JP4877646B2 - Crystallized glass article and method for producing the same - Google Patents

Crystallized glass article and method for producing the same Download PDF

Info

Publication number
JP4877646B2
JP4877646B2 JP2006116365A JP2006116365A JP4877646B2 JP 4877646 B2 JP4877646 B2 JP 4877646B2 JP 2006116365 A JP2006116365 A JP 2006116365A JP 2006116365 A JP2006116365 A JP 2006116365A JP 4877646 B2 JP4877646 B2 JP 4877646B2
Authority
JP
Japan
Prior art keywords
light
crystallized glass
layer
glass article
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006116365A
Other languages
Japanese (ja)
Other versions
JP2007284319A (en
Inventor
康弘 馬場
暁仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2006116365A priority Critical patent/JP4877646B2/en
Publication of JP2007284319A publication Critical patent/JP2007284319A/en
Application granted granted Critical
Publication of JP4877646B2 publication Critical patent/JP4877646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Description

本発明は建築物の外装材や内装材及び装飾材に用いることができる結晶化ガラス物品と、その製造方法に関するものである。   The present invention relates to a crystallized glass article that can be used for a building exterior material, interior material, and decorative material, and a method for producing the same.

結晶化ガラス物品は、化学的耐久性、機械的強度等の特性に優れており、また石材、人工石材の人研、陶板、タイル、着色ガラス等とは異なる新しい独特の外観を呈するデザインを追及する各種の提案がなされている。   Crystallized glass products have excellent characteristics such as chemical durability and mechanical strength, and pursue a design that has a new and unique appearance that is different from stones, artificial stones, ceramic plates, tiles, colored glass, etc. Various proposals have been made.

ところで近年、建築の多様化に伴って種々の外観を呈する建築材料が開発され、結晶化ガラスからなる建築材料だけではなく、下記の特許文献1〜5に示した各種の発光物質を使用した建築用ガラス物品も開発されている。   In recent years, building materials having various appearances have been developed with the diversification of buildings, and not only building materials made of crystallized glass but also buildings using various light-emitting substances shown in Patent Documents 1 to 5 below. Glass articles have also been developed.

例えば、特許文献1には蛍光作用を有するEu23、Sm23を添加した結晶化ガラス物品が開示されている。また、特許文献2には、蛍光を発するリン酸カルシウム系ガラスを結晶化させた歯科材料用の結晶化ガラス物品及びその製造方法が開示されている。 For example, Patent Document 1 discloses a crystallized glass article to which Eu 2 O 3 and Sm 2 O 3 having a fluorescent action are added. Patent Document 2 discloses a crystallized glass article for dental material obtained by crystallizing fluorescent calcium phosphate glass that emits fluorescence, and a method for producing the same.

さらに、特許文献3には、酸化チタン系光触媒層と結晶化ガラスからなる蓄光材層とを有する抗菌製品の開示があり、特許文献4には、廃ガラス粒と蓄光材とを針状結晶を析出した結晶化ガラスで覆って一体化した多孔質ガラス成形体とその製造方法に関する開示があり、特許文献5には結晶化ガラスからなる大型化粧板と透明性ガラス板を積層し、中間接着層や釉薬に蓄光顔料を使用した化粧パネル及びその製造方法が開示されている。
特開平1−52633号公報 特開平4−16525号公報 特開平11−12114号公報 特開2004−175603号公報 特開2004−292220号公報
Further, Patent Document 3 discloses an antibacterial product having a titanium oxide-based photocatalyst layer and a phosphorescent material layer made of crystallized glass, and Patent Document 4 discloses a waste glass particle and a phosphorescent material made of acicular crystals. There is a disclosure relating to a porous glass molded body integrated by covering with precipitated crystallized glass and a method for producing the same, and Patent Document 5 laminates a large decorative plate made of crystallized glass and a transparent glass plate, and provides an intermediate adhesive layer. A decorative panel using phosphorescent pigments and glazes and a method for producing the same are disclosed.
JP-A-1-52633 Japanese Patent Laid-Open No. 4-16525 Japanese Patent Laid-Open No. 11-12114 JP 2004-175603 A JP 2004-292220 A

しかしながら、機械的強度、化学的耐久性、熱的耐久性を維持し、従来にない更に新規な外観デザインを呈するものが要求されている。   However, there is a demand for a material that maintains mechanical strength, chemical durability, and thermal durability and exhibits a new appearance design that has never been seen before.

特許文献1、2は、蛍光性物質が表面に露出しているので、発光部位の蛍光性物質の酸化や汚れにより発光しなくなる点で問題がある。   Patent Documents 1 and 2 have a problem in that since the fluorescent material is exposed on the surface, light is not emitted due to oxidation or contamination of the fluorescent material at the light emitting site.

特許文献3は、防汚性能を実現する酸化チタン系光触媒層の厚さが1μm未満と薄く、外観そのものは蓄光材層の外観と同じで奥行き感のないものとなり、建材としたときの目新しさに関しては全く有していない。   In Patent Document 3, the thickness of the titanium oxide photocatalyst layer that achieves antifouling performance is as thin as less than 1 μm, the appearance itself is the same as the appearance of the phosphorescent material layer, and there is no sense of depth. Have no at all.

特許文献4は、発光材は含んでいるものの、金属等の不透明な粉粒物、廃材のガラスカレットを使用するものであって外観は透明感に乏しく、舗道のインターロッキングブロックなどの敷石代わりには使用できるが、壁材等の化粧材としては不向きである点で問題がある。また、特許文献5では、透視性ガラス板と結晶化ガラス等の大型化粧板との中間接着層に釉焼模様を形成した化粧パネルは、透明ガラスにより奥行き感はあるものの、接着構造であるため、膨張係数差による破損及び製造時の工数の点で問題がある。   Patent Document 4 uses a light-emitting material, but uses opaque powder particles such as metal, and waste glass cullet, and its appearance is poorly transparent. Instead of paving stones such as pavement interlocking blocks Can be used, but there is a problem in that it is not suitable as a decorative material such as a wall material. Moreover, in patent document 5, since the decorative panel which formed the roasting pattern in the intermediate | middle adhesive layer of large-sized decorative boards, such as a see-through | pervious glass plate and crystallized glass, has a feeling of depth by transparent glass, but is because of an adhesion structure. There are problems in terms of breakage due to differences in expansion coefficients and man-hours during production.

本発明は、上記の事情に着目し、建築材料に必要な特性を維持させ、かつ従来の結晶化ガラス物品よりも外観として高級感のある発光物質を使用した新規な結晶化ガラス物品とその製造方法を提供することを課題とする。   The present invention pays attention to the above circumstances, maintains a characteristic necessary for building materials, and uses a light-emitting substance having a higher-grade appearance than a conventional crystallized glass article, and a novel crystallized glass article and its manufacture It is an object to provide a method.

本発明に係る結晶化ガラス物品は、発光材が配置された結晶化ガラスからなる発光層と、該発光層の少なくとも一面に融着されており、析出結晶量が5〜50質量%の結晶化ガラスからなり、可視光線の平均透過率が5〜30%である透光層とを有し、該透光層が意匠面側に配置されてなることを特徴とするものである。   A crystallized glass article according to the present invention is a crystallized crystal having a light emitting layer made of crystallized glass on which a light emitting material is disposed, and fused to at least one surface of the light emitting layer, and the amount of precipitated crystals is 5 to 50% by mass. It has a translucent layer made of glass and having an average visible light transmittance of 5 to 30%, and the translucent layer is arranged on the design surface side.

本発明の結晶化ガラス物品で、結晶化ガラスからなる発光層としては、例えば、軟化変形しながら表面から内部に向かって針状の結晶が析出するものが適しており、発光材としては、1000℃を超える焼成温度でも発光性を失わなければ使用可能であり、SrAl24にEu2+、Dy3+をドープした蓄光材や、ZnSにCu+、Al3+をドープした蛍光材等が適している。また、発泡の抑制及び表面の平滑性、更に強度特性を維持するためには、発光層の結晶化ガラスの析出結晶量は、10〜40質量%であることがさらに好ましい。 In the crystallized glass article of the present invention, as the light-emitting layer made of crystallized glass, for example, one in which needle-like crystals precipitate from the surface toward the inside while being softened and deformed is suitable. ℃ even at a firing temperature in excess of a usable unless lose luminescent, Eu 2+ to SrAl 2 O 4, and phosphorescent material doped with Dy 3+, Cu + in ZnS, fluorescent material or the like doped with Al 3+ Is suitable. In order to suppress foaming and maintain surface smoothness and strength properties, the amount of precipitated crystals in the crystallized glass of the light emitting layer is more preferably 10 to 40% by mass.

また、本発明で透光層としては、例えば、結晶性ガラスからなるガラス小体の一種に、軟化点より高い温度で熱処理を施すことにより、軟化変形しながら表面から内部に向かって針状の結晶が析出し、析出結晶量が5〜50質量%であるものが適する。析出結晶量が5質量%未満ではガラス質が多いために、焼成時の粘性が低くなり過ぎて表面に多くの発泡が発生するだけではなく機械的強度も極度に低下する。一方、析出結晶量が50質量%を超えると、ガラス質が少なくなり焼成時の粘性が高くなりすぎて、表面の平滑性が得にくくなり、さらに所望の反応層が形成されず非晶質ガラス層との融着性が不十分になる。また、析出結晶量が50質量%を超えると、ガラス質が少なくなり粘性が高くなりすぎて曲げ加工を行うための加工温度が高くなりすぎてしまう。   In addition, as the light-transmitting layer in the present invention, for example, a kind of glass body made of crystalline glass is subjected to a heat treatment at a temperature higher than the softening point, so that the needle-like shape from the surface toward the inside while being softened and deformed. Crystals are precipitated and the amount of precipitated crystals is 5 to 50% by mass. If the amount of precipitated crystals is less than 5% by mass, the vitreous material is large, so that the viscosity at the time of firing becomes too low and not only a lot of foam is generated on the surface but also the mechanical strength is extremely lowered. On the other hand, if the amount of precipitated crystals exceeds 50% by mass, the vitreous properties are reduced, the viscosity during firing becomes too high, the surface smoothness becomes difficult to obtain, and the desired reaction layer is not formed, and amorphous glass is not formed. Adhesiveness with the layer becomes insufficient. On the other hand, if the amount of precipitated crystals exceeds 50% by mass, the vitreous properties are reduced and the viscosity becomes too high, so that the processing temperature for bending is too high.

さらに、透光層の透光性としては、可視光線の透過率が5%未満では発光層からの光を十分に意匠面まで伝搬させることができず、透過率が30%を超えると、従来からある前面に透明ガラスを配置したガラス建材とのデザイン上の差異が小さくなり、石材様の建材としての個性の主張が弱いものになってしまう。そこで、半透明の透光層を通して観察される発光層の表面、すなわち発光層と透光層との界面である内部意匠面及び暗がりでは発光層から発光される光を散乱させつつ仄かに光る意匠面として、独特の奥行き表現により高級感を醸し出す結晶化ガラス物品にするために、透光層の可視光線の透過率としては、5〜30%であることが重要となる。   Furthermore, as the translucency of the translucent layer, when the visible light transmittance is less than 5%, the light from the light emitting layer cannot be sufficiently propagated to the design surface, and when the transmittance exceeds 30%, Therefore, the difference in design with the glass building material with transparent glass on the front is reduced, and the assertion of individuality as a stone-like building material becomes weak. Therefore, the surface of the light-emitting layer observed through the translucent light-transmitting layer, that is, the internal design surface that is the interface between the light-emitting layer and the light-transmitting layer, and the design that shines while scattering light emitted from the light-emitting layer in the dark As a surface, in order to obtain a crystallized glass article that gives a high-class feeling due to a unique depth expression, it is important that the transmittance of visible light of the light-transmitting layer is 5 to 30%.

また、本発明の結晶化ガラス物品で、発光層の厚さに対する透光層の厚さが50%未満であると、発光層のガラスが透光層のガラスに混ざり込んで意匠的に見苦しくなり、透光層の厚さが200%を超えると発光層からの光を十分に意匠面まで伝搬させることが困難になる。本発明の結晶化ガラス物品では、半透明の透光層を通して観察される発光層の表面、すなわち発光層と透光層との界面である内部意匠面及び暗がりでは発光層から発光される光を散乱させつつ仄かに光る意匠面として、独特の奥行き表現により高級感を醸し出す結晶化ガラス物品を実現するために、発光層の厚さに対する透光層の厚さが50〜200%であることが好ましい。   Further, in the crystallized glass article of the present invention, when the thickness of the light-transmitting layer is less than 50% with respect to the thickness of the light-emitting layer, the glass of the light-emitting layer is mixed with the glass of the light-transmitting layer and becomes unsightly in design. When the thickness of the light transmitting layer exceeds 200%, it becomes difficult to sufficiently propagate the light from the light emitting layer to the design surface. In the crystallized glass article of the present invention, the surface of the light emitting layer observed through the translucent light transmitting layer, that is, the internal design surface that is the interface between the light emitting layer and the light transmitting layer and the light emitted from the light emitting layer in the darkness. In order to realize a crystallized glass article that creates a high-class feeling with a unique depth expression as a design surface that shines while being scattered, the thickness of the light-transmitting layer is 50 to 200% with respect to the thickness of the light-emitting layer. preferable.

また、本発明の結晶化ガラス物品では、発光材が、蓄光材を含むものであると、光源がなくても光る点、光の演出の自由度の点及び発光効率の点で好ましい。   Further, in the crystallized glass article of the present invention, it is preferable that the light emitting material includes a phosphorescent material in terms of light without using a light source, the degree of freedom of light production, and light emission efficiency.

また、本発明の結晶化ガラス物品では、発光材が、蛍光材を含むものであると、僅かな光で蛍光を発する点、光の演出の自由度の点及び発光効率の点で好ましい。   Further, in the crystallized glass article of the present invention, it is preferable that the light emitting material contains a fluorescent material in terms of emitting fluorescence with a slight amount of light, freedom of light production, and light emission efficiency.

また、本発明の結晶化ガラス物品では、結晶化ガラスが、結晶析出特性を持つディオプサイト(CaO・MgO・2SiO2)系のもでも可能であるが、質量百分率表示でSiO2 45〜75%、Al23 1〜25%、CaO 2〜25%、ZnO 0〜18%、BaO 0〜20%、MgO 0〜1.5%、SrO 0〜1.5%、Na2O 1〜25%、K2O 0〜7%、Li2O 0〜5%、B23 0〜1.5%、CeO2 0〜0.5%、SO3 0〜0.5%、As23 0〜1%、Sb23 0〜1%、着色酸化物 0〜3%の組成を有し、主結晶としてβ−ウオラストナイトを析出してなるものであると、析出結晶量が5〜50質量%で発泡の抑制及び表面の平滑性、更に強度特性を維持することができ、可視光線の透過率が5〜30%の透光層を形成することが容易であり好ましい。また、同様の組成を有する結晶性ガラス小体に、着色酸化物として3%未満の無機着色剤等を添加することも可能である。 In the crystallized glass article of the present invention, the crystallized glass may be diopsite (CaO · MgO · 2SiO 2 ) based on crystal precipitation characteristics, but SiO 2 45 to 75 in terms of mass percentage. %, Al 2 O 3 1-25%, CaO 2-25%, ZnO 0-18%, BaO 0-20%, MgO 0-1.5%, SrO 0-1.5%, Na 2 O 1- 25%, K 2 O 0-7%, Li 2 O 0-5%, B 2 O 3 0-1.5%, CeO 2 0-0.5%, SO 3 0-0.5%, As 2 It has a composition of 0 to 1% of O 3, 0 to 1% of Sb 2 O 3 and 0 to 3 % of a colored oxide, and the amount of precipitated crystals is obtained by precipitating β-wollastonite as a main crystal. 5 to 50% by mass can suppress foaming, maintain the smoothness of the surface, and maintain the strength characteristics, and has a visible light transmittance of 5 to 30%. It is easy preferable to form a transparent layer. It is also possible to add an inorganic colorant of less than 3% as a colored oxide to a crystalline glass body having the same composition.

SiO2の含有量は45〜75%、好ましくは50〜70%である。SiO2が75%より高いとガラスの溶融温度が高くなるとともに、粘度が増大して熱処理時の流動性が悪くなる。一方、45%より少ないと成型時の失透性が強くなる。 The content of SiO 2 is 45 to 75%, preferably 50 to 70%. If SiO 2 is higher than 75%, the melting temperature of the glass increases and the viscosity increases, resulting in poor fluidity during heat treatment. On the other hand, if it is less than 45%, devitrification at the time of molding becomes strong.

Al23の含有量は1〜25%、好ましくは3〜15%である。Al23が25%より多いとガラスの溶解性が悪くなるとともに異種結晶(アノーサイト)が析出し熱処理時の流動性が悪くなり、1%より少ないと失透性が強くなり化学的耐久性も低下する。 The content of Al 2 O 3 is 1 to 25%, preferably 3 to 15%. If Al 2 O 3 is more than 25%, the solubility of the glass deteriorates and different crystals (anocite) precipitate, resulting in poor fluidity during heat treatment. If it is less than 1%, devitrification becomes strong and chemical durability. The nature is also reduced.

CaOの含有量は2〜25%、好ましくは8〜18%である。CaOが25%よりも多いと失透性が強くなり成形が困難となり、又β−ウオラストナイト結晶の析出量が多くなり過ぎて所望の表面平滑性が得難くなる。一方、2%より少ないとβ−ウオラストナイトの析出量が少なくなり過ぎて機械的強度が低下し、建材として実用に耐えなくなる。   The content of CaO is 2 to 25%, preferably 8 to 18%. If the CaO content is more than 25%, devitrification becomes strong and molding becomes difficult, and the precipitation amount of β-wollastonite crystal becomes too large, making it difficult to obtain desired surface smoothness. On the other hand, if it is less than 2%, the precipitation amount of β-wollastonite becomes too small, the mechanical strength is lowered, and it cannot be practically used as a building material.

ZnOは結晶化時のガラスの流動性を促進するために添加する成分であり、その含有量は0〜18%、好ましくは2〜15%である。ZnOが18%より多いとβ−ウオラストナイト結晶が析出し難くなる。   ZnO is a component added to promote the fluidity of the glass during crystallization, and its content is 0 to 18%, preferably 2 to 15%. If ZnO is more than 18%, β-wollastonite crystals are difficult to precipitate.

BaOもZnOと同様の効果を示す成分で、含有量は0〜20%であり、好ましくは1〜10%である。BaOも20%より多いとβ−ウオラストナイト結晶の析出量が少なくなる。   BaO is also a component that exhibits the same effect as ZnO, and its content is 0 to 20%, preferably 1 to 10%. When BaO is also more than 20%, the amount of β-wollastonite crystals precipitated decreases.

MgO及びSrOについては、ガラスの溶解性や流動性を促進させる成分であるが、1.5%より多くなると異種結晶を析出し、熱的特性、光学特性、及び外観上好ましくない。   MgO and SrO are components that promote the solubility and fluidity of the glass. However, if it exceeds 1.5%, different crystals are precipitated, which is not preferable in terms of thermal characteristics, optical characteristics, and appearance.

Na2Oの含有量は1〜15%、好ましくは3〜10%である。Na2Oが15%よりも多いと科学的耐久性が悪くなり、膨張係数が高くなるために建材として好ましくない。1%より少ないとガラスの粘性が増大して溶解性や流動性が悪くなる。 The content of Na 2 O is 1 to 15%, preferably 3 to 10%. When Na 2 O is more than 15%, the scientific durability is deteriorated and the expansion coefficient is increased, which is not preferable as a building material. If it is less than 1%, the viscosity of the glass increases and the solubility and fluidity deteriorate.

2Oの含有量は0〜7%、好ましくは0〜5%である。K2Oが7%より多いと化学的耐久性が低下する。 The content of K 2 O is 0 to 7%, preferably 0 to 5%. When K 2 O is more than 7%, chemical durability is lowered.

Li2Oは結晶化速度を速める効果と流動性を促進する効果があり、その含有量は0〜5%、好ましくは0.1〜3%である。Li2Oが5%より多いと化学的耐久性が低下するだけでなく、粘性が低下し過ぎるために発泡しやすくなる。 Li 2 O has the effect of increasing the crystallization rate and the effect of promoting fluidity, and its content is 0 to 5%, preferably 0.1 to 3%. When Li 2 O is more than 5%, not only the chemical durability is lowered, but also the viscosity is lowered too much, so that foaming easily occurs.

23の含有量は0〜1.5%、好ましくは0〜1%である。B23が1.5%より多いと異種結晶が析出し、所望の特性が得られなくなる。 The content of B 2 O 3 is 0 to 1.5%, preferably 0 to 1%. When B 2 O 3 is more than 1.5%, different crystals are precipitated, and desired characteristics cannot be obtained.

CeO2は清澄剤としてのAs23又はSb23の添加が環境上好ましくないことから、それらの含有量が0.1%以下で、結晶化物の白色度が急激に低下する場合に、その白色度の低下を抑制する成分である。白色度の低下を抑制するためのCeO2の含有量は0.01〜0.5%、好ましくは0.05〜0.3%である。その効果は、還元雰囲気下のガラス溶融環境になった場合に、不純物として含有するFe23によるFe2+の発色を抑制するものであり、特にSO3(芒硝)と共存させることによって効果が顕著に現れる。CeO2が0.5%より多いとCe4+による褐色の着色が強くなり、0.01%より少ないと上記の効果が得られ難くなる。 CeO 2 is environmentally unfavorable for the addition of As 2 O 3 or Sb 2 O 3 as a clarifier, and therefore when the content thereof is 0.1% or less, the whiteness of the crystallized product decreases rapidly. , A component that suppresses the decrease in whiteness. The content of CeO 2 for suppressing the decrease in whiteness is 0.01 to 0.5%, preferably 0.05 to 0.3%. The effect is to suppress the coloration of Fe 2+ by Fe 2 O 3 contained as an impurity in a glass melting environment under a reducing atmosphere, and is particularly effective by coexisting with SO 3 (sodium nitrate). Appears prominently. When CeO 2 is more than 0.5%, the brown coloration due to Ce 4+ becomes strong, and when it is less than 0.01%, it is difficult to obtain the above effect.

SO3の含有量は0.01〜0.5%、好ましくは0.02〜0.4%である。SO3が0.5%より多いと異種結晶が析出し、0.01%より少ないと清澄剤であるAs23及びSb23が0.1%以下である場合にガラスの溶解性が低下し、ガラスの品位が悪化する。 The content of SO 3 is 0.01 to 0.5%, preferably 0.02 to 0.4%. When SO 3 is more than 0.5%, different types of crystals are precipitated, and when it is less than 0.01%, the solubility of glass when the clarifying agents As 2 O 3 and Sb 2 O 3 are 0.1% or less. Decreases and the quality of the glass deteriorates.

次に、本発明の結晶化ガラス物品を製造する方法を説明する。   Next, a method for producing the crystallized glass article of the present invention will be described.

本発明に係る結晶化ガラス物品の製造方法は、耐火容器内に、結晶性ガラス小体と発光材とを混合した混合物を集積して第1集積層とし、該第1集積層上に、焼成後の析出結晶量が5〜50質量%になる結晶性ガラス小体を集積して第2集積層として積層体を形成し、該積層体をガラスの粘度が104から105ポイズを示す温度域で焼成することにより、発光材が配置された結晶化ガラスからなる発光層と、該発光層に融着されており、可視光線の平均透過率が5〜30%である結晶化ガラスからなる透光層とを形成することを特徴とする。 In the method for producing a crystallized glass article according to the present invention, a mixture obtained by mixing a crystalline glass body and a light emitting material is accumulated in a refractory container to form a first accumulation layer, and the first accumulation layer is fired. A glass body having a deposited crystal amount of 5 to 50% by mass is accumulated to form a laminated body as a second integrated layer, and the laminated body is heated to a temperature at which the viscosity of the glass is 10 4 to 10 5 poise. By calcination in the region, the light-emitting layer is made of crystallized glass on which a light-emitting material is arranged, and is made of crystallized glass that is fused to the light-emitting layer and has an average visible light transmittance of 5 to 30%. A light-transmitting layer is formed.

本発明の製造方法で、耐火容器内に集積する結晶性ガラス小体としては、例えば、その一種に、軟化点より高い温度で熱処理すると、軟化変形しながら表面から内部に向かって針状の結晶が析出し、析出結晶量が5〜50質量%となる結晶性ガラスからなるものが発泡の抑制及び表面の平滑性、更に強度特性を維持することができ適している。また、意匠面側となる透光性の透光層とを形成する結晶性ガラス小体としては、可視光線の透過率が5〜30%の層を形成することが容易であることが好ましい。なお、本発明で、結晶性ガラス小体とは、焼成後の析出結晶量が5〜50質量%、好ましくは5〜40質量%のまだ十分に結晶を析出していない結晶性のガラス小体と、結晶量が5〜50質量%、好ましくは5〜40質量%の結晶を析出している結晶化ガラス小体を意味している。この結晶化ガラス小体には、析出結晶量が前記に示した範囲であれば、従来の結晶化ガラス物品の製造工程中で発生した板状、管状、塊状を問わず、切削屑も同様に粉砕して使用することもできる。   In the production method of the present invention, as a crystalline glass body that accumulates in a refractory container, for example, when it is heat-treated at a temperature higher than the softening point, acicular crystals from the surface to the inside while being softened and deformed Is made of crystalline glass having a precipitated crystal amount of 5 to 50% by mass, which is suitable for suppressing foaming, maintaining the smoothness of the surface, and further maintaining the strength characteristics. Moreover, as a crystalline glass body which forms the translucent translucent layer used as the design surface side, it is preferable that it is easy to form a layer with a visible light transmittance of 5 to 30%. In the present invention, the crystalline glass body means a crystalline glass body having a crystallized crystal quantity after firing of 5 to 50% by mass, preferably 5 to 40% by mass, which has not yet sufficiently crystallized. And a crystallized glass body in which crystals having a crystal amount of 5 to 50% by mass, preferably 5 to 40% by mass are precipitated. In this crystallized glass body, if the amount of precipitated crystals is in the above-mentioned range, the cutting waste is similarly produced regardless of whether it is a plate shape, a tubular shape or a lump shape generated in the manufacturing process of a conventional crystallized glass article. It can also be used after pulverization.

また、本発明の製造方法では、結晶性ガラス小体と発光材とを混合して混合物にする手段として、着色や特性に影響を与える不純物である錆や金属粉末が混入することのないミキサーその他の混合手段ならば使用可能である。また、耐火性容器は、1100℃以下の温度で軟化変形しない材質が好ましく、ムライト、コージエライト、アルミナセラミックス製等の耐火性容器が好適である。また、耐火性セラミックスシートを使用する場合、結晶化ガラス物品と耐火性容器との離型材として作用するものであれば何ら制限なく使用できるが、特にシリカ、ムライト、アルミナ等のファイバーシートが好ましく、単独あるいは組み合わせて用いてもよい。また、耐火性セラミックスシートを耐火性容器内に施す方法は、シートを箱型にする方法、シートを分割して容器の内壁に設置する方法があるが、前もって容器の内壁にアルミナ等の微粉末をエアースプレー塗装、刷毛塗装、浸漬塗装等の方法による塗布が、融着を防止する上で好適である。   Further, in the production method of the present invention, as a means for mixing the crystalline glass body and the luminescent material into a mixture, a mixer that does not contain rust and metal powder, which are impurities that affect coloring and properties, and the like Any mixing means can be used. In addition, the refractory container is preferably made of a material that does not soften and deform at a temperature of 1100 ° C. or lower, and a refractory container such as mullite, cordierite, or alumina ceramic is preferable. In addition, when using a refractory ceramic sheet, it can be used without any limitation as long as it acts as a release material between the crystallized glass article and the refractory container, but fiber sheets such as silica, mullite, alumina, etc. are particularly preferred, You may use individually or in combination. In addition, the method of applying the refractory ceramic sheet in the refractory container includes a method of making the sheet into a box shape, a method of dividing the sheet and installing it on the inner wall of the container, but a fine powder such as alumina on the inner wall of the container in advance. The coating by air spray coating, brush coating, dip coating or the like is suitable for preventing fusion.

本発明で結晶化ガラス物品の製造方法を実施する場合、まず、焼成後の析出結晶量が5〜50質量%、好ましくは5〜40質量%の結晶性ガラス小体、又は結晶量が5〜50質量%、好ましくは5〜40質量%の結晶化ガラス小体を得る。   When carrying out the method for producing a crystallized glass article according to the present invention, first, the amount of crystallized crystals after firing is 5 to 50% by mass, preferably 5 to 40% by mass, or the crystal content is 5 to 5% by mass. A crystallized glass body of 50% by weight, preferably 5 to 40% by weight, is obtained.

次いで、得られた結晶性ガラス小体と、上記の蛍光材や蓄光材等の発光材とを混合した混合物を、ムライト・コージエライト製等の耐火物枠に集積して第1集積層とする。さらに第1集積層の上に、焼成後も透光性の確保が可能な結晶性ガラス小体又は結晶化ガラス小体を全体の質量に対して30〜70%積層させて第2集積層とすることで耐火物枠内に積層体を形成する。その後、耐火物枠ごと積層体を、結晶性ガラス又は結晶化ガラスのガラス部分の粘度が104から105ポイズを示す温度域で焼成することにより、各結晶性ガラス小体を軟化変形させて結晶性ガラス小体同士を融着一体化させるとともに、結晶性ガラスに前記の析出量の針状結晶を析出させることで、焼成体を形成する。 Next, a mixture obtained by mixing the obtained crystalline glass body and the light emitting material such as the fluorescent material or the phosphorescent material is accumulated in a refractory frame made of mullite cordierite or the like to form a first accumulation layer. Further, a crystalline glass body or a crystallized glass body capable of ensuring translucency after firing is laminated on the first integrated layer by 30 to 70% with respect to the total mass, By doing so, a laminated body is formed in the refractory frame. Thereafter, the laminated body together with the refractory frame is baked in a temperature range in which the viscosity of the glass portion of the crystalline glass or crystallized glass exhibits 10 4 to 10 5 poise, thereby softening and deforming each crystalline glass body. The crystalline glass bodies are fused and integrated together, and the sintered body is formed by depositing the above-mentioned amount of acicular crystals in the crystalline glass.

また、本発明の結晶化ガラス物品の製造方法では、発光材が、蓄光材を含むものであると、光源がなくても光る点、光の演出の自由度の点及び発光効率の点で優れた結晶化ガラス物品を製造することが可能となる。また、発光材が、蛍光材を含むものであると、僅かな光で蛍光を発する点、パステル調で明るい印象を与える蛍光色による演出が可能となる点及び発光効率の点で優れた結晶化ガラス物品を製造することが可能となる。   Further, in the method for producing a crystallized glass article of the present invention, if the luminescent material contains a phosphorescent material, the crystal is excellent in terms of light without a light source, freedom of directing light, and light emission efficiency. It becomes possible to produce a vitrified glass article. In addition, if the light-emitting material contains a fluorescent material, the crystallized glass article is excellent in that it emits fluorescence with a slight amount of light, can be rendered with a fluorescent color that gives a bright impression in pastel tone, and light emission efficiency. Can be manufactured.

また、本発明では、発光材の特に蓄光材は、焼成時に外気により酸化すると発光能力を低下させ、かつ、焼成後においても外気との酸化や水分との接触により、発光能力が低下する。そこで、本発明の結晶化ガラス物品の製造方法では、積層体の焼成時には結晶性ガラスからなる第2集積層により結晶性ガラス小体と発光材との混合物を集積した第1集積層を覆って酸化を抑制し、焼成後の結晶化ガラス物品では結晶化ガラスからなる透光層で封着しておくことで、外気から隔絶して酸化を防止することで、半永久的に発光を可能としてある。   Further, in the present invention, the luminous material, particularly the phosphorescent material, reduces the light emitting ability when oxidized by the outside air during firing, and the light emitting ability is lowered even after firing due to oxidation with the outside air or contact with moisture. Therefore, in the method for producing a crystallized glass article of the present invention, when the laminate is fired, the second integrated layer made of crystalline glass covers the first integrated layer in which the mixture of the crystalline glass body and the light emitting material is integrated. Oxidation is suppressed, and the crystallized glass article after firing is sealed with a light-transmitting layer made of crystallized glass, so that it is isolated from the outside air to prevent oxidation, thereby enabling semi-permanent light emission. .

また、本発明の結晶化ガラス物品の製造方法では、第1集積層の厚さに対する第2集積層の厚さが50%未満であると、焼成後の第1集積層の結晶化ガラスが第2集積層の結晶化ガラスに混ざり込んで意匠的に見苦しくなり、第2集積層の厚さが200%を超えると発光層からの光を十分に意匠面まで伝搬させることが困難になる。本発明の結晶化ガラス物品の製造方法では、半透明の透光層を通して観察される発光層の表面、すなわち発光層と透光層との界面である内部意匠面及び暗がりでは発光層から発光される光を散乱させつつ仄かに光る意匠面として、独特の奥行き表現により高級感を醸し出す結晶化ガラス物品の製造を実現するために、発光層の厚さに対する透光層の厚さが50〜200%となるように、第1集積層の厚さに対する第2集積層の厚さが50〜200%である積層体を耐火容器内に形成することが好ましい。   In the method for producing a crystallized glass article of the present invention, if the thickness of the second integrated layer is less than 50% with respect to the thickness of the first integrated layer, the crystallized glass of the first integrated layer after firing is the first. When the thickness of the second integrated layer exceeds 200%, it becomes difficult to sufficiently propagate the light from the light emitting layer to the design surface. In the method for producing a crystallized glass article of the present invention, light is emitted from the light-emitting layer on the surface of the light-emitting layer observed through the translucent light-transmitting layer, that is, the internal design surface and the darkness that are the interface between the light-emitting layer and the light-transmitting layer. In order to realize the manufacture of a crystallized glass article that gives a sense of quality with a unique depth expression as a design surface that shines far while scattering light, the thickness of the light-transmitting layer relative to the thickness of the light-emitting layer is 50 to 200 %, It is preferable to form a laminated body in which the thickness of the second integrated layer is 50 to 200% with respect to the thickness of the first integrated layer in the refractory container.

上記本発明の結晶化ガラス物品によれば、発光材が配置された結晶化ガラスからなる発光層と、該発光層の少なくとも一面に融着されており、析出結晶量が5〜50質量%の結晶化ガラスからなり、可視光線の平均透過率が5〜30%である透光層とを有し、該透光層が意匠面側に配置されてなるので、建築材料に必要な特性を維持させ、かつ発光物質を使用した外観として高級感のある新規な結晶化ガラス物品を提供することができる。   According to the crystallized glass article of the present invention, a light emitting layer made of crystallized glass on which a light emitting material is disposed, and fused to at least one surface of the light emitting layer, and the amount of precipitated crystals is 5 to 50% by mass It is made of crystallized glass and has a translucent layer with an average visible light transmittance of 5 to 30%. Since the translucent layer is arranged on the design surface side, the characteristics necessary for building materials are maintained. In addition, a novel crystallized glass article having a high-quality appearance as a light-emitting substance can be provided.

また、本発明の結晶化ガラス物品は、上記の2層構造を有しているので、明るいうちは表面からの反射光を主とした高級感のある外観を、暗くなると表面から透光性の透光層の厚さだけ下がった発光層が、透光性の透光層を通して仄かに光を放つことで独特の意匠面となり、明暗の環境における新たな二面性をもった建材を実現することができる。さらに発光層が蓄光材を含むものであると、暗闇であっても光源なしで効率よく光る壁面や本結晶化ガラス物品を用いた構築物で自由度の高い光の演出が可能となる。   In addition, since the crystallized glass article of the present invention has the above-mentioned two-layer structure, a high-quality appearance mainly composed of reflected light from the surface is obtained while it is bright. The light-emitting layer, which is lowered by the thickness of the light-transmitting layer, emits much light through the light-transmitting light-transmitting layer, making it a unique design surface and realizing a building material with a new duality in a light and dark environment be able to. Furthermore, when the light emitting layer includes a phosphorescent material, it is possible to produce light with a high degree of freedom by using a wall surface that efficiently shines without a light source or a structure using the crystallized glass article even in the dark.

また、上記本発明の結晶化ガラス物品の製造方法によれば、耐火容器内に、結晶性ガラス小体と発光材とを混合した混合物を集積して第1集積層とし、該第1集積層上に、焼成後の析出結晶量が5〜50質量%になる結晶性ガラス小体を集積して第2集積層として積層体を形成し、該積層体をガラスの粘度が104から105ポイズを示す温度域で焼成することにより、発光材が配置された結晶化ガラスからなる発光層と、該発光層に融着されており、可視光線の平均透過率が5〜30%である結晶化ガラスからなる透光層とを形成するので、上記のように、明るいうちは反射光を主とした高級感のある外観を有し、暗くなると表面が光るという明暗の環境における二面性をもった新規で独特の意匠面及び強度性能を有する結晶化ガラス物品を効率よく製造することができる。 Further, according to the method for producing a crystallized glass article of the present invention, a mixture obtained by mixing a crystalline glass body and a light emitting material is accumulated in a refractory container to form a first accumulation layer. On top of this, crystalline glass bodies having a deposited crystal amount after firing of 5 to 50% by mass are accumulated to form a laminate as a second accumulation layer, and the viscosity of the laminate is 10 4 to 10 5. By firing in a temperature range showing a poise, a light emitting layer made of crystallized glass on which a light emitting material is disposed, and a crystal fused to the light emitting layer and having an average visible light transmittance of 5 to 30% As described above, it has a high-quality appearance mainly of reflected light while bright, and has a two-sidedness in a light and dark environment where the surface shines when dark. Crystallized glass articles with new and unique design surface and strength performance It can be manufactured efficiently.

また、本発明の結晶化ガラス物品の製造方法は、第1集積層の上に集積する第2集積層の結晶性ガラス小体の量を全体の30〜70質量%にするので、可視光線の透過率が5〜30%の適度な透光性を有する透光層を形成することができ、パステル調に発色する蛍光材やその他の着色物質により着色された発光層の彩色表面、すなわち内部界面を透光層の厚さ分だけ奥行き感を醸し出し、暗くなると透光層を通して表面が仄かに光る意匠面を有する結晶化ガラス物品を製造することができる。   In the method for producing a crystallized glass article according to the present invention, the amount of the crystalline glass bodies of the second integrated layer integrated on the first integrated layer is 30 to 70% by mass of the total. A light-transmitting layer having an appropriate translucency with a transmittance of 5 to 30% can be formed, and the colored surface of the light-emitting layer colored with a fluorescent material or other coloring substance that develops a pastel tone, that is, the internal interface A crystallized glass article having a design surface that gives a sense of depth by the thickness of the translucent layer and whose surface shines through the translucent layer when it becomes dark can be produced.

さらに、本発明の結晶化ガラス物品の製造方法で、発光材が蓄光材を含むものであること、従来では1000℃の焼成条件で効率よく光らせることが不可能とされていた蓄光材を用いた場合でも、蓄光材が焼成中に非晶質ガラスで密封されることで保護されるので、暗闇であっても光源なしで効率よく光る結晶化ガラス物品を製造することが可能となる。   Furthermore, in the method for producing a crystallized glass article of the present invention, even when a light-emitting material includes a light-storing material, and even when a light-storing material that has conventionally been considered impossible to efficiently shine under a firing condition of 1000 ° C. Since the phosphorescent material is protected by being sealed with amorphous glass during firing, it is possible to produce a crystallized glass article that shines efficiently without a light source even in the dark.

以下、実施例及び比較例に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described based on examples and comparative examples.

実施例1として、2種類の結晶性ガラス片を用意した。1種類は質量百分率表示で、SiO2 64%、Al23 5%、CaO 14%、ZnO 5%、BaO 5%、Na2O 3%、K2O 2%、Li2O 0.4%、B23 1%、Sb23 0.6%の組成を有するように調合したガラス原料を1500℃で12時間溶融し、この溶融ガラスを水中に投入して水砕し、結晶性ガラス片Aとした。この結晶性ガラス片Aの結晶量を確認するために、水砕したガラス片の一部を耐火性の容器に集積した後、1100℃で2時間焼成して結晶化ガラスを得た。この結晶化ガラスは、X線回折の結果、析出結晶量は約30質量%であり、β−ウオラストナイトを主結晶として析出していることが確認できた。また、結晶性ガラス片について熱膨張係数をDILATO法にて測定したところ61×10-7/Kとなり、粘度については平行板式粘度計により104及び105ポイズの粘度における温度を測定したところ、104ポイズでは1110℃、105ポイズでは1010℃であった。もう1種類は質量百分率表示で、SiO2 65%、Al23 8%、CaO 7%、ZnO 7%、BaO 5%、Na2O 4%、K2O 2%、Li2O 0.4%、B23 1%、Sb23 0.6%の組成を有するように調合したガラス原料を1500℃で12時間溶融し、この溶融ガラスを水中に投入して水砕し、結晶性ガラス片Bとした。この結晶性ガラス片Bの結晶量を確認するために、水砕したガラス片の一部を耐火性の容器に集積した後、1100℃で2時間焼成して結晶化ガラスを得た。この結晶化ガラスは、X線回折の結果、析出結晶量は約30質量%であり、β−ウオラストナイトを主結晶として析出していることが確認できた。また、結晶性ガラス片について熱膨張係数をDILATO法にて測定したところ61×10-7/Kとなり、粘度については平行板式粘度計により104及び105ポイズの粘度における温度を測定したところ、104ポイズでは1110℃、105ポイズでは1010℃であった。 As Example 1, two types of crystalline glass pieces were prepared. One type is expressed in mass percentage, SiO 2 64%, Al 2 O 3 5%, CaO 14%, ZnO 5%, BaO 5%, Na 2 O 3%, K 2 O 2%, Li 2 O 0.4. %, B 2 O 3 1%, Sb 2 O 3 0.6% glass raw material was melted at 1500 ° C. for 12 hours, and the molten glass was poured into water and crushed to produce crystals. Glass piece A. In order to confirm the crystalline amount of the crystalline glass piece A, a part of the water-crushed glass piece was accumulated in a refractory container and then fired at 1100 ° C. for 2 hours to obtain crystallized glass. As a result of X-ray diffraction, the crystallized glass had a precipitated crystal amount of about 30% by mass, and it was confirmed that β-wollastonite was precipitated as the main crystal. Further, when the thermal expansion coefficient of the crystalline glass piece was measured by the DILATO method, it was 61 × 10 −7 / K, and the viscosity was measured at a viscosity of 10 4 and 10 5 poise with a parallel plate viscometer, It was 1110 ° C. for 10 4 poise and 1010 ° C. for 10 5 poise. Another type is mass percentage display, SiO 2 65%, Al 2 O 3 8%, CaO 7%, ZnO 7%, BaO 5%, Na 2 O 4%, K 2 O 2%, Li 2 O 0. 4%, B 2 O 3 1%, Sb 2 O 3 0.6% glass raw material prepared so as to melt at 1500 ° C. for 12 hours, this molten glass is poured into water and water-crushed, A crystalline glass piece B was obtained. In order to confirm the crystalline amount of the crystalline glass piece B, a part of the water-crushed glass piece was accumulated in a refractory container and then fired at 1100 ° C. for 2 hours to obtain crystallized glass. As a result of X-ray diffraction, the crystallized glass had a precipitated crystal amount of about 30% by mass, and it was confirmed that β-wollastonite was precipitated as the main crystal. Further, when the thermal expansion coefficient of the crystalline glass piece was measured by the DILATO method, it was 61 × 10 −7 / K, and the viscosity was measured at a viscosity of 10 4 and 10 5 poise with a parallel plate viscometer, It was 1110 ° C. for 10 4 poise and 1010 ° C. for 10 5 poise.

更に、この水砕した結晶性ガラス片A及びBを篩にて1mm〜5mmに分級し、結晶性ガラス小体A及びBを得た。この結晶性ガラス小体A及びBを実施例及び比較例に使用した。   Further, the water-crushed crystalline glass pieces A and B were classified into 1 mm to 5 mm with a sieve to obtain crystalline glass bodies A and B. The crystalline glass bodies A and B were used in Examples and Comparative Examples.

次にムライト・コージエライト製の内寸が900mm×600mm×深さ30mmの型枠を作製し、前に準備した12kgの結晶性ガラス小体Aと、蓄光材粉末(SrAl24にEu2+、Dy3+をドープしたLTI製社製のα−FLASH PB500:平均粒径500μm)300gを混合して混合物とし、これを第1集積層として集積した。この質量は熱処理後の第1集積層の焼成後にその厚さが約7.7mmになる量である。次に第1集積層の上に結晶性ガラス小体B12kgからなる集積層を第2集積層として集積した。この質量は第2集積層の焼成後にその厚さが約7.7mmになる量である。 Next, a mold made of mullite cordierite having an inner size of 900 mm × 600 mm × depth of 30 mm was prepared, and 12 kg of the previously prepared crystalline glass body A and phosphorescent material powder (SrAl 2 O 4 with Eu 2+ 300 g of α-FLASH PB500 manufactured by LTI Co., Ltd., doped with Dy 3+, having an average particle size of 500 μm) was mixed to obtain a mixture, and this was accumulated as a first accumulation layer. This mass is such that the thickness of the first integrated layer after the heat treatment is about 7.7 mm after firing. Next, an integrated layer made of 12 kg of crystalline glass bodies B was integrated on the first integrated layer as a second integrated layer. This mass is such that the thickness of the second integrated layer becomes about 7.7 mm after firing.

その後、型枠内に集積した結晶性ガラス小体A及びBからなる積層体を、ローラハースキルンにて焼成した。焼成条件として1時間に300℃の速度で昇温し、1100℃で1時間保持することにより焼成体とし、結晶化ガラス板を得た。   Then, the laminated body which consists of the crystalline glass bodies A and B integrated | stacked in the formwork was baked with roller hearth kiln. As firing conditions, the temperature was raised at a rate of 300 ° C. per hour and held at 1100 ° C. for 1 hour to obtain a fired body, whereby a crystallized glass plate was obtained.

このようにして得られた建材用の結晶化ガラス板の斜視図を図1に示す。結晶化ガラス板1は、概略寸法が縦900mm、横約600mm、厚さ約15.4mmで、結晶化ガラスAからなる厚さ7.7mmの発光層2と、発光層2の実質的に一面の全表面を覆う析出結晶量が約5質量%で透光性の結晶化ガラスBからなる厚さ7.7mmの透光層3とを有するものである。この透光層3の可視光線の透過率が15%である。また、結晶化ガラスからなる発光層2と透光層3との熱膨張係数の差は1×10-7/K以下で無視し得るものである。 A perspective view of the crystallized glass sheet for building materials thus obtained is shown in FIG. The crystallized glass plate 1 has a schematic dimension of 900 mm in length, about 600 mm in width, and about 15.4 mm in thickness. The light-emitting layer 2 is made of crystallized glass A and has a thickness of 7.7 mm. And a light-transmitting layer 3 having a thickness of 7.7 mm and made of a light-transmitting crystallized glass B. The visible light transmittance of the light transmissive layer 3 is 15%. Further, the difference in thermal expansion coefficient between the light emitting layer 2 made of crystallized glass and the light transmitting layer 3 is 1 × 10 −7 / K or less and can be ignored.

このようにして得られた結晶化ガラス板1の外観は、明るい環境下では火造りされて光沢のある意匠面1aが、可視光線の平均透過率が15%の適度な透光性を有する透光層3により奥行き感がある模様を呈し、一方、暗い環境下で数時間にわたって光源なしでも半透明の透光層3を通して観察される発光層2の表面、すなわち発光層2と透光層3との界面である内部意匠面から発光される光を透光層3によって散乱させつつ仄かに光る意匠面1aとして、独特の奥行き表現により高級感を醸し出すものになった。   The appearance of the crystallized glass plate 1 thus obtained is such that the design surface 1a, which is fired and glossy in a bright environment, has an appropriate translucency with an average visible light transmittance of 15%. On the other hand, the surface of the light-emitting layer 2 that is observed through the translucent light-transmitting layer 3 without a light source for several hours in a dark environment, that is, the light-emitting layer 2 and the light-transmitting layer 3 is presented. As the design surface 1a that shines far while being scattered by the light-transmitting layer 3, the light emitted from the internal design surface, which is the interface with the surface, brings out a high-class feeling with a unique depth expression.

実施例2として、実施例1と同様の組成を有する溶融状態の結晶性ガラスA及びBを水砕して得た結晶性ガラス片を、アルミナボールを使用したボールミルを用いて数時間粉砕し、篩にて分級した後に2mm以下の結晶性ガラス小体A及びBを得た。次に、この結晶性ガラス小体A8kg(全体の33質量%)に対して200g(全体の0.8質量%)の蓄光材粉末(SrAl24にEu2+、Dy3+をドープしたLTI社製のα−FLASH PB500:平均粒径500μm)を2.5質量%添加し、さらにAl−Co−Znスピネル系の無機顔料粉末を1質量%添加し、PVAを数滴加え、ミキサーを用いて混合して混合体を得た。更に、型枠内に、結晶性ガラス小体B8kgを集積して他の第2集積層とし、結晶性ガラス小体Aの混合物8.2kgで第1集積層とし、8kgの結晶性ガラス小体Bを集積して第2集積層として三層構造の積層体を形成した。そして、焼成については実施例1と同様に行い焼成体とし、型枠内で下側にあった透光層3の表面に研磨を施した。このようにして、明るい環境下では透光層3、3により奥行き感がある模様を呈し、一方、暗い環境下で数時間にわたって光源なしでも発光層2の表面が、透光層3、3を通して意匠面10aが仄かに光る独特の外観を呈する図2に示すような結晶化ガラス板10を得た。 As Example 2, a crystalline glass piece obtained by water-pulverizing molten crystalline glasses A and B having the same composition as in Example 1 was pulverized for several hours using a ball mill using alumina balls, After classification with a sieve, crystalline glass bodies A and B of 2 mm or less were obtained. Next, the phosphorescent material powder (SrAl 2 O 4 was doped with Eu 2+ and Dy 3+ with respect to 8 kg (33% by mass of the whole) of this crystalline glass body A (33% by mass of the whole). 2.5% by mass of α-FLASH PB500 manufactured by LTI (average particle size: 500 μm), 1% by mass of an Al—Co—Zn spinel-based inorganic pigment powder, several drops of PVA, and a mixer And mixed to obtain a mixture. Further, 8 kg of the crystalline glass body B is accumulated in the mold to form another second accumulation layer, and 8.2 kg of the mixture of the crystalline glass bodies A is used as the first accumulation layer, and 8 kg of the crystalline glass body is obtained. B was integrated to form a three-layer laminate as the second integrated layer. The firing was performed in the same manner as in Example 1 to obtain a fired body, and the surface of the light-transmitting layer 3 that was on the lower side in the mold was polished. In this way, a pattern with a sense of depth is exhibited by the light-transmitting layers 3 and 3 in a bright environment, while the surface of the light-emitting layer 2 passes through the light-transmitting layers 3 and 3 even in the dark environment without a light source for several hours. A crystallized glass plate 10 as shown in FIG. 2 having a unique appearance in which the design surface 10a shines far was obtained.

また、実施例3は実施例1と同様の組成を有する溶融状態の結晶性ガラスA及びBを水砕して得た結晶性ガラス片を、アルミナボールを使用したボールミルを用いて数時間粉砕し、篩にて分級した後に2mm以下の結晶性ガラス小体A及びBを得た。次に、この結晶性ガラス小体A8kg(全体の33質量%)に対して200g(全体の0.8質量%)の蛍光材(ZnSにCu+、Al3+をドープした根本特殊化学製の品番GSS)を2.5質量%添加し、さらにAl−Co−Znスピネル系の無機顔料粉末を1質量%添加し、PVAを数滴加え、ミキサーを用いて混合して混合体を得た。更に、型枠内に、結晶性ガラス小体Aの混合物8.2kgを集積して第1集積層とし、8kgの結晶性ガラス小体Bを集積して第2集積層として積層体を形成した。そして、焼成について実施例1と同様に行い、焼成体として、明るい環境下では透光層3により奥行き感がある模様を呈し、一方、暗い環境下で数時間にわたって光源なしでもの発光層2の表面が、透光層3を通して仄かに光る独特の外観を呈する図1と同様な二層構造の結晶化ガラス板を得た。 In Example 3, the crystalline glass pieces obtained by water-pulverizing molten crystalline glasses A and B having the same composition as in Example 1 were pulverized for several hours using a ball mill using alumina balls. After classifying with a sieve, crystalline glass bodies A and B of 2 mm or less were obtained. Next, 200 g (0.8% by mass of the total) of fluorescent material (ZnS doped with Cu + and Al 3+ , manufactured by Nemoto Special Chemical Co., Ltd.) with respect to 8 kg (33% by mass of the total) of this crystalline glass body A No. GSS) was added in an amount of 2.5% by mass, and further 1% by mass of an Al—Co—Zn spinel inorganic pigment powder was added. A few drops of PVA were added and mixed using a mixer to obtain a mixture. Further, 8.2 kg of a mixture of crystalline glass bodies A was accumulated in the mold to form a first accumulation layer, and 8 kg of crystalline glass bodies B were accumulated to form a laminate as a second accumulation layer. . Then, firing is performed in the same manner as in Example 1, and as the fired body, a pattern having a sense of depth is exhibited by the light-transmitting layer 3 in a bright environment, while the light-emitting layer 2 without a light source is used for several hours in a dark environment. A crystallized glass plate having a two-layer structure similar to that shown in FIG. 1 having a unique appearance that the surface shines through the light-transmitting layer 3 was obtained.

比較例1として、まず、実施例と同様組成の結晶性ガラスAを24kg準備した後、耐火性型枠にて同様に焼成し、結晶化ガラスの焼成体を得た。この結晶化ガラスは充分に流動した好ましい外観であったが、奥行き感のある外観ではない。この結晶化ガラスをX線回折にて析出結晶を確認したところ、実施例と同様のβ−ウオラストナイト結晶を約30%析出していた。   As Comparative Example 1, first, 24 kg of crystalline glass A having the same composition as in the example was prepared, and then fired in the same manner in a refractory mold to obtain a fired body of crystallized glass. Although this crystallized glass had a preferable appearance that flowed sufficiently, it was not an appearance with a sense of depth. When crystallized crystals of this crystallized glass were confirmed by X-ray diffraction, about 30% of the same β-wollastonite crystals as in Examples were precipitated.

前記したように、実施例1、実施例2及び実施例3は所望する奥行き感があり、暗くなると仄かなに発光する意匠面を示した。比較例1は、結晶化ガラスの単層構造で、透光性ガラスを有しないことから、当然ながら奥行き感を呈することはなかった。結晶化ガラスの発光層2上に適度な透光層により奥行き感がある意匠面を呈した、これらの実施例1〜3に対して、比較例1は、透光層を有していないので、当然ながら実施例のような奥行きのある模様を呈しない天然大理石様の外観であった。   As described above, Example 1, Example 2 and Example 3 had a desired depth, and showed a design surface that emits light when dark. Since Comparative Example 1 has a single layer structure of crystallized glass and does not have translucent glass, it naturally did not exhibit a sense of depth. Since Comparative Example 1 does not have a light-transmitting layer, these Examples 1 to 3 exhibit a design surface with a sense of depth due to an appropriate light-transmitting layer on the light-emitting layer 2 of crystallized glass. Of course, it was a natural marble-like appearance without a deep pattern as in the example.

本発明の結晶化ガラス物品の斜視図。The perspective view of the crystallized glass article of this invention. 本発明の他の結晶化ガラス物品の斜視図。The perspective view of the other crystallized glass article of this invention.

符号の説明Explanation of symbols

1、10 結晶化ガラス物品
1a、10a 意匠面
2 発光層
3 透光層
DESCRIPTION OF SYMBOLS 1, 10 Crystallized glass article 1a, 10a Design surface 2 Light emitting layer 3 Translucent layer

Claims (8)

発光材が配置された結晶化ガラスからなる発光層と、該発光層の少なくとも一面に融着されており、析出結晶量が5〜50質量%の結晶化ガラスからなり、可視光線の平均透過率が5〜30%である透光層とを有し、該透光層が意匠面側に配置されてなることを特徴とする結晶化ガラス物品。   A light-emitting layer made of crystallized glass on which a light-emitting material is disposed, and a crystallized glass fused to at least one surface of the light-emitting layer and having a precipitated crystal content of 5 to 50% by mass, and an average visible light transmittance A crystallized glass article, wherein the crystallized glass article has a translucent layer of 5 to 30%, and the translucent layer is disposed on the design surface side. 発光材が、蓄光材を含むものであることを特徴とする請求項1に記載の結晶化ガラス物品。   The crystallized glass article according to claim 1, wherein the light emitting material includes a phosphorescent material. 発光材が、蛍光材を含むものであることを特徴とする請求項1または請求項2に記載の結晶化ガラス物品。   The crystallized glass article according to claim 1 or 2, wherein the light-emitting material contains a fluorescent material. 結晶化ガラスが、質量百分率表示でSiO2 45〜75%、Al23 1〜25%、CaO 2〜25%、ZnO 0〜18%、BaO 0〜20%、MgO 0〜1.5%、SrO 0〜1.5%、Na2O 1〜25%、K2O 0〜7%、Li2O 0〜5%、B23 0〜1.5%、CeO2 0〜0.5%、SO3 0〜0.5%、As23 0〜1%、Sb23 0〜1%、着色酸化物 0〜3%の組成を有し、主結晶としてβ−ウオラストナイトを析出してなるものであることを特徴とする請求項1から3の何れかに記載の結晶化ガラス物品。 Crystallized glass, SiO 2 45 to 75% by mass percentage, Al 2 O 3 1~25%, CaO 2~25%, ZnO 0~18%, BaO 0~20%, MgO 0~1.5% , SrO 0~1.5%, Na 2 O 1~25%, K 2 O 0~7%, Li 2 O 0~5%, B 2 O 3 0~1.5%, CeO 2 0~0. 5%, SO 3 0 to 0.5%, As 2 O 3 0 to 1%, Sb 2 O 3 0 to 1%, colored oxide 0 to 3%, β-wolast as main crystal 4. The crystallized glass article according to claim 1, wherein the crystallized glass article is formed by depositing knight. 耐火容器内に、結晶性ガラス小体と発光材とを混合した混合物を集積して第1集積層とし、該第1集積層上に、焼成後の析出結晶量が5〜50質量%になる結晶性ガラス小体を集積して第2集積層として積層体を形成し、該積層体をガラスの粘度が104から105ポイズを示す温度域で焼成することにより、発光材が配置された結晶化ガラスからなる発光層と、該発光層に融着されており、可視光線の平均透過率が5〜30%である結晶化ガラスからなる透光層とを形成することを特徴とする結晶化ガラス物品の製造方法。 In a refractory container, a mixture obtained by mixing crystalline glass bodies and a light emitting material is integrated to form a first integrated layer, and the amount of precipitated crystals after firing becomes 5 to 50% by mass on the first integrated layer. The light emitting material is arranged by stacking the crystalline glass bodies to form a laminate as a second integration layer, and firing the laminate in a temperature range where the viscosity of the glass is 10 4 to 10 5 poise. A crystal comprising: a light-emitting layer made of crystallized glass; and a light-transmitting layer made of crystallized glass that is fused to the light-emitting layer and has an average visible light transmittance of 5 to 30%. A method for producing a vitrified glass article. 第1集積層の上に集積する第2集積層の結晶性ガラス小体の量を全体の30〜70質量%にすることを特徴とする請求項5に記載の結晶化ガラス物品の製造方法。   6. The method for producing a crystallized glass article according to claim 5, wherein the amount of the crystalline glass bodies of the second integrated layer integrated on the first integrated layer is 30 to 70% by mass of the whole. 発光材が、蓄光材を含むものであることを特徴とする請求項5または請求項6に記載の結晶化ガラス物品の製造方法。   The method for producing a crystallized glass article according to claim 5 or 6, wherein the luminescent material includes a phosphorescent material. 発光材が、蛍光材を含むものであることを特徴とする請求項5から7の何れかに記載の結晶化ガラス物品の製造方法。   The method for producing a crystallized glass article according to any one of claims 5 to 7, wherein the luminescent material contains a fluorescent material.
JP2006116365A 2006-04-20 2006-04-20 Crystallized glass article and method for producing the same Expired - Fee Related JP4877646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116365A JP4877646B2 (en) 2006-04-20 2006-04-20 Crystallized glass article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116365A JP4877646B2 (en) 2006-04-20 2006-04-20 Crystallized glass article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007284319A JP2007284319A (en) 2007-11-01
JP4877646B2 true JP4877646B2 (en) 2012-02-15

Family

ID=38756443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116365A Expired - Fee Related JP4877646B2 (en) 2006-04-20 2006-04-20 Crystallized glass article and method for producing the same

Country Status (1)

Country Link
JP (1) JP4877646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173526A (en) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd Patterned crystallized glass article and method for producing the same
JP5365990B2 (en) * 2009-03-02 2013-12-11 日本電気硝子株式会社 Colored crystallized glass article and manufacturing method thereof
JP6019842B2 (en) * 2012-07-10 2016-11-02 日本電気硝子株式会社 Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device
WO2016083881A1 (en) * 2014-11-27 2016-06-02 Scater S.R.L. High mechanical performance three layers glass-ceramic articles produced by pressing and subsequently baking powders and method for their production
US20210155524A1 (en) * 2019-11-26 2021-05-27 Corning Incorporated 3d glass-ceramic articles and methods for making the same

Also Published As

Publication number Publication date
JP2007284319A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Casasola et al. Glass–ceramic glazes for ceramic tiles: a review
CN110759641B (en) Crystal flower dry grain glaze and positioning crystal flower ceramic tile prepared from crystal flower dry grain glaze
CN108129027B (en) Devitrified glazed tile with surface having golden star stone effect, base glaze and preparation method thereof
TW201100339A (en) Method of producing crystallized glass article having patterns
JP4877646B2 (en) Crystallized glass article and method for producing the same
US9188713B2 (en) Light reflective substrate and light emitting device using the same
US6825139B2 (en) Poly-crystalline compositions
JP5510885B2 (en) Light reflecting substrate
CN110903033B (en) Crystal nucleating agent and positioning crystal pattern ceramic tile prepared by using same
JP4911427B2 (en) Patterned crystallized glass article and method for producing the same
CN104955780A (en) White glass
JP2009173526A (en) Patterned crystallized glass article and method for producing the same
US20150378056A1 (en) Material for light reflective substrate, light reflective substrate and light emitting device using the same
JP5041324B2 (en) Natural marble-like crystallized glass and method for producing the same
WO2006135049A1 (en) Natural marble like crystallized glass and process for production thereof
WO2007013565A1 (en) Patterned crystallized-glass article and process for producing the same
WO2004089840A1 (en) Luminescent glass article and method of manufacturing the same
JP2008248574A (en) Glass brick and method of manufacturing the same
JP4626880B2 (en) Method for manufacturing glass articles for building materials
JP5168716B2 (en) Architectural glass brick and manufacturing method thereof
JP2008056504A (en) Patterned crystallized glass article and its producing method
JP2011168476A (en) Patterned crystallized glass article and method of producing the same
JP2002226224A (en) Decorative glass and its manufacturing method
JP2527402B2 (en) Crystallized glass and manufacturing method thereof
JP5500494B2 (en) Light reflecting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees