JP4626880B2 - Method for manufacturing glass articles for building materials - Google Patents
Method for manufacturing glass articles for building materials Download PDFInfo
- Publication number
- JP4626880B2 JP4626880B2 JP2001161818A JP2001161818A JP4626880B2 JP 4626880 B2 JP4626880 B2 JP 4626880B2 JP 2001161818 A JP2001161818 A JP 2001161818A JP 2001161818 A JP2001161818 A JP 2001161818A JP 4626880 B2 JP4626880 B2 JP 4626880B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- building materials
- glass article
- sio
- ceramic fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Finishing Walls (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、建築物の内外装材、床材等の化粧材として使用される建材用ガラス物品の製造方法に関するものである。
【0002】
【従来の技術】
内外装材、床材等の化粧材として用いる建材用ガラス物品としては、結晶化ガラス建材が広く知られている。結晶化ガラス建材は、その意匠性から、天然石の代替品として用いられてきた。
【0003】
【発明が解決しようとする課題】
しかしながら、結晶化ガラス建材は、内部全体に亘って結晶が析出しており、外部からの可視光が表面近傍でほとんど反射してしまうため、ガラスよりは石材のイメージが強く、ガラスの質感に乏しかった。
【0004】
また、結晶化ガラス建材は、先ず、熱処理して結晶が析出する特殊な専用材質を溶融窯で溶融し、水砕して粒状の結晶性ガラスを得、その結晶性ガラスを耐火性枠内に集積し、1100℃程度の高温で熱処理し、その後、表面を研磨し、所望のサイズに切断、面取り等の加工を行うといった非常に煩雑な製造工程を経るため、非常に高価なものになってしまうという問題点を有していた。
【0005】
上記の問題点を解決するために、ソーダ石灰ガラスからなる板ガラスやビンガラスを粗砕し、軟化流動を起こす温度で熱処理し、建材用ガラス物品を得ようとすることも試みられているが、熱処理工程における冷却時の熱衝撃や、激しい気温の変化による熱衝撃でも破損しやすいという問題点がある。
【0006】
本発明の目的は、熱処理工程における冷却時の熱衝撃や、激しい気温の変化による熱衝撃でも破損することが無く、安価に製造でき、意匠面の光沢に優れ、ガラスの質感を持った建材用ガラス物品の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明の建材用ガラス物品の製造方法は、一種又は二種以上の材質からなる薄片状、小片状または粒状のガラスを複数個用意し、耐火性容器の内壁面にセラミックスファイバーシートを載置した後、ガラスを充填し、700〜1100℃の温度で熱処理する建材用ガラス物品の製造方法であって、30〜380℃における平均熱膨張係数が70×10−7/℃以下であり、かつ波長400〜700nmの範囲において、肉厚7mmで平均透過率が15〜85%であるB 2 O 3 −SiO 2 系、Al 2 O 3 −SiO 2 系あるいはB 2 O 3 −Al 2 O 3 −SiO 2 系材質のガラスを使用し、前記耐火性容器に充填したガラスをリボイルする温度範囲内で熱処理することを特徴とする。
【0008】
【作用】
本発明の建材用ガラスの製造方法は、一種又は二種以上の材質からなる薄片状、小片状または粒状のガラスを複数個用意し、耐火性容器の内壁面にセラミックスファイバーシートを載置した後、ガラスを充填し、700〜1100℃の温度で熱処理する建材用ガラス物品の製造方法であって、30〜380℃における平均熱膨張係数が70×10-7/℃以下であるガラスを使用するため、本発明の建材用ガラス物品が、熱処理工程における冷却時の熱衝撃によって破損することが無く、安価に製造できる。即ち、本発明の建材用ガラス物品は、熱衝撃に強い熱膨張係数が70×10-7/℃以下のガラスを用い、また、熱処理後の研磨、切断加工、面取り加工等の工程を経ずに製品が製造できるからである。
【0009】
また、本発明の建材用ガラス物品の製造方法は、0.5〜50mmの大きさの薄片状、小片状または粒状のガラスを用いることが好ましい。即ち、ガラスが0.5mmより小さいと、ガラス中の気孔が1012個/kgよりも多くなり、波長400〜700nmの範囲において、肉厚7mmで平均透過率が15%よりも低くなるため、ガラスの質感に乏しく、また、粉砕のためにコストがかかりすぎるため経済的でなく、50mmを超えると,ガラス中の気孔が102個/kgよりも少なくなり、波長400〜700nmの範囲において、肉厚7mmで平均透過率が85%を超えてしまい、また、ガラス中の気孔が大きくなり、強度劣化を起こすためである。
【0010】
また、薄片状、小片状または粒状のガラスに予め、耐火性着色顔料粉末を所定量混合することによって、建材用ガラス物品を着色することも可能である。
【0011】
耐火性容器は、1100℃以下の温度で軟化変形しない材質が好ましく、ムライト、コージエライト、アルミナセラミックス製等の耐火性容器が好適である。
【0012】
セラミックスファイバーシートを離型材として用いるため、作業性に優れ、ガラス物品の意匠面の光沢に優れる。即ち、セラミックスファイバーシートを耐火性容器の内壁面に沿って載置するだけでよく、接着剤や水等を使って耐火性容器の内壁面に接着させる必要はなく、ガラスとセラミックスファイバーとの反応層が薄く、意匠面が光沢を有するからである。
【0013】
セラミックスファイバーシートは、ガラス物品と耐火性容器との離型材として作用するものであれば、セラミックスファイバーの材質及び含有量、セラミックスファイバーシートの平均厚み等に関して何ら制限なく使用できるが、特にセラミックスファイバーとして主成分にアルミナ、シリカ−アルミナ又はジルコニアを含むセラミックスファイバーシートは、耐熱性が高いためガラスと反応しにくく、離型性に優れ、また、熱処理後に作成したガラス物品を取り出した後もペーパーの形状を保っているため、離型材の剥離除去がしやすく作業性に優れ、粉塵になりにくく好ましい。
【0014】
また、セラミックスファイバーシートの平均厚さが1.0mm以下であると、ガラス物品の寸法精度が高くなるため好ましい。
【0015】
また、セラミックスファイバーの材質、セラミックスファイバーの含有量、シートの平均厚みが異なるセラミックスファイバーシートを複数組み合わせて用いると、ガラス物品の意匠面の多様に変化させることができ好ましい。
【0016】
また、耐火性容器の内壁面に耐火性セラミック粉末を塗布し、その上にセラミックファイバーシートを載置して用いると、離型性がさらに向上し好ましい。
【0017】
また、本発明の建材用ガラス物品の製造方法では、700〜1100℃、好ましくは800〜1000℃で熱処理する。熱処理温度が700℃より低いと、軟化流動が充分に行われず、機械的強度が低くなり、1100℃を超えると、ガラス物品の気孔が少なくなり、可視光の透過率が高くなって、施工時に構造材が透けて見え、また、ガラスと、セラミックスファイバーシートとの反応性が高くなって意匠面の光沢が著しく劣化し、ガラスと耐火性容器とが融着しやすくなるため好ましくない。
【0018】
また本発明の建材用ガラス物品の製造方法は、30〜380℃における平均熱膨張係数が70×10-7/℃以下のガラスを使用するため、熱処理工程における冷却時の熱衝撃や、激しい気温の変化による熱衝撃でも破損することが無い。
【0019】
また、波長400〜700nmの範囲において、肉厚7mmで平均透過率が15〜85%であるガラスを使用すると、ガラスの質感に富んだガラス物品になりやすい。即ち、波長400〜700nmの範囲において、肉厚7mmで平均透過率が15%より低いと、可視光が表面近傍でほとんど反射してしまうため、ガラスの質感が得られず、平均透過率が85%を超えると、施工した際、構造材が透けて見えるためである。
【0020】
また、本発明の建材用ガラス物品の製造方法は、B2O3−SiO2系、Al2O3−SiO2系あるいはB2O3−Al2O3−SiO2系ガラスを使用することが好ましい。即ち、B2O3−SiO2系、Al2O3−SiO2系あるいはB2O3−Al2O3−SiO2系ガラスは、熱衝撃に強く、耐薬品性に優れているため、熱処理工程における冷却時の熱衝撃や、激しい気温の変化による熱衝撃でも破損する事が無く、耐候性に優れているからである。
【0021】
また、本発明の建材用ガラス物品の製造方法は、ガラスがリボイルする温度範囲内で熱処理すると、ガラス片や粒の間隙によってできる気孔に加えて、リボイルによりガラス物品内部に気孔が生成されるため好ましい。ガラス内部に溶存していたガスが気孔となって現れ始める温度は、ガラスの軟化点よりも約50℃高い温度である。熱処理温度をさらに上昇させると、それに伴い、ガラス内部での気孔の生成がさらに活発になるが、ガラスの粘度も低下するため、生成した気孔は、次第に大きくなり、浮上してガラスの外部に放出されてしまう。ここでは、ガラスがリボイルする温度範囲とは、ガラス内部に溶存していたガスが気孔となって現れ始めてからガラスの外部に放出されてしまうまでの温度範囲を指し、例えば、B2O3−SiO2系ガラスでは、約800〜1000℃となる。
【0022】
【実施例】
図1に本発明の製造方法を示す概念図を、図2に本発明の製造方法で作製した建材用ガラス物品の斜視図を示す。
【0023】
表1、2に本発明の実施例を、表3に比較例を示す。
【0024】
【表1】
【0025】
【表2】
【0026】
【表3】
【0027】
まず、内寸が200×100×150mmのコージエライト製の耐火性容器11の内側面11a及び内底面11bに、離型材としてセラミックスファイバーシート12を載置し、次いで、その耐火性容器11内に、表1〜3に示す材質からなる30mm以下の小片状のガラス13を各々充填し、表に示す温度で5時間熱処理し、実施例1〜6に示す197×97×60mmのブロック状の建材用ガラス物品20(図2)を得た。
【0028】
図2に示す建材用ガラス物品20は、30〜380℃における平均熱膨張係数が70×10-7/℃以下のガラス21からなり、内部に気孔22が多数含まれている。
【0029】
尚、使用したセラミックスファイバーシート12は、主成分としてアルミナ−シリカを有するセラミックスファイバーが使用され、ファイバー含有量が95%で、平均厚みは0.5mmであった。
【0030】
比較例1〜3は、離型材としてセラミックスファイバーシートを使用するかわりに、珪砂のスラリーを刷毛で塗布した以外は、実施例1と同様にして建材用ガラス物品を得た。
【0031】
気孔量は、作製したガラス物品を約30×30×10mmに切断し、その重量を測定し、次いで、その中に存在する気孔数をカウントし、単位重量当たりの個数に換算して求めた。尚、比較例1の結晶化ガラス物品は、結晶が析出し、可視光が全く透過しないため、内部の気孔を観察できず、測定不能であった。30〜380℃における平均熱膨張係数は理学製熱機械分析装置で測定した。波長400〜700nmの範囲における、肉厚7mmでの平均透過率は、島津製分光光度計(UV2500PC)で、意匠面の正反射率は、島津製分光光度計(UV3100PC)で測定した。
【0032】
ガラス物品の意匠面の光沢は、目視により評価し、ほとんど離型材と反応せず光沢に非常に優れているものを「◎」、離型材との反応が少し見られるが、光沢が優れているものを「○」、離型材との反応が進行し、光沢が劣っているものを「×」、ほぼ全面に亘って離型材との反応が起こり、光沢が著しく劣っているものを「××」とした。
【0033】
比較例1〜3のガラス物品は、離型材として珪砂の粉末を使用しているため、ガラスと離型材との反応が進行し、意匠面の光沢が悪く、特に比較例3は、熱処理温度が高いため、離型材と接する全面に亘って離型材が付着し、光沢が著しく劣っていた。
【0034】
また、比較例1の結晶化ガラス物品は、熱処理工程における冷却時の破損は無かったが、結晶が析出しているため、ガラスの質感に乏しかった。比較例2は、Na2O−CaO−SiO2系ガラスを使用しているため、熱膨張係数が高く、熱処理工程における冷却時の破損が発生した。
【0035】
これに対し、実施例1〜6は、熱膨張係数が70×10-7/℃以下のガラスを使用したため、熱処理工程における冷却時の破損が無く、また、離型材としてセラミックスファイバーシートを用い、1100℃以下で熱処理したため、光沢に優れ、ガラスの質感に富んだ建材用ガラス物品となった。
【0036】
【効果】
以上説明したように、本発明の製造方法は、熱膨張係数が70×10−7/℃以下のガラスを使用し、それを、セラミックスファイバーシートを載置した耐火性容器内に充填して、熱処理し製造するため、熱処理工程における冷却時の熱衝撃や、激しい気温の変化による熱衝撃でも破損することが無く、安価に製造でき、意匠面の光沢に優れガラスの質感に富んだ、内外装材あるいは床材等の化粧材として好適な建材用ガラス物品を提供できる。
【図面の簡単な説明】
【図1】本発明の製造方法を示す概念図である。
【図2】本発明の建材用ガラス物品の斜視図である。
【符号の説明】
11 耐火性容器
11a 内側面
11b 内底面
12 セラミックスファイバーシート
13 小片状のガラス
20 建材用ガラス物品
21 ガラス
22 気孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing glass articles for building materials used as decorative materials such as interior and exterior materials for buildings and flooring materials.
[0002]
[Prior art]
As glass materials for building materials used as decorative materials such as interior and exterior materials and floor materials, crystallized glass building materials are widely known. Crystallized glass building materials have been used as a substitute for natural stone because of its design.
[0003]
[Problems to be solved by the invention]
However, in crystallized glass building materials, crystals are precipitated throughout the interior, and visible light from the outside is almost reflected near the surface, so the image of stone is stronger than glass and the texture of the glass is poor. It was.
[0004]
In addition, the crystallized glass building material is first melted in a melting furnace with a special dedicated material that is crystallized by heat treatment, and granulated to obtain granular crystalline glass, and the crystalline glass is placed in a refractory frame. Accumulating and heat-treating at a high temperature of about 1100 ° C., then polishing the surface, cutting to a desired size, processing such as chamfering, etc., so that it becomes very expensive. It had the problem that it ended up.
[0005]
In order to solve the above problems, it is also attempted to obtain glass articles for building materials by roughly crushing plate glass or bottle glass made of soda-lime glass and heat-treating at a temperature causing softening flow. There is a problem that it is easily damaged by a thermal shock at the time of cooling in the process or a thermal shock caused by a drastic change in temperature.
[0006]
The object of the present invention is to prevent the thermal shock during cooling in the heat treatment process or the thermal shock due to a drastic change in air temperature, and it can be manufactured at low cost, has excellent design gloss, and has a glass texture. A method for producing a glass article is provided.
[0007]
[Means for Solving the Problems]
The manufacturing method for glass articles for building materials according to the present invention provides a plurality of flaky, small, or granular glasses made of one or more materials, and a ceramic fiber sheet is placed on the inner wall surface of the refractory container. after the glass was filled to a process for the preparation of building materials glass article is heat-treated at a temperature of 700 to 1100 ° C., Ri der average thermal expansion coefficient of 70 × 10 -7 / ℃ or less at 30 to 380 ° C., In the wavelength range of 400 to 700 nm, the B 2 O 3 —SiO 2 system, Al 2 O 3 —SiO 2 system, or B 2 O 3 —Al 2 O 3 has a thickness of 7 mm and an average transmittance of 15 to 85%. using the glass -SiO 2 based material, characterized by heat-treating the glass filled in the refractory container in a temperature range in which reboil.
[0008]
[Action]
In the method for producing glass for building materials of the present invention, a plurality of flaky, small, or granular glasses made of one or more materials are prepared, and a ceramic fiber sheet is placed on the inner wall surface of the refractory container. Then, it is a manufacturing method of the glass article for building materials which fills glass and heat-processes at the temperature of 700-1100 degreeC, Comprising: The glass whose average thermal expansion coefficient in 30-380 degreeC is 70 * 10 < -7 > / degrees C or less is used Therefore, the glass material for building materials of the present invention is not damaged by the thermal shock during cooling in the heat treatment step, and can be manufactured at a low cost. That is, the glass article for building materials of the present invention uses a glass having a thermal expansion coefficient of 70 × 10 −7 / ° C. or less that is strong against thermal shock, and does not undergo steps such as polishing, cutting, and chamfering after heat treatment. This is because the product can be manufactured.
[0009]
Moreover, it is preferable that the manufacturing method of the glass article for building materials of this invention uses the glass of a flaky shape, a small piece shape, or a granular form of 0.5-50 mm. That is, if the glass is smaller than 0.5 mm, the number of pores in the glass is more than 10 12 / kg, and in the wavelength range of 400 to 700 nm, the thickness is 7 mm and the average transmittance is lower than 15%. It is not economical because the texture of the glass is poor and the cost is too high for crushing, and when it exceeds 50 mm, the pores in the glass are less than 10 2 / kg, and in the wavelength range of 400 to 700 nm, This is because the average transmittance exceeds 85% at a wall thickness of 7 mm, and the pores in the glass become large, resulting in strength deterioration.
[0010]
It is also possible to color building glass articles by mixing a predetermined amount of refractory color pigment powder with flaky, small, or granular glass in advance.
[0011]
The refractory container is preferably made of a material that does not soften and deform at a temperature of 1100 ° C. or lower, and a refractory container such as mullite, cordierite, or alumina ceramics is preferable.
[0012]
Since the ceramic fiber sheet is used as a release material, the workability is excellent and the gloss of the design surface of the glass article is excellent. In other words, it is only necessary to place the ceramic fiber sheet along the inner wall surface of the refractory container, and it is not necessary to bond the ceramic fiber sheet to the inner wall surface of the refractory container using an adhesive or water. This is because the layer is thin and the design surface is glossy.
[0013]
The ceramic fiber sheet can be used without any limitation with respect to the material and content of the ceramic fiber, the average thickness of the ceramic fiber sheet, etc., as long as it acts as a release material between the glass article and the refractory container. Ceramic fiber sheet containing alumina, silica-alumina or zirconia as the main component has high heat resistance and is difficult to react with glass, has excellent releasability, and the shape of the paper after taking out the glass article created after heat treatment Therefore, it is preferable that the release material is easily peeled and removed, and the workability is excellent, and it is difficult to become dust.
[0014]
Moreover, since the dimensional accuracy of a glass article becomes high as the average thickness of a ceramic fiber sheet is 1.0 mm or less, it is preferable.
[0015]
Further, it is preferable to use a combination of a plurality of ceramic fiber sheets having different ceramic fiber materials, ceramic fiber contents, and average sheet thicknesses because the design surface of the glass article can be variously changed.
[0016]
Further, it is preferable to apply a refractory ceramic powder on the inner wall surface of the refractory container and place a ceramic fiber sheet thereon to further improve the releasability.
[0017]
Moreover, in the manufacturing method of the glass article for building materials of this invention, it heat-processes at 700-1100 degreeC, Preferably it is 800-1000 degreeC. When the heat treatment temperature is lower than 700 ° C., the softening flow is not sufficiently performed and the mechanical strength is lowered. When the heat treatment temperature exceeds 1100 ° C., the pores of the glass article are reduced and the transmittance of visible light is increased. The structural material can be seen through, the reactivity between the glass and the ceramic fiber sheet is increased, the gloss of the design surface is remarkably deteriorated, and the glass and the refractory container are easily fused, which is not preferable.
[0018]
Moreover, since the manufacturing method of the glass article for building materials of this invention uses the glass whose average coefficient of thermal expansion in 30-380 degreeC is 70x10 < -7 > / degreeC or less, the thermal shock at the time of the cooling in a heat treatment process, intense air temperature No damage due to thermal shock due to changes in
[0019]
In addition, when glass having a thickness of 7 mm and an average transmittance of 15 to 85% is used in the wavelength range of 400 to 700 nm, a glass article rich in the texture of glass tends to be obtained. That is, in the wavelength range of 400 to 700 nm, when the thickness is 7 mm and the average transmittance is lower than 15%, visible light is almost reflected near the surface, so that the glass texture cannot be obtained and the average transmittance is 85. This is because the structural material can be seen through when it is constructed.
[0020]
A method of manufacturing a building material for the glass article of the present invention, B 2 O 3 -SiO 2 system, Al 2 O 3 -SiO 2 system or B 2 O 3 -Al 2 O 3 be used -SiO 2 based glass Is preferred. That is, B 2 O 3 —SiO 2 type, Al 2 O 3 —SiO 2 type or B 2 O 3 —Al 2 O 3 —SiO 2 type glass is resistant to thermal shock and excellent in chemical resistance. This is because the thermal shock during cooling in the heat treatment process and the thermal shock due to a drastic change in temperature are not damaged, and the weather resistance is excellent.
[0021]
In addition, in the method for producing a glass article for building material according to the present invention, when heat treatment is performed within a temperature range in which the glass is reboiled, pores are generated inside the glass article by reboil in addition to the pores formed by the gaps between the glass pieces and the grains. preferable. The temperature at which the gas dissolved in the glass starts to appear as pores is about 50 ° C. higher than the softening point of the glass. As the heat treatment temperature is further increased, pores are generated more actively inside the glass, but the viscosity of the glass also decreases, so the generated pores gradually increase, float and release to the outside of the glass. Will be. Here, the temperature range in which the glass reboils refers to the temperature range from when the gas dissolved in the glass starts to appear as pores until it is released to the outside of the glass. For example, B 2 O 3 − the SiO 2 -based glass is about 800 to 1000 ° C..
[0022]
【Example】
FIG. 1 is a conceptual diagram showing the manufacturing method of the present invention, and FIG. 2 is a perspective view of a glass material for building materials produced by the manufacturing method of the present invention.
[0023]
Tables 1 and 2 show examples of the present invention, and Table 3 shows comparative examples.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
[Table 3]
[0027]
First, the ceramic fiber sheet 12 is placed as a release material on the inner side surface 11a and the inner bottom surface 11b of a cordierite fireproof container 11 having an inner size of 200 × 100 × 150 mm, and then in the fireproof container 11, Each piece of glass 13 having a size of 30 mm or less made of the materials shown in Tables 1 to 3 is filled and heat-treated at the temperatures shown in the table for 5 hours, and the block-shaped building materials of 197 × 97 × 60 mm shown in Examples 1 to 6 A glass article 20 (FIG. 2) was obtained.
[0028]
The building material glass article 20 shown in FIG. 2 is made of glass 21 having an average coefficient of thermal expansion of 30 × 10 −7 / ° C. or less at 30 to 380 ° C., and contains a large number of pores 22 inside.
[0029]
The ceramic fiber sheet 12 used was a ceramic fiber having alumina-silica as a main component, the fiber content was 95%, and the average thickness was 0.5 mm.
[0030]
In Comparative Examples 1 to 3, glass articles for building materials were obtained in the same manner as in Example 1 except that a slurry of silica sand was applied with a brush instead of using a ceramic fiber sheet as a release material.
[0031]
The amount of pores was determined by cutting the produced glass article into about 30 × 30 × 10 mm, measuring the weight thereof, counting the number of pores present therein, and converting the number into the number per unit weight. In the crystallized glass article of Comparative Example 1, crystals were precipitated and no visible light was transmitted at all, and therefore, internal pores could not be observed and measurement was impossible. The average coefficient of thermal expansion at 30 to 380 ° C. was measured with a Rigaku thermomechanical analyzer. The average transmittance at a thickness of 7 mm in the wavelength range of 400 to 700 nm was measured with a Shimadzu spectrophotometer (UV2500PC), and the specular reflectance of the design surface was measured with a Shimadzu spectrophotometer (UV3100PC).
[0032]
The gloss of the design surface of the glass article is evaluated by visual observation, and “◎” indicates that the gloss is very excellent with almost no reaction with the mold release material, and there is a slight reaction with the mold release material, but the gloss is excellent. "○" indicates that the reaction with the release material has progressed and the gloss is inferior, "X" indicates that the reaction with the release material occurs over almost the entire surface, and the gloss is extremely inferior in the "XX""
[0033]
Since the glass articles of Comparative Examples 1 to 3 use silica sand powder as a release material, the reaction between the glass and the release material proceeds and the gloss of the design surface is poor. In particular, Comparative Example 3 has a heat treatment temperature of Since it was high, the release material adhered over the entire surface in contact with the release material, and the gloss was remarkably inferior.
[0034]
Moreover, although the crystallized glass article of Comparative Example 1 was not damaged at the time of cooling in the heat treatment step, since the crystals were precipitated, the texture of the glass was poor. Comparative Example 2 is due to the use of Na 2 O-CaO-SiO 2 based glass, high thermal expansion coefficient, breakage at the time of cooling in the heat treatment step occurs.
[0035]
On the other hand, since Examples 1-6 used the glass whose thermal expansion coefficient is 70x10 < -7 > / degrees C or less, there is no damage at the time of cooling in a heat treatment process, and also uses a ceramic fiber sheet as a mold release material, Since it was heat-treated at 1100 ° C. or lower, it became a glass article for building materials having excellent gloss and glass texture.
[0036]
【effect】
As described above, the production method of the present invention uses a glass having a thermal expansion coefficient of 70 × 10 −7 / ° C. or less, and fills it in a refractory container on which a ceramic fiber sheet is placed, Because it is manufactured by heat treatment, it can be manufactured at a low cost without being damaged by the thermal shock during cooling in the heat treatment process or the thermal shock due to severe changes in temperature. It is possible to provide a glass article for building materials suitable as a decorative material such as a material or a flooring material.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a production method of the present invention.
FIG. 2 is a perspective view of a glass material for building materials according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Refractory container 11a Inner side surface 11b Inner bottom surface 12 Ceramic fiber sheet 13 Small piece glass 20 Glass material 21 for building materials Glass 22 Pores
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001161818A JP4626880B2 (en) | 2001-05-30 | 2001-05-30 | Method for manufacturing glass articles for building materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001161818A JP4626880B2 (en) | 2001-05-30 | 2001-05-30 | Method for manufacturing glass articles for building materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002348137A JP2002348137A (en) | 2002-12-04 |
JP4626880B2 true JP4626880B2 (en) | 2011-02-09 |
Family
ID=19005038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001161818A Expired - Fee Related JP4626880B2 (en) | 2001-05-30 | 2001-05-30 | Method for manufacturing glass articles for building materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4626880B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007154648A (en) * | 2005-11-08 | 2007-06-21 | Nippon Electric Glass Co Ltd | Glass brick, glass brick construction body and its execution method |
JP2007131480A (en) * | 2005-11-10 | 2007-05-31 | Nippon Electric Glass Co Ltd | Crystallized glass article |
JP5287021B2 (en) * | 2007-10-29 | 2013-09-11 | 日本電気硝子株式会社 | Decorative brick for construction, manufacturing method thereof, and decorative brick wall structure for construction |
JP5409108B2 (en) * | 2009-05-13 | 2014-02-05 | オリンパス株式会社 | Release agent and method for producing amorphous metal molding |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02116639A (en) * | 1988-10-21 | 1990-05-01 | Nippon Electric Glass Co Ltd | Production of crystallized glass product |
JPH03193632A (en) * | 1989-12-21 | 1991-08-23 | Asahi Glass Co Ltd | Production of decorative glass panel |
JPH03205319A (en) * | 1989-12-30 | 1991-09-06 | Nakashima:Kk | Production of colored remelted glass and material therefor |
-
2001
- 2001-05-30 JP JP2001161818A patent/JP4626880B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02116639A (en) * | 1988-10-21 | 1990-05-01 | Nippon Electric Glass Co Ltd | Production of crystallized glass product |
JPH03193632A (en) * | 1989-12-21 | 1991-08-23 | Asahi Glass Co Ltd | Production of decorative glass panel |
JPH03205319A (en) * | 1989-12-30 | 1991-09-06 | Nakashima:Kk | Production of colored remelted glass and material therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2002348137A (en) | 2002-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0931773B1 (en) | Ceramic tile and glaze for use thereon | |
JP6326060B2 (en) | Method for producing three-dimensional glass-ceramic article | |
US6132832A (en) | Tile glaze | |
KR100442043B1 (en) | Ceramic whiteware, ceramic body, processes for producing these, sanitary ware, and process for producing these, sanitary ware, and process for producing the sanitary ware | |
JP2001348263A (en) | Sanitary ceramic | |
EP3075714A1 (en) | Glass-ceramic material of albite and/or anorthite exhibing warmth | |
ES2942328T3 (en) | Ceramic product that has an anti-slip surface | |
JP4029548B2 (en) | Glass article for building material and method for producing the same | |
JP4626880B2 (en) | Method for manufacturing glass articles for building materials | |
EP2177486A1 (en) | Glass-ceramic material and tiles coated with it | |
JP4877646B2 (en) | Crystallized glass article and method for producing the same | |
JP4911427B2 (en) | Patterned crystallized glass article and method for producing the same | |
Barbieri et al. | Technological and Product Requirements for Fast Firing Glass‐Ceramic Glazes | |
JP2007131480A (en) | Crystallized glass article | |
WO2002026650A1 (en) | Ceramic building material for covering facades, floors and walls and method the production thereof | |
JP2527402B2 (en) | Crystallized glass and manufacturing method thereof | |
CN114702242B (en) | Star drill crack glaze, glaze slurry and ceramic thereof | |
JP2002080266A (en) | Sanitary ware | |
JP2003246689A (en) | Easily cleanable sanitary ware and manufacturing method thereof | |
JPH0324433B2 (en) | ||
GB2093007A (en) | Cordierite ceramic | |
JP5200432B2 (en) | Glass brick | |
JP2002068821A (en) | Sanitary ware | |
JP2015040384A (en) | White glass for interior finishing of adit or tunnel | |
JPS62207756A (en) | Ceramic material and manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4626880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101031 |
|
LAPS | Cancellation because of no payment of annual fees |