JP2012530838A5 - - Google Patents

Download PDF

Info

Publication number
JP2012530838A5
JP2012530838A5 JP2012516864A JP2012516864A JP2012530838A5 JP 2012530838 A5 JP2012530838 A5 JP 2012530838A5 JP 2012516864 A JP2012516864 A JP 2012516864A JP 2012516864 A JP2012516864 A JP 2012516864A JP 2012530838 A5 JP2012530838 A5 JP 2012530838A5
Authority
JP
Japan
Prior art keywords
resin
layer
prepreg
particulate material
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012516864A
Other languages
Japanese (ja)
Other versions
JP5800397B2 (en
JP2012530838A (en
Filing date
Publication date
Priority claimed from GB0911035A external-priority patent/GB2471318A/en
Application filed filed Critical
Publication of JP2012530838A publication Critical patent/JP2012530838A/en
Publication of JP2012530838A5 publication Critical patent/JP2012530838A5/ja
Application granted granted Critical
Publication of JP5800397B2 publication Critical patent/JP5800397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

したがって、好ましくは、プリプレグは、第1の外層と第1の外層に隣接する構造層の領域内とにある粒子材料を含む。一般的に、2〜70重量%、好ましくは5〜40重量%が構造層にあり、残りが第1の外層にある。 Thus, preferably, the prepreg comprises particulate material in the first outer layer and in the region of the structural layer adjacent to the first outer layer. Generally, 2 to 70 wt%, preferably in the structural layer is 5 to 40 wt%, in the remaining Riga first outer layer.

図6に、本発明による例1による他の硬化積層物のインターリーフ層の拡大画像を示す。図5の場合と同様に、直線の上のY方向の繊維層と直線の下のX方向のインターリーフ層との区別は、対応する未硬化プリプレグに存在する境界が明瞭な接触面の位置を参照することによって行われる。この場合、強化粒子26は、一方向繊維20の直径と同じ粒径を有することを確認することができる。インターリーフ層は、強化粒子26と一方向繊維20の両方の分散体を含んでいる。
本発明の諸態様は、以下のとおり要約される。
[1].
隙間に熱硬化性樹脂を含む充填一方向導電性繊維の構造層と、熱硬化性樹脂を含み、一方向導電性繊維を本質的に含まない樹脂の第1の外層とを含むプリプレグであって、高温下で硬化させるとき、充填一方向導電性繊維の硬化構造層及び内部に分散した一方向導電性繊維を含む硬化樹脂の第1の外層を含む硬化複合材料を生ずる、上記プリプレグ。
[2].
第1の外層中の導電性一方向繊維が、プリプレグにおける充填一方向導電性繊維の構造層の集団からのものである、上記1項に記載のプリプレグ。
[3].
第1の外層内、及び第1の外層に隣接する構造層の領域内に位置する粒子材料を含む、上記1項又は2項に記載のプリプレグ。
[4].
プリプレグにおける粒子材料の平均粒径と充填一方向繊維の平均直径との比が4:1〜1:4、好ましくは3:1〜1:3、より好ましくは2:1〜1:2、最も好ましくは1.5:1〜1:1.5である、上記3項に記載のプリプレグ。
[5].
粒子材料が0.6を超える球形度を有する、上記3項又は4項に記載のプリプレグ。
[6].
粒子材料が総樹脂含量に対して3〜40重量%のレベルで一般的に存在する、上記3から5項までのいずれか一項に記載のプリプレグ。
[7].
第1の外層により形成されないプリプレグの面を形成している、一方向導電性繊維を本質的に含まない樹脂の第2の外層を含む、上記1から6項までのいずれか一項に記載のプリプレグ。
[8].
プリプレグにおける充填繊維の厚さと、第1の外層及び存在する場合第2の外層の厚さとの比が10:1〜3:1である、上記1から7項までのいずれか一項に記載のプリプレグ。
[9].
構造層における樹脂が第1の外層における樹脂と同じ組成である、上記1から8項までのいずれか一項に記載のプリプレグ。
[10].
内部に分散した一方向導電性繊維を含む硬化樹脂のインターリーフ層によって分離されている一方向導電性繊維の複数の層を含む、上記1から9項までのいずれか一項に記載の複数のプリプレグを含む積層物を高温下で硬化させることにより得られる、硬化複合積層物。
[11].
少なくとも70重量%がインターリーフ層に存在する粒子材料を含む、上記10項に記載の硬化複合物。
[12].
インターリーフ層が、1〜50容積%の導電性一方向繊維、好ましくは1〜40容積%、より好ましくは5〜30%、最も好ましくは10〜20%を含む、上記10項又は11項に記載の硬化複合物。
[13].
一方向導電性繊維の層を連続的に供給すること、繊維の第1の面と熱硬化性樹脂を含む樹脂の第1の層とを接触させること、及び樹脂と繊維を一緒に圧縮することを含み、且つ、樹脂が繊維の隙間に入り、一方向導電性繊維を本質的に含まない樹脂の第1の外層から出るように、樹脂が十分な量で存在する、上記1から9項までのいずれか一項に記載のプリプレグの製造の方法。
[14].
熱硬化性樹脂を含む樹脂の第2の層を、一般的に第1の層と同時に、繊維の第2の面と接触させ、樹脂が繊維の隙間に入るように樹脂の第1及び第2の層を繊維と一緒に圧縮する、上記13項に記載の方法。
[15].
粒子材料を第1の樹脂層及び存在する場合第2の樹脂層内に分散させ、圧縮により、樹脂が隙間に強制的に入り、そして、粒子材料が繊維の構造に押し込まれて、繊維の外側部分にそれら自体を埋め込んでいるいくつかの粒子によりその構造を崩壊させるような粒子材料の部分的なろ過が起こる、上記13項又は14項に記載の方法。
[16].
導電性繊維の層が所定の幅を有し、1つ又は複数の含浸ロール上に通すことにより樹脂及び繊維を圧縮し、導電性繊維及び樹脂にかける圧力が導電性繊維の幅1センチメートル当たり40kgを超えない、上記13から15項までのいずれか一項に記載の方法。
FIG. 6 shows an enlarged image of the interleaf layer of another cured laminate according to Example 1 according to the invention. As in the case of FIG. 5, the distinction between the Y-direction fiber layer above the straight line and the X-direction interleaf layer below the straight line is based on the position of the contact surface having a clear boundary existing in the corresponding uncured prepreg. This is done by reference. In this case, it can be confirmed that the reinforcing particles 26 have the same particle size as the diameter of the unidirectional fiber 20. The interleaf layer includes a dispersion of both reinforcing particles 26 and unidirectional fibers 20.
Aspects of the invention are summarized as follows.
[1].
A prepreg comprising a structure layer of filled unidirectional conductive fibers containing a thermosetting resin in a gap and a first outer layer of resin containing a thermosetting resin and essentially free of unidirectional conductive fibers, The prepreg, when cured at high temperature, produces a cured composite material comprising a cured structural layer of filled unidirectional conductive fibers and a first outer layer of cured resin comprising unidirectional conductive fibers dispersed therein.
[2].
The prepreg of claim 1 wherein the conductive unidirectional fibers in the first outer layer are from a group of structural layers of filled unidirectional conductive fibers in the prepreg.
[3].
3. A prepreg according to claim 1 or 2 comprising particulate material located in the first outer layer and in the region of the structural layer adjacent to the first outer layer.
[4].
The ratio of the average particle diameter of the particulate material in the prepreg to the average diameter of the filled unidirectional fibers is 4: 1 to 1: 4, preferably 3: 1 to 1: 3, more preferably 2: 1 to 1: 2. The prepreg according to the above item 3, which is preferably 1.5: 1 to 1: 1.5.
[5].
5. The prepreg as described in 3 or 4 above, wherein the particulate material has a sphericity exceeding 0.6.
[6].
6. A prepreg according to any one of claims 3 to 5 wherein the particulate material is generally present at a level of 3 to 40% by weight relative to the total resin content.
[7].
7. The method according to any one of the above items 1 to 6, comprising a second outer layer of resin essentially free of unidirectional conductive fibers, forming a prepreg surface not formed by the first outer layer. Prepreg.
[8].
The ratio of the thickness of the filling fiber in the prepreg and the thickness of the first outer layer and, if present, the second outer layer is 10: 1 to 3: 1, according to any one of 1 to 7 above. Prepreg.
[9].
The prepreg according to any one of 1 to 8 above, wherein the resin in the structural layer has the same composition as the resin in the first outer layer.
[10].
10. The plurality of any one of 1 to 9 above, comprising a plurality of layers of unidirectional conductive fibers separated by an interleaf layer of cured resin comprising unidirectional conductive fibers dispersed therein. A cured composite laminate obtained by curing a laminate containing a prepreg at a high temperature.
[11].
11. A cured composite according to claim 10 comprising at least 70% by weight of particulate material present in the interleaf layer.
[12].
In paragraph 10 or 11, wherein the interleaf layer comprises 1 to 50 volume% conductive unidirectional fibers, preferably 1 to 40 volume%, more preferably 5 to 30%, most preferably 10 to 20%. The cured composite as described.
[13].
Continuously supplying a layer of unidirectional conductive fiber, contacting the first side of the fiber with a first layer of resin comprising a thermosetting resin, and compressing the resin and fiber together 1 to 9, wherein the resin is present in a sufficient amount such that the resin enters the fiber gap and exits from the first outer layer of resin essentially free of unidirectional conductive fibers. The method for producing a prepreg according to any one of the above.
[14].
A second layer of resin comprising a thermosetting resin is generally brought into contact with the second surface of the fiber simultaneously with the first layer so that the resin enters the gap between the fibers. 14. The method of claim 13, wherein the layer is compressed together with the fibers.
[15].
The particulate material is dispersed within the first resin layer and the second resin layer, if present, and the compression forces the resin into the gaps, and the particulate material is pushed into the fiber structure, causing the outside of the fiber 15. A method according to paragraph 13 or 14, wherein partial filtration of the particulate material occurs such that some particles embedded in the portion cause their structure to collapse.
[16].
The conductive fiber layer has a predetermined width, compresses the resin and fiber by passing over one or more impregnating rolls, and the pressure applied to the conductive fiber and resin per centimeter of conductive fiber width 16. The method according to any one of items 13 to 15, which does not exceed 40 kg.

Claims (14)

充填一方向導電性繊維及び熱硬化性樹脂を含む構造層を含むプリプレグであって、
当該プリプレグが、熱硬化性樹脂を含む樹脂の第1の外層を更に含み、
この樹脂の第1の外層が、構造層の第1の表面に隣接して位置し、一方向導電性繊維を本質的に含まず、
構造層が、樹脂の第1の外層に隣接して位置する第1の外側領域を含み、この第1の外側領域は、充填一方向導電性繊維の第1の部分を含み、
第1の部分における一方向導電性繊維が、その繊維の間に位置する隙間を形成するように崩壊しており、
当該プリプレグが、第1の粒子材料を含み、この第1の粒子材料は、構造層の充填一方向導電性繊維の第1の部分における隙間及び樹脂の第1の外層に位置し、その隙間における第1の粒子材料の量が、第1の粒子材料の全量の5〜40重量%であり、
当該プリプレグを硬化させるとき硬化複合材料を生じ、その際、崩壊した一方向導電性繊維の第1の部分が樹脂の第1の外層に移動する、
プリプレグ
A prepreg comprising a structural layer comprising filled unidirectional conductive fibers and a thermosetting resin,
The prepreg further includes a first outer layer of a resin including a thermosetting resin,
A first outer layer of this resin is located adjacent to the first surface of the structural layer and is essentially free of unidirectional conductive fibers;
The structural layer includes a first outer region located adjacent to the first outer layer of resin, the first outer region including a first portion of filled unidirectional conductive fibers;
The unidirectional conductive fibers in the first portion have collapsed to form gaps located between the fibers,
The prepreg includes a first particulate material, and the first particulate material is located in the gap in the first portion of the filling unidirectional conductive fiber of the structural layer and the first outer layer of the resin, and in the gap The amount of the first particulate material is 5-40% by weight of the total amount of the first particulate material;
When the prepreg is cured, a cured composite material is produced, wherein the first portion of the collapsed unidirectional conductive fibers moves to the first outer layer of resin,
Prepreg .
プリプレグにおける粒子材料の平均粒径と充填一方向繊維の平均直径との比が1.5:1〜1:1.5である、請求項1に記載のプリプレグ。 The ratio of the average particle size of the particulate material in the prepreg to the average diameter of the filled unidirectional fibers is 1 . The prepreg according to claim 1 , which is 5: 1 to 1: 1.5. 粒子材料が0.6を超える球形度を有する、請求項1又は請求項2に記載のプリプレグ。 The prepreg according to claim 1 or claim 2 , wherein the particulate material has a sphericity of greater than 0.6. 粒子材料が総樹脂含量に対して3〜40重量%のレベルで一般的に存在する、請求項1から3までのいずれか一項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 3 , wherein the particulate material is generally present at a level of 3 to 40% by weight relative to the total resin content. 当該プリプレグが、樹脂の第1の外層の反対側にある構造層の第2の表面に隣接して位置する樹脂の第2の外層を含み、この樹脂の第2の外層も、一方向導電性繊維を本質的に含まず、
構造層が、更に、樹脂の第2の外層に隣接して位置する第2の外側領域を含み、この第2の外側領域は、充填一方向導電性繊維の第2の部分を含み、
第2の部分における一方向導電性繊維が、その繊維の間に位置する隙間を形成するように崩壊しており、
当該プリプレグが、第2の粒子材料を含み、この第2の粒子材料は、構造層の充填一方向導電性繊維の第2の部分における隙間及び樹脂の第2の外層に位置し、その隙間における第2の粒子材料の量が、第2の粒子材料の全量の5〜40重量%であり、
当該プリプレグを硬化させるとき硬化複合材料を生じ、その際、崩壊した一方向導電性繊維の第2の部分が樹脂の第2の外層に移動する、
プリプレグ
The prepreg includes a second outer layer of resin located adjacent to the second surface of the structural layer opposite the first outer layer of resin, the second outer layer of resin being also unidirectionally conductive Essentially free of fiber,
The structural layer further includes a second outer region located adjacent to the second outer layer of resin, the second outer region including a second portion of filled unidirectional conductive fibers;
The unidirectional conductive fibers in the second part have collapsed to form gaps located between the fibers,
The prepreg includes a second particulate material, the second particulate material is located in the gap in the second portion of the filled unidirectional conductive fibers of the structural layer and the second outer layer of the resin, in the gap The amount of the second particulate material is 5-40% by weight of the total amount of the second particulate material;
When the prepreg is cured, a cured composite material is produced, in which case the second portion of the collapsed unidirectional conductive fiber moves to the second outer layer of resin,
Prepreg .
プリプレグにおける充填繊維の厚さと、第1の外層及び存在する場合第2の外層の厚さとの比が10:1〜3:1である、請求項1から5までのいずれか一項に記載のプリプレグ。 6. The ratio according to claim 1, wherein the ratio of the thickness of the filling fibers in the prepreg to the thickness of the first outer layer and the second outer layer, if present, is 10: 1 to 3: 1. Prepreg. 構造層における樹脂が第1の外層における樹脂と同じ組成である、請求項1から4までのいずれか一項に記載のプリプレグ。 The prepreg according to any one of claims 1 to 4 , wherein the resin in the structural layer has the same composition as the resin in the first outer layer. 内部に分散した一方向導電性繊維を含む硬化樹脂のインターリーフ層によって分離されている一方向導電性繊維の複数の層を含む、請求項1から4までのいずれか一項に記載の複数のプリプレグを含む積層物を高温下で硬化させ、充填一方向導電性繊維の少なくとも一部分が樹脂の第1の外層に移動することにより得られる硬化複合積層物。 5. A plurality of layers according to claim 1 , comprising a plurality of layers of unidirectional conductive fibers separated by an interleaf layer of curable resin comprising unidirectional conductive fibers dispersed therein. A cured composite laminate obtained by curing a laminate containing a prepreg at a high temperature, and transferring at least a part of filled unidirectional conductive fibers to a first outer layer of resin . 少なくとも70重量%がインターリーフ層に存在する粒子材料を含む、請求項8に記載の硬化複合積層物。 The cured composite laminate of claim 8 comprising at least 70% by weight of particulate material present in the interleaf layer. インターリーフ層が、10〜20容積%の導電性一方向繊維を含む、請求項8又は請求項9に記載の硬化複合積層物。 Interleaf layer comprises 10 to 20 volume% of the conductive unidirectional textiles, cured composite laminate according to claim 8 or claim 9. 一方向導電性繊維の層を連続的に供給すること、繊維の第1の面と熱硬化性樹脂を含む樹脂の第1の層とを接触させること、及び樹脂と繊維を一緒に圧縮することを含み、且つ、樹脂が繊維の隙間に入り、一方向導電性繊維を本質的に含まない樹脂の第1の外層から出るように、樹脂が十分な量で存在する、請求項1から7までのいずれか一項に記載のプリプレグの製造の方法。 Continuously supplying a layer of unidirectional conductive fiber, contacting the first side of the fiber with a first layer of resin comprising a thermosetting resin, and compressing the resin and fiber together includes, and the resin enters the interstices of the fibers, to exit the unidirectional conductive fibers from a first outer layer of resin essentially free, resin is present in an amount sufficient, the claims 1 to 7 The method for producing a prepreg according to any one of the above. 熱硬化性樹脂を含む樹脂の第2の層を、一般的に第1の層と同時に、繊維の第2の面と接触させ、樹脂が繊維の隙間に入るように樹脂の第1及び第2の層を繊維と一緒に圧縮する、請求項11に記載の方法。 A second layer of resin comprising a thermosetting resin is generally brought into contact with the second surface of the fiber simultaneously with the first layer so that the resin enters the gap between the fibers. The method of claim 11 , wherein the layer of is compressed together with the fibers. 粒子材料を第1の樹脂層及び存在する場合第2の樹脂層内に分散させ、圧縮により、樹脂が隙間に強制的に入り、そして、粒子材料が繊維の構造に押し込まれて、繊維の外側部分にそれら自体を埋め込んでいるいくつかの粒子によりその構造を崩壊させるような粒子材料の部分的なろ過が起こる、請求項11又は請求項12に記載の方法。 The particulate material is dispersed within the first resin layer and the second resin layer, if present, and the compression forces the resin into the gaps, and the particulate material is pushed into the fiber structure, causing the outside of the fiber 13. A method according to claim 11 or claim 12 , wherein partial filtration of the particulate material occurs such that some of the particles embedded in the portion cause the structure to collapse. 導電性繊維の層が所定の幅を有し、1つ又は複数の含浸ロール上に通すことにより樹脂及び繊維を圧縮し、導電性繊維及び樹脂にかける圧力が導電性繊維の幅1センチメートル当たり40kgを超えない、請求項11から13までのいずれか一項に記載の方法。 The conductive fiber layer has a predetermined width, compresses the resin and fiber by passing over one or more impregnating rolls, and the pressure applied to the conductive fiber and resin per centimeter of conductive fiber width 14. A method according to any one of claims 11 to 13 which does not exceed 40 kg.
JP2012516864A 2009-06-26 2010-06-25 Improvement of composite materials Active JP5800397B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0911035A GB2471318A (en) 2009-06-26 2009-06-26 Conductive prepreg
GB0911035.4 2009-06-26
PCT/GB2010/051051 WO2010150021A1 (en) 2009-06-26 2010-06-25 Improvements in composite materials

Publications (3)

Publication Number Publication Date
JP2012530838A JP2012530838A (en) 2012-12-06
JP2012530838A5 true JP2012530838A5 (en) 2015-02-26
JP5800397B2 JP5800397B2 (en) 2015-10-28

Family

ID=41008271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012516864A Active JP5800397B2 (en) 2009-06-26 2010-06-25 Improvement of composite materials

Country Status (12)

Country Link
US (1) US9296869B2 (en)
EP (1) EP2445713B1 (en)
JP (1) JP5800397B2 (en)
KR (1) KR101477024B1 (en)
CN (1) CN102802943B (en)
AU (1) AU2010264291B2 (en)
BR (1) BRPI1015045A2 (en)
CA (1) CA2764524C (en)
ES (1) ES2414538T3 (en)
GB (1) GB2471318A (en)
RU (1) RU2531905C2 (en)
WO (1) WO2010150021A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468499A1 (en) * 2010-12-21 2012-06-27 Hexcel Composites Limited Improvements in composite materials
GB2478749A (en) 2010-03-17 2011-09-21 Hexcel Composites Ltd Composite materials of reduced electrical resistance
GB2503864B (en) * 2012-03-08 2014-09-03 Hexcel Composites Ltd Composite material for automated lay-up
GB201307898D0 (en) * 2012-06-14 2013-06-12 Hexcel Composites Ltd Improvements in composite materials
US9868266B2 (en) * 2012-08-27 2018-01-16 Hexcel Holding Gmbh Prepreg materials
US10647084B2 (en) 2014-11-25 2020-05-12 The Boeing Company Multi-layer plies for improved composite performance
FR3033283B1 (en) * 2015-03-02 2019-11-22 Gerflor ELECTRO-CONDUCTIVE SLAB OR BLADE FOR REALIZING A FLOOR COATING
GB2536255B (en) * 2015-03-10 2017-11-01 Gurit (Uk) Ltd Moulding material for composite panels
RU2721112C2 (en) * 2015-12-25 2020-05-15 Торэй Индастриз, Инк. Prepreg and method of its production
GB2554855B (en) * 2016-09-09 2020-06-17 Aston Martin Lagonda Ltd Moulding and machining of carbon fibre composite materials
KR102008565B1 (en) * 2017-04-13 2019-08-08 현대자동차주식회사 Apparatus for manufacturing tow prepreg and method for the same
CN108839357B (en) * 2018-06-13 2020-06-09 中国航发北京航空材料研究院 Hot-press molding preparation method of composite material with powder filler

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919739A (en) * 1986-11-07 1990-04-24 Basf Aktiengesellschaft Production of improved preimpregnated material comprising a particulate thermosetting resin suitable for use in the formation of a substantially void-free fiber-reinforced composite article
JPS63170428A (en) * 1987-01-07 1988-07-14 Toray Ind Inc Production of prepreg
JPS63170427A (en) * 1987-01-07 1988-07-14 Toray Ind Inc Production of fiber-reinforced prepreg
JPH0694515B2 (en) * 1986-12-25 1994-11-24 東レ株式会社 Prepreg
ES2051274T3 (en) 1986-12-25 1994-06-16 Toray Industries HIGHLY RESISTANT COMPOSITE MATERIALS.
JPS6426651A (en) * 1987-01-06 1989-01-27 Toray Industries Production of prepreg
US4957801A (en) * 1989-05-17 1990-09-18 American Cyanamid Company Advance composites with thermoplastic particles at the interface between layers
US5288537A (en) 1992-03-19 1994-02-22 Hexcel Corporation High thermal conductivity non-metallic honeycomb
SE504353C2 (en) * 1995-06-19 1997-01-20 Perstorp Ab Process for making a decorative thermosetting laminate
US5962348A (en) * 1998-03-05 1999-10-05 Xc Associates Method of making thermal core material and material so made
FR2793813B1 (en) * 1999-05-20 2001-06-15 Schappe Sa UNIDIRECTIONAL TABLE OF CARBON FIBERS
US6764741B2 (en) * 2000-12-27 2004-07-20 Mitsui Chemicals, Inc. Laminated product having surface protection layer
US6881374B2 (en) * 2001-09-25 2005-04-19 The United States Of America As Represented By The Secretary Of The Army Method for induction lamination of electrically conductive fiber reinforced composite materials
US20050075024A1 (en) * 2003-10-01 2005-04-07 Ranken Paul F. Flame retardant epoxy prepregs, laminates, and printed wiring boards of enhanced thermal stability
JP2007099966A (en) * 2005-10-06 2007-04-19 Mitsubishi Rayon Co Ltd Prepreg
JP2007217665A (en) * 2006-01-19 2007-08-30 Toray Ind Inc Prepreg and carbon fiber reinforced composite material
JP4969363B2 (en) * 2006-08-07 2012-07-04 東レ株式会社 Prepreg and carbon fiber reinforced composites
GB0619401D0 (en) 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
GB2473226A (en) * 2009-09-04 2011-03-09 Hexcel Composites Ltd Composite materials
GB0622060D0 (en) * 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
UA26323U (en) * 2007-05-29 2007-09-10 Prodekolohia Production And Re Magnetic suspension separator
GB2449146B (en) * 2008-01-22 2009-04-22 Gurit Fibre-reinforced composite material and manufacture thereof
GB0817591D0 (en) * 2008-09-26 2008-11-05 Hexcel Composites Ltd Improvements in composite materials

Similar Documents

Publication Publication Date Title
JP2012530838A5 (en)
RU2012102611A (en) IMPROVEMENTS OF COMPOSITE MATERIALS
RU2017113772A (en) COMPOSITE MATERIALS WITH HIGH SPECIFIC ELECTRICAL CONDUCTIVITY IN THE Z-DIRECTION
JP2017511266A5 (en)
TWI636877B (en) Cushion material for hot-press and method for producing the same
US11945135B2 (en) Process for manufacturing a fibrous material pre-impregnated with thermoplastic polymer in powder form
JP6481778B2 (en) Composite structure and manufacturing method thereof
KR101771287B1 (en) Continuous fiber reinforced composite material and molded product thereof
US9534322B2 (en) Fabric for carbon fiber reinforced composite material and method of manufacturing the same
JP2011093175A (en) Fiber-reinforced molding and method of manufacturing the same
WO2015130368A3 (en) Composite materials with electrically conductive and delamination resistant properties
JP5841780B2 (en) Manufacturing method of prepreg and manufacturing method of fiber reinforced thermosetting resin molding
JP2016094608A5 (en)
RU2014146307A (en) COMPOSITE MATERIALS
RU2014130026A (en) IMPROVEMENT OF FIBER REINFORCED MATERIALS
JP2019504128A5 (en)
JPWO2017145884A1 (en) Discontinuous fiber reinforced composite material
WO2020040287A1 (en) Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
CN106739245A (en) Electronic product casing and its manufacture method
EP3050916A1 (en) Method of manufacturing a polyimide film
JP2010502808A5 (en)
US20150148206A1 (en) Roller, and method for manufacturing the same
CN109070523A (en) Sheet material
JP2019510868A (en) Composite material comprising cellulose filaments and fillers and method for making the same
RU2542294C2 (en) Lengthy load-bearing structural element of construction beam type from polymer composite material