JP2013012337A - 電気化学セルおよびそれを備える電気化学装置 - Google Patents
電気化学セルおよびそれを備える電気化学装置 Download PDFInfo
- Publication number
- JP2013012337A JP2013012337A JP2011143105A JP2011143105A JP2013012337A JP 2013012337 A JP2013012337 A JP 2013012337A JP 2011143105 A JP2011143105 A JP 2011143105A JP 2011143105 A JP2011143105 A JP 2011143105A JP 2013012337 A JP2013012337 A JP 2013012337A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrochemical cell
- electrode
- electron
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Fuel Cell (AREA)
Abstract
【課題】 随伴ガスを効率よく分解することができる電気化学セルおよびそれを備える電気化学装置を提供する。
【解決手段】 本発明の電気化学セルは、第1電極と、該第1電極を覆うように設けられイオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備えることにより、効率よく随伴ガスを分解することができる。また、上記電気化学セルを複数個備えることにより、効率よく随伴ガスを分解することができる電気化学装置とすることができる。
【選択図】 図1
【解決手段】 本発明の電気化学セルは、第1電極と、該第1電極を覆うように設けられイオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備えることにより、効率よく随伴ガスを分解することができる。また、上記電気化学セルを複数個備えることにより、効率よく随伴ガスを分解することができる電気化学装置とすることができる。
【選択図】 図1
Description
本発明は、メタンガス等を分解するための電気化学セルおよびそれを備える電気化学装置に関する。
現在、石油の産出時に随伴して産出されるガス(以下、随伴ガスという。)は、主に燃焼されることで処理されており、近年の環境問題において、例えば、随伴ガスを高圧コンプレッサーで地下に戻す方法や、この随伴ガスを発電所向けの燃料として用いる方法など、随伴ガスを燃焼以外の方法で処理する方法が検討されている。
そして、酸素を用いて随伴ガスを分解して炭化水素ガスを生成する方法も多数提案されており、例えば特許文献1には、炭化水素ガスを生成するための酸素イオン輸送複合体要素として、酸素イオンと電子を輸送するための緻密層と、層状構造体を機械的に支持する多孔支持層とを備える層状構造体を備え、緻密層が、混合伝導体、イオン伝導体、及び金属を含む混合物で形成され、混合伝導体及びイオン伝導体が混合物中に緻密層を通して酸素イオン伝導を行える量で存在し、混合伝導体と金属が混合物中に緻密層を通して電子伝導を行える量で存在し、多孔支持層が酸化物分散強化金属、金属強化金属間合金、ホウ素ドープMo5Si3系金属間合金又はこれらの組合せで形成される、酸素イオン輸送複合体要素が提案されている。
上述のように、現在、随伴ガスを効率よく分解することが求められている。それゆえ、本発明は、効率よく随伴ガスを分解することができる電気化学セルおよびそれを備える電気化学装置を提供することを目的とする。
本発明の電気化学セルは、第1電極と、該第1電極を覆うように設けられ、イオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備えることを特徴とする。
また、本発明の電気化学装置は、上記電気化学セルを複数個備えてなることを特徴とする。
本発明の電気化学セルによれば、イオン伝導部と電子伝導部とが隣接して設けられていることから、イオン導電性と電子導電性を高く維持することができ、効率よく随伴ガスを分解することができる。
また、本発明の電気化学装置によれば、効率よく随伴ガスを分解することができる電気化学セルを複数個備えていることから、効率よく随伴ガスを分解することができる電気化学装置とすることができる。
図1は本実施形態の電気化学セル1の一例を示しており、(a)は断面図、(b)は一部を抜粋して示す斜視図である。
図1に示す電気化学セル1は、一対の対向する平坦部nと両端の弧状部mとからなる柱状の支持基体2の全周を覆うように第1電極である燃料極層3が設けられており、燃料極層3を覆うように導電層4が設けられ、導電性4を覆うように、第2電極である空気極層5が設けられている。また、支持基体2の内部には、複数のガス流路6が設けられており、随伴ガスがこの内部を流れる。このような構成により、柱状の電気化学セル1が形成される。なお、導電層4については、図2において説明する。
なお、図1においては、中空で断面扁平状の支持基体1上に第1電極である燃料極層3を設けた構成の電気化学セル1を示しているが、例えば支持基体1が第1電極を兼ねるものとしてもよく、また第1電極を空気極層とし第2電極を燃料極層とすることもでき、さらに例えば全体として円筒状や、平板状の電気化学セルとすることもできる。
以下に、図1において示す電気化学セル1を構成する各部材について説明する。なお、導電層4については、図2において説明する。
支持基体2は、ガス流路6を流れる随伴ガスを第1電極である燃料極層3まで透過させるためにガス透過性であることから、例えば、鉄族金属成分と特定の希土類酸化物とにより形成されることが好ましい。
鉄族金属成分としては、鉄族金属単体、鉄族金属酸化物、鉄族金属の合金もしくは合金酸化物等が挙げられる。より詳細には、例えば、鉄族金属としてはFe、Ni(ニッケル)およびCoが挙げられ、特に安価であることから、鉄族成分としてNiおよび/またはNiOを含有することが好ましい。
特定の希土類酸化物とは、支持基体2の熱膨張係数を、後述する導電層4の熱膨張係数に近づけるために使用されるものであり、Y、Lu(ルテチウム)、Yb、Tm(ツリウム)、Er(エルビウム)、Ho(ホルミウム)、Dy(ジスプロシウム)、Gd、Sm、Pr(プラセオジム)からなる群より選択される少なくとも1種の元素を含む希土類酸化物が、NiおよびNiOのうち少なくとも一方との組み合わせで使用することができる。このような希土類酸化物の具体例としては、Y2O3、Lu2O3、Yb2O3、Tm2O3、Er2O3、Ho2O3、Dy2O3、Gd2O3、Sm2O3、Pr2O3を例示することができ、NiおよびNiOのうち少なくとも一方との固溶、反応が殆どなく
、また、熱膨張係数が導電層とほとんど同程度であり、かつ安価であるという点から、Y2O3、Yb2O3が好ましい。
、また、熱膨張係数が導電層とほとんど同程度であり、かつ安価であるという点から、Y2O3、Yb2O3が好ましい。
また、支持基体2の良好な導電率を維持し、かつ熱膨張係数をイオン伝導部と近似させるという点で、焼成−還元後における体積比率が、Ni:希土類元素酸化物(例えば、Ni:Y2O3)が35:65〜65:35(Ni/(Ni+Y)がモル比で65〜86mol%)の範囲にあることが好ましい。なお、支持基体2中には、要求される特性が損なわれない限りの範囲で、他の金属成分や酸化物成分を含有していてもよい。また、支持基体2は、ガス透過性を有していることが必要であるため、通常、気孔率が30%以上、特に35〜50%の範囲にあることが好ましい。
なお、支持基体2の主面nの長さ(支持基体2のガス流路6の配列方向に沿った長さ)は、通常、15〜35mm、側面mの長さ(弧の長さ)は、2〜8mmであり、支持基体2の厚み(主面n間の厚み)は1.5〜5mmであることが好ましい。
図1に示す電気化学セル1において、第1電極である燃料極層3は、鉄族金属であるNiおよびNiOのうち少なくとも一方と、希土類元素が固溶したZrO2とから形成することができる。なお、希土類元素としては、支持基体2において例示した希土類元素(Y等)を用いることができる。
燃料極層3において、NiおよびNiOのうち少なくとも一方と、希土類元素が固溶したZrO2の含有量は、焼成−還元後における体積比率が、Ni:希土類元素が固溶したZrO2(例えば、NiO:YSZ)が35:65〜65:35の範囲にあるのが好ましい。さらに、この燃料極層3の気孔率は、15%以上、特に20〜40%の範囲にあるのが好ましく、その厚みは、1〜50μmであるのが好ましい。例えば、燃料極層3の厚みがあまり薄いと、性能が低下するおそれがあり、またあまり厚いと、導電層4と燃料極層3との間で熱膨張係数差等による剥離やクラックを生じるおそれがある。
また、図1に示す電気化学セル1において、第2電極である空気極層5は、ガス透過性を有する必要があり、従って、空気極層5を形成するセラミックス(ペロブスカイト型酸化物)は、気孔率が20%以上、特に30〜50%の範囲にあることが好ましい。さらに、空気極層5の厚みは、30〜100μmであることが好ましい。
空気極層5を構成するセラミックスとしては、いわゆるABO3型のペロブスカイト型複合酸化物を主成分とする焼結体からなるセラミックスにより形成されるのが好ましく、遷移金属ペロブスカイト型酸化物、特にAサイトにSr(ストロンチウム)とLa(ランタン)が共存するLaSrCoFeO3系酸化物(例えばLaSrCoFeO3)、LaMnO3系酸化物(例えばLaSrMnO3)、LaFeO3系酸化物(例えばLaSrFeO3)、LaCoO3系酸化物(例えばLaSrCoO3)の少なくとも1種が好ましく、600〜1000℃程度の作動温度での電気伝導性が高いという点からLaSrCoFeO3系酸化物が特に好ましい。なお、上記ペロブスカイト型酸化物においては、Bサイトに、Co(コバルト)とともにFe(鉄)やMn(マンガン)が存在しても良い。
図2は、図1に示す電気化学セル1を概略的に示したものであり、(a)は縦断面図、(b)は第2電極である空気極層5を取り外した状態の平面図を示している。
図2に示すように、本実施形態の電気化学セル1において、導電層4は、酸素イオンを伝導するイオン伝導部4aと、電子を伝導する電子伝導部4bとが隣接して設けられており、図2においてはこれらイオン伝導部4aと電子伝導部4bとが縞状に設けられている例を示している。
それにより、第2電極である空気極層5側に供給される空気から酸素イオンがイオン伝導部4aを通じて第1電極である燃料極層3側に伝導され、燃料極層3側で生じた電子が電子伝導部4bを通じて空気極層5側に供給される。それにより、この電気化学セル1においては、第1電極および第2電極において下記の反応を生じ、メタンガスを効率よく分解することができる。
燃料極層:CH4+O2− → 2H2+CO+2e−
空気極層:1/2O2+2e− → O2−
ここで、図2に示す電気化学セル1においては、導電層4をイオン伝導性物質と電子伝導性物質を混合して構成するのではなく、イオン伝導性の層であるイオン伝導部4aと電子伝導性の層である電子伝導部4bとを別個に設けていることにより、これら物質を混合して導電層を設ける場合に比べて、効率よく導電性を有することができる。
燃料極層:CH4+O2− → 2H2+CO+2e−
空気極層:1/2O2+2e− → O2−
ここで、図2に示す電気化学セル1においては、導電層4をイオン伝導性物質と電子伝導性物質を混合して構成するのではなく、イオン伝導性の層であるイオン伝導部4aと電子伝導性の層である電子伝導部4bとを別個に設けていることにより、これら物質を混合して導電層を設ける場合に比べて、効率よく導電性を有することができる。
ここで、イオン伝導部4aは、例えば、3〜15モル%のY(イットリウム)、Sc(スカンジウム)、Yb(イッテルビウム)等の希土類元素を含有する部分安定化あるいは安定化ZrO2からなる緻密質なセラミックスを用いるのが好ましい。また、希土類元素としては、安価であるという点からYが好ましい。また、イオン伝導部4aは、ガス流路6を流れる随伴ガスの透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましく、かつその厚みが5〜50μmであることが好ましい。なお、上記以外であっても、酸素イオンを伝導することができるものを適宜用いることができ、例えば、SmやGd等の希土類元素が固溶したCeO2等も用いることができる。
一方、電子伝導部4bとしては、例えばLaCrO3系のペロブスカイト型酸化物を主体として構成することができる。なお、LaCrO3系酸化物を主体とするとは、電子伝導部4b中にLaCrO3系酸化物が60mol%以上含有されていることを意味し、他に導電性を向上させる目的や、熱膨張係数を支持基体2や固体電解質4に近づける目的で、他の元素(例えば、Ca、Sr、Mg、Ni、Co等)をLaCrO3中に固溶させてもよく、またこれらの酸化物を適宜加えてもよい。なお、電子伝導部4bの厚みは、その上に配置する空気極層5との接続を考慮して、イオン伝導部4aと同じ厚みとすることが好ましい。
なお、本実施形態の電気化学セル1において、イオン伝導部4aと電子伝導部4bとを縞状に設けることにより、導電層4が効率よく導電性を有することができるが、イオン伝導部4aと電子伝導部4bとがそれぞれ層状であり、かつ隣接して設けられていれば特に限定されるものではなく、縞状以外のものであってもよい。例えば、平面視において矩形状のイオン伝導部4aに、複数の電子伝導部4b(例えば円形状や四角形状)が設けられているような形状であってもよい。
図3は、本実施形態の電気化学セルの他の一例を概略的に示したものであり、(a)は断面図、(b)は第2電極である空気極層5を外した状態の平面図を示している。
上述のように、例えばイオン伝導部4aをYが固溶したZrO2であるYSZから作製し、電子伝導部4bをLaCrO3から作製した場合において、YSZとLaCrO3とを比較すると、LaCrO3の導電率がYSZの導電率よりも高いこととなる。
それゆえ、図3に示すように、導電層4の断面において、電子伝導部4bの面積の合計を、イオン導電部4aの面積の合計よりも小さくすることにより、空気極層5側から燃料極層3側に伝導する酸素イオンと、燃料極層3側から空気極層5側に伝導する電子とのバランスを保つことができ、効率よく随伴ガスの分解を行なうことができる。なお、導電層
4の断面とは、電気化学セルの縦方向や横方向のいずれの断面においても、電子伝導部4bの面積の合計を、イオン導電部4aの面積の合計よりも小さくなるように設けられていることが好ましい。
4の断面とは、電気化学セルの縦方向や横方向のいずれの断面においても、電子伝導部4bの面積の合計を、イオン導電部4aの面積の合計よりも小さくなるように設けられていることが好ましい。
図4は、本実施形態の電気化学セルのさらに他の一例を概略的に示したものであり、第2電極である空気極層5を外した状態の平面図を示している。
上述のように、例えばイオン伝導部4aをYが固溶したZrO2であるYSZにて作製し、電子伝導部4bをLaCrO3にて作製した場合において、LaCrO3を緻密に焼成するにあたって高温焼成が必要となるが、焼成収縮等を考慮すると1500℃程度という上限がある。しかしながらYSZとLaCrO3とを隣接して配置して1500℃で焼成を行なった場合に、イオン伝導部4aと電子伝導部4bとの接合部における緻密性が低下する場合がある。ここで緻密性が低下すると、随伴ガスが流出してしまうおそれがある。
それゆえ、YSZにてイオン伝導部4aを形成し、LaCrO3にて電子伝導部4bを形成する場合には、イオン伝導部4aと電子伝導部4bとの間に、NiおよびNiOの少なくとも一方と、Y2O3とを含んでなる中間層7を有することが好ましい。また、イオン伝導部4aと中間層7との接合強度を向上させる目的でMgOを含有してもよい。
それにより、LaCrO3を有してなる電子伝導部4bを、十分に焼成温度1550℃以下、特に1450℃〜1500℃の範囲で形成した場合においても、緻密性が低下することを抑制でき、随伴ガスが流出してしまうことを抑制できる。
なお、NiおよびNiOの少なくとも一方と、Y2O3とを含んでなる中間層7におけるNiの含有量は、すなわちY2O3とNiの合計量中のNi量の割合は、NiOに換算して3〜10質量%の範囲とするのが好ましい。なお、MgOを含有する場合には、Y2O3とNiOとMgOの合計量中のMgO量の割合を、1〜30質量%の範囲とするのが好ましい。
また、中間層7を形成する際の原料であるY2O3の累積中位径は2μm以上であり、好ましくは2〜3μmの範囲とするのが好ましい。なお、累積中位径とは、「ファインセラミックス原料のレーザ回析・散乱法による粒子径分布測定方法“JIS R 1629(1997)”」によって粉体の集合の粒度分布を求め、その粉体の集合の全体積を100%として累積カーブを求めたときに、その累積カーブが50%となる点の粒子径(μm)を意味するものである。
なお、図4に示す電気化学セルにおいては、中間層7を電子伝導部4bの周囲を取り囲むように設けた例を示しているが、中間層7をイオン伝導部4aの周囲を取り囲むように設けることもでき、またイオン伝導部4aと電子伝導部4bとの接合部のみに設けてもよい。
図5は、本実施形態の電気化学セルのさらに他の一例を概略的に示したものであり、断面図を示している。
本実施形態の電気化学セル1において、イオン伝導部4aと第2電極である空気極層5とを焼結する場合において、イオン伝導部4aに含有される成分(例えばZr)が空気極層5側に拡散するとともに、空気極層5に含まれる成分(例えばSr)がイオン伝導部4aに拡散し、これらの成分の拡散により、電気抵抗の高い反応層が形成され、電気化学セル1の性能が低下するおそれがある。
それゆえ、本実施形態の電気化学セル1において、イオン伝導部4aと第1電極である空気極層5とを焼結する場合においては、これらの成分の拡散を防止することを目的として、イオン伝導部4aと空気極層5との間に反応防止層8を設けることが好ましい。
それにより、イオン伝導部4aと空気極層5との間で成分が拡散することを抑制でき、電気化学セル1が低下することを抑制できる。
なお、反応防止層8としては、イオン伝導部4aに含有される成分(例えばZr)が空気極層3側に拡散するとともに、空気極層5に含まれる成分(例えばSr)がイオン伝導部4aに拡散することをより効率よく抑制するためには、反応防止層8を2層の構造とすることが好ましい。
このような反応防止層8としては、原料として例えば、下記式
(1):(CeO2)1−x(REO1.5)x
(1)式中、REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数である
で表される組成を有していることが好ましい。
(1):(CeO2)1−x(REO1.5)x
(1)式中、REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数である
で表される組成を有していることが好ましい。
さらには、電気抵抗を低減するという点から、10〜20モル%のSmO1.5またはGdO1.5が固溶したCeO2からなることが好ましい。なお、この原料粉末に、イオン導電部4aのZrの拡散を抑制する効果を高くするために、またイオン導電部4aと空気極層3の成分であるSrとの反応生成物の形成を抑制する効果を高くするために、他の希土類元素の酸化物(例えば、Y2O3、Yb2O3等)を含有しても良い。
なお反応防止層8を2層から形成する場合においては、イオン伝導部4aとの接合を強固とするため、イオン伝導部4a側の反応防止層8にはイオン伝導部4aの成分であるZrを含有していることが好ましい。それにより、反応防止層8とイオン伝導部4aとの剥離を抑制することができる。また、この際において、空気極層5側の反応防止層8はZrを含有していないことが好ましい。それにより、反応防止層8に含まれるZrと、空気極層5に含まれるSrとの反応を有効に抑制することができ、長期信頼性に優れた電気化学セルとすることができる。あわせて反応防止層8のそれぞれの層が、同じ希土類元素(Ce等)を含有していることから、反応防止層同士の接合強度を高めることができる。
図6は、本実施形態の電気化学セルのさらに他の一例を概略的に示したものであり、断面図を示している。
本実施形態の電気化学セルにおいて、燃料極層3がNiおよびNiOのうち少なくとも一方と、Yが固溶したZrO2(YSZ)とを含んでなり、電子伝導部4bがLaCrO3を有してなる場合において、この燃料極層3と電子伝導部4bとを隣接して配置する場合に、作製時において焼結しにくくなり、電子伝導部4bに含まれるLaと、燃料極層3に含まれるZrとが反応して電気抵抗の高い層が形成される場合がある。それゆえ、図6に示す電気化学セルにおいては、燃料極層3がイオン伝導層4aとのみ接続した構成としている。それにより、燃料極層3と電子伝導部4bとが焼結しにくくなることを抑制でき、電気抵抗の高い層が掲載されることを抑制できる。
なお、この場合において、イオン伝導層4aと電子伝導層4bとの間での電子の移動を行なうため、支持基体2が導電性を有することが好ましい。それゆえ、図6に示す電気化学セルにおいては、支持基体2をNiおよびNiOのうち少なくとも一方と 、Y2O3とを含んでなる構成とするとともに、導電性を有する構成としている。なお、支持基体2
の導電率は、50S/cm以上、より好ましくは300S/cm以上、特に好ましくは440S/cm以上とすることがよい。
の導電率は、50S/cm以上、より好ましくは300S/cm以上、特に好ましくは440S/cm以上とすることがよい。
以上説明した電気化学セルのうち、図5で示した電気化学セル1の作製方法について説明する。
先ず、NiおよびNiOの少なくとも一方の粉末と、Y2O3などの希土類酸化物の粉末と、有機バインダーと、溶媒とを混合して坏土を調製し、この坏土を用いて押出成形法により支持基体成形体を作製し、これを乾燥する。なお、支持基体成形体として、支持基体成形体を900〜1000℃にて2〜6時間仮焼した仮焼体を用いてもよい。
次に、例えば所定の調合組成に従いNiO、Y2O3が固溶したZrO2(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して第1電極である燃料極層用スラリーを調製し、ドクターブレード等の方法により成形してシート状の燃料極層成形体を作製する。
続いて、電子伝導層用材料(LaCrO3系酸化物粉末)、有機バインダー及び溶媒を混合してスラリーを調製し、スクリーン印刷にて、上記シート状の燃料極層成形体上に塗布して、電子伝導層成形体を作製する。
続いて、電子伝導層成形体が設けられた燃料極層成形体のシートを支持基体成形体上に巻きつけて、900〜1000℃にて2〜6時間仮焼する。
次に、上記電子伝導層成形体をマスキングした後、希土類元素が固溶したZrO2粉末に、トルエン、バインダー、市販の分散剤等を加えてスラリーに浸漬して、電子伝導層成形体間にイオン伝導層成形体を作製する。なお、イオン伝導層成形体と電子伝導層成形体の作製順序を逆としてもよい。またイオン伝導層成形体と電子伝導層成形体とが一部重なるように成形してもよい。
続いてイオン伝導層4aと空気極層5との間に配置する反応防止層成形体を形成する。
例えば、GdO1.5が固溶したCeO2粉末を800〜900℃にて2〜6時間、熱処理を行い、その後、湿式解砕して凝集度を5〜35に調整し、反応防止層成形体用の原料粉末を調整する。湿式解砕は溶媒を用いて10〜20時間ボールミルすることが望ましい。なお、反応防止層をSmO1.5が固溶したCeO2粉末より形成する場合も同様である。
そして、凝集度が調製された反応防止層成形体の原料粉末に、溶媒としてトルエンを添加し、反応防止層用スラリーを作製し、このスラリーをイオン伝導層上に塗布して反応防止層成形体を作製する。
次いで、上記の積層体成形体を脱バインダー処理し、酸素含有雰囲気中、1400℃〜1600℃にて2〜6時間、同時焼結(同時焼成)する。
なお、反応防止層を2層から形成する場合には、空気極層側の反応防止層は、同時焼成された反応防止層(1層目)の上面に、上述の反応防止層用スラリーを塗布した後、上記同時焼成時の温度よりも200℃以上低い温度にて焼成する。
次いで、空気極層用材料(例えば、LaSrCoFeO3系酸化物粉末)、溶媒および増孔剤を含有するスラリーをディッピング等により、イオン伝導層4aおよび電子伝導層
4b上に塗布し、1000〜1300℃で、2〜6時間焼き付けることにより、図5に示す構造の電気化学セル1を製造できる。なお、電気化学セル1は、その後、内部に水素ガスを流し、支持基体2および燃料極層3の還元処理を行なう。その際、例えば750〜1000℃にて5〜20時間還元処理を行なうのが好ましい。
4b上に塗布し、1000〜1300℃で、2〜6時間焼き付けることにより、図5に示す構造の電気化学セル1を製造できる。なお、電気化学セル1は、その後、内部に水素ガスを流し、支持基体2および燃料極層3の還元処理を行なう。その際、例えば750〜1000℃にて5〜20時間還元処理を行なうのが好ましい。
なお、図4に示す電気化学セルを作製する場合には、電子伝導層成形体が設けられた燃料極層成形体のシートに対して、NiO、Y2O3を含有するスラリーを、電子伝導層成形体の周囲に塗布することで、中間層成形体を作製すればよい。
以上のようにして作製された電気化学セル1は、イオン伝導部4aと電子伝導部4bとが隣接して設けられてなる導電層4と、導電層4の一方の面を覆うように設けられた第1電極3と、導電層4の他方の面を覆うように設けられた第2電極5とを備えることから、効率よく随伴ガスを分解することができる。
そして、上述した電気化学セルを複数個備えることで、随伴ガスを効率よく分解することが可能な電気化学装置とすることができる。このような電気化学装置としては、例えば、上述した電気化学セルに随伴ガスを供給するための随伴ガスタンクに電気化学セルの一端を固定し、随伴ガスを分解して生じる水素ガスタンクに電気化学セルの他端を固定することで、効率よく随伴ガスを分解できるとともに、分解により生じた水素ガスを効率よく回収することができる。
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
例えば、上述の例において、支持基体2として導電性の支持基体2を用いる例を説明したが、支持基体2の表面に導電性を有する層が設けられている場合には、支持基体2を絶縁性とすることもできる。
また、上述の例において、支持基体2上に、第2電極である燃料極層3の1層を設ける構成について説明したが、第1電極である燃料極層3と第2電極である空気極層5とでの電子やイオンの伝導をより効率よく行うにあたり、第1電極である燃料極層3と支持基体2との間に、より導電性を有する材料からなる層を設けることもできる。
また電気化学セル1を円筒型や平板型とする場合には、適宜公知の方法により、第1電極と、該第1電極を覆うように設けられイオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備える構成とすればよい。
1:電気化学セル
2:支持基体
3:第1電極(燃料極層)
4:導電層
4a:イオン伝導層
4b:電子伝導層
5:第2電極(空気極層)
6:ガス流路
7:中間層
8:反応防止層
2:支持基体
3:第1電極(燃料極層)
4:導電層
4a:イオン伝導層
4b:電子伝導層
5:第2電極(空気極層)
6:ガス流路
7:中間層
8:反応防止層
Claims (8)
- 第1電極と、該第1電極を覆うように設けられ、イオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備えることを特徴とする電気化学セル。
- 前記イオン伝導部と前記電子伝導部とが縞状に設けられていることを特徴とする請求項1に記載の電気化学セル。
- 前記電子伝導部がLaCrO3系のペロブスカイト酸化物からなり、前記イオン伝導部が希土類元素が固溶したZrO2からなるとともに、前記導電層の断面において、前記電子伝導部の面積の合計が、前記イオン伝導部の面積の合計よりも小さいことを特徴とする請求項1または2に記載の電気化学セル。
- 前記イオン伝導部と前記電子伝導部との間に、NiおよびNiOの少なくとも一方と、Y2O3とを含んでなる中間層を有することを特徴とする請求項3に記載の電気化学セル。
- 前記第1電極が燃料極層であり、前記第2電極が空気極層であるとともに、前記イオン伝導部の前記空気極側に反応防止層が設けられていることを特徴とする請求項1乃至4のうちのいずれかに記載の電気化学セル。
- 多孔質の支持基体上に、前記第1電極、前記導電層、前記第2電極がこの順に積層されていることを特徴とする請求項1乃至5のうちのいずれかに記載の電気化学セル。
- 前記支持基体が導電性を有し、前記第1電極がNiおよびNiOの少なくとも一方と、希土類元素が固溶したZrO2とを含んでなり、前記電子伝導部がLaCrO3系のペロブスカイト酸化物からなるとともに、前記第1電極が、前記イオン伝導部にのみ接続されていることを特徴とする請求項6に記載の電気化学セル。
- 請求項1乃至7のうちのいずれかに記載の電気化学セルを複数個備えてなることを電気化学装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143105A JP2013012337A (ja) | 2011-06-28 | 2011-06-28 | 電気化学セルおよびそれを備える電気化学装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143105A JP2013012337A (ja) | 2011-06-28 | 2011-06-28 | 電気化学セルおよびそれを備える電気化学装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013012337A true JP2013012337A (ja) | 2013-01-17 |
Family
ID=47686065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011143105A Withdrawn JP2013012337A (ja) | 2011-06-28 | 2011-06-28 | 電気化学セルおよびそれを備える電気化学装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013012337A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015004871A1 (ja) * | 2013-07-11 | 2015-01-15 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池セル、その製造方法、燃料電池セルスタック、及び固体酸化物形燃料電池。 |
