JP2013001633A - Crystallized glass article and method for manufacturing the same - Google Patents

Crystallized glass article and method for manufacturing the same Download PDF

Info

Publication number
JP2013001633A
JP2013001633A JP2011137712A JP2011137712A JP2013001633A JP 2013001633 A JP2013001633 A JP 2013001633A JP 2011137712 A JP2011137712 A JP 2011137712A JP 2011137712 A JP2011137712 A JP 2011137712A JP 2013001633 A JP2013001633 A JP 2013001633A
Authority
JP
Japan
Prior art keywords
sintered body
crystallized glass
crystals
fused
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011137712A
Other languages
Japanese (ja)
Inventor
Akihito Yamada
暁仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011137712A priority Critical patent/JP2013001633A/en
Publication of JP2013001633A publication Critical patent/JP2013001633A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a crystallized glass article and a method for manufacturing the same in which the crystallized glass article has unity and no gaps that may cause leakage, can be applied to an angular bent corner section, and can be made more lightweight.SOLUTION: The crystallized glass article 10 includes a first sintered body 11 composed of crystallized glass of which capillary crystals are deposited inward from an interface between a plurality of glass sub-areas that are fused together, and a second sintered body 12 composed of a similar crystallized glass, in which the second sintered body 12 is integrated by fusing with a portion 11b of one surface 11a of the first sintered body 11.

Description

本発明は、建築物の内外装材及び装飾材などに好適な結晶化ガラス物品とその製造方法に関する。   The present invention relates to a crystallized glass article suitable for an interior / exterior material of a building, a decoration material, and the like, and a method for producing the same.

近年、建築物の内外装材及び装飾材等として、大理石等の代わりに、光沢がよく、寸法の自由度が高い天然大理石様結晶化ガラスの壁材が使用されている。   In recent years, a wall material made of natural marble-like crystallized glass having a high gloss and a high degree of dimensional freedom has been used as an interior / exterior material and a decoration material of a building, instead of marble.

例えば、特許文献1には、天然大理石様結晶化ガラスが開示されており、特許文献2には、非晶質ガラスと天然大理石様結晶化ガラスとが積層されてなる模様入り結晶化ガラス物品が開示されている。   For example, Patent Document 1 discloses a natural marble-like crystallized glass, and Patent Document 2 discloses a patterned crystallized glass article in which an amorphous glass and a natural marble-like crystallized glass are laminated. It is disclosed.

従来、結晶化ガラス製の壁材を使用して建築物の壁面を構成する場合、建築物の角部においては、平板の壁材同士をつき合わせて貼り付けたり(特許文献3)、平板壁材を円弧状に曲げ加工した湾曲壁材を貼り付けたりしている(特許文献4、5)。   Conventionally, when a wall surface of a building is formed using a wall material made of crystallized glass, flat wall materials are attached to each other at the corner of the building (Patent Document 3), A curved wall material obtained by bending the material into an arc shape is attached (Patent Documents 4 and 5).

特開2009−073726号公報JP 2009-073726 A 特開2009−173526号公報JP 2009-173526 A 特開昭63−107832号公報JP 63-107832 A 特開平5−116973号公報Japanese Patent Laid-Open No. 5-116973 特開2000−327349号公報JP 2000-327349 A

しかしながら、従来の結晶化ガラス製壁材を使用した場合、壁面の角部において、壁材が不連続になって一体感がなく、また、壁材同士のつき合わせ部分に漏水が生じるおそれがあるという難点があった。また、角張った角部には、湾曲加工品を使用することができないという難点があった。また、これら結晶化ガラス製壁材には更なる軽量化が求められていた。   However, when a conventional crystallized glass wall material is used, the wall material becomes discontinuous at the corners of the wall surface and there is no sense of unity, and there is a possibility that water leakage may occur at the mating part of the wall materials. There was a difficulty. In addition, there is a difficulty in that a curved processed product cannot be used in an angular corner. Further, these crystallized glass wall materials have been required to be further reduced in weight.

本発明は、従来の結晶化ガラス製壁材に上記のような難点があったことに鑑みて為されたもので、一体感があり、漏水を生じるような隙間がなく、角張った屈曲角部にも施工可能であり、更なる軽量化を図ることができる結晶化ガラス物品とその製造方法を提供することを課題とする。   The present invention was made in view of the above-mentioned difficulties in the conventional crystallized glass wall material, has a sense of unity, has no gap to cause water leakage, and has an angular bent corner. It is an object of the present invention to provide a crystallized glass article that can be constructed and can be further reduced in weight and a method for producing the same.

本発明は、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体と、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第二焼結体と、を備え、前記第一焼結体の一の面の一部に前記第二焼結体が融着一体化されていることを特徴とする。   The present invention includes a first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of glass subregions fused together, and a plurality of glass subregions fused together. A second sintered body made of crystallized glass with acicular crystals precipitated from the interface toward the inside, and the second sintered body is fused to a part of one surface of the first sintered body It is characterized by being integrated.

また、本発明は、前記第一焼結体及び前記第二焼結体が平板形状を成し、該第一焼結体の平板面と該第二焼結体の平板面とが垂直を成していることを特徴とする。   In the present invention, the first sintered body and the second sintered body have a flat plate shape, and the flat surface of the first sintered body and the flat surface of the second sintered body are perpendicular to each other. It is characterized by that.

また、本発明は、前記第一焼結体の端部と前記第二焼結体の端部とが融着一体化されていることを特徴とする。   Further, the present invention is characterized in that the end of the first sintered body and the end of the second sintered body are fused and integrated.

また、本発明は、前記結晶化ガラスが、質量%でSiO 45〜75%、Al 1〜15%、CaO 5〜25%、ZnO 0〜15%、BaO 0〜15%、MgO 0〜2%、SrO 0〜2%、KO 0〜5%、NaO 0.5〜10%、B 0.05〜5%、LiO 0〜2%、Sb 0〜1%、As 0〜1%の組成を含有し、主結晶としてβ−ウォラストナイトが析出するものであることを特徴とする。 Further, the present invention, the crystallized glass, SiO 2 45 to 75% by mass%, Al 2 O 3 1~15% , CaO 5~25%, 0~15% ZnO, BaO 0~15%, MgO 0~2%, SrO 0~2%, K 2 O 0~5%, Na 2 O 0.5~10%, B 2 O 3 0.05~5%, Li 2 O 0~2%, Sb 2 It contains O 3 0 to 1% and As 2 O 3 0 to 1%, and is characterized in that β-wollastonite is precipitated as the main crystal.

また、本発明は、耐火性の型枠内に、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体を配置する配置工程と、前記型枠内に配置した前記第一焼結体の上面の一部を耐火性の仕切部材で仕切ることにより該第一焼結体の融着予定部を形成する仕切工程と、前記仕切部材で仕切った前記第一焼結体の前記融着予定部に、軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体を集積する集積工程と、前記型枠ごと加熱して前記結晶性ガラス小体同士を融着させつつ針状結晶を析出させて第二焼結体を形成するとともに前記融着予定部において前記第一焼結体と融着一体化させる熱処理工程と、を含むことを特徴とする。   Further, the present invention arranges a first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of small glass regions fused to each other in a fireproof mold. A partitioning step for forming a fusion-scheduled portion of the first sintered body by partitioning a part of the upper surface of the first sintered body disposed in the mold with a fireproof partition member; A plurality of crystals having a property that, when heat-treated at a temperature higher than the softening point, the needle-like crystals are precipitated from the surface toward the inside while being softened and deformed in the fusion-bonded portion of the first sintered body partitioned by the partition member An accumulation step of accumulating the crystalline glass bodies, and heating the whole mold to melt the crystalline glass bodies and depositing acicular crystals to form a second sintered body and the fusion schedule A heat treatment step for fusing and integrating the first sintered body in the part, Characterized in that it contains.

また、本発明は、耐火性の型枠内に、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体を配置する配置工程と、前記型枠内に配置した前記第一焼結体の側面を耐火性の仕切部材で仕切ることにより該第一焼結体の融着予定部を形成する仕切工程と、前記仕切部材で仕切った前記第一焼結体の前記融着予定部に、軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体を集積する集積工程と、前記型枠ごと加熱して前記結晶性ガラス小体同士を融着させつつ針状結晶を析出させて第二焼結体を形成するとともに前記融着予定部において前記第一焼結体と融着一体化させる熱処理工程と、を含むことを特徴とする。   Further, the present invention arranges a first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of small glass regions fused to each other in a fireproof mold. An arrangement step, a partitioning step of forming a fusion-bonded portion of the first sintered body by partitioning a side surface of the first sintered body disposed in the mold with a fire-resistant partition member, and the partition member A plurality of crystalline glass small particles having the property of acicular crystals precipitating from the surface toward the inside while being softened and deformed when heat-treated at a temperature higher than the softening point at the fusion target portion of the first sintered body partitioned by An accumulating step for accumulating the body, and heating the entire formwork to form a second sintered body by precipitating the acicular crystals while fusing the crystalline glass bodies together, and A heat treatment step for fusing and integrating with the first sintered body. And wherein the door.

また、本発明は、前記結晶性ガラス小体が、着色剤として、遷移金属酸化物であるCoO、Co、NiO、Fe、MnO、SnO、ZrOの何れかの無機顔料を含むことを特徴とする。 Further, according to the present invention, the crystalline glass body is an inorganic material selected from the group consisting of CoO, Co 3 O 4 , NiO, Fe 2 O 3 , MnO, SnO 2 and ZrO 2 , which are transition metal oxides. It contains a pigment.

本発明に係る結晶化ガラス物品によれば、第一焼結体と第二焼結体とが融着一体化されているため、一体感があり、漏水を生じるような隙間がなく、角張った屈曲角部にも施工でき、更なる軽量化を図ることができる。   According to the crystallized glass article according to the present invention, since the first sintered body and the second sintered body are fused and integrated, there is a sense of unity, there is no gap that causes water leakage, and it is angular. It can also be applied to bent corners, and further weight reduction can be achieved.

また、本発明に係る結晶化ガラス物品の製造方法は、上記結晶化ガラス物品を効率良く製造することが可能となる。   Moreover, the manufacturing method of the crystallized glass article which concerns on this invention can manufacture the said crystallized glass article efficiently.

第一実施形態の結晶化ガラス物品の全体斜視図である。It is the whole crystallized glass article perspective view of a first embodiment. 第一実施形態の結晶化ガラス物品の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the crystallized glass article of 1st embodiment. 第二実施形態の結晶化ガラス物品の全体斜視図である。It is the whole crystallized glass article perspective view of a second embodiment. 第二実施形態の結晶化ガラス物品の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the crystallized glass article of 2nd embodiment. 第三実施形態の結晶化ガラス物品の全体斜視図である。It is the whole crystallized glass article perspective view of a third embodiment. 第三実施形態の結晶化ガラス物品の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the crystallized glass article of 3rd embodiment. 第三実施形態の結晶化ガラス物品の製造方法の変形例を説明する概略断面図である。It is a schematic sectional drawing explaining the modification of the manufacturing method of the crystallized glass article of 3rd embodiment.

「第一実施形態」
第一実施形態の結晶化ガラス物品10は、図1に示すように、第一焼結体11の端部と第二焼結体12の端部とが融着一体化されて構成されている。第一焼結体11及び第二焼結体12は平板形状を成しており、第一焼結体11の一の平板面11aの一部11bと第二焼結体12の一の厚み面12aの全部とが融着一体化されている。そして、結晶化ガラス物品10の意匠面となる第一焼結体11の他の平板面11cと、同じく意匠面となる第二焼結体12の一の平板面12bとは垂直を成している。つまり、結晶化ガラス物品10は、平板形状の第二焼結体12が平板形状の第一焼結体11の一の平板面11aの一部11bにおいて第一焼結体11の厚み方向へ突出して横断面L字形状に形成されている。
"First embodiment"
As shown in FIG. 1, the crystallized glass article 10 of the first embodiment is configured such that the end of the first sintered body 11 and the end of the second sintered body 12 are fused and integrated. . The first sintered body 11 and the second sintered body 12 have a flat plate shape, and a part 11b of one flat surface 11a of the first sintered body 11 and a thickness surface of the second sintered body 12. All of 12a are fused and integrated. And the other flat plate surface 11c of the 1st sintered compact 11 used as the design surface of the crystallized glass article 10 and the flat plate surface 12b of the 2nd sintered compact 12 used also as a design surface are perpendicular | vertical. Yes. That is, in the crystallized glass article 10, the flat plate-shaped second sintered body 12 protrudes in the thickness direction of the first sintered body 11 at a part 11 b of the flat plate surface 11 a of the flat plate-shaped first sintered body 11. And has a L-shaped cross section.

第一焼結体11は、複数のガラス小領域が互いに融着し、ガラス小領域同士の界面から内部に向かって主結晶として針状のβ−ウォラストナイトが析出した結晶化ガラスにより構成されている。なお、第一焼結体11を、主結晶としてディオプサイドの針状結晶がガラス小領域同士の界面から内部に向かって析出した結晶化ガラスにより構成してもよい。   The first sintered body 11 is composed of crystallized glass in which a plurality of small glass regions are fused together, and acicular β-wollastonite is precipitated as a main crystal from the interface between the small glass regions toward the inside. ing. In addition, you may comprise the 1st sintered compact 11 by the crystallized glass which the diopside needle-like crystal precipitated as the main crystal toward the inside from the interface of small glass regions.

第二焼結体12もまた、複数のガラス小領域が互いに融着し、ガラス小領域同士の界面から内部に向かって主結晶として針状のβ−ウォラストナイトが析出した結晶化ガラスにより構成されている。第二焼結体12は、第一焼結体11と同じ結晶化ガラスや基本的なガラス成分が同じか類似の成分を有する結晶化ガラスにより構成されていればよく、融着一体化された接合面(11b、12a)に接合強度を下げる割れが生じないものであればよい。また、意匠面のデザインを考慮して模様違いの結晶化ガラス、色違いの結晶化ガラス等で構成されていてもよい。   The second sintered body 12 is also composed of crystallized glass in which a plurality of small glass regions are fused together, and acicular β-wollastonite is precipitated as a main crystal from the interface between the small glass regions. Has been. The second sintered body 12 only needs to be composed of the same crystallized glass as that of the first sintered body 11 or a crystallized glass having the same or similar basic glass component, and are fused and integrated. Any material may be used as long as it does not cause cracks that lower the bonding strength on the bonding surfaces (11b, 12a). Further, in consideration of the design of the design surface, it may be composed of crystallized glass having different patterns, crystallized glass having different colors, or the like.

このように第一実施形態の結晶化ガラス物品10は、第一焼結体11と第二焼結体12とが融着一体化されており、意匠面となる第一焼結体11の平板面11cに対し直交する厚み面11dと第二焼結体12の平板面12bとが隙間なく延在しているので、例えば建築物の角張った屈曲角部に施工しても、その見栄えが不連続になることもなく、漏水を生じるおそれもなくなる。   Thus, in the crystallized glass article 10 of the first embodiment, the first sintered body 11 and the second sintered body 12 are fused and integrated, and the flat plate of the first sintered body 11 serving as a design surface. Since the thickness surface 11d orthogonal to the surface 11c and the flat plate surface 12b of the second sintered body 12 extend without a gap, for example, even if construction is performed on an angular corner of a building, the appearance is not good. There is no possibility of water leakage without being continuous.

本発明に係る結晶化ガラス物品において、結晶化ガラスは、質量%でSiO 45〜75%、Al 1〜15%、CaO 5〜25%、ZnO 0〜15%、BaO 0〜15%、MgO 0〜2%、SrO 0〜2%、KO 0〜5%、NaO 0.5〜10%、B 0.05〜5%、LiO 0〜2%、Sb 0〜1%、As 0〜1%の組成を含有し、主結晶としてβ−ウォラストナイトを析出するものであることが、大理石様の外観及び十分な強度を実現する上で好ましい。 In the crystallized glass article according to the present invention, crystallized glass, SiO 2 45 to 75% by mass%, Al 2 O 3 1~15% , CaO 5~25%, 0~15% ZnO, BaO 0~15 %, 0~2% MgO, SrO 0~2 %, K 2 O 0~5%, Na 2 O 0.5~10%, B 2 O 3 0.05~5%, Li 2 O 0~2% , Sb 2 O 3 0 to 1%, As 2 O 3 0 to 1%, and the precipitation of β-wollastonite as the main crystal has a marble-like appearance and sufficient strength. It is preferable in realization.

結晶化ガラスの各成分の含有量を限定した理由を以下に述べる。   The reason why the content of each component of the crystallized glass is limited will be described below.

SiOは、表面から内部に向かって針状結晶として析出するβ−ウォラストナイトの成分であり、SiOの含有量が75%より高いとガラスの溶融温度が高くなるとともに、粘度が増大して熱処理時の流動性が悪くなる傾向になる。一方、45%より少ないと成型時の失透性が強くなる傾向になる。SiOの含有量は45〜75%であることが好ましい。 SiO 2 is a component of β-wollastonite that precipitates as acicular crystals from the surface to the inside. When the content of SiO 2 is higher than 75%, the melting temperature of the glass increases and the viscosity increases. Therefore, the fluidity during heat treatment tends to deteriorate. On the other hand, if it is less than 45%, devitrification at the time of molding tends to be strong. The content of SiO 2 is preferably 45 to 75%.

Alは、失透を抑制する成分であり、その含有量が15%より多いとガラスの溶解性が悪くなるとともに異種結晶(例えば、アノーサイト)が析出し熱処理時の流動性が悪くなる傾向になる。一方、Alが1%より少ないと失透性が強くなり化学的耐久性も低下する傾向になる。Alの含有量は1〜15%であることが好ましい。 Al 2 O 3 is a component that suppresses devitrification, and if its content is more than 15%, the solubility of the glass deteriorates, and dissimilar crystals (for example, anorthite) precipitate, resulting in poor fluidity during heat treatment. Tend to be. On the other hand, when Al 2 O 3 is less than 1%, devitrification becomes strong and chemical durability tends to be lowered. The content of Al 2 O 3 is preferably 1 to 15%.

CaOは、β−ウォラストナイトの成分であり、その含有量が25%よりも多いと失透性が強くなり成形が困難となる傾向になり、また、β−ウォラストナイト結晶の析出量が多くなり過ぎて所望の表面平滑性が得難くなる。一方、CaOが5%より少ないとβ−ウォラストナイトの析出量が少なくなり過ぎて機械的強度が低下する傾向になる。CaOの含有量は9〜11%であることがより好ましい。   CaO is a component of β-wollastonite, and if its content is more than 25%, devitrification tends to be strong and molding tends to be difficult, and the amount of β-wollastonite crystals precipitated is high. It becomes too much to obtain desired surface smoothness. On the other hand, when CaO is less than 5%, the amount of β-wollastonite is excessively reduced and the mechanical strength tends to decrease. The content of CaO is more preferably 9 to 11%.

ZnOは、結晶化時のガラスの流動性を促進するために添加する成分である。ZnOの含有量が15%より多いとβ−ウォラストナイト結晶が析出し難くなる傾向になる。ZnOの含有量は0〜15%であることが好ましい。   ZnO is a component added to promote the fluidity of the glass during crystallization. If the ZnO content is more than 15%, β-wollastonite crystals tend to be difficult to precipitate. The content of ZnO is preferably 0 to 15%.

BaOも、ZnOと同様、ガラスの流動性を促進する効果を示す成分である。BaOが15%より多いとβ−ウォラストナイト結晶の析出量が少なくなる傾向になる。BaOの含有量は0〜15%であることが好ましい。   BaO, like ZnO, is a component that exhibits the effect of promoting the fluidity of glass. When BaO is more than 15%, the amount of β-wollastonite crystals precipitated tends to decrease. The BaO content is preferably 0 to 15%.

MgO及びSrOも、ZnOと同様、ガラスの流動性を促進する効果を示す成分である。含有量が2%より多いと異種結晶が析出し、所望の平滑性が得難い傾向になる。MgO及びSrOの含有量は0〜2%であることが好ましい。   MgO and SrO are also components that show the effect of promoting the fluidity of glass, like ZnO. When the content is more than 2%, different types of crystals are precipitated and it becomes difficult to obtain desired smoothness. The content of MgO and SrO is preferably 0 to 2%.

NaOは、結晶性ガラスの粘性を低下させるアルカリ成分であり、その含有量が10%よりも多いと化学的耐久性が悪くなり、かつ膨張係数が高くなる傾向になり、好ましくない。0.5%より少ないとガラスの粘性が増大して溶解性や流動性が悪くなる傾向になる。NaOの含有量は、0.5〜10%であることが好ましい。 Na 2 O is an alkaline component that lowers the viscosity of the crystalline glass. If its content is more than 10%, the chemical durability tends to deteriorate and the expansion coefficient tends to increase, such being undesirable. If it is less than 0.5%, the viscosity of the glass will increase and the solubility and fluidity will tend to deteriorate. The content of Na 2 O is preferably 0.5 to 10%.

Oは、結晶性ガラスの粘性を低下させるアルカリ成分であり、その含有量が5%より多いと化学的耐久性が低下する傾向になる。KOの含有量は0〜5%であることが好ましい。 K 2 O is an alkaline component that lowers the viscosity of the crystalline glass, and if its content is more than 5%, the chemical durability tends to decrease. The content of K 2 O is preferably 0 to 5%.

は、結晶化ガラスの熱膨張係数を変化させずに結晶性ガラスの粘性を低下させる成分であり、その含有量が0.05%より少ないと、ガラスの流動性が悪くなり、表面平滑性が得られない傾向になる。一方、Bが5%より多いと異種結晶が析出し、所望の特性が得られなくなる傾向になる。Bの含有量は0.2〜0.4%であることがより好ましい。 B 2 O 3 is a component that lowers the viscosity of the crystalline glass without changing the thermal expansion coefficient of the crystallized glass. If its content is less than 0.05%, the fluidity of the glass becomes poor. The surface smoothness tends not to be obtained. On the other hand, if the amount of B 2 O 3 is more than 5%, different types of crystals are precipitated and the desired characteristics tend not to be obtained. The content of B 2 O 3 is more preferably 0.2 to 0.4%.

LiOは、結晶化速度を速める効果と流動性を促進する効果を示す成分であり、その含有量が2%を超えると、化学的耐久性が低下し、粘性が低下し過ぎるために発泡し易くなるだけでなく、膨張係数が高くなる傾向になり、好ましくない。LiOの含有量は、0〜2%であることが好ましい。 Li 2 O is a component that shows the effect of increasing the crystallization speed and the effect of promoting fluidity. When the content exceeds 2%, the chemical durability is lowered, and the viscosity is excessively lowered. This is not only preferable, but also tends to increase the expansion coefficient. The content of Li 2 O is preferably 0 to 2%.

Sb及びAsは、清澄剤として機能する成分であるが、その含有量が1%を超えることは環境衛生上好ましくない。Sb及びAsの含有量は0〜1%であることが好ましい。 Sb 2 O 3 and As 2 O 3 are components that function as fining agents, but it is not preferable in terms of environmental hygiene that their content exceeds 1%. The content of Sb 2 O 3 and As 2 O 3 is preferably 0 to 1%.

次に、図2を参照しながら、第一実施形態の結晶化ガラス物品10の製造方法について説明する。   Next, the manufacturing method of the crystallized glass article 10 of the first embodiment will be described with reference to FIG.

まず、従来公知の集積法によって、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる平板形状の第一焼結体11を作製する。   First, a flat plate-shaped first sintered body 11 made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of glass small regions fused together is produced by a conventionally known integration method.

次いで、図2(a)に示すように、耐火性の型枠13内に第一焼結体11を配置する配置工程を行う。本実施形態では、第一焼結体11の平板面11aとほぼ同形状の底面を有する型枠13を準備し、この型枠13内に第一焼結体11を平置き状態で配置することによって、第一焼結体11の四周の厚み面(側面)を型枠13の内壁面で被覆している。なお、型枠13の型面には予め、離型剤としてアルミナ粉が塗布され、アルミナペーパが敷かれている。   Next, as shown in FIG. 2A, an arrangement step of arranging the first sintered body 11 in the fireproof mold 13 is performed. In the present embodiment, a mold 13 having a bottom surface substantially the same shape as the flat plate surface 11a of the first sintered body 11 is prepared, and the first sintered body 11 is arranged in a flat state in the mold 13. Thus, the four thickness surfaces (side surfaces) of the first sintered body 11 are covered with the inner wall surface of the mold 13. The mold surface of the mold 13 is preliminarily coated with alumina powder as a mold release agent and is laid with alumina paper.

次いで、図2(b)に示すように、型枠13内に配置された第一焼結体11の上面の一部を耐火性の仕切部材14で仕切ることにより第一焼結体11の融着予定部M1を形成する仕切工程を行う。本実施形態では、平置き状態の第一焼結体11の上面となる一の平板面11aの一部11bを仕切部材14で仕切ることによって、平板形状の第一焼結体11の端部に融着予定部M1を形成している。なお、仕切部材14には予め、離型剤として、アルミナ粉が塗布され、アルミナペーパが付設されている。また、後述する熱処理工程時において仕切部材14が自重等によって第一焼結体11側へ沈み込むおそれがある場合、仕切部材14は型枠13に固定されることが好ましい。   Next, as shown in FIG. 2 (b), the first sintered body 11 is melted by partitioning a part of the upper surface of the first sintered body 11 disposed in the mold 13 with a fire-resistant partition member 14. A partitioning step for forming the planned wearing portion M1 is performed. In this embodiment, by partitioning a part 11b of one flat plate surface 11a, which is the upper surface of the first sintered body 11 in a flat state, with a partition member 14, the end of the flat plate-shaped first sintered body 11 is formed. A fusion target portion M1 is formed. The partition member 14 is preliminarily coated with alumina powder as a release agent, and is provided with alumina paper. Further, when there is a possibility that the partition member 14 sinks to the first sintered body 11 side due to its own weight or the like during the heat treatment step described later, the partition member 14 is preferably fixed to the mold 13.

次いで、図2(c)に示すように、仕切部材14により仕切られた第一焼結体11の融着予定部M1に、軟化点よりも高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体Aを集積する集積工程を行う。本実施形態では、第一焼結体11の融着予定部M1の直上に複数の結晶性ガラス小体Aが集積され、結晶性ガラス小体Aによる集積層の下面の全部が融着予定部M1と接触する。   Next, as shown in FIG. 2 (c), when heat treatment is performed at a temperature higher than the softening point on the fusion-bonded portion M1 of the first sintered body 11 partitioned by the partition member 14, the softening deformation is caused to move from the surface to the inside. An accumulating step of accumulating a plurality of crystalline glass bodies A having the property of acicular crystals precipitating is performed. In the present embodiment, a plurality of crystalline glass bodies A are accumulated immediately above the planned fusion portion M1 of the first sintered body 11, and the entire lower surface of the accumulation layer of the crystalline glass bodies A is the fusion planned portion. Contact M1.

そして、図2(d)に示すように、熱処理工程として、型枠13ごと加熱炉に入れて加熱し、結晶性ガラス小体A同士を融着させつつ針状結晶を析出させて平板形状の第二焼結体12を形成するとともに、融着予定部M1において第一焼結体11と融着一体化させる。こうして横断面L字形状の第一実施形態の結晶化ガラス物品10が製造される。このように製造された結晶化ガラス物品10の角部C1は、図2(d)に示すように、先に作製された第一焼結体11の互いに直交する平板面11cと厚み面11dとから形成されるため、結晶化ガラス物品10の角部C1において、その直角度を維持することができる。   And as shown in FIG.2 (d), as a heat treatment process, it puts together with the mold 13 in a heating furnace, heats, crystal needles A are deposited, fusing together crystalline glass bodies A, and flat plate shape is formed. The second sintered body 12 is formed, and the first sintered body 11 is fused and integrated in the fusion planned portion M1. Thus, the crystallized glass article 10 of the first embodiment having an L-shaped cross section is manufactured. As shown in FIG. 2D, the corner C1 of the crystallized glass article 10 manufactured in this way includes a flat plate surface 11c and a thickness surface 11d that are perpendicular to each other of the first sintered body 11 produced previously. Therefore, the squareness of the crystallized glass article 10 can be maintained at the corner C1.

本発明に係る結晶化ガラス物品の製造方法において、第一焼結体11の融着予定部M1は、第二焼結体12と融着一体化したときに十分な接合強度を実現できる寸法、清浄度であればよい。また、耐火性の仕切部材14としては、例えば、ムライト製、ムライト・コージエライト製の耐熱結晶化ガラス等の熱処理温度に耐え得るものを使用することができ、また、第一焼結体11の形状等を考慮して、厚板状、角棒状などの仕切部材14を単体又は組み合わせて使用することができる。また、仕切工程(図2(b)参照)において、第一焼結体11の上面の融着予定部M1以外の面を全部、仕切部材で被覆するようにしてもよい。   In the method for manufacturing a crystallized glass article according to the present invention, the fusion-scheduled portion M1 of the first sintered body 11 has a size that can realize sufficient bonding strength when fused and integrated with the second sintered body 12, What is necessary is just cleanliness. Further, as the fire-resistant partition member 14, for example, a material that can withstand a heat treatment temperature such as heat-resistant crystallized glass made of mullite or mullite cordierite can be used, and the shape of the first sintered body 11 can be used. In consideration of the above, partition members 14 such as a thick plate shape and a square bar shape can be used alone or in combination. Further, in the partitioning step (see FIG. 2B), the entire surface of the upper surface of the first sintered body 11 other than the fusion target portion M1 may be covered with the partition member.

また、本発明に係る結晶化ガラス物品の製造方法において、着色剤として、遷移金属酸化物のCoO、Co、NiO、Fe、MnO、SnO、ZrOの何れかの無機顔料を含むガラス小体と、先に焼結した第一焼結体11とを融着一体化させることが、第二焼結体12と熱履歴が異なる第一焼結体11との色調を容易に調整することができ、意匠面の色調を調整できる点で好ましい。 Further, in the method for producing a crystallized glass article according to the present invention, any one of transition metal oxides CoO, Co 3 O 4 , NiO, Fe 2 O 3 , MnO, SnO 2 and ZrO 2 is used as a colorant. Fusion and integration of the glass body containing the pigment and the first sintered body 11 that has been sintered in advance results in the color tone of the second sintered body 12 and the first sintered body 11 having a different thermal history. It is preferable in that it can be easily adjusted and the color tone of the design surface can be adjusted.

本発明では、着色剤が、遷移金属酸化物のCoO、Co、NiO、Fe、MnO、SnO、ZrOの何れかを含む無機顔料よりなることが、ガラスの流動性を阻害しない点で好ましい。この着色剤が、CoO、又はCoの場合、青色を呈し、NiOの場合、黄土色を呈し、Feの場合、赤褐色を呈し、MnOの場合、乳白色を呈し、SnOの場合、ピンク色を呈し、ZrOの場合、白色を呈するものになる。また、これらの着色剤を組み合わせることで、様々な色を呈する結晶化ガラス物品を得ることができる。さらに、他の酸化物着色剤と組み合わせて用いると、より多くの彩色が可能となる。 In the present invention, it is possible that the colorant is composed of an inorganic pigment containing any one of transition metal oxides CoO, Co 3 O 4 , NiO, Fe 2 O 3 , MnO, SnO 2 , and ZrO 2 . It is preferable at the point which does not inhibit. When this colorant is CoO or Co 3 O 4 , it exhibits a blue color, when it is NiO, it exhibits an ocher color, when it is Fe 2 O 3 , it exhibits a reddish brown color, when it is MnO, it exhibits a milky white color, and SnO 2 In the case of ZrO 2 , it becomes pink. Moreover, the crystallized glass articles which exhibit various colors can be obtained by combining these colorants. Furthermore, more coloring is possible when used in combination with other oxide colorants.

「第二実施形態」
第二実施形態の結晶化ガラス物品20は、図3に示すように、一つの第一焼結体21の端部及び中程部と複数の第二焼結体22とが融着一体化されて構成されている。第一焼結体21は平板形状を成し、第二焼結体22は角棒形状を成しており、第一焼結体21の一の平板面21aの複数の一部21bと、複数の第二焼結体22の一の面22aの全部とが融着一体化されている。そして、結晶化ガラス物品20の意匠面となる第一焼結体21の他の平板面21cと、各第二焼結体22の他の面22bとは垂直を成している。つまり、結晶化ガラス物品20は、角棒形状の第二焼結体22が平板形状の第一焼結体21の一の平板面21aの複数の一部21bにおいてそれぞれ、第一焼結体21の厚み方向へ突出して横断面櫛型に形成されている。
"Second embodiment"
In the crystallized glass article 20 of the second embodiment, as shown in FIG. 3, the end and middle part of one first sintered body 21 and a plurality of second sintered bodies 22 are fused and integrated. Configured. The first sintered body 21 has a flat plate shape, the second sintered body 22 has a square bar shape, a plurality of portions 21b of one flat surface 21a of the first sintered body 21, and a plurality of The entire surface 22a of the second sintered body 22 is fused and integrated. And the other flat surface 21c of the 1st sintered compact 21 used as the design surface of the crystallized glass article 20 and the other face 22b of each 2nd sintered compact 22 comprise perpendicular | vertical. That is, in the crystallized glass article 20, the second sintered body 22 having a square bar shape has a first sintered body 21 in each of a plurality of portions 21 b of the flat plate surface 21 a of the flat plate-shaped first sintered body 21. It protrudes in the thickness direction and is formed in a cross-sectional comb shape.

第一焼結体21及び第二焼結体22は、上述した第一実施形態と同様、複数のガラス小領域が互いに融着し、ガラス小領域同士の界面から内部に向かって主結晶として針状のβ−ウォラストナイトやディオプサイドが析出した結晶化ガラスにより構成されている。   In the first sintered body 21 and the second sintered body 22, as in the first embodiment described above, a plurality of small glass regions are fused together, and needles are formed as main crystals from the interface between the small glass regions toward the inside. It is comprised by the crystallized glass which precipitated the beta-wollastonite and diopside.

このように本実施形態の結晶化ガラス物品20は、第一焼結体21の一の平板面21aに複数の第二焼結体22が互いに所定間隔をあけてリブ状に融着一体化されているので、結晶化ガラス物品20全体の軽量化を図りながら強度を向上させることができる。   As described above, in the crystallized glass article 20 of the present embodiment, the plurality of second sintered bodies 22 are fused and integrated into a rib shape at a predetermined interval on one flat plate surface 21a of the first sintered body 21. Therefore, the strength can be improved while reducing the weight of the entire crystallized glass article 20.

次に、図4を参照しながら、第二実施形態の結晶化ガラス物品20の製造方法について説明する。   Next, a method for manufacturing the crystallized glass article 20 of the second embodiment will be described with reference to FIG.

まず、従来公知の集積法によって、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる平板形状の第一焼結体21を作製する。   First, a flat plate-shaped first sintered body 21 made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of small glass regions fused together is produced by a conventionally known integration method.

次いで、耐火性の型枠23内に第一焼結体21を配置する配置工程を行う。上述した第一実施形態と同様、第一焼結体21の平板面21aとほぼ同形状の底面を有する型枠23を準備し、この型枠23内に第一焼結体21を平置き状態で配置することによって、第一焼結体21の四周の厚み面(側面)を型枠23の内壁面で被覆する。型枠23の型面には予め、離型剤としてアルミナ粉が塗布され、アルミナペーパが敷かれている。   Subsequently, the arrangement | positioning process which arrange | positions the 1st sintered compact 21 in the fireproof formwork 23 is performed. Similar to the first embodiment described above, a mold 23 having a bottom surface substantially the same shape as the flat plate surface 21a of the first sintered body 21 is prepared, and the first sintered body 21 is placed flat in the mold 23. By arranging in this manner, the thickness surfaces (side surfaces) of the four circumferences of the first sintered body 21 are covered with the inner wall surface of the mold 23. The mold surface of the mold 23 is preliminarily coated with alumina powder as a mold release agent and is laid with alumina paper.

次いで、型枠23内に配置された第一焼結体21の上面の複数の一部を複数の耐火性の仕切部材24で仕切ることにより第一焼結体21の複数の融着予定部M2を形成する仕切工程を行う。本実施形態では、平置き状態の第一焼結体21の上面となる一の平板面21aの複数の一部21bを複数の仕切部材24でそれぞれ仕切ることによって、平板形状の第一焼結体21の端部及び中程部に複数の融着予定部M2を形成している。上述した第一実施形態と同様、各仕切部材24には予め、離型剤として、アルミナ粉が塗布され、アルミナペーパが付設されている。また、後述する熱処理工程時において、各仕切部材24が第一焼結体21側へ沈み込むのを防ぐために、各仕切部材24を型枠23に固定してもよい。   Next, a plurality of portions to be welded M2 of the first sintered body 21 are partitioned by partitioning a plurality of parts of the upper surface of the first sintered body 21 disposed in the mold 23 with a plurality of fire-resistant partition members 24. A partitioning step for forming is performed. In the present embodiment, a plurality of part 21 b of one flat plate surface 21 a that is the upper surface of the flatly-placed first sintered body 21 is partitioned by a plurality of partition members 24, thereby forming a flat plate-shaped first sintered body. A plurality of planned fusion portions M <b> 2 are formed at the end portion and the middle portion of 21. As in the first embodiment described above, each partition member 24 is preliminarily coated with alumina powder as a release agent and is provided with alumina paper. In addition, each partition member 24 may be fixed to the mold 23 in order to prevent each partition member 24 from sinking to the first sintered body 21 side during a heat treatment step to be described later.

次いで、仕切部材24により仕切られた第一焼結体21の複数の融着予定部M2に、軟化点よりも高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体Aを集積する集積工程を行う。上述した第一実施形態と同様、第一焼結体21の各融着予定部M2の直上に複数の結晶性ガラス小体Aが集積され、結晶性ガラス小体Aによる集積層の下面の全部が各融着予定部M2と接触する。   Next, when heat treatment is performed at a temperature higher than the softening point on the plurality of fusion bonding portions M2 of the first sintered body 21 partitioned by the partition member 24, acicular crystals are precipitated from the surface toward the inside while being softened and deformed. An accumulation process for accumulating a plurality of crystalline glass bodies A having properties is performed. Similar to the first embodiment described above, a plurality of crystalline glass bodies A are accumulated immediately above each fusion-bonded portion M2 of the first sintered body 21, and the entire lower surface of the accumulation layer by the crystalline glass bodies A is collected. Comes into contact with each fusion-scheduled portion M2.

そして、熱処理工程として、型枠23ごと加熱炉に入れて加熱し、結晶性ガラス小体A同士を融着させつつ針状結晶を析出させて角棒形状の第二焼結体22を形成するとともに、複数の融着予定部M2において平板形状の第一焼結体21と融着一体化させる。こうして第二実施形態の結晶化ガラス物品20が製造される。   Then, as a heat treatment step, the entire mold 23 is put in a heating furnace and heated, and acicular crystals are precipitated while fusing the crystalline glass bodies A together to form a square bar-shaped second sintered body 22. At the same time, the flat plate-shaped first sintered body 21 is fused and integrated in the plurality of fusion planned portions M2. Thus, the crystallized glass article 20 of the second embodiment is manufactured.

「第三実施形態」
第三実施形態の結晶化ガラス物品30は、図5に示すように、第一焼結体31の端部と第二焼結体32の端部とが融着一体化されて構成されている。第一焼結体31及び第二焼結体32は平板形状を成しており、第一焼結体31の一の厚み面31aと第二焼結体32の一の平板面32aの一部32bとが融着一体化されている。そして、結晶化ガラス物品30の意匠面となる第一焼結体31の一の平板面31bと、同じく意匠面となる第二焼結体32の他の平板面32cとは垂直を成している。つまり、結晶化ガラス物品30は、平板形状の第二焼結体32が平板形状の第一焼結体31の一の厚み面31aにおいて第一焼結体31の厚み方向へ突出して横断面L字形状に形成されている。
"Third embodiment"
As shown in FIG. 5, the crystallized glass article 30 of the third embodiment is configured such that the end of the first sintered body 31 and the end of the second sintered body 32 are fused and integrated. . The first sintered body 31 and the second sintered body 32 have a flat plate shape, and a part of one flat surface 32a of the first sintered body 31 and one thick surface 31a of the second sintered body 32. 32b is fused and integrated. And one flat surface 31b of the first sintered body 31 that becomes the design surface of the crystallized glass article 30 and another flat surface 32c of the second sintered body 32 that also becomes the design surface are perpendicular to each other. Yes. In other words, the crystallized glass article 30 has a cross-sectional surface L in which a flat plate-shaped second sintered body 32 projects in the thickness direction of the first sintered body 31 on one thickness surface 31a of the flat plate-shaped first sintered body 31. It is formed in a letter shape.

このように第三実施形態の結晶化ガラス物品30は、第一焼結体31と第二焼結体32とが融着一体化されており、意匠面となる第一焼結体31の平板面31bと第二焼結体32の一の厚み面32dとが隙間なく延在し、この厚み面32dに対して意匠面の平板面32cが直交しているので、例えば建築物の角張った屈曲角部に施工しても、その見栄えが不連続になることもなく、漏水を生じるおそれもなくなる。   Thus, in the crystallized glass article 30 of the third embodiment, the first sintered body 31 and the second sintered body 32 are fused and integrated, and the flat plate of the first sintered body 31 that becomes the design surface. Since the surface 31b and one thickness surface 32d of the second sintered body 32 extend without a gap, and the flat surface 32c of the design surface is orthogonal to the thickness surface 32d, for example, an angular bending of a building Even if it is applied to the corner, the appearance does not become discontinuous and there is no risk of water leakage.

次に、図6を参照しながら、第三実施形態の結晶化ガラス物品30の製造方法について説明する。   Next, a method for manufacturing the crystallized glass article 30 of the third embodiment will be described with reference to FIG.

まず、従来公知の集積法によって、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる平板形状の第一焼結体31を作製する。   First, a flat plate-shaped first sintered body 31 made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of glass small regions fused together is produced by a conventionally known integration method.

次いで、図6(a)に示すように、耐火性の型枠33内に第一焼結体31を配置する配置工程を行う。本実施形態では、第一焼結体31の他の平板面31cと比べて一方向に若干大きい底面を有する型枠33を準備し、この型枠33内に第一焼結体31を平置き状態で配置することによって、第一焼結体31の一の厚み面31aを除く、他の三つの厚み面(側面)を型枠33の内壁面で被覆している。なお、型枠33の型面には予め、離型剤としてアルミナ粉が塗布され、アルミナペーパが敷かれている。   Next, as shown in FIG. 6A, an arrangement step of arranging the first sintered body 31 in the fireproof mold 33 is performed. In the present embodiment, a mold 33 having a bottom surface that is slightly larger in one direction than the other flat plate surface 31 c of the first sintered body 31 is prepared, and the first sintered body 31 is placed flat in the mold 33. By arranging in the state, the other three thickness surfaces (side surfaces) except the one thickness surface 31 a of the first sintered body 31 are covered with the inner wall surface of the mold 33. The mold surface of the mold 33 is preliminarily coated with alumina powder as a release agent, and is laid with alumina paper.

次いで、図6(b)に示すように、型枠33内に配置された第一焼結体31の側面の全部を耐火性の仕切部材34で仕切ることにより第一焼結体31の融着予定部M3を形成する仕切工程を行う。本実施形態では、平置き状態の第一焼結体31の側面となる一の厚み面31aの全部を仕切部材34で仕切ることによって、平板形状の第一焼結体31の端部に融着予定部M3を形成している。なお、仕切部材34には予め、離型剤として、アルミナ粉が塗布され、アルミナペーパが付設されている。また、後述する熱処理工程時において、仕切部材34が第一焼結体31側へ沈み込むのを防ぐため、仕切部材34を型枠33に固定してもよい。更にまた、第一焼結体31の厚み面31aの下側の一部を、他の仕切部材で被覆することによって、第一焼結体31の側面の上側の一部のみを融着予定部とするように仕切ってもよい。   Next, as shown in FIG. 6B, the first sintered body 31 is fused by partitioning all of the side surfaces of the first sintered body 31 disposed in the mold 33 with a fire-resistant partition member 34. A partitioning process for forming the planned portion M3 is performed. In the present embodiment, all of the one thickness surface 31 a which is the side surface of the first sintered body 31 in a flat state is partitioned by the partition member 34, thereby being fused to the end of the flat plate-shaped first sintered body 31. A planned portion M3 is formed. The partition member 34 is preliminarily coated with alumina powder as a release agent, and is provided with alumina paper. In addition, the partition member 34 may be fixed to the mold 33 in order to prevent the partition member 34 from sinking toward the first sintered body 31 during a heat treatment step described later. Furthermore, by covering a part of the lower side of the thickness surface 31a of the first sintered body 31 with another partition member, only a part of the upper side of the side surface of the first sintered body 31 is a portion to be fused. You may partition as follows.

次いで、図6(c)に示すように、仕切部材34により仕切られた第一焼結体31の融着予定部M3に、軟化点よりも高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体Aを集積する集積工程を行う。本実施形態では、第一焼結体31の融着予定部M3の側方に複数の結晶性ガラス小体Aが集積され、結晶性ガラス小体Aによる集積層の側面の下部が第一焼結体31の融着予定部M3と接触する。   Next, as shown in FIG. 6 (c), when heat treatment is performed at a temperature higher than the softening point on the fusion target portion M3 of the first sintered body 31 partitioned by the partition member 34, the softening deformation is caused to move from the surface to the inside. An accumulating step of accumulating a plurality of crystalline glass bodies A having the property of acicular crystals precipitating is performed. In this embodiment, a plurality of crystalline glass bodies A are accumulated on the side of the fusion-bonded portion M3 of the first sintered body 31, and the lower part of the side surface of the accumulation layer of the crystalline glass bodies A is the first firing. It contacts the fusion planned portion M3 of the bonded body 31.

そして、図6(d)に示すように、熱処理工程として、型枠33ごと加熱炉に入れて加熱し、結晶性ガラス小体A同士を融着させつつ針状結晶を析出させて平板形状の第二焼結体32を形成するとともに、融着予定部M3において第一焼結体31と融着一体化させる。こうして横断面L字形状の第三実施形態の結晶化ガラス物品30が製造される。このように製造された結晶化ガラス物品30の角部C3は、図6(c)、(d)に示すように、複数の結晶性ガラス小体Aが型枠33で型成形されて形成されるため、結晶化ガラス物品30の角部C3を直角に形成することができる。   And as shown in FIG.6 (d), as a heat treatment process, it puts into the heating furnace with the mold 33, and heats it, while acicular crystal | crystallization small bodies A are melt | fused, acicular crystal | crystallization is deposited, flat plate shape While forming the 2nd sintered compact 32, it fuses and integrates with the 1st sintered compact 31 in the fusion | melting plan part M3. Thus, the crystallized glass article 30 of the third embodiment having an L-shaped cross section is manufactured. The corner C3 of the crystallized glass article 30 manufactured in this way is formed by molding a plurality of crystalline glass bodies A with a mold 33 as shown in FIGS. 6 (c) and 6 (d). Therefore, the corner C3 of the crystallized glass article 30 can be formed at a right angle.

なお、第三実施形態の結晶化ガラス物品の製造方法では、その仕切工程(図6(b)参照)において、平置き状態の第一焼結体31の側面となる一の厚み面31aのみを仕切部材34で仕切ることにより、第一焼結体31の一の厚み面31aにのみ融着予定部M3を形成しているが、例えば、図7に示すように、平置き状態の第一焼結体31の側面となる一の厚み面31aだけでなく、この厚み面31aと隣り合う、第一焼結体31の上面の一部となる平板面31cの一部31dも合わせて仕切部材34で仕切ることによって、第一焼結体31の一の厚み面31a及び平板面31cの一部31dを融着予定部M4とするように仕切ってもよい。このことで、第一焼結体31の端部を第二焼結体32の端部に埋設して融着一体化させることができ、第一焼結体31と第二焼結体32との接合強度を向上させることができる。   In addition, in the manufacturing method of the crystallized glass article of the third embodiment, in the partitioning step (see FIG. 6B), only one thickness surface 31a that becomes the side surface of the first sintered body 31 in a flat state is provided. By partitioning with the partition member 34, the fusion target portion M3 is formed only on one thickness surface 31a of the first sintered body 31. For example, as shown in FIG. The partition member 34 includes not only the one thick surface 31a which becomes the side surface of the bonded body 31 but also a part 31d of the flat plate surface 31c which is adjacent to the thick surface 31a and which is a part of the upper surface of the first sintered body 31. By partitioning, the first sintered body 31 may be partitioned so that the one thickness surface 31a and the part 31d of the flat plate surface 31c serve as the fusion planned portion M4. Thus, the end portion of the first sintered body 31 can be embedded in the end portion of the second sintered body 32 and fused and integrated, and the first sintered body 31 and the second sintered body 32 It is possible to improve the bonding strength.

以上、第一実施形態〜第三実施形態の結晶化ガラス物品とその製造方法について説明したが、本発明はその他の形態でも実施することができる。即ち、本発明は、その趣旨を逸脱しない範囲内で、当業者の知識に基づいて種々の改良、修正、変形を加えた態様で実施し得るものである。また、同一の作用又は効果が生じる範囲内でいずれかの発明特定事項を他の技術に置換した形態で実施してもよく、また、一体に構成されている発明特定事項を複数の部材から構成してもよく、複数の部材から構成されている発明特定事項を一体に構成した形態で実施してもよい。   As mentioned above, although the crystallized glass article and its manufacturing method of 1st embodiment-3rd embodiment were demonstrated, this invention can be implemented also with another form. That is, the present invention can be carried out in a mode in which various improvements, modifications, and variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. In addition, any invention-specific matters may be replaced with other technologies within the scope where the same action or effect occurs, and the integrally-configured invention-specific matters are constituted by a plurality of members. Alternatively, the invention-specific matters configured from a plurality of members may be implemented in an integrated configuration.

第一実施形態の結晶化ガラス物品10の実施例について、図1及び図2を参照しながら説明する。   An example of the crystallized glass article 10 of the first embodiment will be described with reference to FIGS. 1 and 2.

まず、質量%でSiO 60%、Al 6.5%、B 0.5%、CaO 10%、ZnO 6.5%、BaO 11%、NaO 3%、KO 2%、Sb 0.5%の組成となるように調合したガラス原料混合物を1400〜1500℃で16時間溶融した。次いで、公知の水砕法により粒径5mm以下の結晶性ガラス小体Aを作製した。この結晶性ガラス小体Aは、軟化点(約800℃)より高い温度で熱処理すると、軟化変形しながらβ−ウォラストナイトを主結晶として析出し、結晶化度が約15%、厚さ1mmにおける平均透過率が50%の乳白色の透光性を有する結晶化ガラスとなるものである。 First, in terms of mass%, SiO 2 60%, Al 2 O 3 6.5%, B 2 O 3 0.5%, CaO 10%, ZnO 6.5%, BaO 11%, Na 2 O 3%, K 2 A glass raw material mixture prepared to have a composition of O 2% and Sb 2 O 3 0.5% was melted at 1400 to 1500 ° C. for 16 hours. Next, a crystalline glass body A having a particle size of 5 mm or less was produced by a known water granulation method. When this crystalline glass body A is heat-treated at a temperature higher than the softening point (about 800 ° C.), β-wollastonite precipitates as the main crystal while softening and deforming, and the crystallinity is about 15% and the thickness is 1 mm. It becomes a crystallized glass having milky white translucency with an average transmittance of 50%.

次いで、結晶性ガラス小体Aを焼成後の厚みで15mmになるように重量を秤量し、アルミナ粉が塗布されたムライト製の型枠内に集積した後、1090℃で2時間熱処理し、厚み15mmの平板形状の白色の結晶化ガラスよりなる第一焼結体11を得た。   Next, the crystalline glass body A is weighed so that the thickness after firing is 15 mm, and is accumulated in a mold made of mullite coated with alumina powder, and then heat treated at 1090 ° C. for 2 hours to obtain a thickness. A first sintered body 11 made of white crystallized glass having a plate shape of 15 mm was obtained.

次いで、図2に示すように、耐火性の型枠13内に第一焼結体11を平置きし、第一焼結体11の平板面11aの一部11bを仕切部材14で仕切って融着予定部M1を形成した。次いで、仕切部材14で仕切った融着予定部M1に、軟化点よりも高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体Aを集積した。   Next, as shown in FIG. 2, the first sintered body 11 is placed flat in a fireproof mold 13, and a part 11 b of the flat plate surface 11 a of the first sintered body 11 is partitioned by a partition member 14 and melted. A planned wearing portion M1 was formed. Next, a plurality of crystalline glass bodies having a property that, when heat-treated at a temperature higher than the softening point, the fusion-bonded portion M1 partitioned by the partitioning member 14 is softened and deformed, and acicular crystals are precipitated from the surface toward the inside. A was accumulated.

そして、型枠13ごと加熱炉に入れて、約1100℃で焼成すると、結晶性ガラス小体Aと第一焼結体11が融着一体化してL型の結晶化ガラス物品10が得られた。   Then, when the entire mold 13 was put in a heating furnace and fired at about 1100 ° C., the crystalline glass body A and the first sintered body 11 were fused and integrated to obtain an L-shaped crystallized glass article 10. .

得られたL型の結晶化ガラス物品10は、図1に示すように、意匠面となる第一焼結体11の平板面11cに対し直交する厚み面11dと第二焼結体12の平板面12bとが隙間なく延在しているので、所謂「ピン角」と呼ばれる角張ったコーナー部分が形成されており、かつ、コーナー部分の白色度及び色座標の色調に殆ど差異がなくその外観が連続しているものであった。また、L型の結晶化ガラス物品10の第一焼結体11部分を固定し、第二焼結体12の先端部に荷重を加えた固定部分の曲げ強度は、250kg/cmと、壁面を構成するための建材として十分な実用強度を有するものであった。 As shown in FIG. 1, the obtained L-shaped crystallized glass article 10 has a thickness surface 11 d orthogonal to the flat plate surface 11 c of the first sintered body 11 serving as a design surface and a flat plate of the second sintered body 12. Since the surface 12b extends without a gap, a so-called “pin angle” is formed with an angular corner portion, and there is almost no difference in the whiteness of the corner portion and the color tone of the color coordinates. It was continuous. Moreover, the bending strength of the fixed part which fixed the 1st sintered compact 11 part of the L-type crystallized glass article 10 and applied the load to the front-end | tip part of the 2nd sintered compact 12 is 250 kg / cm < 2 >, and a wall surface It had sufficient practical strength as a building material for constructing.

本発明に係る結晶化ガラス物品は、建築物の内外装材や装飾材として利用することができる。   The crystallized glass article according to the present invention can be used as an interior / exterior material for a building or a decorative material.

10、20、30 結晶化ガラス物品
11、21、31 第一焼結体
11a、21a、31b 一の平板面
11b、21b 一の平板面の一部
11c、21c、31c 他の平板面
31d 他の平板面の一部
11d、31a 厚み面
12、22、32 第二焼結体
12a、32d 一の厚み面
12b、32a 一の平板面
32b 一の平板面の一部
32c 他の平板面
22a 一の面
22b 他の面
13、23、33 型枠
14、24、34 仕切部材
A 結晶性ガラス小体
M1、M2、M3、M4 融着予定部
10, 20, 30 Crystallized glass article 11, 21, 31 First sintered body 11a, 21a, 31b One flat plate surface 11b, 21b Part of one flat plate surface 11c, 21c, 31c Other flat plate surface 31d Other Part of flat surface 11d, 31a Thickness surface 12, 22, 32 Second sintered body 12a, 32d One thickness surface 12b, 32a One flat surface 32b Part of one flat surface 32c Other flat surface 22a Surface 22b Other surfaces 13, 23, 33 Molds 14, 24, 34 Partition member A Crystalline glass bodies M1, M2, M3, M4 Planned fusion portions

Claims (7)

互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体と、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第二焼結体と、を備え、
前記第一焼結体の一の面の一部に前記第二焼結体が融着一体化されていることを特徴とする結晶化ガラス物品。
A first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of glass subregions fused together, and from the interface between a plurality of glass subregions fused together to the inside. A second sintered body made of crystallized glass on which needle-like crystals are deposited,
A crystallized glass article, wherein the second sintered body is fused and integrated with part of one surface of the first sintered body.
前記第一焼結体及び前記第二焼結体が平板形状を成し、該第一焼結体の平板面と該第二焼結体の平板面とが垂直を成していることを特徴とする請求項1に記載の結晶化ガラス物品。   The first sintered body and the second sintered body have a flat plate shape, and the flat plate surface of the first sintered body and the flat plate surface of the second sintered body are perpendicular to each other. The crystallized glass article according to claim 1. 前記第一焼結体の端部と前記第二焼結体の端部とが融着一体化されていることを特徴とする請求項1または請求項2に記載の結晶化ガラス物品。   The crystallized glass article according to claim 1 or 2, wherein an end portion of the first sintered body and an end portion of the second sintered body are fused and integrated. 前記結晶化ガラスが、質量%でSiO 45〜75%、Al 1〜15%、CaO 5〜25%、ZnO 0〜15%、BaO 0〜15%、MgO 0〜2%、SrO 0〜2%、KO 0〜5%、NaO 0.5〜10%、B 0.05〜5%、LiO 0〜2%、Sb 0〜1%、As 0〜1%の組成を含有し、主結晶としてβ−ウォラストナイトが析出するものであることを特徴とする請求項1から請求項3の何れかに記載の結晶化ガラス物品。 The crystallized glass, SiO 2 45 to 75% by mass%, Al 2 O 3 1~15% , CaO 5~25%, 0~15% ZnO, BaO 0~15%, 0~2% MgO, SrO 0~2%, K 2 O 0~5% , Na 2 O 0.5~10%, B 2 O 3 0.05~5%, Li 2 O 0~2%, Sb 2 O 3 0~1% 4. The crystallized glass according to claim 1, wherein the crystallized glass contains As 2 O 3 0 to 1%, and β-wollastonite is precipitated as a main crystal. Goods. 耐火性の型枠内に、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体を配置する配置工程と、
前記型枠内に配置した前記第一焼結体の上面の一部を耐火性の仕切部材で仕切ることにより該第一焼結体の融着予定部を形成する仕切工程と、
前記仕切部材で仕切った前記第一焼結体の前記融着予定部に、軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体を集積する集積工程と、
前記型枠ごと加熱して前記結晶性ガラス小体同士を融着させつつ針状結晶を析出させて第二焼結体を形成するとともに前記融着予定部において前記第一焼結体と融着一体化させる熱処理工程と、
を含むことを特徴とする結晶化ガラス物品の製造方法。
An arrangement step of arranging a first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of small glass regions fused to each other in a fireproof mold,
A partitioning step of forming a part to be fused of the first sintered body by partitioning a part of the upper surface of the first sintered body disposed in the mold with a fire-resistant partition member;
A plurality of crystals having a property that, when heat-treated at a temperature higher than the softening point, the needle-like crystals are precipitated from the surface toward the inside while being softened and deformed in the fusion-bonded portion of the first sintered body partitioned by the partition member An accumulation process for accumulating functional glass bodies,
The entire mold is heated to fuse the crystalline glass bodies together to precipitate needle-like crystals to form a second sintered body and to fuse the first sintered body at the portion to be fused. A heat treatment process to be integrated;
A method for producing a crystallized glass article, comprising:
耐火性の型枠内に、互いに融着した複数のガラス小領域同士の界面から内部に向かって針状結晶が析出した結晶化ガラスよりなる第一焼結体を配置する配置工程と、
前記型枠内に配置した前記第一焼結体の側面を耐火性の仕切部材で仕切ることにより該第一焼結体の融着予定部を形成する仕切工程と、
前記仕切部材で仕切った前記第一焼結体の前記融着予定部に、軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状結晶が析出する性質を有する複数の結晶性ガラス小体を集積する集積工程と、
前記型枠ごと加熱して前記結晶性ガラス小体同士を融着させつつ針状結晶を析出させて第二焼結体を形成するとともに前記融着予定部において前記第一焼結体と融着一体化させる熱処理工程と、
を含むことを特徴とする結晶化ガラス物品の製造方法。
An arrangement step of arranging a first sintered body made of crystallized glass in which needle-like crystals are precipitated from the interface between a plurality of small glass regions fused to each other in a fireproof mold,
A partitioning step of forming a fusion-scheduled portion of the first sintered body by partitioning a side surface of the first sintered body disposed in the mold with a fire-resistant partition member;
A plurality of crystals having a property that, when heat-treated at a temperature higher than the softening point, the needle-like crystals are precipitated from the surface toward the inside while being softened and deformed in the fusion-bonded portion of the first sintered body partitioned by the partition member An accumulation process for accumulating functional glass bodies,
The entire mold is heated to fuse the crystalline glass bodies together to precipitate needle-like crystals to form a second sintered body and to fuse the first sintered body at the portion to be fused. A heat treatment process to be integrated;
A method for producing a crystallized glass article, comprising:
前記結晶性ガラス小体が、着色剤として、遷移金属酸化物であるCoO、Co、NiO、Fe、MnO、SnO、ZrOの何れかの無機顔料を含むことを特徴とする請求項5または請求項6に記載の結晶化ガラス物品の製造方法。 The crystalline glass body contains an inorganic pigment of any one of CoO, Co 3 O 4 , NiO, Fe 2 O 3 , MnO, SnO 2 and ZrO 2 which is a transition metal oxide as a colorant. A method for producing a crystallized glass article according to claim 5 or 6.
JP2011137712A 2011-06-21 2011-06-21 Crystallized glass article and method for manufacturing the same Pending JP2013001633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137712A JP2013001633A (en) 2011-06-21 2011-06-21 Crystallized glass article and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137712A JP2013001633A (en) 2011-06-21 2011-06-21 Crystallized glass article and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013001633A true JP2013001633A (en) 2013-01-07

Family

ID=47670568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137712A Pending JP2013001633A (en) 2011-06-21 2011-06-21 Crystallized glass article and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013001633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200233A1 (en) 2013-01-09 2014-07-10 Hitachi Automotive Systems, Ltd. Compensation device of an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116517A (en) * 1974-02-26 1975-09-11
JP2009173526A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Patterned crystallized glass article and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116517A (en) * 1974-02-26 1975-09-11
JP2009173526A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Patterned crystallized glass article and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200233A1 (en) 2013-01-09 2014-07-10 Hitachi Automotive Systems, Ltd. Compensation device of an internal combustion engine

Similar Documents

Publication Publication Date Title
TWI635057B (en) Method of making three dimensional glass ceramic article
TWI399348B (en) Method of producing crystallized glass article having patterns
US10562808B2 (en) Highly crystalline lithium aluminium silicate glass-ceramic and its use
JP4523021B2 (en) Crystallized glass article with pattern and manufacturing method thereof
US10570049B2 (en) Self glazed ceramic/glass composite and method for manufacturing the same
CN105541112B (en) A kind of super flat glaze frit and the method for being produced from it super spar
JP4877646B2 (en) Crystallized glass article and method for producing the same
JP2012201552A (en) Crystallized glass article and method for producing the same
JP2013001633A (en) Crystallized glass article and method for manufacturing the same
JP2009023865A (en) Patterned crystallized glass article and method for producing the same
JP4911427B2 (en) Patterned crystallized glass article and method for producing the same
JP2009173526A (en) Patterned crystallized glass article and method for producing the same
JP2012201526A (en) Crystallized glass article and method for manufacturing the same
JP5661479B2 (en) Crystallized glass articles with patterns
JP2006008476A (en) Glass article for use in building, and manufacturing method for glass article for use in building
JP2012197188A (en) White crystallized glass article and method for producing the same
JPH06247744A (en) Marble-like crystallized glass
WO2007013565A1 (en) Patterned crystallized-glass article and process for producing the same
JP2011168476A (en) Patterned crystallized glass article and method of producing the same
JP2008056504A (en) Patterned crystallized glass article and its producing method
CN103224329A (en) One-time sintered beige frit dry particles and preparation method thereof
JP2010202434A (en) Colored crystallized glass article and method for manufacturing the same
JPH0324433B2 (en)
JP2007131480A (en) Crystallized glass article
JP2004137141A (en) Glass article for construction and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303