as the coefficient of thermal expansion of the joint compared to the material of The use of wire is very disadvantageous, as it can cause problems.

本発明の目的は、誘導加熱される熱源として炭素繊維を用いることである。The object of the present invention is to use carbon fibers as a heat source to be heated by induction.

誘導加熱源としての炭素繊維の使用は、簡単ではないことがわかった。連続した 炭素繊維のトウ(tow)を、単一の一方向層として積載して、または一方向繊 維の2層以上の相接した層を並列にして積載して使用することは、適当な接合を 作製しないであろう、連続した炭素繊維のトウから織られた炭素繊維織物の層を 使用する試みが行われたが、これもまた満足な接合を達成するには至らなかった 。満足な接合が作製できないのは、おそらくプラスチック材料を溶融する接触面 で十分に均一な加熱ができないためである。The use of carbon fiber as an induction heating source has proven non-trivial. Consecutive Carbon fiber tows can be stacked as a single unidirectional layer or unidirectional fibers. The use of two or more adjacent layers of fibers stacked in parallel requires proper bonding. A layer of carbon fiber fabric woven from continuous carbon fiber tows would not be fabricated. Attempts have been made to use this, but this too has not resulted in a satisfactory bond. . The failure to create a satisfactory bond is probably due to the contact surface melting the plastic material. This is because sufficient uniform heating cannot be achieved.

21廊どl丞 広範囲にわたる実験後、構造中に発生する渦電流を循環させることができるよう に構成された、電気的に「損失的(10533F)J構造が必要であると結論し た0本発明に従い、それゆえ本接合方法は、少なくともいくらかの炭素繊維が渦 電流の流れに対して抵抗性の導電路を提供するように配置される、そのような多 方向性不連続炭素繊維を熱可塑性プラスチック材料の存在において含む層を接触 面近辺に提供し、そしてこのことにより前記層中に渦電流を電気的に誘導して熱 可塑性プラスチック材料を加熱し、且つ前記熱可塑性プラスチック材料の前記接 触面での溶融及び前記2つの部材間の接合を引き起こす、そのような段階により 特徴付けられる。21st Gallery Doljo After extensive experimentation, it was possible to circulate the eddy currents generated in the structure. It is concluded that an electrically lossy (10533F) J structure configured in According to the present invention and therefore the present joining method, at least some of the carbon fibers are Such multiple Contacting layer containing oriented discontinuous carbon fibers in the presence of thermoplastic material and thereby electrically induce eddy currents in said layer to generate heat. heating the plastic material and heating the thermoplastic material; By such a step causing melting at the contact surface and bonding between said two parts. characterized.

請求の範囲にあるように、本発明は、炭素繊維及び熱可塑性プラスチック材料の 複合物、例えばその繊維束、を誘導加熱することによる、プラスチック材料、特 に強化プラスチック材料の接合方法をこのように提供する。As claimed, the present invention provides carbon fiber and thermoplastic materials. plastic materials, especially by induction heating of composites, e.g. fiber bundles thereof. Thus, a method for joining reinforced plastic materials is provided.

ここで使用される語句「繊維束」は、トウ、スライバー、または繊維のトウから 紡績した糸を含むものとして解釈されるべきである。The term "fiber bundle" as used herein refers to tow, sliver, or tow of fibers. It should be construed as including spun yarn.

好ましい実施態様では、炭素繊維の繊維束は、好ましくは撚糸である不連続繊維 から成る。理想的には、炭素繊維の繊維束は、熱可塑性プラスチック繊維と混ぜ 合わされた不連続炭素繊維から成る。In a preferred embodiment, the fiber bundles of carbon fibers are discontinuous fibers, preferably twisted yarns. Consists of. Ideally, carbon fiber bundles are mixed with thermoplastic fibers. Consisting of bonded discontinuous carbon fibers.

好ましくは、炭素繊維及び熱可塑性プラスチック繊維の混合は、炭素繊維及び熱 可塑性プラスチック繊維のトウをけん切(stretch−breaking) することにより達成される。Preferably, the mixture of carbon fibers and thermoplastic fibers includes carbon fibers and thermoplastic fibers. Stretch-breaking of plastic fiber tow This is achieved by

本発明の方法である、電気誘導コイルを用いて多方向性不連続炭素繊維を誘導加 熱することにより、許容できる接合を達成することができる。Induction processing of multidirectional discontinuous carbon fibers using electric induction coils is a method of the present invention. An acceptable bond can be achieved by heating.

”oa−呪 本発明は、ここで添付の図面を参照する例によりさらに記述される。"oa-curse" The invention will now be further described by way of example with reference to the accompanying drawings.

第1図は、本発明の方法に従う、2枚の積層複合プラスチック材料を接合するの に用いられる装置の1つの実施amを示す概略図、 第2図から第4図は、第1図の装置で接合した積層物の結合強度試験の結果を示 すグラフ、 第5図は、本発明の方法に従う、他のプラスチック材料を共に結合するために、 第1図の装置がどのように使用されうるかを例示する概略図である。FIG. 1 shows the process of joining two laminated composite plastic materials according to the method of the present invention. a schematic diagram showing one implementation of an apparatus used for Figures 2 to 4 show the results of bonding strength tests of laminates bonded using the apparatus shown in Figure 1. graph, FIG. 5 shows a method for bonding other plastic materials together according to the method of the invention. 2 is a schematic diagram illustrating how the apparatus of FIG. 1 may be used; FIG.

るための のノ 第1図を参照すると、各々接合すべき複合材料10及び11は、2枚の皮膜13 .14により挟まれた多層心材12から成る。各心材は、ここでは「材料X」と して示される連続炭素繊維強化PEEKの複数の層から成る。心材の各層中の繊 維は互いに平行である(しかしその必要はない)が、層は、心材中の全繊維が平 行になるように、または心材中の繊維が多方向を向くように、積層されることが できる。for Referring to FIG. .. It consists of a multilayer core material 12 sandwiched by 14. Each heartwood is referred to here as “Material X”. Consisting of multiple layers of continuous carbon fiber reinforced PEEK shown as . Fibers in each layer of heartwood The fibers are (but need not be) parallel to each other, but the layers are such that all fibers in the heartwood are flat. They can be stacked in rows or with the fibers in the core oriented in multiple directions. can.

皮膜13.14が炭素及びPEEK繊維のけん切混合した繊維糸で作製される、 そのようないくつかの積層物が構成された。この糸は、He1tra Lim1 ted、 a Courtaulds社により製造され、そしてその英国登録商 標rFi1mix」で販売される。rFilmix」糸は、異なる構造品、すな わち、織物、ブレード、メリヤス生地、または結束した多方向性マットを存する 種々の材料へ加工された。rFilmix、1材料は、およそ55体積%の炭素 繊維を含み、そして本質的特徴として、この炭素繊維は多方向性及び不連続であ った。さらに、PEEK繊維は、rF i 1mi XJ糸中で炭素繊維と密接 に混ざり合った。The coating 13.14 is made of fiber threads that are a blend of carbon and PEEK fibers, Several such laminates have been constructed. This thread is He1tra Lim1 ted, a. Manufactured by Courtaulds Ltd. and its UK Registered Trademark. It will be sold under the title "rFi1mix". rFilmix" yarn has different structures, e.g. i.e. woven, braided, knitted fabrics or tied multi-directional mats. Processed into various materials. rFilmix, 1 material approximately 55% carbon by volume carbon fibers, and as an essential feature, the carbon fibers are multidirectional and discontinuous. It was. Furthermore, the PEEK fibers are closely connected to the carbon fibers in the rF i 1mi XJ yarn. mixed with.

さらに、皮膜13.14がrFi 1m1x」では作製されず、ランダムに配置 した炭素繊維マットまたは炭素繊維織物または材料Xの層で作製される、そのよ うな積層物試料が構成された。これらの例では、平滑な炭素繊維及びランダム炭 素マットを、心材12に適する皮膜を提供する前に、PEEK樹脂の1層の間に 挟んだ。これは炭素繊維を濡らすために十分な樹脂を供給するためであった。あ る場合では、積層物をPEEKまたはポリエーテルスルホン(PES)のどちら かでコーティングして、樹脂が十分に含まれる表面を提供した。種々の積層物を 表1に並べる。Furthermore, the film 13.14 was not created with rFi 1m1x, but was randomly placed. carbon fiber mat or fabric made of carbon fiber mat or carbon fiber fabric or layers of material A laminate sample was constructed. These examples include smooth carbon fibers and random carbon fibers. The raw mat is placed between one layer of PEEK resin before providing a suitable coating for the core material 12. Sandwiched. This was to supply enough resin to wet the carbon fibers. a If the laminate is made of PEEK or polyethersulfone (PES), to provide a resin-rich surface. various laminates Listed in Table 1.

、表−」− LI U、D、 F−織物 なし L2 U、口、F−織物 PE5 L3 U、D、 F−織物 PEEK L4 M、D、 材料X なし L5 M、D、 F−織物 なし L6 ’U、D、 材料X なし L7 U、D、 C−織物 なし L8 [1,0,C−マット なし L9 U、D、 F−U、D、 なし υ、D、 −心材中の一方向性炭素繊維M、D、 −心材中の多方向性炭素繊維 F−織物 −rFi1mixj糸から作製された織物F−ブレード−rFi1m ix」糸から作製されたブレードF−U、D、 −一方向に配IされたrFi1 miXJ糸C−織物 −5ハーネスサテン炭素織物C−マット −ランダム炭素 繊維マット心材を含まずに、メリヤスの炭素/PEEK rF i 1m1x、 1糸の2層(Lll)、または織物の炭素/PEEKの6層を含む、さらに2種 の積層物をも製造した。, table-”- LI U,D, F-No textile L2 U, opening, F-fabric PE5 L3 U, D, F-fabric PEEK L4 M, D, Material X None L5 M, D, F-woven fabric none L6'U, D, Material X None L7 U, D, C-woven fabric none L8 [1,0,C-mat none L9 U, D, F-U, D, None υ, D, - Unidirectional carbon fiber in the core material M, D, - Multidirectional carbon fiber in the core material F-fabric - rFi1mixj woven fabric made from yarn F-blade - rFi1m Blades F-U, D, made from ``ix'' yarns - rFi1 arranged in one direction miXJ yarn C-fabric-5 harness satin carbon fabric C-matte-random carbon Knitted carbon/PEEK rF i 1m1x without fiber mat core material, Two more layers, including 2 layers of 1 yarn (Lll) or 6 layers of woven carbon/PEEK A laminate was also produced.

積層物L1〜L12は、次のように製造された。Laminates L1 to L12 were manufactured as follows.

予め離型剤をそれぞれコーティングした種々の層を、2枚のステンレススチール シートの間に積み上げそして挟み込んだ。次いでこの層を、予備加熱した定盤の 間に10分間、約1mII+の厚さに圧縮した。次いで定盤を迅速に冷却して、 硬化した積層物がステンレススチールシートから取り出されて生産された。Two sheets of stainless steel are coated with various layers, each pre-coated with a mold release agent. They were stacked and tucked between the sheets. This layer is then placed on a preheated surface plate. It was compressed to a thickness of about 1 mII+ for 10 minutes in between. The surface plate is then quickly cooled, and A cured laminate was produced from a stainless steel sheet.

100mmX 25mmで1mm厚の試料を、各場合で心材中の一方向性繊維が 試料の長軸方向に平行して並ぶように、積層物L 1〜L3及びL6〜・Llo から取り出し7た。L4及び1,5から取り出された試料は、各々の材料Xの第 1層が試料の長軸に対して平行になるように方向付けられた。Lllから切り出 された試料は、主流となる繊維方向が試料の長袖に対して平行になるように方向 付けられた。L12から取り出された試料は、縦糸または横糸繊維が試料の長袖 に平行になるように方向付けられた。A sample of 100 mm x 25 mm and 1 mm thick was prepared, in each case the unidirectional fibers in the core were The laminates L1 to L3 and L6 to Llo are arranged parallel to the long axis direction of the sample. I took it out and it was 7. The samples taken from L4 and 1 and 5 are One layer was oriented parallel to the long axis of the sample. Cut out from Lll The sample was oriented so that the main fiber direction was parallel to the long sleeve of the sample. Attached. The sample taken from L12 has warp or weft fibers in the long sleeve of the sample. oriented parallel to.

上述のように取り出した同一試料の一対を、次いで本発明の方法に従い、第1図 に示されるような単一の重ね継ぎを形成することにより共に接合した。この重ね 継ぎを作製する前に、2つの部材間の接合される接触面を形成する表面を、脂肪 性溶剤(例えば、プロパン−2−オール)を用いて脱脂した。接合接触点の重な りは12.5matであった。重なった材料10及び11の試料を、誘導溶接機 15を使用して接合した。使用した特定の機械は、フラットコイル(パンケーキ コイル)の誘導コイル16を有するS t、 a n e 1 c o 100 0ワツト、2.5MHz装置であった。誘導コイル16は、共通の平面内に巻か れて、平面図で見て25mmX 25mmの大きさの実質的な正方形を形成した 。誘導コイル16により作り出される交番磁界は、皮膜13.14内部の炭素繊 維強化材中に渦電流を誘導した。2種類の電力設定値、すなわち70パーセント 及び80パーセントを、積層物LL、L2.及びL3に対して通用し、そして各 電力設定値において2種類の異なる溶接時間を適用した。積層物L4から取り出 された試料を溶接するためには、100パーセントの電力を240秒間適用した 。積層物L5の試料は、80パーセントの電力で30秒間の暴露により溶接され た。積層物L7.L8.及びL9からの試料は、80パーセントの電力をおよそ 60秒間適用することにより加熱された。異なる繊維配置から成る積層物の接合 の可能性を調べるために、積層物L ]、 Oからの試料を、積層物LL、L1 1.及びL12からの試料に、80パーセントの電力でそれぞれ75,60.及 び45秒間接合した。高シリケートガラス(例えば、登録商標rPyrex」と して知られるもの)(定盤17)及びフェノール樹脂/ガラス複合材、例えばP axolin(定盤18)のような非金属性定盤を用いて、溶接期間中及び誘導 磁界終了後も30秒間、接合接触領域全体に0. 66MPa(90psi)の 団結圧を適用した。A pair of identical samples taken as described above were then processed according to the method of the invention as shown in FIG. were joined together by forming a single lap joint as shown in FIG. This layering Before making the joint, the surfaces that form the interface between the two parts to be joined are coated with fat. Degreasing was performed using a solvent such as propan-2-ol. overlapping joint contact points The weight was 12.5mat. The overlapping samples of materials 10 and 11 were welded using an induction welder. 15 was used for joining. The particular machine used was a flat coil (pancake S t, ane 1 c o 100 with induction coil 16 of coil) It was a 0 Watt, 2.5 MHz device. The induction coil 16 is wound in a common plane. and formed a substantial square measuring 25mm x 25mm in plan view. . The alternating magnetic field created by the induction coil 16 is applied to the carbon fibers inside the coating 13.14. Eddy currents were induced in the fiber reinforcement. Two power settings, i.e. 70 percent and 80 percent in laminates LL, L2. and L3, and each Two different welding times were applied at power settings. Remove from laminate L4 100 percent power was applied for 240 seconds to weld the sample. . Samples of laminate L5 were welded with a 30 second exposure at 80 percent power. Ta. Laminate L7. L8. and samples from L9 have approximately 80 percent power Heated by applying for 60 seconds. Bonding laminates with different fiber arrangements In order to investigate the possibility of 1. and L12 at 75, 60, respectively at 80 percent power. Reach and bonded for 45 seconds. High silicate glass (e.g. rPyrex®) ) (surface plate 17) and phenolic resin/glass composites, such as P A non-metallic surface plate such as axolin (surface plate 18) is used during welding and induction. After the magnetic field ends, the entire bond contact area remains 0. 66MPa (90psi) Unity pressure was applied.

このように形成した溶接接合部を、ASTM D−2919(01002)に従 い試験した。表2には、4枚の積層物L4.L5.L7゜及びL8に対するこれ らの試験結果を示す。The welded joint thus formed was processed in accordance with ASTM D-2919 (01002). I tested it. Table 2 shows four laminates L4. L5. This for L7° and L8 The test results are shown below.

に−4 積層物 加熱電力 溶接時間 見かけのせん断強度平均値% 秒 MPa (P s i ) L4 100 240 11.29 (1637)L5 80 30 35.9 5 (5213)L7 80 60 29.86 (4330)L8 80 6 0 10.07 (1460)表2中に見かけのせん断強度として表示される接 合部の結合強度は、破壊点での荷重を接合部の公称重複面積で割ることにより得 られた。積層物Ll、L2.及びL3に対して、異なる時間及び電力条件を適用 して得られた結合強度の結果を、第2図から第4図に示す。ni-4 Laminate heating power welding time apparent shear strength average value % seconds MPa (P s i  ) L4 100 240 11.29 (1637) L5 80 30 35.9 5 (5213) L7 80 60 29.86 (4330) L8 80 6 0 10.07 (1460) The contact shown as the apparent shear strength in Table 2. The bond strength of a joint is obtained by dividing the load at the failure point by the nominal overlap area of the joint. It was done. Laminates Ll, L2. and L3 with different time and power conditions. The results of the bond strength obtained are shown in FIGS. 2 to 4.

積層物L6の試料は、溶接時間を360秒まで増加させ且つ電力を100パーセ ントまで増加させた場合でさえ、溶接を起こさせるほどまでには十分に加熱しな かった。このことは、皮膜中に一方向に向けられたrFilmix」糸を有する 積層物L9から取り出された試料についてもまた同様であった。これらの試料、 L6及びL9に関する試験は、一方向繊維を主流として含有する試料を溶接する ことが困難であることを示すものである。Laminate L6 samples were tested by increasing the welding time to 360 seconds and increasing the power by 100%. Even when the temperature is increased to won. This has rFilmix' threads oriented in one direction in the film. The same was true for the sample taken from laminate L9. These samples, Tests for L6 and L9 weld samples containing unidirectional fibers as the main stream. This indicates that it is difficult to do so.

この結果は、多方向性導電繊維が接合されるべき界面に存在するならば、誘導加 熱を使用して、炭素繊維強化PEEK複合材料を溶接し、そして50MPa程度 の結合強度を得ることが可能であることを示す。これは、エポキシ接着剤を使用 して部材を共に接合する場合に得られる約15〜25MPaの結合強度に匹敵す る。本発明の重要な特徴は、一方向性繊維を有する積層物を誘導加熱法を使用し て接合することは、不可能ではないとしても困難であるということである。実際 に、このような積層物をうまく接合することはできなかった。This result shows that if multidirectional conductive fibers are present at the interface to be joined, the induced Weld carbon fiber reinforced PEEK composite material using heat and around 50MPa We show that it is possible to obtain a bond strength of This uses epoxy adhesive This is comparable to the bond strength of approximately 15-25 MPa obtained when joining parts together by Ru. An important feature of the invention is that the laminate with unidirectional fibers is heated using induction heating. It is difficult, if not impossible, to join them together. actual However, it was not possible to successfully bond such laminates together.

第5図を参照すると、本発明のさらなる実施態様が例示される。この実施態様は 、試料10及び11が多少異なりそして結合用差込み物20が使用される点で、 第1図を参照した上述の実施態様とは違うものである。その他の点では、装置は 第1図に関する上述の装置と同様である。とりわけ、試料10及び11は上述の ような皮膜を有する積層物から成る必要はなく、そして単一の構成層12Aとし てのみこのように示される。Referring to FIG. 5, a further embodiment of the invention is illustrated. This implementation is , in that samples 10 and 11 are somewhat different and a coupling insert 20 is used. This differs from the embodiment described above with reference to FIG. In other respects, the device Similar to the device described above with respect to FIG. In particular, samples 10 and 11 were It is not necessary to consist of a laminate having such a coating, and a single constituent layer 12A may be used. It is shown like this.

この後者の実施態様では、結合されるべき構成材料は、プラスチック、セラミッ ク、またはガラスのような非導電性材料であり、そして結合用差込み物20は、 プラスチック材料中に多方向性不連続炭素繊維を1層以上含む。結合用差込み物 20用の好ましい材料は、前述の登録商lrFi1mix」で市販される糸を、 別の構造品、すなわち織物、ブレード、メリヤス生地、または多方向性マットに 加工したものである。In this latter embodiment, the constituent materials to be bonded are plastics, ceramics, etc. or a non-conductive material such as glass, and the coupling insert 20 is made of The plastic material contains one or more layers of multidirectional discontinuous carbon fibers. Connecting insert A preferred material for 20 is a yarn commercially available under the aforementioned trademark lrFi1mix. on another structure, i.e. woven, braided, stockinette fabric or multi-directional mat It is processed.

所望であれば、このrFilmix」材料にさらに熱可塑性プラスチックのコー ティングまたは皮膜を適用することは可能である。If desired, this rFilmix material may be further coated with thermoplastic. It is possible to apply coatings or coatings.

しかしながら、結合用差込み物20の本質的特徴は、電気誘導コイルの磁界に置 かれたときに受容体及び加熱体として働く多方向性不連続炭素繊維が、結合用差 込み物20に含まれることである。However, the essential feature of the coupling insert 20 is that it is placed in the magnetic field of the electric induction coil. The multidirectional discontinuous carbon fibers, which act as receptors and heating elements when twisted, act as bonding differentials. It is included in the inclusion 20.

結合用差込み物20は、結合されるべき構成材料間に挿入されるのに必要な任意 の長さへと切り出される、そのような長いものとして生産できることが考えられ る。The joining insert 20 can be inserted between any component materials to be joined. It is conceivable that it can be produced as such a long item that is cut into lengths. Ru.

界面及び心材に一方向性繊維を有する試料では、繊維がずれて前記構成材料が盛 り上がり、良好な接合を形成しない傾向にあることがわかった。In a sample with unidirectional fibers at the interface and core, the fibers are shifted and the constituent materials are deposited. It was found that there was a tendency for the bond to rise and not form a good bond.

本発明の本質的特徴は、多方向に向けられた不連続炭素繊維の層を、接合される べきプラスチック材料の表面に、またはその表面付近に用いることである。The essential feature of the invention is that layers of multi-directionally oriented discontinuous carbon fibers are bonded together. It is used on or near the surface of plastic materials.

何故炭素繊維の多方向性不連続繊維束がうまく作用し、そして一方向性繊維は作 用しないのかは、完全には理解されていないが、一方向性繊維は、その中に誘導 された渦電流をその表面で有益な加熱効果を生み出すことなく消耗する傾向があ るので、多方向性繊維が表面全体にわたりより多くの均一な加熱効果を生み出す ものと考えられる。Why multidirectional discontinuous fiber bundles of carbon fibers work well, and unidirectional fibers do not. Although it is not completely understood why unidirectional fibers are used or not, unidirectional fibers are eddy currents on its surface without producing any beneficial heating effects. multidirectional fibers create a more even heating effect across the surface considered to be a thing.

一般に、不連続繊維の繊維束の長さ方向に沿った抵抗率は連続繊維のそれよりも 大きいので、不連続炭素繊維の繊維束は、連続繊維で形成した層よりも「損失的 」な層を形成する。Generally, the resistivity along the length of the fiber bundle of discontinuous fibers is higher than that of continuous fibers. Because of their large size, fiber bundles of discontinuous carbon fibers are less “lossy” than layers formed of continuous fibers. ” forms a layer.

さらに、繊維束のヘアリネス(繊維束から突き出た破断端による)が、層中及び 種々の近接層間で渦電流をよりよく循環させることができる抵抗性の導電路を提 供することにより、寄与する可能性がある。f!かに、不連続炭素繊維が織物ま たは非織物生地中に積み上げられると、縦糸と横糸の交わる領域が、小さな「電 池」を作り出す導電路(または容量性結合)を形成して、その回りを渦電流が流 れる。Furthermore, the hairiness of the fiber bundle (due to broken ends protruding from the fiber bundle) is Providing resistive conductive paths that can better circulate eddy currents between various adjacent layers There is a possibility of making a contribution by providing. f! Crab, discontinuous carbon fibers are woven or When stacked in a fabric or non-woven fabric, the area where the warp and weft intersect is This creates a conductive path (or capacitive coupling) around which eddy currents flow. It will be done.

図1に基づく例は、「Filmix」材料のような材料で形成した皮膜を有する 積層物を使用したが、接合されるべき構成部材の積層物が、接合されるべき部材 間の接触面付近に、1層以上の多方向性不連続炭素繊維を含むならば、皮膜を別 途供給する必要はないことが理解されるであろう。接触面における部材の少なく とも一部が、必要とされる型の炭素繊維を含む場合は、結合用差込み物20を使 用する必要はない。The example based on FIG. 1 has a coating formed of a material such as "Filmix" material. Although a laminate was used, the laminate of the component parts to be joined is not the same as the part to be joined. If one or more layers of multidirectional discontinuous carbon fibers are included near the contact surface between the It will be understood that there is no need to supply the same at any time. Fewer parts on the contact surface If both contain carbon fiber of the required type, a joining insert 20 may be used. There is no need to use it.

さらに、混ぜ合わされた炭素繊維及び熱可塑性プラスチック繊維は、系中の炭素 繊維間及び糸間の接触が、例えば、熱可塑性プラスチックフィルムまたはシート の薄層を炭素布と接触して含む不連続炭素繊維のみから織られた炭素繊維布間の 接触よりも密接であるので、最良の結果を生み出すものと発明者は考える。Furthermore, the blended carbon fibers and thermoplastic fibers are The fiber-to-fiber and yarn-to-yarn contact is, for example, a thermoplastic film or sheet. Between carbon fiber cloths woven only from discontinuous carbon fibers containing a thin layer of in contact with the carbon cloth The inventor believes that this produces the best results because it is closer than contact.

さらに、糸を作製するために不連続炭素繊維の撚りトウを使用することは、この ことが、繊維の方向を好ましい方向に向けさせて糸間の接触を向上させ、そして また各層の平面内における渦電流循環の形成をも向上させることができるので、 有利であると発明者は考える。Furthermore, using twisted tow of discontinuous carbon fibers to make yarns to orient the fibers in a preferred direction to improve yarn-to-yarn contact, and It can also improve the formation of eddy current circulation in the plane of each layer, so The inventor considers this to be advantageous.

□ 溶接時間(秒) −一一一 一 溶接時間(秒) − 一 溶接時間(秒) −一→− 国際調査報告 −一一−l^−崗紗峠−PCτ7GBcro10oo34国際調査報告□ Welding time (seconds) -111 - Welding time (seconds) - 1 Welding time (seconds) −1→− international search report -11-l^-Gosa Pass-PCτ7GBcro10oo34 International Investigation Report

Claims (14)

【特許請求の範囲】[Claims] 1.接合されるべき2つの部材(10,11)を接触させること、前記接触面に 近接して電気誘導コイル(16)を配置すること、及び前記部材の前記接触面近 辺を電気誘導加熱することによりプラスチック材料を接合する方法において、前 記接触面近辺に、熱可塑性プラスチック材料の存在において多方向性不連続炭素 繊維を含む層(13,14;20)を提供し、少なくともいくらかの前記炭素繊 維を渦電流の流れに対して抵抗性の導電路を提供するように方向付け、そしてこ れらにより前記層中に渦電流を電気誘導して前記熱可塑性プラスチック材料を加 熱し、且つ前記熱可塑性プラスチック材料の前記接触面での溶融及び前記2つの 部材間の接合を引き起こす、そのような段階を特徴とする、プラスチック材料の 接合方法。1. bringing the two members (10, 11) to be joined into contact; arranging an electrical induction coil (16) in close proximity and near said contact surface of said member; In a method of joining plastic materials by electric induction heating of the edges, Multidirectional discontinuous carbon in the presence of thermoplastic material near the contact surface providing a layer (13, 14; 20) comprising fibers, at least some of said carbon fibers; The fibers are oriented to provide a conductive path that is resistant to the flow of eddy currents, and These electrically induce eddy currents in the layer to process the thermoplastic material. heating and melting the thermoplastic material at the contact surface and the two of plastic materials characterized by such a step that causes a bond between the parts Joining method. 2.前記炭素繊維が、不連続繊維の繊維束であることをさらに特徴とする、請求 の範囲1に記載の方法。2. Claim further characterized in that the carbon fibers are fiber bundles of discontinuous fibers. The method described in Scope 1. 3.前記炭素繊維が、ステーブル繊維の繊維束から成ることを特徴とする、請求 の範囲2に記載の方法。3. Claim characterized in that the carbon fibers consist of fiber bundles of stable fibers. The method according to scope 2. 4.前記炭素繊維が、けん切した(stretch−broken)繊維である ことを特徴とする、請求の範囲2に記載の方法。4. The carbon fiber is a stretch-broken fiber. 3. The method according to claim 2, characterized in that: 5.前記炭素繊維が、繊維束の内部に不連続繊維を、または種々の方向に繊維束 から突き出た繊維のループを作り出すように織られた不連続繊維の繊維束から成 ることを特徴とする、請求の範囲1に記載の方法。5. The carbon fibers may have discontinuous fibers inside the fiber bundle or fiber bundles in various directions. Consisting of fiber bundles of discontinuous fibers woven to create loops of fibers protruding from the The method according to claim 1, characterized in that: 6.前記熱可塑性プラスチック材料が、繊維状であることを特徴とする、請求の 範囲1に記載の方法。6. The claimed thermoplastic material is fibrous. The method described in Scope 1. 7.前記炭素繊維及び熱可塑性プラスチック繊維が、混合した繊維の繊維束から 成ることを特徴とする、請求の範囲6に記載の方法。7. The carbon fiber and thermoplastic fiber are made from a fiber bundle of mixed fibers. 7. The method according to claim 6, characterized in that: 8.前記混合繊維の繊維束が、前記繊維をけん切することにより作製されること を特徴とする、請求の範囲7に記載の方法。8. The fiber bundle of the mixed fibers is produced by cutting the fibers. 8. The method according to claim 7, characterized in that: 9.前記炭素繊維が、不連続炭素繊維のトウ(tow)を撚ることにより形成さ れた糸から成ることを特徴とする、請求の範囲2に記載の方法。9. The carbon fibers are formed by twisting tows of discontinuous carbon fibers. 3. A method according to claim 2, characterized in that the method consists of a thread that has been woven into a thread. 10.前記繊維束が織られて織物を形成することを特徴とする、請求の範囲2に 記載の方法。10. Claim 2, characterized in that the fiber bundles are woven to form a fabric. Method described. 11.抵抗性導電路が層間に形成されて、各層中を前記渦電流が流れるような角 度で近接層中の前記炭素繊維に対して位置した前記炭素繊維を、各層中に配置し た相接する層として前記繊維束が積み上げられることを特徴とする、請求の範囲 2に記載の方法。11. A resistive conductive path is formed between the layers to allow the eddy current to flow through each layer. The carbon fibers are arranged in each layer, with the carbon fibers positioned relative to the carbon fibers in adjacent layers at a Claims characterized in that said fiber bundles are stacked as adjacent layers. The method described in 2. 12.前記繊維束が織られてプレードを形成することを特徴とする、請求の範囲 2に記載の方法。12. Claims characterized in that the fiber bundles are woven to form plaids. The method described in 2. 13.前記繊維束が非織物生地として積み上げられることを特徴とする、請求の 範囲2に記載の方法。13. As claimed, the fiber bundle is stacked as a non-woven fabric. The method described in scope 2. 14.前記層が、結合されるべき前記部材間の接触面を形成する界面に配置され た独立の結合用差込み物を構成することを特徴とする、請求の範囲1に記載の方 法。14. said layer is arranged at an interface forming a contact surface between said parts to be joined; The method according to claim 1, characterized in that it constitutes an independent coupling insert. Law.
JP2501789A 1989-01-10 1990-01-10 How to join composite materials Pending JPH04504386A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB898900519A GB8900519D0 (en) 1989-01-10 1989-01-10 Bonding of materials
GB8900519.3 1989-01-10
GB898900518A GB8900518D0 (en) 1989-01-10 1989-01-10 Joining of composite material
GB8900518.5 1989-01-10

Publications (1)

Publication Number Publication Date
JPH04504386A true JPH04504386A (en) 1992-08-06

Family

ID=26294819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2501789A Pending JPH04504386A (en) 1989-01-10 1990-01-10 How to join composite materials

Country Status (4)

Country Link
EP (1) EP0454703A1 (en)
JP (1) JPH04504386A (en)
AU (1) AU4825890A (en)
WO (1) WO1990008027A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101040B2 (en) 2007-09-24 2012-01-24 Toyota Jidosha Kabushiki Kaisha Method for producing fusion-bonded body
WO2012137985A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Joint manufacturing method
JP2019108460A (en) * 2017-12-18 2019-07-04 東洋インキScホールディングス株式会社 Adhesive sheet for electromagnetic induction heating, and bonded structure and manufacturing method of the same
WO2021130866A1 (en) * 2019-12-24 2021-07-01 三菱重工業株式会社 Fusion device and fusion method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248864A (en) * 1991-07-30 1993-09-28 E. I. Du Pont De Nemours And Company Method for induction heating of composite materials
WO1995017452A1 (en) * 1993-12-21 1995-06-29 E.I. Du Pont De Nemours And Company Method for bonding polymeric articles
DE102006040049B4 (en) * 2006-08-26 2009-12-17 Airbus Deutschland Gmbh Method and apparatus for preforming carbon fiber semi-finished products for the manufacture of fiber composite components
US20160055936A1 (en) * 2014-08-22 2016-02-25 A&P Technology, Inc. Braided structure with electrically conductive tows
NL2017866B1 (en) 2016-11-24 2018-06-01 Univ Delft Tech Edge effect weakening by means of bypass-conductor during induction welding process
GB201807144D0 (en) 2018-05-01 2018-06-13 Rolls Royce Plc Polymer matrix composite repair
IT201800020521A1 (en) * 2018-12-20 2020-06-20 Leonardo Spa COMPOSITE MATERIAL AND RELATIVE METHOD OF IMPLEMENTATION
FR3099405A1 (en) * 2019-07-29 2021-02-05 Airbus Operations (S.A.S.) A method of assembling at least two parts of thermoplastic composite material comprising unidirectional fibers and assembling at least two parts thus obtained
GB201916362D0 (en) * 2019-11-11 2019-12-25 Ge Oil & Gas Uk Ltd Splicing method and apparatus
NL2029435B1 (en) * 2021-10-15 2023-05-16 Kok & Van Engelen Composite Structures B V Method for electromagnetic welding of molded parts and a heat sink for use in such method
US11865791B2 (en) 2021-12-30 2024-01-09 Rohr, Inc. Induction welding with an electromagnetic field concentrator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1232040B (en) * 1962-02-23 1967-01-05 Eltro Gmbh Process for the manufacture of hulls
US4707402A (en) * 1985-10-11 1987-11-17 Phillips Petroleum Company Formation of laminated structures by selective dielectric heating of bonding film
JPS63120786A (en) * 1986-11-08 1988-05-25 Michie Miyamoto Method of executing bonding, crosslinkable resin composite used for said method and bonding device
IT1196848B (en) * 1986-12-16 1988-11-25 Fiat Auto Spa PROCEDURE FOR JOINING STRUCTURAL ELEMENTS WITH THE USE OF FIXING MEDIA OF SYNTHETIC THERMOPLASTIC RESIN PROCEDURE FOR THEIR PRODUCTION AND METHOD OF USE
GB8704852D0 (en) * 1987-03-02 1987-04-08 Welding Inst Bonding thermoplastic layers
FR2620648B1 (en) * 1987-09-23 1990-03-09 Pascal Roger ASSEMBLY METHOD BY ADHESIVE USING A RESISTIVE ELEMENT INCORPORATED IN THE ADHESIVE
JPH06239221A (en) * 1993-02-18 1994-08-30 Aisin Seiki Co Ltd Liquid pressure supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101040B2 (en) 2007-09-24 2012-01-24 Toyota Jidosha Kabushiki Kaisha Method for producing fusion-bonded body
WO2012137985A1 (en) * 2011-04-08 2012-10-11 帝人株式会社 Joint manufacturing method
JP5622929B2 (en) * 2011-04-08 2014-11-12 帝人株式会社 Manufacturing method of joined body
JP2019108460A (en) * 2017-12-18 2019-07-04 東洋インキScホールディングス株式会社 Adhesive sheet for electromagnetic induction heating, and bonded structure and manufacturing method of the same
WO2021130866A1 (en) * 2019-12-24 2021-07-01 三菱重工業株式会社 Fusion device and fusion method

Also Published As

Publication number Publication date
AU4825890A (en) 1990-08-13
WO1990008027A1 (en) 1990-07-26
EP0454703A1 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JPH04504386A (en) How to join composite materials
US7981495B2 (en) Materials methodology to improve the delamination strength of laminar composites
JP6140807B2 (en) Materials with improved conductivity for the manufacture of composite parts combined with resins
US4407885A (en) Composite article
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
CN103192464B (en) The method for manufacturing prefabricated blank
RU2549955C2 (en) Multiaxial piling fixed by spot welding produced by means of insert thermoplastic thin non-woven materials
WO2013140786A1 (en) Carbon fiber preform, carbon fiber reinforced plastic, and method for producing carbon fiber preform
CN108472879B (en) Hybrid veil as an interlayer in a composite material
JP2018080442A (en) Plane composite material
JP2020056148A (en) Filament network for composite structure
WO2012137985A1 (en) Joint manufacturing method
EP0596996A1 (en) Method for induction heating of composite materials
WO2018218958A1 (en) Non-woven fabric
JP2015183186A (en) Fabrication of composite laminates using temporarily stitched preforms
AU2013254519B2 (en) Use, in the manufacture of a composite component, of a penetration operation to improve the transverse electric conductivity of the composite component
JP2018126995A (en) Fiber-modified interlayer for composite structure and manufacturing method
JP7043290B2 (en) CFRP sheet, FRP-metal composite and its manufacturing method
WO2013191073A1 (en) Carbon fiber mat and carbon fiber composite material including same
DE102016121693A1 (en) Connecting element, thermoset module, thermoset thermoplastic composite component and method for producing a thermoset thermoplastic composite component
JP2933310B1 (en) Heating element used for thermal welding of thermoplastic resin molded products
JP2013129159A (en) Manufacturing method of joined body
US20230166458A1 (en) Fiber-reinforced composite laminate for use in electromagnetic welding and method of electromagnetic welding of molded parts of said laminates
US20230398748A1 (en) Semi-conformable pressure application system and method for joining composite parts
JP2022516418A (en) Composite material and its manufacturing method