-
2011
- 2011-06-28 JP JP2011143105A patent/JP2013012337A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015004871A1 (ja) * | 2013-07-11 | 2015-01-15 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池セル、その製造方法、燃料電池セルスタック、及び固体酸化物形燃料電池。 |
JP2015035416A (ja) * | 2013-07-11 | 2015-02-19 | 日本特殊陶業株式会社 | 固体酸化物形燃料電池セル、その製造方法、燃料電池セルスタック、及び固体酸化物形燃料電池。 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8658328B2 (en) | Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method | |
US20110177424A1 (en) | Electrolyte-electrode joined assembly and method for producing the same | |
JP7021787B2 (ja) | プロトン伝導性電解質 | |
JP5566405B2 (ja) | 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置 | |
JP2015062165A (ja) | 固体酸化物型燃料電池 | |
JP5415994B2 (ja) | 固体電解質形燃料電池セル | |
US20200203747A1 (en) | Laminate structure of mixed ionic-electronic conductive electrolyte and electrode, and method for manufacturing same | |
JP2014069989A (ja) | 酸素イオン伝導体およびこれを用いた電気化学装置 | |
JP6121895B2 (ja) | 電解セル、電解セルスタック装置および電解モジュールならびに電解装置 | |
JP2013161574A (ja) | 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置 | |
WO2014122807A1 (ja) | 固体酸化物形燃料電池及びその製造方法 | |
EP3214682B1 (en) | Cell, cell stack device, module, and module storage device | |
EP3125347B1 (en) | Cell stack device, module, and module housing device | |
JP2013157132A (ja) | 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置 | |
JPWO2018117098A1 (ja) | セル、セルスタック装置、モジュールおよびモジュール収納装置 | |
JP5701444B1 (ja) | 燃料電池 | |
JP2013012337A (ja) | 電気化学セルおよびそれを備える電気化学装置 | |
JP5667315B1 (ja) | 燃料電池 | |
JP5711093B2 (ja) | 固体酸化物形燃料電池のガスセパレート材及び固体酸化物形燃料電池 | |
JP2020136252A (ja) | 燃料電池セル、燃料電池モジュール、発電システム、高温水蒸気電解セルおよびそれらの製造方法 | |
JP2015053161A (ja) | 燃料電池 | |
JP7243709B2 (ja) | 燃料電池用電解質層-アノード複合部材、セル構造体および燃料電池、ならびに複合部材の製造方法 | |
JP6134086B1 (ja) | 電気化学セル | |
JP6378436B2 (ja) | 固体酸化物形燃料電池スタック及びその製造方法 | |
JP2016207539A (ja) | セル、セルスタック装置、モジュール、およびモジュール収容装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |