JP2006008476A - Glass article for use in building, and manufacturing method for glass article for use in building - Google Patents

Glass article for use in building, and manufacturing method for glass article for use in building Download PDF

Info

Publication number
JP2006008476A
JP2006008476A JP2004190943A JP2004190943A JP2006008476A JP 2006008476 A JP2006008476 A JP 2006008476A JP 2004190943 A JP2004190943 A JP 2004190943A JP 2004190943 A JP2004190943 A JP 2004190943A JP 2006008476 A JP2006008476 A JP 2006008476A
Authority
JP
Japan
Prior art keywords
glass
expansion coefficient
glass article
granular
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190943A
Other languages
Japanese (ja)
Inventor
Masahiro Sawada
正弘 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004190943A priority Critical patent/JP2006008476A/en
Publication of JP2006008476A publication Critical patent/JP2006008476A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building glass article which is excellent in both the mechanical strengths and decorativeness as an exterior material, an internal material and an interior use materials of buildings and to provide a manufacturing method therefor. <P>SOLUTION: The building glass article is an article laminated and fused each other with such three glass layers consisting of at least two kinds of glasses having different expansion coefficients consisting of an intermediate layer 2 of the three glass layers having a higher expansion coefficient than those of the external layers 1 and as the expansion coefficient difference between the intermediate layer 2 and the external layers 1 is preferably not less than 3×10<SP>-7</SP>/K and not more than 15×10<SP>-7</SP>/K. The manufacturing method for the building glass article comprises placing in a refractory vessel in order from the bottom the first material, then thereon the second material having the higher expansion coefficient than that of the first material, and moreover thereon the third material having a lower expansion coefficient than that of the second material, and then fusing and uniting the glass materials in this refractory vessel by heat treating at a temperature of their softening points or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築物の外装材、内装材或いはインテリア用として使用される建築用ガラス物品及びその製造方法に関するものである。   The present invention relates to an architectural glass article used as a building exterior material, interior material, or interior, and a method for producing the same.

近年、建築物の形状やデザインの多様化に伴って、機能性や装飾性の面から建築物にガラス物品が多く使用されるようになってきた。   In recent years, with the diversification of the shape and design of buildings, many glass articles have been used for buildings in terms of functionality and decorativeness.

建築用ガラス物品としては、柱、壁、窓、天井、屋根、床などの建築構造物として機能するガラスブロック、パーティション、窓板等の建築用ガラス物品と、建築構造物の表面を装飾するために使用される化粧板やガラスブリック等の建築用ガラス物品とがある。   For building glass articles, to decorate the surface of building structures such as glass blocks, partitions, and window plates that function as building structures such as pillars, walls, windows, ceilings, roofs, floors, etc. And architectural glass articles such as decorative plates and glass bricks.

このような建築用ガラス物品には、プレス法、ロール成形法、キャスト法等により、ガラス融液から直接成形されるものがあり、従来から汎用されてきた。   Some of such architectural glass articles are directly formed from a glass melt by a pressing method, a roll forming method, a casting method, and the like, and have been widely used.

また、特許文献1や特許文献2に示されるように、一旦ガラス融液から粒状ガラスを作製した後、熱処理することによりそれらを融着させることにより得られる装飾性に優れた建築用ガラス物品もある。この内、特に後者はガラス物品内部に気泡を有することにより装飾性を高めている。   Moreover, as shown in Patent Document 1 and Patent Document 2, architectural glass articles excellent in decorativeness obtained by once producing granular glass from a glass melt and then fusing them by heat treatment are also provided. is there. Of these, the latter, in particular, has improved decorativeness by having bubbles inside the glass article.

さらに特許文献3に示されるように、異なる膨張係数を有する廃棄物ガラスカレットをその中間の膨張係数を有する中間層を介して融着一体化し、低コスト且つ十分な強度を有する結晶化ガラス材が考案されている。
特許昭48−65210号公報 特開2001−180953号公報 特開平7−172865号公報
Further, as shown in Patent Document 3, a waste glass cullet having different expansion coefficients is fused and integrated through an intermediate layer having an intermediate expansion coefficient, and a crystallized glass material having a low cost and sufficient strength is obtained. It has been devised.
Japanese Patent No. 48-65210 JP 2001-180953 A Japanese Patent Laid-Open No. 7-172865

一般的に建築用ガラスの場合、安全性、耐久性の面から機械的強度が高いことが求められる。しかし、ガラスに泡や粒界などのガラス欠陥が生じている場合、その機械的強度はそれらが無いものに比べ、急激に低下する。特にガラス表面或いは表面近傍にガラス欠陥が生じている場合には、僅かな衝撃によっても破壊してしまう恐れがある。   In general, architectural glass is required to have high mechanical strength in terms of safety and durability. However, when glass defects such as bubbles and grain boundaries occur in the glass, the mechanical strength is drastically reduced compared to those without them. In particular, when a glass defect is generated on the surface of the glass or in the vicinity of the surface, there is a possibility that the glass may be broken even by a slight impact.

上記の特許文献1、特許文献2のようなガラス物品は、装飾性は有しているものの、内部に気泡を有している或いは残存している。そのため、機械的強度が低下する問題を有している。さらに、気泡の発生の制御は困難であり、その気泡の一部は、表面或いは表面近傍に存在し、僅かな衝撃によっても破壊する恐れがある。   Glass articles such as Patent Document 1 and Patent Document 2 described above have decorativeness, but have air bubbles inside or remain. Therefore, there is a problem that the mechanical strength is lowered. Furthermore, it is difficult to control the generation of bubbles, and some of the bubbles are present on the surface or in the vicinity of the surface and may be destroyed even by a slight impact.

また、特許文献3に示されるガラス材の場合、上記問題に加え、中間層ガラスにより熱膨張係数の差は緩和され3種のガラスは融着されるが、積層、融着された結晶化ガラス材全体を考慮すると、一面から他面に向けて順次膨張係数が変化しており、冷却時に生じた応力により、反りを生じる。つまり、膨張係数の高いガラスは膨張係数の低いガラスに比べ、冷却時に収縮する割合が大きいため、膨張係数の高いガラス側に反りを生じる問題がある。   In addition, in the case of the glass material disclosed in Patent Document 3, in addition to the above problem, the difference in the thermal expansion coefficient is relaxed by the intermediate layer glass and the three types of glass are fused, but the laminated and fused crystallized glass. In consideration of the whole material, the expansion coefficient changes sequentially from one surface to the other surface, and warpage occurs due to the stress generated during cooling. That is, glass having a high expansion coefficient has a problem that warpage is caused on the glass side having a high expansion coefficient because the glass contracts at the time of cooling more than glass having a low expansion coefficient.

一方、ガラス物品の機械的強度を高める方法としては、熱処理による物理強化と、イオン交換による化学強化がある。しかし、これらの強化方法は設備の増加及び工程の増加を招く上、ガラス物品に均等に強化を行うためには、加熱冷却条件の精密な制御が必要となる問題がある。   On the other hand, methods for increasing the mechanical strength of glass articles include physical strengthening by heat treatment and chemical strengthening by ion exchange. However, these strengthening methods cause an increase in equipment and processes, and there is a problem that precise control of heating and cooling conditions is required in order to uniformly strengthen the glass article.

本発明は、上記の問題点に鑑み、建築物の外装材、内装材或いはインテリア用として、機械的強度及び装飾性に優れた建築用ガラス物品と、その製造方法を提供することを課題とする。   This invention makes it a subject to provide the manufacturing method of the glass article for buildings excellent in mechanical strength and decorativeness as an exterior material of a building, interior material, or interior use in view of said problem. .

本発明に係る建築用ガラス物品は、異なる膨張係数を有する少なくとも2種のガラスをそれぞれに用いた3層のガラス層が積層され互いに融着されており、該3層のガラス層の中間に位置する中間層が、その両側の外層よりも高い膨張係数を有することを特徴とする。   In the architectural glass article according to the present invention, three glass layers each using at least two kinds of glasses having different expansion coefficients are laminated and fused to each other, and are positioned in the middle of the three glass layers. The intermediate layer has a higher expansion coefficient than the outer layers on both sides thereof.

本発明の建築用ガラス物品は、異なる膨張係数を有する2種以上のガラスが積層され互いに融着された3層のガラス層を備えていて、3層のガラス層が膨張係数の高いガラス層を挟んで膨張係数の低いガラス層が積層されており、膨張係数の低いガラスからなる外層が膨張係数の高いガラスからなる中間層の外側に積層、融着されることにより、得られたガラス物品の表面に、圧縮応力層が形成されて強化ガラスと同じような応力の分布となり、ガラス物品の機械的強度が増す。また、これによって生じた応力は、中間層との膨張係数との差及び外層のガラス層の厚みによって異なるので、中間層との膨張係数との差に応じて、両側の外側のそれぞれのガラス層の厚みを調整することで中間層の表裏面に生じる応力を釣り合わせると、反りを生じない。   The architectural glass article of the present invention includes three glass layers in which two or more kinds of glasses having different expansion coefficients are laminated and fused to each other, and the three glass layers have a glass layer having a high expansion coefficient. A glass layer having a low expansion coefficient is sandwiched between and an outer layer made of glass having a low expansion coefficient is laminated and fused on the outside of an intermediate layer made of glass having a high expansion coefficient. A compressive stress layer is formed on the surface, resulting in a stress distribution similar to that of tempered glass, which increases the mechanical strength of the glass article. Moreover, since the stress produced by this differs depending on the difference between the expansion coefficient with the intermediate layer and the thickness of the outer glass layer, the respective glass layers on the outer sides of both sides according to the difference with the expansion coefficient with the intermediate layer. When the stress generated on the front and back surfaces of the intermediate layer is balanced by adjusting the thickness of the intermediate layer, no warpage occurs.

さらに、中間に位置する中間層に比べて膨張係数の低いガラス層がガラス物品の外側に外層として形成されることにより、表面、或いは表面近傍に泡が形成され難くなり、ガラス物品の機械的強度が損なわれ難い。これは、一般的に膨張係数の低いガラスは、膨張係数の高いガラスと比べ、軟化点が高く、さらに加熱温度での粘性が高いため、内部で生じた気泡が上昇し表面に到達するのを抑制することにより、ガラスの強度を大きく支配する因子の表面欠陥を少なくするためである。   Furthermore, since a glass layer having a lower expansion coefficient than the intermediate layer located in the middle is formed as an outer layer on the outside of the glass article, bubbles are less likely to be formed on or near the surface, and the mechanical strength of the glass article is reduced. Is hard to be damaged. This is because glass with a low expansion coefficient generally has a higher softening point and higher viscosity at the heating temperature than glass with a high expansion coefficient, so that bubbles generated inside rise and reach the surface. This is because by suppressing the surface defects of factors that largely control the strength of the glass.

また、本発明の建築用ガラス物品は、中間層のガラスの膨張係数と、外層のガラスの膨張係数との差が、3×10-7/K以上で且つ15×10-7/K以下であることを特徴とする。 In the architectural glass article of the present invention, the difference between the expansion coefficient of the intermediate layer glass and the expansion coefficient of the outer layer glass is 3 × 10 −7 / K or more and 15 × 10 −7 / K or less. It is characterized by being.

融着された3層のガラス層を形成する中間層のガラスの膨張係数と、外層のガラスの何れか小さい膨張係数との差が3×10-7/Kよりも小さい場合、歪が生じ難く、強度の向上があまり望めず好ましくない。一方、膨張係数の差が15×10-7/Kよりも大きいと、得られたガラス物品に生じる歪が過大なものとなり、破損、或いは反りが生じ易いため好ましくない。そのため、3層のガラス層に用いられるガラスの膨張係数の差は、3×10-7〜8×10-7/Kの範囲内がより好ましい。 When the difference between the expansion coefficient of the glass of the intermediate layer forming the fused three glass layers and the smaller expansion coefficient of the glass of the outer layer is smaller than 3 × 10 −7 / K, distortion hardly occurs. , The improvement of strength cannot be expected so much. On the other hand, if the difference in expansion coefficient is greater than 15 × 10 −7 / K, the resulting glass article is excessively distorted and is liable to break or warp, which is not preferable. Therefore, the difference in the expansion coefficient of the glass used for the three glass layers is more preferably in the range of 3 × 10 −7 to 8 × 10 −7 / K.

また、本発明の建築用ガラス物品は、3層のガラス層の両側の外層が同種のガラスからなることが好ましい。   In the architectural glass article of the present invention, the outer layers on both sides of the three glass layers are preferably made of the same kind of glass.

両側の外層が同種のガラスからなると、これによって生じた応力は、両側の外層の厚みが同じ場合、中間層の表裏両面に生じる応力が等しくなるため、反りを生じない建築用ガラス物品を容易に作製することができる。   If the outer layers on both sides are made of the same type of glass, the stress generated by this will be equal to the stresses on the front and back sides of the intermediate layer if the thickness of the outer layers on both sides is the same. Can be produced.

なお、ガラス層に用いるガラスの材質は問わないが、異なる系統のガラス種、例えば、ソーダライム系ガラスとホウ珪酸系ガラスといった組み合わせは、膨張係数の差が大きくなり易いためあまり好ましくない。そのため、同系のガラス材質で、膨張係数が3×10-7〜15×10-7/Kの範囲内で異なるガラスの組み合わせが好ましい。 In addition, although the material of the glass used for a glass layer is not ask | required, since the difference of an expansion coefficient tends to become large, the combination of different glass types, for example, soda-lime type glass and borosilicate type glass, is not so preferable. Therefore, a combination of different glass materials in the range of 3 × 10 −7 to 15 × 10 −7 / K, which are similar glass materials, is preferable.

また、ガラスの材質に関して、ソーダライム系ガラスでは安価に入手可能である反面、膨張係数がやや高く、耐候性は一般の窓ガラス並である。ホウ珪酸ガラス、アルミノシリケートガラス等はソーダライム系ガラスと比較して高価ではあるが、耐候性が良く、膨張係数が低いため建材用途として好ましい。また、結晶化ガラスや熱処理温度によって結晶化するガラスでも構わない。   In addition, regarding the material of the glass, while soda lime glass can be obtained at a low cost, the expansion coefficient is somewhat high, and the weather resistance is comparable to that of a general window glass. Borosilicate glass, aluminosilicate glass, and the like are more expensive than soda lime glass, but are preferable for building materials because they have good weather resistance and a low expansion coefficient. Further, crystallized glass or glass that crystallizes by heat treatment temperature may be used.

また、形状に関しては、粒状ガラス、板状ガラス等の何れでも良く、これらの組みあわせでも構わない。但し、後に述べる集積法において作業性を著しく損なうものは好ましくない。例えば、平均粒径が極端に大きい粒状ガラスや極端に小さな粒状ガラスは、充填におけるの作業性が悪い。よって、粒状ガラスの平均粒径は0.5〜50mmが好ましい。板状ガラスの場合も同様に作業性の面から、できるだけ平坦であることが望ましい。   Moreover, regarding shape, any of granular glass, plate glass, etc. may be sufficient and these may be combined. However, it is not preferable that the workability described later significantly impairs workability. For example, granular glass having an extremely large average particle diameter or extremely small granular glass has poor workability in filling. Therefore, the average particle size of the granular glass is preferably 0.5 to 50 mm. Similarly, in the case of plate glass, it is desirable that it is as flat as possible from the viewpoint of workability.

本発明に係る建築用ガラス物品の製造方法は、耐火性容器内に、一側から粒状ガラスまたは板状ガラスからなる第一材料を配置し、次いで第一材料よりも膨張係数が高い粒状ガラスまたは板状ガラスからなる第二材料を配置し、次いで第二材料よりも膨張係数の低い粒状ガラスまたは板状ガラスからなる第三材料を配置し、該耐火性容器内の粒状ガラスまたは板状ガラスをその軟化点以上の温度で熱処理することによって融着一体化することを特徴とする。   The manufacturing method of the building glass article which concerns on this invention arrange | positions the 1st material which consists of granular glass or plate glass from one side in a fireproof container, and then the granular glass which has a higher expansion coefficient than a 1st material, or A second material made of sheet glass is arranged, and then a third material made of granular glass or sheet glass having a lower expansion coefficient than the second material is arranged, and the granular glass or sheet glass in the refractory container is disposed. It is characterized by being fused and integrated by heat treatment at a temperature equal to or higher than the softening point.

通常、ガラスの溶融の際には、ガラス粘度が2dPa・s付近における温度にて溶融されている。ところが本建築用ガラス物品は、粒状ガラスまたは板状ガラスをそのガラスの軟化点以上で、且つガラスの粘度が4dPa・sになる温度以下で熱処理することによって融着一体化することにより得られる。このときのガラス粘度では、内部に取り込まれた気泡が浮上し難いため、ガラス内部に気泡が残存する。粒状ガラスを使用する場合、気泡の数や大きさは、熱処理温度や粒状ガラスの粒径、充填性を変えることにより調節可能である。つまり、熱処理温度が高いほど、気泡の数は少なく、気泡径は小さくなり、粒状ガラスが大きいほど、気泡の数は少なく、気泡径は大きくなる。また、粒状ガラスの充填の際、密に充填するほど、気泡径は小さくなる。   Usually, when glass is melted, the glass is melted at a temperature in the vicinity of 2 dPa · s. However, the architectural glass article can be obtained by fusing and integrating granular glass or plate-like glass by heat treatment at a temperature equal to or higher than the softening point of the glass and a temperature at which the glass has a viscosity of 4 dPa · s. With the glass viscosity at this time, the bubbles taken inside are difficult to rise, so the bubbles remain inside the glass. When granular glass is used, the number and size of bubbles can be adjusted by changing the heat treatment temperature, the particle diameter of the granular glass, and the filling properties. That is, the higher the heat treatment temperature, the smaller the number of bubbles and the smaller the bubble diameter, and the larger the granular glass, the smaller the number of bubbles and the larger the bubble diameter. In addition, when the granular glass is filled, the bubble diameter becomes smaller as it is filled more densely.

また、粒状ガラスと金属酸化物を混合し、熱処理することにより、金属酸化物がイオン化し発色する。さらに、そのイオン化しなかった金属酸化物は粒状ガラス界に存在し、模様を呈する。金属酸化物は、ガラスと反応しイオン発色を示す金属酸化物である。金属酸化物は具体的には、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、モリブデン、セリウム、ネオジウム、エルビウムの酸化物である。これらの金属酸化物はガラス中にてイオン発色を示し、ガラスの種類、熱処理条件によっても異なるが、黄、緑、青、紫、ピンクを呈する。   Further, by mixing the granular glass and the metal oxide and performing a heat treatment, the metal oxide is ionized and colored. Furthermore, the non-ionized metal oxide exists in the granular glass boundary and exhibits a pattern. A metal oxide is a metal oxide that reacts with glass and exhibits ionic color. Specifically, the metal oxide is an oxide of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, cerium, neodymium, or erbium. These metal oxides exhibit ionic color in glass, and exhibit yellow, green, blue, purple, and pink, depending on the type of glass and heat treatment conditions.

さらに、各金属酸化物の変わりに、着色ガラス、セラミック顔料を用いても着色が可能である。   Furthermore, it can be colored using colored glass or ceramic pigment instead of each metal oxide.

以下に、本発明の建築用ガラス物品を集積法によって製造する方法の例を示す。   Below, the example of the method of manufacturing the architectural glass article of this invention by the integration | stacking method is shown.

まず、異なる膨張係数を有する同系のガラスを、平均粒径が0.5〜50mmになるように、粉砕または水砕して粒状ガラスを作製する。   First, a similar glass having a different expansion coefficient is pulverized or water-pulverized so that the average particle size is 0.5 to 50 mm to produce a granular glass.

次に、耐火性容器を用意し、離型剤として該容器の内表面に沿ってセラミックスファイバーシートを載置する、または、内表面に珪砂、アルミナ粉末、ジルコニア粉末、または、石膏粉末からなる耐火性セラミックス粉末を付着させる。   Next, prepare a refractory container and place a ceramic fiber sheet along the inner surface of the container as a release agent, or refractory consisting of silica sand, alumina powder, zirconia powder, or gypsum powder on the inner surface The ceramic powder is adhered.

なお、耐火性容器は、1200℃以下の温度で軟化変形しない材質からなるとが好ましく、特にムライト、コージェライト、アルミナセラミックスからなると好ましい。また、セラミックスファイバーシートは、主成分がアルミナ、シリカ、シリカ―アルミナまたはジルコニアを含むと離型性に優れ、また、熱処理後に離型剤を除去しやすい。   The refractory container is preferably made of a material that does not soften and deform at a temperature of 1200 ° C. or less, and particularly preferably made of mullite, cordierite, or alumina ceramics. The ceramic fiber sheet is excellent in releasability when the main component contains alumina, silica, silica-alumina or zirconia, and it is easy to remove the release agent after heat treatment.

耐火性セラミックス粉末は、エアスプレーまたは刷毛塗りして耐火性容器の内表面に付着させる。続いて、離型剤を内表面に載置した耐火性容器に、下方から粒状ガラスからなる第一材料を配置し、その上に第一材料よりも膨張係数が高い粒状ガラスからなる第二材料を配置し、その上に第二材料よりも膨張係数の低い粒状ガラスからなる第三材料を配置する。即ち、膨張係数の低い粒状ガラスを任意の割合で充填し、次いで膨張係数の高い粒状ガラス、さらに膨張係数の低い粒状ガラスの順で任意の割合で充填する。これによって作製される3層の建築用ガラス物品の中間層に生じる応力は、中間層との膨張係数との差及び外層のガラス層の厚みによって異なるので、第二材料との膨張係数との差に応じて第一材料、第三材料それぞれの厚みを調整することで中間層の表裏面に生じる応力を釣り合わせると、反りや割れが生じることがない。次いで、これらをガラスの軟化点以上、ガラスの粘度が4dPa・sになる温度以下で熱処理することで、各材料が融着一体化し、本発明の建築用ガラス物品が作製される。   The refractory ceramic powder is applied to the inner surface of the refractory container by air spraying or brushing. Subsequently, a first material made of granular glass is arranged from below in a refractory container having a release agent placed on the inner surface, and a second material made of granular glass having a higher expansion coefficient than that of the first material. And a third material made of granular glass having a lower expansion coefficient than that of the second material. That is, granular glass having a low expansion coefficient is filled at an arbitrary ratio, and then granular glass having a high expansion coefficient and then granular glass having a low expansion coefficient are filled at an arbitrary ratio. Since the stress generated in the intermediate layer of the three-layer building glass article produced thereby differs depending on the difference between the expansion coefficient with the intermediate layer and the thickness of the outer glass layer, the difference with the expansion coefficient with the second material. Accordingly, when the stresses generated on the front and back surfaces of the intermediate layer are balanced by adjusting the thicknesses of the first material and the third material, warping and cracking do not occur. Subsequently, these materials are heat-treated at a temperature equal to or higher than the softening point of the glass and equal to or lower than a temperature at which the viscosity of the glass becomes 4 dPa · s, whereby the respective materials are fused and integrated to produce the architectural glass article of the present invention.

また、板状ガラスの場合も同様に、耐火性容器の面積と同サイズに板状ガラスを加工し、底から順に膨張係数の低い板状ガラスからなる第一材料、膨張係数の高い板状ガラスからなる第二材料、膨張係数の低い板状ガラスからなる第三材料の順に積層する。なお、板状ガラスの場合、斜めにした状態または立てた状態でも溶着・一体化が容易に可能であるので、溶着・一体化の際に同時に曲げ加工を行うことにより所望の曲面を有するの建築用ガラス物品を得ることができる。   Similarly, in the case of sheet glass, a sheet glass is processed to the same size as the area of the refractory container, and the first material composed of sheet glass having a low expansion coefficient in order from the bottom, sheet glass having a high expansion coefficient. The second material consisting of the above and the third material consisting of the sheet glass having a low expansion coefficient are laminated in this order. In the case of sheet glass, since it can be easily welded / integrated even in an inclined state or standing, an architecture having a desired curved surface by performing bending simultaneously at the time of welding / integration. Glass articles can be obtained.

また、本発明の建築用ガラス物品の製造方法は、第二材料の膨張係数と、第一材料及び第三材料の膨張係数との差が、3×10-7/K以上で且つ15×10-7/K以下であることを特徴とする。 Further, in the method for producing a building glass article of the present invention, the difference between the expansion coefficient of the second material and the expansion coefficient of the first material and the third material is 3 × 10 −7 / K or more and 15 × 10. -7 / K or less.

第二材料の膨張係数と、第一材料及び第三材料のガラスの何れか小さい膨張係数との差が3×10-7/Kよりも小さい場合、建築用ガラス物品に歪が生じ難く、強度の向上があまり望めず好ましくない。一方、膨張係数の差が15×10-7/Kよりも大きいと、得られたガラス物品に生じる歪が過大なものとなり、破損、或いは反りが生じ易いため好ましくない。そのため、第二材料の膨張係数と、第一材料及び第三材料のガラスの膨張係数の差は、3×10-7〜8×10-7/Kの範囲内がより好ましい。 If the difference between the expansion coefficient of the second material and the smaller expansion coefficient of the glass of the first material and the third material is smaller than 3 × 10 −7 / K, the glass article for construction is hardly distorted and the strength It is not preferable because improvement of the level cannot be expected. On the other hand, if the difference in expansion coefficient is greater than 15 × 10 −7 / K, the resulting glass article is excessively distorted and is liable to break or warp, which is not preferable. Therefore, the difference between the expansion coefficient of the second material and the expansion coefficient of the glass of the first material and the third material is more preferably in the range of 3 × 10 −7 to 8 × 10 −7 / K.

さらに、本発明の建築用ガラス物品の製造方法は、第一材料と第三材料が同種のガラスからなることが好ましい。   Furthermore, in the method for producing a building glass article according to the present invention, the first material and the third material are preferably made of the same kind of glass.

第一材料と第三材料が同種のガラスであると、これによって建築用ガラス物品に生じる応力は、第一材料と第三材料の厚みが同じ場合、中間層の表裏両面に生じる応力が等しくなるため、反りを生じない建築用ガラス物品を容易に作製することができる。粒状ガラスを使用する場合、膨張係数の低いガラスは同量でないと、応力に差が生じ、反りや割れが生じる。また、板状ガラスの場合は所定の厚みにするべく、板状ガラスを複数枚重ねてもよいが、前述の通り応力に差が生じないように、底と表面に積層する膨張係数の低いガラスは同じ枚数でなければならない。   When the first material and the third material are the same kind of glass, the stress generated in the building glass article is equal to the stress generated on the front and back surfaces of the intermediate layer when the thickness of the first material and the third material is the same. Therefore, an architectural glass article that does not warp can be easily produced. When using granular glass, if the glass with a low expansion coefficient is not the same amount, a difference in stress occurs, and warping and cracking occur. In the case of plate glass, a plurality of plate glasses may be stacked in order to obtain a predetermined thickness. However, as described above, a glass having a low expansion coefficient that is laminated on the bottom and the surface so as not to cause a difference in stress. Must be the same number.

本発明の建築用ガラス物品は、安全性、耐久性の面から高い機械的強度が求められる建築用ガラス物品において、一般にガラス欠陥とされるようなガラス中の色々な泡や各金属酸化物、着色ガラス、セラミック顔料による粒界などで装飾性が豊かな構成部材を使用した場合でも、十分実用に耐えうる機械的強度を備えたものであるため、特に建築物の外装材、内装材或いはインテリア用として好適である。また、従来の強化方法とは異なり、特殊な設備、工程の増加を伴わないため、製造も容易である。   The architectural glass article of the present invention is an architectural glass article that requires high mechanical strength in terms of safety and durability, and various bubbles and various metal oxides in the glass that are generally regarded as glass defects, Even when using decorative components such as colored glass or ceramic pigment grain boundaries, it has mechanical strength that can withstand practical use. Suitable for use. Further, unlike the conventional strengthening method, it is easy to manufacture because it does not involve an increase in special equipment and processes.

本発明の建築用ガラス物品の製造方法は、耐火性容器内に、一側から第一材料、次いで第一材料よりも膨張係数が高い第二材料、次いで第二材料よりも膨張係数の低い第三材料を配置し、該耐火性容器内のガラス材料をその軟化点以上の温度で熱処理することによって融着一体化するので、上記のような装飾性と機械的強度とを兼ね備えた本発明の建築用ガラス物品を容易に且つ効率よく作製することができる。   The method for producing an architectural glass article of the present invention includes a first material from one side, a second material having a higher expansion coefficient than the first material, and a lower expansion coefficient than the second material. Since three materials are arranged and the glass material in the refractory container is fused and integrated by heat treatment at a temperature equal to or higher than its softening point, the present invention combines the above-mentioned decorative properties and mechanical strength. Architectural glass articles can be easily and efficiently produced.

以下に、本発明の建築用ガラス物品の実施例を詳細に説明する。   Below, the Example of the architectural glass article of this invention is described in detail.

板状のアルミノシリケートガラスからなり、膨張係数が37×10-7/KのガラスAと、膨張係数が32×10-7/KのガラスBとを使用し、下からガラスBを2枚、ガラスAを8枚、ガラスBを2枚の順となるように重ねてガラス試料を作製した。このときのガラスAのサイズは33×99×0.7mmであり、ガラスBのサイズは33×99×0.6mmであった。これらのガラスの膨張係数は、30〜380℃の範囲の線膨張係数を表しているもので、実際にマックサイエンス社製DILATOメーターTD5010を使用して測定した値である。 It consists of a plate-like aluminosilicate glass, and uses glass A with an expansion coefficient of 37 × 10 −7 / K and glass B with an expansion coefficient of 32 × 10 −7 / K. A glass sample was prepared by stacking 8 sheets of glass A and 2 sheets of glass B in this order. At this time, the size of the glass A was 33 × 99 × 0.7 mm, and the size of the glass B was 33 × 99 × 0.6 mm. The expansion coefficients of these glasses represent linear expansion coefficients in the range of 30 to 380 ° C., and are values actually measured using a DILATO meter TD5010 manufactured by Mac Science.

次に、この重ね合わせたガラス試料をアルミナ、シリカからなるファイバーシートで覆われたムライト製容器に入れ、電気炉にて加熱し、融着一体化させた。加熱条件は、室温から5℃/分で1100℃まで昇温、1100℃で1時間保持した後、2℃/分で冷却を行い、2種のガラスの膨張係数差が5×10-7/KであるガラスBからなる両側の外層1とガラスAとからなる中間層2との3層構造を有する図1に示すような実施例1の建築用ガラス板を作製した。 Next, this superposed glass sample was put in a mullite container covered with a fiber sheet made of alumina and silica, heated in an electric furnace, and fused and integrated. The heating condition was that the temperature was raised from room temperature to 1100 ° C. at 5 ° C./minute, held at 1100 ° C. for 1 hour, then cooled at 2 ° C./minute, and the difference in expansion coefficient between the two glasses was 5 × 10 −7 / An architectural glass plate of Example 1 having a three-layer structure of an outer layer 1 on both sides made of glass B being K and an intermediate layer 2 made of glass A was prepared as shown in FIG.

粒子径が1〜2mmの粒状ソーダライムガラスからなり、膨張係数が100×10-7/KのガラスCと、膨張係数が92×10-7/KのガラスDとを使用し、実施例1と同様のファイバーシートで覆われたムライト容器内に、下からガラスDを10g、その上にガラスCを40g、さらにその上にガラスDを10gとなるように均一に敷き詰めた。 Example 1 Using glass C having a particle size of 1 to 2 mm and a glass C having an expansion coefficient of 100 × 10 −7 / K and a glass D having an expansion coefficient of 92 × 10 −7 / K. In a mullite container covered with the same fiber sheet as above, 10 g of glass D from the bottom, 40 g of glass C thereon, and further 10 g of glass D were further spread thereon.

次に、この粒状ソーダライムガラス試料を、電気炉にて室温から5℃/分で1000℃まで昇温、1000℃で1時間保持した後、2℃/分で冷却することにより、融着一体化することで、2種のガラスの膨張係数差が8×10-7/Kである実施例2の3層構造の建築用ガラス板を作製した。 Next, this granular soda lime glass sample was heated from room temperature to 1000 ° C. at 5 ° C./min in an electric furnace, held at 1000 ° C. for 1 hour, and then cooled at 2 ° C./min. As a result, an architectural glass plate having a three-layer structure of Example 2 in which the difference in expansion coefficient between the two types of glass was 8 × 10 −7 / K was produced.

比較例1として、板状アルミノシリケートガラスAを12枚重ね合わせた。このときのガラスAのサイズは33×99×0.7mmであり、この重ね合わせたガラス試料をアルミナ、シリカからなるファイバーシートで覆われたムライト製容器に入れ、電気炉にて加熱し、融着一体化させた。加熱条件は、室温から5℃/分で1100℃まで昇温、1100℃で1時間保持した後、2℃/分で冷却を行い、膨張係数が37×10-7/Kの単一種のガラスからなる比較例1の建築用ガラス板を作製した。 As Comparative Example 1, 12 plate-like aluminosilicate glasses A were stacked. The size of the glass A at this time is 33 × 99 × 0.7 mm, and the superposed glass sample is put in a mullite container covered with a fiber sheet made of alumina and silica, heated in an electric furnace, and melted. The clothes were integrated. Heating conditions were as follows: from room temperature to 1100 ° C. at 5 ° C./min, held at 1100 ° C. for 1 hour, cooled at 2 ° C./min, and a single type of glass with an expansion coefficient of 37 × 10 −7 / K An architectural glass plate of Comparative Example 1 was prepared.

比較例2として、板状アルミノシリケートガラスBを12枚重ね合わせた。このときのガラスBのサイズは33×99×0.7mmであり、この重ね合わせたガラス試料をアルミナ、シリカからなるファイバーシートで覆われたムライト製容器に入れ、電気炉にて加熱、融着一体化させた。加熱条件は、室温から5℃/分で1100℃まで昇温、1100℃で1時間保持した後、2℃/分で冷却を行い融着一体化することで、膨張係数が32×10-7/Kの単一種のガラスからなる比較例2の建築用ガラス板を作製した。 As Comparative Example 2, 12 plate-like aluminosilicate glasses B were superposed. The size of the glass B at this time is 33 × 99 × 0.7 mm, and the superposed glass sample is put in a mullite container covered with a fiber sheet made of alumina and silica, and heated and fused in an electric furnace. Integrated. The heating conditions were as follows: from room temperature to 1100 ° C. at 5 ° C./min, held at 1100 ° C. for 1 hour, then cooled at 2 ° C./min and fused and integrated, resulting in an expansion coefficient of 32 × 10 −7. An architectural glass plate of Comparative Example 2 made of a single kind of glass of / K was produced.

比較例3として、ファイバーシートで覆われたムライト容器内に、粒子径が1〜2mmの粒状のソーダライムガラスDを均一に敷き詰めた。次に、このガラス試料を電気炉にて室温から5℃/分で1000℃まで昇温させ、1000℃で1時間保持した後、2℃/分で冷却することにより、融着一体化させることで、膨張係数が92×10-7/Kの単一種のガラスからなる比較例3の建築用ガラス板を作製した。 As Comparative Example 3, granular soda lime glass D having a particle diameter of 1 to 2 mm was uniformly spread in a mullite container covered with a fiber sheet. Next, the glass sample is heated from room temperature to 1000 ° C. at 5 ° C./min in an electric furnace, held at 1000 ° C. for 1 hour, and then cooled at 2 ° C./min to be fused and integrated. Then, an architectural glass plate of Comparative Example 3 made of a single kind of glass having an expansion coefficient of 92 × 10 −7 / K was produced.

比較例4として、膨張係数が37×10-7/Kの板状アルミノシリケートガラスAを、粒子系が1〜2mmとなるように粉砕分級したガラスと、膨張係数が92×10-7/Kで粒子系が1〜2mmのソーダライムガラスDを、ファイバーシートで覆われたムライト容器内に、下からガラスAを10g、その上にガラスDを40g、さらにその上にガラスAを10gとなるように均一に敷き詰めた。次に、このガラス試料を、電気炉にて室温から5℃/分で1075℃まで昇温させ、1075℃で1時間保持した後、2℃/分で冷却することにより、融着一体化させることで、2種のガラスの膨張係数差が15×10-7/K以上の55×10-7/Kである比較例4の建築用ガラス板を作製した。 As Comparative Example 4, a plate-like aluminosilicate glass A having an expansion coefficient of 37 × 10 −7 / K was pulverized and classified so as to have a particle system of 1 to 2 mm, and an expansion coefficient was 92 × 10 −7 / K. In a mullite container covered with a fiber sheet, the soda lime glass D having a particle system of 1 to 2 mm is 10 g of glass A from the bottom, 40 g of glass D thereon, and further 10 g of glass A thereon. So that it was spread evenly. Next, the glass sample is heated from room temperature to 1075 ° C. at 5 ° C./min in an electric furnace, held at 1075 ° C. for 1 hour, and then cooled at 2 ° C./min to be fused and integrated. Thus, an architectural glass plate of Comparative Example 4 in which the difference in expansion coefficient between the two types of glasses was 55 × 10 −7 / K of 15 × 10 −7 / K or more was produced.

上記実施例及び比較例のガラス試料の強度測定は容器との接地面を下にし、島津製作所製オートグラフDCS−R−2000にて、支点間距離80mm、クロスヘッドスピード0.5mm/分にて3点曲げ試験を行った。試験数は各5であり、曲げ強度の平均値及び標準偏差を表1に示した。なお、全ての試料は、その内部に1.7〜2.5×105個/kgの泡を有しており、泡が光を散乱させることで優れた装飾性を有するものである。 The strength measurement of the glass samples of the above examples and comparative examples was conducted with the ground contact surface with the container facing down, with an autograph DCS-R-2000 manufactured by Shimadzu Corporation, at a fulcrum distance of 80 mm, and a crosshead speed of 0.5 mm / min. A three-point bending test was performed. The number of tests was 5, and the average value and standard deviation of bending strength are shown in Table 1. All the samples have 1.7 to 2.5 × 10 5 bubbles / kg of bubbles inside thereof, and the bubbles have excellent decorative properties by scattering light.

表1中の結果より明らかなように、膨張係数の高いガラス層を挟んで膨張係数の低いガラス層が積層された3層構造で2種のガラスの膨張係数差が3×10-7/K以上で且つ15×10-7/K以下である実施例1、2は、単一種のガラスからなる比較例1、2、3と比較して何れも約2倍の曲げ強度であり、機械的強度が向上していることが分かる。また、比較例4に関しては、5つの試料全てが電気炉からの取り出し時に破損しており、強度試験が行えなかった。これはガラスの膨張係数の差が55×10-7と大きすぎたことにより、その生じた歪にガラスが耐えられなかったためである。なお、他の試料については、全ての試料において、電気炉からの取り出し時に、破損は認められなかった。さらに、実施例1、2に関しては3点曲げ試験後の破損形状が比較例1、2、3と比較して細かく、強化ガラスの破損状態に類似していた。なお、本発明の製造方法による実施例1、2では、破損の起点となる表面に露出した泡が比較例1、2、3と比べ少なかったことも強度の向上に貢献しているものと考えられる。 As is clear from the results in Table 1, the difference in expansion coefficient between the two glasses is 3 × 10 −7 / K in a three-layer structure in which a glass layer having a low expansion coefficient is laminated with a glass layer having a high expansion coefficient interposed therebetween. The above Examples 1 and 2 which are not more than 15 × 10 −7 / K have a bending strength about twice that of Comparative Examples 1, 2 and 3 made of a single kind of glass, and are mechanical. It can be seen that the strength is improved. Further, regarding Comparative Example 4, all five samples were damaged when taken out from the electric furnace, and the strength test could not be performed. This is because the difference in the expansion coefficient of the glass was too large, 55 × 10 −7 , so that the glass could not withstand the generated strain. For the other samples, no damage was observed in all samples when taken out from the electric furnace. Furthermore, regarding Examples 1 and 2, the shape of breakage after the three-point bending test was finer than that of Comparative Examples 1, 2, and 3, and was similar to the broken state of tempered glass. In Examples 1 and 2 according to the production method of the present invention, it was considered that the fact that the amount of foam exposed on the surface, which was the starting point of breakage, was less than in Comparative Examples 1, 2, and 3 also contributed to the improvement in strength. It is done.

本発明は建築用ガラス物品を対象としているが、技術内容は電子部品用ガラス物品等にも適用可能である。   Although the present invention is intended for architectural glass articles, the technical content is also applicable to glass articles for electronic parts.

本発明の建築用ガラス物品の斜視図。The perspective view of the architectural glass article of this invention.

符号の説明Explanation of symbols

1 膨張係数が低い外層
2 膨張係数が高い中間層
1 Outer layer with low expansion coefficient 2 Intermediate layer with high expansion coefficient

Claims (4)

異なる膨張係数を有する少なくとも2種のガラスをそれぞれに用いた3層のガラス層が積層され互いに融着されており、該3層のガラス層の中間に位置する中間層が、その両側の外層よりも高い膨張係数を有することを特徴とする建築用ガラス物品。   Three glass layers each using at least two kinds of glasses having different expansion coefficients are laminated and fused to each other, and an intermediate layer positioned in the middle of the three glass layers is formed by outer layers on both sides thereof. An architectural glass article characterized by having a high expansion coefficient. 中間層のガラスの膨張係数と、外層のガラスの膨張係数との差が、3×10-7/K以上で且つ15×10-7/K以下であることを特徴とする請求項1に記載の建築用ガラス物品。 The difference between the expansion coefficient of the glass of the intermediate layer and the expansion coefficient of the glass of the outer layer is 3 × 10 −7 / K or more and 15 × 10 −7 / K or less. Architectural glass articles. 耐火性容器内に、一側から粒状ガラスまたは板状ガラスからなる第一材料を配置し、次いで第一材料よりも膨張係数が高い粒状ガラスまたは板状ガラスからなる第二材料を配置し、次いで第二材料よりも膨張係数の低い粒状ガラスまたは板状ガラスからなる第三材料を配置し、該耐火性容器内の粒状ガラスまたは板状ガラスをその軟化点以上の温度で熱処理することによって融着一体化することを特徴とする建築用ガラス物品の製造方法。   In the refractory container, a first material made of granular glass or sheet glass is arranged from one side, then a second material made of granular glass or sheet glass having a higher expansion coefficient than the first material, and then A third material made of granular glass or sheet glass having a lower expansion coefficient than the second material is disposed, and the granular glass or sheet glass in the refractory container is heat-treated at a temperature equal to or higher than its softening point. The manufacturing method of the glass article for construction characterized by integrating. 第二材料の膨張係数と、第一材料及び第三材料の膨張係数との差が、3×10-7/K以上で且つ15×10-7/K以下であることを特徴とする請求項3に記載の建築用ガラス物品の製造方法。 The difference between the expansion coefficient of the second material and the expansion coefficient of the first material and the third material is 3 × 10 −7 / K or more and 15 × 10 −7 / K or less. 3. A method for producing an architectural glass article according to 3.
JP2004190943A 2004-06-29 2004-06-29 Glass article for use in building, and manufacturing method for glass article for use in building Pending JP2006008476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190943A JP2006008476A (en) 2004-06-29 2004-06-29 Glass article for use in building, and manufacturing method for glass article for use in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190943A JP2006008476A (en) 2004-06-29 2004-06-29 Glass article for use in building, and manufacturing method for glass article for use in building

Publications (1)

Publication Number Publication Date
JP2006008476A true JP2006008476A (en) 2006-01-12

Family

ID=35776124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190943A Pending JP2006008476A (en) 2004-06-29 2004-06-29 Glass article for use in building, and manufacturing method for glass article for use in building

Country Status (1)

Country Link
JP (1) JP2006008476A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173526A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Patterned crystallized glass article and method for producing the same
JP2012126626A (en) * 2010-12-17 2012-07-05 Konica Minolta Advanced Layers Inc Glass substrate for recording medium
CN102815859A (en) * 2011-06-09 2012-12-12 旭硝子株式会社 Tempered glass and manufacturing method thereof, measuring method for surface stress of tempered glass
CN105174727A (en) * 2015-09-15 2015-12-23 中国洛阳浮法玻璃集团有限责任公司 Composite decorative partition material and preparation method thereof
CN111180445A (en) * 2018-11-13 2020-05-19 财团法人工业技术研究院 Ferroelectric memory and method of manufacturing the same
CN114206789A (en) * 2019-07-24 2022-03-18 肖特股份有限公司 Airtight sealed transparent cavity and shell thereof
WO2023055608A1 (en) * 2021-09-30 2023-04-06 Corning Incorporated 3d printed layered glass structure having increased mechanical strength

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173526A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Patterned crystallized glass article and method for producing the same
JP2012126626A (en) * 2010-12-17 2012-07-05 Konica Minolta Advanced Layers Inc Glass substrate for recording medium
CN102815859A (en) * 2011-06-09 2012-12-12 旭硝子株式会社 Tempered glass and manufacturing method thereof, measuring method for surface stress of tempered glass
JP2012254902A (en) * 2011-06-09 2012-12-27 Asahi Glass Co Ltd Tempered glass and manufacturing method therefor, and surface stress measuring method for the tempered glass
CN105174727A (en) * 2015-09-15 2015-12-23 中国洛阳浮法玻璃集团有限责任公司 Composite decorative partition material and preparation method thereof
CN111180445A (en) * 2018-11-13 2020-05-19 财团法人工业技术研究院 Ferroelectric memory and method of manufacturing the same
CN111180445B (en) * 2018-11-13 2022-02-25 财团法人工业技术研究院 Ferroelectric memory and method of manufacturing the same
CN114206789A (en) * 2019-07-24 2022-03-18 肖特股份有限公司 Airtight sealed transparent cavity and shell thereof
US11975962B2 (en) 2019-07-24 2024-05-07 Schott Ag Hermetically sealed transparent cavity and package for same
CN114206789B (en) * 2019-07-24 2024-05-31 肖特股份有限公司 Hermetically sealed transparent cavity and housing therefor
WO2023055608A1 (en) * 2021-09-30 2023-04-06 Corning Incorporated 3d printed layered glass structure having increased mechanical strength

Similar Documents

Publication Publication Date Title
EP2135316B1 (en) Sealing materials, a solid oxide fuel cell utilizing such materials and methods of making the same
US6810688B1 (en) Method for treating glass substrates and glass substrates for the producing of display screens
JP6326060B2 (en) Method for producing three-dimensional glass-ceramic article
JP5573157B2 (en) GLASS COMPOSITION FOR SUBSTRATE AND METHOD FOR PRODUCING PLATE GLASS
JP5892932B2 (en) High performance glass ceramic and method for producing high performance glass ceramic
CN107810167B (en) Light comprising nepheline crystalline phase can form glass ceramics
KR20150123841A (en) Laminated glass articles with phase-separated cladding and methods for forming the same
KR101476751B1 (en) Refractory product for a checker work element of a glass furnace regenerator
CN113891865A (en) Colored glass ceramic with petalite and lithium silicate structure
JP2008201600A (en) Glaze composition
JP6230775B2 (en) Method for tempering ceramics of float crystallized glass
JP2006221942A (en) Glass set for manufacturing plasma display panel substrate
JP4523021B2 (en) Crystallized glass article with pattern and manufacturing method thereof
JP2006008476A (en) Glass article for use in building, and manufacturing method for glass article for use in building
JP2009023865A (en) Patterned crystallized glass article and method for producing the same
JP2012201526A (en) Crystallized glass article and method for manufacturing the same
KR20070089202A (en) Glass set for preparation of front substrate of plasma display panel
JP2009173526A (en) Patterned crystallized glass article and method for producing the same
WO2017082311A1 (en) Glass for air-quench tempering and air-quenched tempered glass
JP2013067525A (en) Crystallized glass article
JP6915625B2 (en) Chemically tempered glass plate
JP2010070411A (en) Method for producing crystallized glass plate
JP2017525639A (en) Refractory ceramic products
JP5349573B2 (en) Inorganic fired body
JP2019001662A (en) Glass for wind cooling strengthening, and wind cooled strengthen glass