JP2012255391A - Variable displacement swash plate type hydraulic rotary machine - Google Patents

Variable displacement swash plate type hydraulic rotary machine Download PDF

Info

Publication number
JP2012255391A
JP2012255391A JP2011129171A JP2011129171A JP2012255391A JP 2012255391 A JP2012255391 A JP 2012255391A JP 2011129171 A JP2011129171 A JP 2011129171A JP 2011129171 A JP2011129171 A JP 2011129171A JP 2012255391 A JP2012255391 A JP 2012255391A
Authority
JP
Japan
Prior art keywords
swash plate
tilt
support surface
bearing
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011129171A
Other languages
Japanese (ja)
Other versions
JP2012255391A5 (en
JP5906025B2 (en
Inventor
Yohei Inagaki
洋平 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2011129171A priority Critical patent/JP5906025B2/en
Publication of JP2012255391A publication Critical patent/JP2012255391A/en
Publication of JP2012255391A5 publication Critical patent/JP2012255391A5/ja
Application granted granted Critical
Publication of JP5906025B2 publication Critical patent/JP5906025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable displacement swash plate type hydraulic rotary machine in which a bearing member such as a bearing metal can be bonded stably to the tilting support surface of a swash plate support part to secure sufficient bonding strength.SOLUTION: A bearing metal 14 made of a band-like body extending in a recessed curve shape along the tilting support surface 11A of a swash plate support body 11 having the leg of the swash plate in sliding contact therewith in a tiltable manner is bonded to the tilting support surface 11A in a plastic flow state. In this case, the bearing metal 14 is bonded to the tilting support surface 11A in the plastic flow state by pressing vertically the tip 16A of a tool 16 for friction stir bonding toward the tilting support surface 11A while turning the same. The surrounding of each bonding portion 14A is formed with an unbonded covered portion 14B covering the tilting support surface 11A from outside in a surface contact state.

Description

本発明は、例えば油圧ショベル、油圧クレーン、ホイールローダ等の建設機械に設けられ、油圧ポンプまたは油圧モータとして好適に用いられる可変容量型斜板式液圧回転機に関する。   The present invention relates to a variable displacement swash plate type hydraulic rotating machine that is provided in a construction machine such as a hydraulic excavator, a hydraulic crane, a wheel loader, and the like and is suitably used as a hydraulic pump or a hydraulic motor.

一般に、可変容量型斜板式液圧回転機は、例えば油圧ショベル等の建設機械において、その油圧源を構成する油圧ポンプとして用いられる。また、油圧アクチュエータとして用いる場合には、旋回用、走行用等の油圧モータを構成するものである。   In general, a variable displacement swash plate type hydraulic rotating machine is used as a hydraulic pump that constitutes a hydraulic power source in a construction machine such as a hydraulic excavator. When used as a hydraulic actuator, it constitutes a hydraulic motor for turning or traveling.

そして、この種の従来技術による可変容量型斜板式液圧回転機は、筒状のケーシングと、該ケーシングに回転可能に設けられた回転軸と、該回転軸と一体に回転するように前記ケーシング内に設けられ周方向に離間して軸方向に延びる複数のシリンダを有したシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、前記各シリンダから突出する該各ピストンの突出端側に装着された複数のシューと、表面側が該各シューを摺動可能に案内する平滑面となり裏面側が前記ケーシング側の斜板支持部に傾転可能に支持される斜板と、前記ケーシングに設けられ外部から傾転制御圧が給排されることにより該斜板を傾転駆動する傾転アクチュエータとを備えている。   A variable capacity swash plate type hydraulic rotating machine according to this type of prior art includes a cylindrical casing, a rotary shaft rotatably provided on the casing, and the casing so as to rotate integrally with the rotary shaft. A cylinder block having a plurality of cylinders extending in the axial direction and spaced apart in the circumferential direction, a plurality of pistons fitted in the cylinders of the cylinder block so as to be reciprocally movable, and protruding from the cylinders A plurality of shoes mounted on the projecting end side of each piston, and a front surface side is a smooth surface that guides each shoe so as to be slidable, and a rear surface side is tiltably supported by a swash plate support portion on the casing side. And a tilt actuator provided on the casing for tilting the swash plate by supplying and discharging tilt control pressure from the outside.

また、前記斜板の裏面側には、前記回転軸を挟んで互いに離間し前記斜板支持部に向けて凸湾曲状に突出する一対の脚部を設け、前記斜板支持部には、該一対の脚部に対応して凹湾曲状に形成され該各脚部を介して前記斜板を傾転可能に支持する一対の傾転支持面を設けている。そして、これらの傾転支持面には、前記斜板の傾転動作を円滑化するためスライドブッシュとしての軸受メタルを設ける構成としたものが知られている(例えば、特許文献1参照)。   Further, on the back side of the swash plate, a pair of legs that are spaced apart from each other across the rotation shaft and project in a convex curve toward the swash plate support are provided. A pair of tilting support surfaces are provided corresponding to the pair of leg portions, and are formed in a concave curved shape and support the swash plate so as to be tiltable via the leg portions. Further, there is known a structure in which a bearing metal as a slide bush is provided on these tilting support surfaces to facilitate the tilting operation of the swash plate (see, for example, Patent Document 1).

この場合、前記軸受メタルは、前記斜板の脚部が傾転可能に摺接する前記傾転支持面に沿って凹湾曲状に延びる帯状の板材を用いて形成され、該板材の長さ方向両端側には、略V字状またはL字状に屈曲して形成された折曲げ部が設けられている。これらの折曲げ部は、前記傾転支持面の長さ方向両端側で前記斜板支持部に抜止め状態で固定され、これにより、前記軸受メタルは、前記傾転支持面を外側から覆った状態で前記斜板支持部に位置決めされ固定されるものである。   In this case, the bearing metal is formed by using a strip-shaped plate material extending in a concave curve along the tilt support surface with which the leg portion of the swash plate is slidably contacted, and both ends of the plate material in the longitudinal direction are formed. On the side, a bent portion formed by bending in a substantially V shape or L shape is provided. These bent portions are fixed to the swash plate support portion at both ends in the lengthwise direction of the tilt support surface, so that the bearing metal covers the tilt support surface from the outside. In this state, it is positioned and fixed to the swash plate support.

実開平5−1866号公報(実用新案登録第2584135号公報)Japanese Utility Model Laid-Open No. 5-1866 (utility model registration No. 2584135)

ところで、従来技術による可変容量型斜板式液圧回転機は、斜板支持部の各傾転支持面に設けた軸受メタルと斜板の各脚部との間の傾転摺動面に対して、液圧回転機の一対の給排通路のうち高圧側の給排通路から圧油を導くための導油通路を備え、該導油通路からの圧油によって前記傾転摺動面を潤滑状態に保つ構成としたものがある。しかし、前記軸受メタルは、長さ方向両端側の各折曲げ部を前記斜板支持部に対し前記傾転支持面の長さ方向両端側で抜止め状態に固定しているだけである。   By the way, the variable capacity swash plate type hydraulic rotating machine according to the prior art is applied to the tilt sliding surface between the bearing metal provided on each tilt support surface of the swash plate support portion and each leg portion of the swash plate. An oil guide passage for guiding the pressure oil from the supply / discharge passage on the high pressure side of the pair of supply / discharge passages of the hydraulic rotating machine, and the inclined sliding surface is lubricated by the pressure oil from the oil guide passage There is something that is configured to keep. However, the bearing metal only fixes the bent portions at both ends in the length direction to the swash plate support portions in a secured state at both ends in the length direction of the tilt support surface.

このため、前記斜板支持部の傾転支持面と軸受メタルとの間には小さな隙間が形成されることがあり、前記導油通路から傾転摺動面に供給する圧油の一部が前記傾転支持面と軸受メタルとの間の前記隙間から外部に漏出する虞れがある。そして、圧油の一部が前記隙間から外部に漏出すると、前記斜板の脚部と軸受メタルとの間の傾転摺動面に十分な量の圧油を供給することができず、前記傾転摺動面を潤滑状態に保つのが難しくなるという問題がある。   For this reason, a small gap may be formed between the tilt support surface of the swash plate support portion and the bearing metal, and a part of the pressure oil supplied from the oil guide passage to the tilt slide surface There is a risk of leakage to the outside from the gap between the tilt support surface and the bearing metal. And if a part of the pressure oil leaks outside through the gap, a sufficient amount of pressure oil cannot be supplied to the tilting sliding surface between the leg portion of the swash plate and the bearing metal, There is a problem that it is difficult to keep the tilting sliding surface in a lubricated state.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、軸受メタル等の軸受部材を斜板支持部の傾転支持面に対し安定して接合することができ、軸受部材に対する斜板の傾転動作を円滑に安定させることができるようにした可変容量型斜板式液圧回転機を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to stably join a bearing member such as a bearing metal to a tilt support surface of a swash plate support portion. It is an object of the present invention to provide a variable capacity swash plate type hydraulic rotating machine capable of smoothly and stably stabilizing a tilting operation of a swash plate with respect to a member.

また、本発明の他の目的は、ケーシングに設けた導油通路から斜板の脚部と軸受部材との間の傾転摺動面に安定して圧油を供給することができ、前記傾転摺動面を長期にわたって潤滑状態に保つことができるようにした可変容量型斜板式液圧回転機を提供することにある。   Another object of the present invention is to stably supply pressure oil to an inclined sliding surface between a leg portion of a swash plate and a bearing member from an oil guide passage provided in the casing. An object of the present invention is to provide a variable capacity swash plate type hydraulic rotating machine capable of maintaining a rolling sliding surface in a lubricated state over a long period of time.

上述した課題を解決するために、本発明は、一側に斜板支持部が設けられ他側に一対の給排通路が設けられた筒状のケーシングと、該ケーシングに回転可能に設けられた回転軸と、該回転軸と一体に回転するように前記ケーシング内に設けられ周方向に離間して軸方向に延びる複数のシリンダを有したシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、前記各シリンダから突出する該各ピストンの突出端側に装着された複数のシューと、表面側が該各シューを摺動可能に案内する平滑面となり裏面側が前記斜板支持部に傾転可能に支持される斜板と、前記ケーシングに設けられ外部から傾転制御圧が給排されることにより該斜板を傾転駆動する傾転アクチュエータとを備え、前記斜板の裏面側には、前記回転軸を挟んで互いに離間し前記斜板支持部に向けて凸湾曲状に突出する一対の脚部を設け、前記斜板支持部には、該一対の脚部に対応して凹湾曲状に形成され該各脚部を介して前記斜板を傾転可能に支持する一対の傾転支持面を設けてなる可変容量型斜板式液圧回転機に適用される。   In order to solve the above-described problems, the present invention is provided with a cylindrical casing provided with a swash plate support portion on one side and a pair of supply / exhaust passages on the other side, and rotatably provided in the casing. A rotary shaft, a cylinder block provided in the casing so as to rotate integrally with the rotary shaft and having a plurality of cylinders extending in the axial direction and spaced apart in the circumferential direction, and reciprocating to each cylinder of the cylinder block A plurality of pistons inserted into the cylinders, a plurality of shoes mounted on the projecting end sides of the pistons projecting from the cylinders, and a front surface side which is a smooth surface which slidably guides the shoes, and a back surface side A swash plate that is supported by the swash plate in a tiltable manner; and a tilt actuator that is provided on the casing and tilts and drives the swash plate by being supplied and discharged from the outside. Back of swash plate Is provided with a pair of legs that are spaced apart from each other across the rotation shaft and project in a convex curve toward the swash plate support, and the swash plate support corresponds to the pair of legs. The present invention is applied to a variable capacity swash plate type hydraulic rotating machine that is formed in a concave curve and is provided with a pair of tilt support surfaces that tiltably support the swash plate via the legs.

そして、請求項1の発明が採用する構成の特徴は、前記斜板支持部の各傾転支持面のうち少なくとも一方の傾転支持面には、前記斜板の脚部が傾転可能に摺接する面に沿って凹湾曲状に延びた帯状体からなる軸受部材を設け、該軸受部材は、摩擦撹拌接合用の工具を回転させながら前記斜板支持部の傾転支持面に向けて押圧することにより当該傾転支持面に塑性流動状態で接合する構成としたことにある。   A feature of the configuration adopted by the invention of claim 1 is that at least one of the tilt support surfaces of the swash plate support portion is slidable on the tilt support surface so that the leg portion of the swash plate can tilt. A bearing member made of a band-like body extending in a concave curved shape is provided along the contacting surface, and the bearing member presses the tilting support surface of the swash plate support portion while rotating the friction stir welding tool. Thus, the configuration is such that the tilt support surface is joined in a plastic flow state.

また、請求項2の発明によると、前記斜板支持部の傾転支持面と前記軸受部材との間には、両者の間に介在し前記傾転支持面に沿って凹湾曲状に延びる帯状のインサート部材を設け、前記軸受部材は、前記摩擦撹拌接合用の工具を用いて前記インサート部材と一緒に前記傾転支持面に塑性流動状態で接合する構成としている。   According to the invention of claim 2, between the tilt support surface of the swash plate support portion and the bearing member, a belt-like band extending between the tilt support surface and the tilt support surface. The insert member is provided, and the bearing member is joined to the tilt support surface in a plastic flow state together with the insert member using the friction stir welding tool.

一方、請求項3の発明によると、前記軸受部材には、前記摩擦撹拌接合用の工具により前記傾転支持面に接合された1個または複数個の接合部と、該接合部の周囲に位置し前記傾転支持面に対して接合されることなく前記傾転支持面を外側から覆う非接合被覆部とを設ける構成としている。   On the other hand, according to the invention of claim 3, the bearing member includes one or a plurality of joints joined to the tilt support surface by the friction stir welding tool, and is positioned around the joints. And it is set as the structure which provides the non-joining coating | coated part which covers the said inclination support surface from the outer side, without being joined with respect to the said inclination support surface.

また、請求項4の発明は、前記軸受部材を前記傾転支持面に摩擦撹拌接合する前記接合部は、前記斜板支持部に対する前記斜板の傾転方向と平行な方向、前記傾転方向に対して垂直な方向または前記傾転方向に対して斜めに傾いた方向に延びる構成としている。   According to a fourth aspect of the present invention, the joint for friction stir welding the bearing member to the tilt support surface is a direction parallel to the tilt direction of the swash plate with respect to the swash plate support, the tilt direction It is set as the structure extended in the direction perpendicular | vertical to the direction or slanting with respect to the said inclination direction.

また、請求項5の発明によると、前記軸受部材の前記接合部は、その周囲に位置する前記非接合被覆部よりも凹状に窪ませて形成する構成としている。   According to a fifth aspect of the present invention, the joint portion of the bearing member is formed so as to be recessed in a concave shape with respect to the non-joining covering portion located in the periphery thereof.

さらに、請求項6の発明によると、前記ケーシングには前記斜板と前記斜板支持部との間に向けて延び両者の傾転摺動面を潤滑状態に保つための導油通路を設け、前記軸受部材には、前記導油通路に連通し前記斜板との傾転摺動面に開口する連通孔を設け、前記接合部は、該連通孔の開口部周囲を取囲んで形成する構成としている。   Further, according to the invention of claim 6, the casing is provided with an oil guiding passage extending between the swash plate and the swash plate support portion for keeping the inclined sliding surfaces of both in a lubricated state, The bearing member is provided with a communication hole that communicates with the oil guide passage and opens at a tilting sliding surface with the swash plate, and the joining portion is formed so as to surround the opening of the communication hole. It is said.

上述の如く、請求項1の発明によれば、斜板の脚部が傾転可能に摺接する斜板支持部の傾転支持面に沿って凹湾曲状に延びた帯状体からなる軸受部材を、摩擦撹拌接合用の工具を回転させながら前記斜板支持部の傾転支持面に向けて押圧することにより、当該傾転支持面に軸受部材を塑性流動状態、即ち摩擦撹拌状態で安定して接合することができ、軸受部材の接合強度を簡便な方法で高めることができる。そして、斜板の脚部を斜板支持部の傾転支持面に対し軸受部材を介して円滑に摺接させることができ、斜板の傾転動作を安定させることができる。   As described above, according to the first aspect of the present invention, there is provided a bearing member comprising a belt-like body extending in a concave curve along the tilt support surface of the swash plate support portion in which the leg portion of the swash plate is slidably contacted. By pressing the friction stir welding tool toward the tilting support surface of the swash plate support portion while rotating, the bearing member is stabilized on the tilting support surface in the plastic flow state, that is, in the friction stirrer state. They can be joined, and the joining strength of the bearing member can be increased by a simple method. And the leg part of a swash plate can be smoothly slidably contacted with the inclination support surface of a swash plate support part via a bearing member, and the inclination operation | movement of a swash plate can be stabilized.

また、請求項2の発明は、斜板支持部の傾転支持面と軸受部材との間に帯状のインサート部材を介挿して設けることができ、このときに摩擦撹拌接合用の工具を用いて前記軸受部材とインサート部材とを一緒に前記傾転支持面に塑性流動状態で接合することができる。そして、インサート部材を用いることにより、軸受部材として性質を保持したままで、前記斜板支持部の傾転摺動面に対する接合強度をより一層に高めることができる。   The invention of claim 2 can be provided by inserting a belt-like insert member between the tilt support surface of the swash plate support portion and the bearing member, and at this time, using a tool for friction stir welding The bearing member and the insert member can be joined to the tilt support surface together in a plastic flow state. By using the insert member, it is possible to further increase the bonding strength of the swash plate support portion with respect to the inclined sliding surface while maintaining the properties as a bearing member.

一方、請求項3の発明によると、摩擦撹拌接合用の工具を回転させながら軸受部材に押圧して1個または複数個の接合部を軸受部材に形成することができ、該接合部により軸受部材を傾転支持面に接合することができる。そして、軸受部材のうち前記接合部の周囲には、前記傾転支持面に対して接合されることなく前記傾転支持面を外側から覆う非接合被覆部を設けることができる。   On the other hand, according to the invention of claim 3, one or a plurality of joints can be formed on the bearing member by pressing the friction stir welding tool against the bearing member while rotating the tool. Can be joined to the tilting support surface. And the non-joining coating | coated part which covers the said inclination support surface from the outer side, without being joined with respect to the said inclination support surface can be provided in the circumference | surroundings of the said junction part among bearing members.

また、請求項4の発明によると、軸受部材の接合部を、斜板支持部に対する斜板の傾転方向と平行な方向に延ばして形成したり、前記傾転方向に対して垂直な方向に延ばして形成したり、または前記傾転方向に対して斜めに傾いた方向に延ばして形成したりすることができる。これにより、斜板の傾転動作に伴って軸受部材に働く剥離力、即ち傾転支持面から軸受部材を剥離させるような力を考慮して、前記接合部を延ばす方向を選択することができ、傾転支持面から軸受部材が剥離するのを接合部の形状によって効果的に抑え、軸受部材の耐久性、寿命、信頼性を向上することができる。   According to the invention of claim 4, the joint portion of the bearing member is formed to extend in a direction parallel to the tilt direction of the swash plate with respect to the swash plate support portion, or in a direction perpendicular to the tilt direction. It can be formed by extending, or can be formed by extending in a direction inclined obliquely with respect to the tilt direction. Accordingly, it is possible to select the direction in which the joint portion is extended in consideration of the peeling force acting on the bearing member with the tilting operation of the swash plate, that is, the force that peels the bearing member from the tilting support surface. Further, the peeling of the bearing member from the tilt support surface can be effectively suppressed by the shape of the joint portion, and the durability, life, and reliability of the bearing member can be improved.

また、請求項5の発明は、軸受部材の接合部を、その周囲に位置する非接合被覆部よりも凹状に窪ませて形成することにより、凹状の接合部内に潤滑油の一部を保持して油膜を形成することができ、斜板の脚部と軸受部材との間の傾転摺動面を前記油膜により潤滑状態に保つことができる。   In the invention of claim 5, a part of the lubricating oil is held in the concave joint part by forming the joint part of the bearing member in a concave shape rather than the non-joining covering part located around the bearing member. Thus, the oil film can be formed, and the inclined sliding surface between the leg portion of the swash plate and the bearing member can be kept in a lubricated state by the oil film.

さらに、請求項6の発明では、軸受部材の裏面側で連通孔を導油通路に連通させ、軸受部材の表面側(斜板との傾転摺動面側)では前記連通孔を開口させることができ、軸受部材の接合部は、該連通孔の開口部をその周囲から取囲んだ形状に形成することができる。このため、軸受部材の非接合被覆部と斜板支持部の傾転支持面との間に仮に微小な隙間が形成されたとしても、連通孔の周囲を接合部で取囲むことにより、前記導油通路からの圧油が前記隙間内に漏洩するのを阻止することができ、斜板の脚部と軸受部材との間の傾転摺動面に十分な量の圧油を供給することができる。   Furthermore, in the invention of claim 6, the communication hole is communicated with the oil guide passage on the back surface side of the bearing member, and the communication hole is opened on the surface side of the bearing member (the inclined sliding surface side with the swash plate). The joint portion of the bearing member can be formed in a shape surrounding the opening portion of the communication hole from the periphery thereof. For this reason, even if a minute gap is formed between the non-bonding covering portion of the bearing member and the tilting support surface of the swash plate support portion, the guide hole surrounds the communication hole with the joint portion. The pressure oil from the oil passage can be prevented from leaking into the gap, and a sufficient amount of pressure oil can be supplied to the inclined sliding surface between the leg portion of the swash plate and the bearing member. it can.

本発明の第1の実施の形態による可変容量型斜板式油圧ポンプを示す縦断面図である。1 is a longitudinal sectional view showing a variable displacement swash plate hydraulic pump according to a first embodiment of the present invention. 図1中の斜板を単体として示す縦断面図である。It is a longitudinal cross-sectional view which shows the swash plate in FIG. 1 as a single unit. 斜板を図2中の右方向からみた右側面図である。It is the right view which looked at the swash plate from the right direction in FIG. 図1中の斜板支持体を単体として示す左側面図である。It is a left view which shows the swash plate support body in FIG. 1 as a single unit. 斜板支持体を図4中の矢示V−V方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow VV direction in FIG. 図4の斜板支持体を斜め上方からみた斜視図である。It is the perspective view which looked at the swash plate support body of FIG. 4 from diagonally upward. 第2の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 2nd Embodiment. 斜板支持体を図7中の矢示VIII−VIII方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow VIII-VIII direction in FIG. 斜板支持体を図7中の矢示IX−IX方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow IX-IX direction in FIG. 斜板支持体を図7中の矢示X−X方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XX direction in FIG. 第3の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 3rd Embodiment. 斜板支持体を図11中の矢示XII−XII方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XII-XII direction in FIG. 斜板支持体を図11中の矢示XIII−XIII方向から拡大してみた部分断面図である。It is the fragmentary sectional view which expanded the swash plate support body from the arrow XIII-XIII direction in FIG. 図11の斜板支持体を斜め上方からみた斜視図である。It is the perspective view which looked at the swash plate support body of FIG. 11 from diagonally upward. 第4の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 4th Embodiment. 斜板支持体を図15中の矢示XVI−XVI方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XVI-XVI direction in FIG. 第5の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 5th Embodiment. 斜板支持体を図17中の矢示XVIII−XVIII方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XVIII-XVIII direction in FIG. 第6の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 6th Embodiment. 第7の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 7th Embodiment. 第8の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 8th Embodiment. 第9の実施の形態による斜板支持体を示す図4と同様位置での左側面図である。It is a left view in the same position as FIG. 4 which shows the swash plate support body by 9th Embodiment. 斜板支持体を図22中の矢示XXIII−XXIII方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XXIII-XXIII direction in FIG. 斜板支持体を図22中の矢示XXIV−XXIV方向からみた断面図である。It is sectional drawing which looked at the swash plate support body from the arrow XXIV-XXIV direction in FIG.

以下、本発明の実施の形態による可変容量型斜板式液圧回転機を、例えば油圧ポンプとして用いる場合を例に挙げ、添付図面に従って詳細に説明する。   Hereinafter, a variable displacement swash plate type hydraulic rotating machine according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case of using it as a hydraulic pump, for example.

ここで、図1ないし図6は本発明の第1の実施の形態を示している。図中、1は可変容量型斜板式液圧回転機としての斜板式油圧ポンプで、この油圧ポンプ1は、後述のケーシング2、回転軸4、シリンダブロック5、複数のシリンダ6、ピストン7、シュー8、弁板10、斜板支持体11および斜板12等によって構成されるものである。   Here, FIG. 1 to FIG. 6 show a first embodiment of the present invention. In the figure, reference numeral 1 denotes a swash plate type hydraulic pump as a variable capacity swash plate type hydraulic rotating machine. This hydraulic pump 1 includes a casing 2, a rotating shaft 4, a cylinder block 5, a plurality of cylinders 6, a piston 7 and a shoe which will be described later. 8, the valve plate 10, the swash plate support 11, the swash plate 12, and the like.

2は油圧ポンプ1の外殻となる筒状のケーシングで、該ケーシング2は、図1に示すように、筒状のケーシング本体2Aと、該ケーシング本体2Aの両端側を閉塞したフロントケーシング2B、リヤケーシング2Cとから構成されている。なお、ケーシング本体2Aは、フロントケーシング2Bまたはリヤケーシング2Cのいずれか一方と一体に形成する構成としてもよいものである。   2 is a cylindrical casing that is an outer shell of the hydraulic pump 1, and as shown in FIG. The rear casing 2C is used. The casing body 2A may be formed integrally with either the front casing 2B or the rear casing 2C.

ケーシング本体2Aの一側に位置するフロントケーシング2Bには、後述の斜板支持体11が斜板12の裏面側に対向して設けられている。また、ケーシング本体2Aの他側に位置するリヤケーシング2Cには、図1中に点線で示す一対の給排通路3A,3Bが設けられている。該給排通路3A,3Bのうち一方の給排通路3Aは、低圧側の吸込通路となってタンク(図示せず)に接続され、他方の給排通路3Bは、吐出通路となって高圧側の吐出配管(図示せず)に接続されるものである。   A swash plate support 11, which will be described later, is provided on the front casing 2B located on one side of the casing body 2A so as to face the back side of the swash plate 12. A pair of supply / discharge passages 3A and 3B indicated by dotted lines in FIG. 1 are provided in the rear casing 2C located on the other side of the casing body 2A. One of the supply / discharge passages 3A and 3B is connected to a tank (not shown) as a suction passage on the low pressure side, and the other supply / discharge passage 3B serves as a discharge passage on the high pressure side. Connected to a discharge pipe (not shown).

4はケーシング2内に回転可能に設けられた回転軸で、該回転軸4は、フロントケーシング2Bとリヤケーシング2Cとにそれぞれ軸受を介して回転可能に支持されている。回転軸4の一端側は、フロントケーシング2Bから軸方向に突出する突出端4Aとなり、この突出端4Aにはエンジン等の原動機が動力伝達機構(いずれも図示せず)等を介して連結されるものである。   Reference numeral 4 denotes a rotating shaft rotatably provided in the casing 2, and the rotating shaft 4 is rotatably supported by the front casing 2B and the rear casing 2C via bearings. One end side of the rotating shaft 4 is a protruding end 4A protruding in the axial direction from the front casing 2B, and a prime mover such as an engine is connected to the protruding end 4A via a power transmission mechanism (none of which is shown). Is.

5は回転軸4と一体的に回転するようにケーシング2内に設けられたシリンダブロックで、該シリンダブロック5には、その周方向に離間して軸方向に延びる複数のシリンダ6,6,…が設けられている。シリンダブロック5に設けるシリンダ6の個数は、例えば7個または9個となるように通常は奇数個である。   Reference numeral 5 denotes a cylinder block provided in the casing 2 so as to rotate integrally with the rotary shaft 4. The cylinder block 5 includes a plurality of cylinders 6, 6,. Is provided. The number of cylinders 6 provided in the cylinder block 5 is usually an odd number, for example, 7 or 9.

7,7,…はシリンダブロック5の各シリンダ6内にそれぞれ摺動可能に挿嵌された複数のピストンで、該各ピストン7は、シリンダブロック5の回転に伴ってシリンダ6内を往復動し、吸入行程と吐出行程とを繰返すものである。   7, 7,... Are a plurality of pistons slidably fitted in the cylinders 6 of the cylinder block 5. The pistons 7 reciprocate in the cylinders 6 as the cylinder block 5 rotates. The suction stroke and the discharge stroke are repeated.

8,8,…は各ピストン7にそれぞれ設けられた複数のシューで、該各シュー8は、シリンダブロック5のシリンダ6から回転軸4の軸方向に突出するピストン7の一端側(突出端側)にそれぞれ揺動可能に取付けられている。   8, 8,... Are a plurality of shoes respectively provided on each piston 7. Each shoe 8 is one end side (protruding end side) of the piston 7 protruding from the cylinder 6 of the cylinder block 5 in the axial direction of the rotary shaft 4. ) Are swingably mounted.

9は各シュー8を斜板12に対して保持する環状のシュー押えで、該シュー押え9は、図1に示す如く後述する斜板12の平滑面12Cに向けてシュー8をそれぞれ押圧し、斜板12の平滑面12C上で各シュー8が環状軌跡を描くように摺動変位するのを補償するものである。   9 is an annular shoe presser that holds each shoe 8 against the swash plate 12. The shoe presser 9 presses the shoe 8 toward the smooth surface 12C of the swash plate 12 described later, as shown in FIG. This compensates the sliding displacement of each shoe 8 on the smooth surface 12C of the swash plate 12 so as to draw an annular locus.

10はケーシング2内に位置してリヤケーシング2Cとシリンダブロック5との間に固定して設けられた弁板である。この弁板10は、回転軸4と一体に回転するシリンダブロック5を回転可能にリヤケーシング2Cと一緒に支持し、この状態でシリンダブロック5の端面に摺接している。また、弁板10には、眉形状をなす一対の給排ポート10A,10Bが形成され、これらの給排ポート10A,10Bは、リヤケーシング2Cの給排通路3A,3Bと連通している。   A valve plate 10 is provided in the casing 2 so as to be fixed between the rear casing 2C and the cylinder block 5. The valve plate 10 rotatably supports the cylinder block 5 that rotates integrally with the rotary shaft 4 together with the rear casing 2C, and in this state, is in sliding contact with the end face of the cylinder block 5. The valve plate 10 is formed with a pair of supply / discharge ports 10A, 10B having an eyebrow shape, and these supply / discharge ports 10A, 10B communicate with the supply / discharge passages 3A, 3B of the rear casing 2C.

弁板10の給排ポート10A,10Bは、シリンダブロック5の回転時に各シリンダ6と間欠的に連通する。このとき、各シリンダ6内を往復するピストン7は、その吸入行程で一方の給排通路3A側から各シリンダ6内に作動油を吸込みつつ、吐出行程では各シリンダ6内で高圧状態となった圧油を他方の給排通路3Bから吐出させる。   The supply / discharge ports 10 </ b> A and 10 </ b> B of the valve plate 10 communicate with each cylinder 6 intermittently when the cylinder block 5 rotates. At this time, the pistons 7 reciprocating in the respective cylinders 6 sucked the hydraulic oil into the respective cylinders 6 from the one supply / discharge passage 3A side in the intake stroke, and became in a high pressure state in the respective cylinders 6 in the discharge stroke. Pressure oil is discharged from the other supply / discharge passage 3B.

11は回転軸4の周囲に位置してフロントケーシング2Bに設けられた斜板支持部としての斜板支持体で、該斜板支持体11には、図1、図4〜図6に示すように回転軸4を挟んで、例えば左,右両側となる位置に一対の傾転支持面11A,11Bが一体に形成されている。斜板支持体11の傾転支持面11A,11Bは、後述の軸受メタル14,15を介して斜板12を傾転可能に支持するものである。   Reference numeral 11 denotes a swash plate support as a swash plate support provided on the front casing 2B around the rotating shaft 4, and the swash plate support 11 includes the swash plate support 11 as shown in FIGS. A pair of tilt support surfaces 11A and 11B are integrally formed on the left and right sides, for example, with the rotary shaft 4 interposed therebetween. The tilt support surfaces 11A and 11B of the swash plate support 11 support the swash plate 12 through tilting bearing metals 14 and 15 described later so as to be tiltable.

斜板支持体11の傾転支持面11A,11Bは、後述する斜板12の脚部12A,12Bに対応して凹湾曲状に形成され、斜板12を図1中の矢示A,B方向に傾転(摺動)可能に案内するものである。また、斜板支持体11には、左,右の傾転支持面11A,11B間に位置して軸挿通穴11C(図4参照)が穿設され、この軸挿通穴11C内には、図1に示すように回転軸4が隙間をもって挿通される。   Tilt support surfaces 11A and 11B of the swash plate support 11 are formed in a concave curved shape corresponding to legs 12A and 12B of the swash plate 12 described later, and the swash plate 12 is indicated by arrows A and B in FIG. It is guided so as to be tiltable (slidable) in the direction. The swash plate support 11 is provided with a shaft insertion hole 11C (see FIG. 4) located between the left and right tilt support surfaces 11A and 11B. As shown in FIG. 1, the rotating shaft 4 is inserted with a gap.

12はケーシング2内に斜板支持体11を介して傾転可能に設けられた斜板である。この斜板12の裏面側には、図1ないし図3に示すように斜板支持体11の傾転支持面11A,11Bに向けて凸湾曲状に突出した左,右一対の脚部12A,12Bが設けられている。斜板12の脚部12A,12Bは、回転軸4を挟んで例えば左,右方向に離間し、凹湾曲状をなす斜板支持体11の傾転支持面11A,11Bに摺動可能に嵌合されるものである。   A swash plate 12 is provided in the casing 2 so as to be tiltable via a swash plate support 11. On the back side of the swash plate 12, as shown in FIGS. 1 to 3, a pair of left and right legs 12A projecting in a convex curve toward the tilting support surfaces 11A and 11B of the swash plate support 11, 12B is provided. The leg portions 12A and 12B of the swash plate 12 are slidably fitted to the tilting support surfaces 11A and 11B of the swash plate support 11 which is spaced apart, for example, left and right across the rotation shaft 4 and has a concave curved shape. It is to be combined.

一方、斜板12の表面側は、図1に示すように各シュー8を摺動可能に案内する平滑面12Cとなっている。また、斜板12には、その板厚方向に貫通して延びる貫通穴12Dが設けられ、該貫通穴12Dは、脚部12A,12B間に位置して回転軸4が隙間をもって挿通される。斜板12は、図1中に示す矢示A,B方向に後述の傾転アクチュエータ17,18を用いて傾転駆動される。そして、油圧ポンプ1の吐出容量(圧油の吐出流量)は、斜板12の傾転角に応じて可変に制御されるものである。   On the other hand, the surface side of the swash plate 12 is a smooth surface 12C that guides each shoe 8 slidably as shown in FIG. Further, the swash plate 12 is provided with a through hole 12D that extends through in the plate thickness direction. The through hole 12D is located between the leg portions 12A and 12B, and the rotary shaft 4 is inserted with a gap. The swash plate 12 is tilted in the directions indicated by arrows A and B shown in FIG. The discharge capacity (pressure oil discharge flow rate) of the hydraulic pump 1 is variably controlled according to the tilt angle of the swash plate 12.

13,13は斜板12の脚部12A,12Bに設けた円弧状凹溝で、該各円弧状凹溝13は、脚部12A,12Bの表面に沿って円弧状に延びる浅溝として形成されている。円弧状凹溝13は、例えば後述の導油通路19,20から圧油が導かれることにより静圧軸受として機能する。即ち、円弧状凹溝13内に供給された圧油は、傾転支持面11A,11B(後述の軸受メタル14,15)と脚部12A,12Bとの間に乖離力(油圧力)を発生させると共に、両者の接触面を潤滑状態に保持するものである。   Reference numerals 13 and 13 denote arc-shaped concave grooves provided in the leg portions 12A and 12B of the swash plate 12, and each arc-shaped concave groove 13 is formed as a shallow groove extending in an arc shape along the surface of the leg portions 12A and 12B. ing. The circular arc-shaped groove 13 functions as a hydrostatic bearing when, for example, pressure oil is guided from oil guide passages 19 and 20 described later. That is, the pressure oil supplied into the arc-shaped concave groove 13 generates a separation force (hydraulic pressure) between the tilt support surfaces 11A and 11B (bearing metals 14 and 15 described later) and the leg portions 12A and 12B. In addition, the contact surfaces of both are kept in a lubricated state.

14,15は斜板支持体11の傾転支持面11A,11Bに設けられた軸受部材としての軸受メタルで、該軸受メタル14,15は、例えば高・中炭素鋼、はだ焼鋼、焼入鋼、耐食鋼、鋳鉄、銅合金、アルミニウムまたはチタン合金等の金属板材料からなる薄肉の帯状体として形成され、斜板12の脚部12A,12Bが傾転可能に摺接する面(傾転支持面11A,11B)に沿って凹湾曲状に延びている。軸受メタル14,15は、斜板支持体11の傾転支持面11A,11Bに対して接合部14A,15Aにより塑性流動状態で接合され、斜板12の脚部12A,12Bを傾転支持面11A,11Bに沿って円滑に摺動(傾転)変位させるためのスライドブッシュとして機能するものである。   Reference numerals 14 and 15 denote bearing metals as bearing members provided on the tilt support surfaces 11A and 11B of the swash plate support 11, and the bearing metals 14 and 15 are, for example, high / medium carbon steel, case-hardened steel, Formed as a thin strip-shaped body made of a metal plate material such as steel, corrosion-resistant steel, cast iron, copper alloy, aluminum or titanium alloy, and the surfaces of the legs 12A and 12B of the swash plate 12 that are slidably contactable (tilt It extends in a concave curve along the supporting surfaces 11A, 11B). The bearing metals 14 and 15 are joined to the tilt support surfaces 11A and 11B of the swash plate support 11 in a plastic flow state by the joint portions 14A and 15A, and the leg portions 12A and 12B of the swash plate 12 are tilted and supported. It functions as a slide bush for smoothly sliding (tilting) displacement along 11A and 11B.

なお、第1の実施の形態で採用した軸受メタル14,15は、軸受部材の一つの代表例であり、例えば金属材料以外に高分子系の樹脂材料を用いて軸受部材を形成してもよいものである。この点は、後述する第2〜第9の実施の形態についても同様である。   The bearing metals 14 and 15 employed in the first embodiment are one representative example of a bearing member. For example, a bearing member may be formed using a polymer resin material in addition to a metal material. Is. This also applies to second to ninth embodiments described later.

ここで、図4に示す軸受メタル14,15のうち一方の軸受メタル14は、摩擦撹拌接合手段を用いて形成された複数(例えば、合計6個)の接合部14Aにより、斜板支持体11の傾転支持面11Aに密着するように接合されている。即ち、一方の軸受メタル14には、図5、図6に示す摩擦撹拌接合用の工具16により合計6個の接合部14Aが円形状の接合痕として形成され、これらの各接合部14Aは、斜板12の傾転方向に延びる傾転支持面11Aに沿って一列に並べて配置されている。   Here, one bearing metal 14 of the bearing metals 14 and 15 shown in FIG. 4 is formed by using a plurality of (for example, a total of six) joints 14A formed by using friction stir welding means. It joins so that it may closely_contact | adhere to 11A of inclination support surfaces. That is, on one bearing metal 14, a total of six joints 14A are formed as circular joint traces by the friction stir welding tool 16 shown in FIGS. 5 and 6, and each of these joints 14A, The swash plate 12 is arranged in a line along the tilt support surface 11A extending in the tilt direction.

この場合、図5、図6に示す摩擦撹拌接合用の工具16は、専用の機械(図示せず)により矢示C方向に回転駆動されながら、軸受メタル14を斜板支持部11の傾転支持面11Aに向けて矢示D方向(即ち、傾転支持面11Aに対して垂直な方向)に強く押付けるように押圧する。これにより、工具16の先端部16Aが当接する軸受メタル14の当接部位は、摩擦撹拌に伴う入熱で高温となって塑性流動状態となり、この状態で傾転支持面11Aに部分的に溶け込むようにして接合される。   In this case, the friction stir welding tool 16 shown in FIGS. 5 and 6 is rotated in the direction indicated by arrow C by a dedicated machine (not shown), and the bearing metal 14 is tilted to the swash plate support 11. Press toward the support surface 11A so as to strongly press in the direction indicated by the arrow D (that is, the direction perpendicular to the tilt support surface 11A). As a result, the contact portion of the bearing metal 14 with which the tip 16A of the tool 16 abuts becomes a high temperature due to heat input accompanying frictional stirring and becomes a plastic flow state. In this state, the contact portion 11A partially melts into the tilt support surface 11A. In this way, they are joined.

このため、軸受メタル14の前記当接部位には、工具16の先端形状に対応した円形状の接合部14Aが形成される。また、軸受メタル14には、工具16の先端部16Aによる前述の如き摩擦撹拌接合作業を、傾転支持面11Aの円弧面に沿って間隔をあけて繰返すことにより、例えば合計6個の接合部14Aが互いに間隔をもって一列に並べた状態で形成されるものである。また、軸受メタル14には、各接合部14Aの周囲に位置して非接合被覆部14Bが形成され、該非接合被覆部14Bは、斜板支持体11の傾転支持面11Aに対して接合されることなく当該傾転支持面11Aを外側から面接触状態で覆うものである。   For this reason, a circular joint 14 </ b> A corresponding to the tip shape of the tool 16 is formed at the contact portion of the bearing metal 14. Further, the friction stir welding operation as described above by the tip portion 16A of the tool 16 is repeated on the bearing metal 14 at intervals along the arc surface of the tilt support surface 11A, for example, a total of six joint portions. 14A is formed in a state of being arranged in a row at intervals. Further, the bearing metal 14 is formed with a non-bonding coating portion 14B located around each of the bonding portions 14A, and the non-bonding coating portion 14B is bonded to the tilt support surface 11A of the swash plate support 11. The tilt support surface 11A is covered in a surface contact state from the outside without any contact.

一方、軸受メタル15の接合部15Aは、前述の如き摩擦撹拌接合作業を行う工具16の先端部16Aを、斜板支持体11の傾転支持面11Bに沿って徐々に移動させることにより、傾転支持面11Bに沿って細長く直線状に延びた形状に形成される。この接合部15Aは、斜板12の傾転方向(図1に示す矢示A,B方向)と平行に延びている。また、軸受メタル15には、接合部15Aの周囲に位置して非接合被覆部15Bが形成され、該非接合被覆部15Bは、斜板支持体11の傾転支持面11Bに対して接合されることなく当該傾転支持面11Bを外側から面接触状態で覆うものである。   On the other hand, the joint 15A of the bearing metal 15 is tilted by gradually moving the tip 16A of the tool 16 that performs the friction stir welding as described above along the tilt support surface 11B of the swash plate support 11. It is formed in a shape that is elongated and linearly extended along the rolling support surface 11B. The joint 15A extends in parallel to the tilting direction of the swash plate 12 (the directions indicated by arrows A and B shown in FIG. 1). Further, the bearing metal 15 is formed with a non-bonding coating portion 15B located around the bonding portion 15A, and the non-bonding coating portion 15B is bonded to the tilt support surface 11B of the swash plate support 11. The tilt support surface 11B is covered in a surface contact state from the outside without any problem.

前述の如く、摩擦撹拌接合用の工具16により一方の軸受メタル14に複数の接合部14Aを形成し、他方の軸受メタル15には細長く延びる1条の接合部14Aを形成した後には、例えば研削手段、研磨手段等を用いた仕上げ加工を軸受メタル14,15の表面側に施す。これによって、軸受メタル14,15の表面(斜板12の脚部12A,12Bが傾転可能に摺接する面)は、接合部14A,15Aを含めて均一な滑面に形成されている。   As described above, after a plurality of joints 14A are formed on one bearing metal 14 by the friction stir welding tool 16, and one elongated joint 14A is formed on the other bearing metal 15, for example, grinding is performed. Finishing using means, polishing means or the like is performed on the surface side of the bearing metals 14 and 15. As a result, the surfaces of the bearing metals 14 and 15 (surfaces on which the leg portions 12A and 12B of the swash plate 12 are slidably contacted so as to be tilted) are formed to have a uniform smooth surface including the joint portions 14A and 15A.

17,18は斜板12を傾転駆動する一対の傾転アクチュエータで、該傾転アクチュエータ17,18は、図1に示すようにシリンダブロック5の径方向外側に位置してケーシング本体2Aに形成されたシリンダ穴17A,18Aと、該シリンダ穴17A,18A内に摺動可能に挿嵌され、該シリンダ穴17A,18Aとの間に液圧室17B,18Bを画成した傾転ピストン17C,18Cと、液圧室17B,18B内に傾転制御圧を給排するためケーシング本体2Aに形成された制御圧通路17D,18Dとを含んで構成されている。   Reference numerals 17 and 18 denote a pair of tilting actuators for tilting the swash plate 12. The tilting actuators 17 and 18 are formed on the casing main body 2A so as to be positioned radially outside the cylinder block 5 as shown in FIG. Cylinder bores 17A, 18A, and tilted pistons 17C, which are slidably inserted into the cylinder holes 17A, 18A and define hydraulic chambers 17B, 18B between the cylinder holes 17A, 18A. 18C and control pressure passages 17D and 18D formed in the casing body 2A for supplying and discharging the tilt control pressure into the hydraulic pressure chambers 17B and 18B.

傾転アクチュエータ17,18は、ケーシング本体2Aに対しシリンダブロック5の径方向で互いに対向する位置に配設され、傾転ピストン17C,18Cによって斜板12を矢示A,B方向に傾転駆動する。即ち、傾転アクチュエータ17,18の液圧室17B,18Bには、図1に示す制御圧通路17D,18Dを通じて外部から傾転制御圧が給排される。   The tilting actuators 17 and 18 are disposed at positions facing each other in the radial direction of the cylinder block 5 with respect to the casing body 2A, and the tilting pistons 17C and 18C drive the swash plate 12 in the directions indicated by arrows A and B. To do. That is, the tilt control pressure is supplied and discharged from the outside to the hydraulic pressure chambers 17B and 18B of the tilt actuators 17 and 18 through the control pressure passages 17D and 18D shown in FIG.

この傾転制御圧により、傾転アクチュエータ17の傾転ピストン17Cが図1に示す如くシリンダ穴17A内から伸長し、傾転アクチュエータ18の傾転ピストン18Cがシリンダ穴18A内に縮小するときには、斜板12が傾転ピストン17Cによって矢示A方向(即ち、傾転角が大きくなる正方向)に傾転駆動される。また、傾転ピストン18Cがシリンダ穴18A内から伸長し、傾転ピストン17Cがシリンダ穴17A内へと縮小するときには、斜板12が傾転ピストン18Cによって矢示B方向(即ち、傾転角が小さくなる逆方向)に傾転駆動されるものである。   With this tilt control pressure, when the tilt piston 17C of the tilt actuator 17 extends from the cylinder hole 17A as shown in FIG. 1 and the tilt piston 18C of the tilt actuator 18 contracts into the cylinder hole 18A, the tilt piston 17C is tilted. The plate 12 is driven to tilt in the direction indicated by the arrow A (that is, the positive direction in which the tilt angle increases) by the tilt piston 17C. Further, when the tilting piston 18C extends from the cylinder hole 18A and the tilting piston 17C contracts into the cylinder hole 17A, the swash plate 12 is moved in the direction indicated by the arrow B (ie, the tilting angle is changed by the tilting piston 18C). It is tilted and driven in the reverse direction.

次に、19はケーシング2に設けられた第1の導油通路で、該第1の導油通路19は、図1中に点線で示すように、長さ方向の一側がリヤケーシング2C側で高圧側の給排通路3Bに接続され、長さ方向の他側(以下、導油通路19の先端側という)は、フロントケーシング2B内を斜板支持体11に向けて延びている。また、斜板支持体11には、例えば図5中に二点鎖線で示すように第2の導油通路20が形成されている。   Next, reference numeral 19 denotes a first oil guide passage provided in the casing 2. The first oil guide passage 19 has one side in the length direction on the rear casing 2C side as shown by a dotted line in FIG. The other side in the length direction (hereinafter referred to as the front end side of the oil guide passage 19) is connected to the high pressure side supply / discharge passage 3B and extends toward the swash plate support 11 in the front casing 2B. Further, a second oil guide passage 20 is formed in the swash plate support 11, for example, as shown by a two-dot chain line in FIG.

第2の導油通路20は、その基端側が前記第1の導油通路19の先端側に接続され、先端側は軸受メタル14,15の表面に開口するように形成されている。これにより、第1,第2の導油通路19,20は、例えば給排通路3Bから供給される圧油を軸受メタル14,15と斜板12の脚部12A,12Bとの間の傾転摺動面(例えば、図3に示す円弧状凹溝13内)に導くものである。   The second oil guide passage 20 is formed such that the base end side thereof is connected to the tip end side of the first oil guide passage 19 and the tip end side opens to the surfaces of the bearing metals 14 and 15. As a result, the first and second oil guide passages 19 and 20 tilt the pressure oil supplied from the supply / discharge passage 3B between the bearing metals 14 and 15 and the leg portions 12A and 12B of the swash plate 12, for example. It leads to a sliding surface (for example, in the arcuate groove 13 shown in FIG. 3).

なお、軸受メタル14,15の素材として自己潤滑性を有する材料(例えば、銅系材料)用いる場合には、斜板12の脚部12A,12Bと軸受メタル14,15との間に潤滑油を必ずしも供給する必要はない。そこで、このような場合には、ケーシング2に設ける第1の導油通路19と斜板支持体11に設ける第2の導油通路20とを省略する構成としてもよいものである。   When a material having self-lubricating properties (for example, a copper-based material) is used as the material for the bearing metals 14 and 15, lubricating oil is provided between the leg portions 12A and 12B of the swash plate 12 and the bearing metals 14 and 15. It is not always necessary to supply. In such a case, the first oil guide passage 19 provided in the casing 2 and the second oil guide passage 20 provided in the swash plate support 11 may be omitted.

本実施の形態による可変容量型の斜板式油圧ポンプ1は、上述の如き構成を有するもので、次にその作動について説明する。   The variable displacement swash plate hydraulic pump 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.

まず、油圧ポンプ1の吐出容量を増大させるときには、傾転アクチュエータ17の液圧室17Bに制御圧通路17Dを通じて外部から傾転制御圧を供給し、傾転アクチュエータ18の液圧室18Bからは制御圧通路18Dを通じて外部に傾転制御圧を排出する。これにより、傾転アクチュエータ17の傾転ピストン17Cがシリンダ穴17A内から伸長し、傾転アクチュエータ18の傾転ピストン18Cがシリンダ穴18A内に縮小するため、斜板12は傾転角が大きくなるように図1中の矢示A方向に傾転駆動される。   First, when the discharge capacity of the hydraulic pump 1 is increased, the tilt control pressure is supplied from the outside to the hydraulic chamber 17B of the tilt actuator 17 through the control pressure passage 17D, and the control is performed from the hydraulic chamber 18B of the tilt actuator 18. The tilt control pressure is discharged to the outside through the pressure passage 18D. As a result, the tilting piston 17C of the tilting actuator 17 extends from within the cylinder hole 17A, and the tilting piston 18C of the tilting actuator 18 contracts into the cylinder hole 18A, so that the tilt angle of the swash plate 12 increases. Thus, it is tilted and driven in the direction of arrow A in FIG.

また、油圧ポンプ1の吐出容量を小さく減少させるときには、傾転アクチュエータ18の液圧室18Bに制御圧通路18Dを通じて外部から傾転制御圧を供給し、傾転アクチュエータ17の液圧室17Bからは制御圧通路17Dを通じて外部に傾転制御圧を排出する。これにより、傾転アクチュエータ18の傾転ピストン18Cがシリンダ穴18A内から伸長し、傾転アクチュエータ17の傾転ピストン17Cがシリンダ穴17A内へと縮小するため、斜板12は傾転角が小さくなるように図1中の矢示B方向に傾転駆動される。   Further, when the discharge capacity of the hydraulic pump 1 is reduced to a small value, the tilt control pressure is supplied from the outside to the hydraulic chamber 18B of the tilt actuator 18 through the control pressure passage 18D, and from the hydraulic chamber 17B of the tilt actuator 17 The tilt control pressure is discharged to the outside through the control pressure passage 17D. Accordingly, the tilt piston 18C of the tilt actuator 18 extends from the cylinder hole 18A, and the tilt piston 17C of the tilt actuator 17 contracts into the cylinder hole 17A. Therefore, the swash plate 12 has a small tilt angle. In this way, it is tilted and driven in the direction of arrow B in FIG.

このように斜板12が傾転アクチュエータ17,18により矢示A,B方向に傾転駆動されるときには、斜板12の脚部12A,12Bが斜板支持体11の傾転支持面11A,11Bに沿って軸受メタル14,15上を摺動変位するように傾転する。しかし、斜板12の傾転動作に伴って軸受メタル14,15には、斜板支持体11の傾転支持面11A,11Bから軸受メタル14,15を剥離させるような力が働き、この剥離力により軸受メタル14,15が傾転支持面11A,11Bから脱落する虞れがある。   In this way, when the swash plate 12 is tilted and driven in the directions indicated by arrows A and B by the tilt actuators 17 and 18, the legs 12 A and 12 B of the swash plate 12 are tilted and supported by the tilt support surfaces 11 A and 11 B of the swash plate support 11. Tilt so as to slide and displace on the bearing metals 14 and 15 along 11B. However, with the tilting operation of the swash plate 12, a force is applied to the bearing metals 14 and 15 to peel the bearing metals 14 and 15 from the tilt support surfaces 11A and 11B of the swash plate support 11, and this peeling is performed. There is a possibility that the bearing metals 14 and 15 may fall off the tilt support surfaces 11A and 11B due to the force.

そこで、第1の実施の形態では、斜板12の脚部12A,12Bが傾転可能に摺接する斜板支持体11の傾転支持面11A,11Bに沿って凹湾曲状に延びた帯状体からなる軸受メタル14,15を、摩擦撹拌接合用の工具16を回転させながら、その先端部16Aを傾転支持面11A,11Bに向けて垂直方向に押圧することにより当該傾転支持面11A,11Bに塑性流動状態で接合する構成としている。   Therefore, in the first embodiment, the strips 12A, 12B of the swash plate 12 extend in a concave curve along the tilting support surfaces 11A, 11B of the swash plate support 11 in which the legs 12A, 12B are slidably contacted. While rotating the friction stir welding tool 16, the bearing metal 14, 15 is made to push the tip end 16 </ b> A toward the tilt support surfaces 11 </ b> A, 11 </ b> B in the vertical direction, thereby causing the tilt support surfaces 11 </ b> A, 11B is joined in a plastic flow state.

この場合、軸受メタル14,15のうち一方の軸受メタル14には、摩擦撹拌接合用の工具16により斜板支持体11の傾転支持面11Aに接合される複数の接合部14Aを、一列に並べて形成することができ、各接合部14Aの周囲には傾転支持面11Aに対して接合されることなく当該傾転支持面11Aを外側から面接触状態で覆う非接合被覆部14Bを形成することができる。   In this case, one bearing metal 14 out of the bearing metals 14 and 15 has a plurality of joint portions 14A joined to the tilt support surface 11A of the swash plate support 11 by a friction stir welding tool 16 in a row. A non-bonding covering portion 14B that covers the tilt support surface 11A from the outside in a surface contact state without being bonded to the tilt support surface 11A is formed around each joint portion 14A. be able to.

また、他方の軸受メタル15には、前記工具16により斜板支持体11の傾転支持面11Bに接合される接合部15Aを、傾転支持面11Bに沿って細長く直線状に延びた形状に形成することができ、該接合部15Aの周囲には傾転支持面11Bに対して接合されることなく当該傾転支持面11Bを外側から面接触状態で覆う非接合被覆部15Bを形成することができる。   Further, the other bearing metal 15 has a joint 15A that is joined to the tilt support surface 11B of the swash plate support 11 by the tool 16 in a shape that is elongated and linear along the tilt support surface 11B. A non-bonding covering portion 15B that covers the tilt support surface 11B from the outside in a surface contact state without being bonded to the tilt support surface 11B is formed around the joint portion 15A. Can do.

これにより、斜板支持体11の傾転支持面11Aに対しては一方の軸受メタル14を摩擦撹拌による塑性流動状態で安定して接合することができ、傾転支持面11Bに対しては他方の軸受メタル15を塑性流動状態で安定して接合することができる。この結果、斜板12の傾転動作に伴って軸受メタル14,15が斜板支持体11の傾転支持面11A,11Bから剥離されるのを長期にわたって防止することができ、軸受メタル14,15の耐久性、寿命、信頼性を向上することができる。   Thereby, one bearing metal 14 can be stably joined to the tilt support surface 11A of the swash plate support 11 in a plastic flow state by friction stirring, and the other one to the tilt support surface 11B. The bearing metal 15 can be stably joined in a plastic flow state. As a result, it is possible to prevent the bearing metals 14 and 15 from being separated from the tilting support surfaces 11A and 11B of the swash plate support 11 along with the tilting operation of the swash plate 12 over a long period of time. 15 durability, life, and reliability can be improved.

従って、本実施の形態によれば、斜板支持体11の傾転支持面11A,11Bに沿って凹湾曲状に延びた帯状体からなる軸受メタル14,15を、傾転支持面11A,11Bに接合するときに摩擦撹拌接合手段を用いることにより、小規模な設備で短時間の接合が可能となり、傾転支持面11A,11Bに対する軸受メタル14,15の接合強度を簡便な方法で高めることができる。   Therefore, according to the present embodiment, the bearing metals 14 and 15 formed of the band-like bodies extending in a concave curve along the tilt support surfaces 11A and 11B of the swash plate support 11 are used as the tilt support surfaces 11A and 11B. By using the friction stir welding means when joining to the bearing, it becomes possible to join in a short time with a small-scale facility, and to increase the joining strength of the bearing metals 14 and 15 to the tilt support surfaces 11A and 11B by a simple method. Can do.

しかも、斜板12の脚部12A,12Bを斜板支持体11の傾転支持面11A,11Bに対し軸受メタル14,15を介して円滑に摺接させることができ、斜板12の傾転動作を安定させることができる。この結果、可変容量型の斜板式油圧ポンプ1としての信頼性を向上することができ、その耐久性、寿命を高めることができる。   In addition, the leg portions 12A and 12B of the swash plate 12 can be smoothly slidably brought into sliding contact with the tilt support surfaces 11A and 11B of the swash plate support 11 via the bearing metals 14 and 15, so that the swash plate 12 can be tilted. The operation can be stabilized. As a result, the reliability of the variable displacement swash plate hydraulic pump 1 can be improved, and the durability and lifespan thereof can be increased.

なお、前記第1の実施の形態では、斜板支持体11の傾転支持面11A,11Bのうち一方の傾転支持面11A側に軸受メタル14を接合して設け、他方の傾転支持面11B側には軸受メタル15を接合して設ける場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば1個の接合部15Aを有する軸受メタル15を一方の傾転支持面11A側に設け、他方の傾転支持面11B側には複数の接合部14Aを有する軸受メタル14を設ける構成としてもよい。   In the first embodiment, the bearing metal 14 is provided on one tilt support surface 11A side of the tilt support surfaces 11A and 11B of the swash plate support 11, and the other tilt support surface is provided. The case where the bearing metal 15 is provided on the 11B side is described as an example. However, the present invention is not limited to this. For example, a bearing metal 15 having one joint 15A is provided on one tilt support surface 11A side, and a plurality of joints 14A are provided on the other tilt support surface 11B side. It is good also as a structure which provides the bearing metal 14 which has.

即ち、傾転支持面11A,11Bのうちいずれの傾転支持面に、軸受メタル14,15のいずれを接合するか、軸受メタル14,15に形成する接合部14A,15Aの形状、個数等は、斜板12の脚部12A,12Bから斜板支持体11の傾転支持面11A,11Bに向けて付加される荷重(即ち、各シリンダ6内に発生する油圧力)、斜板12を傾転駆動するときの摺動抵抗、捩り力等に応じて、適宜に選択する構成とすればよいものである。   That is, which of the tilt support surfaces 11A and 11B is to be bonded to which of the bearing metals 14 and 15, the shape, the number, etc. of the joint portions 14A and 15A formed on the bearing metals 14 and 15 are as follows. The load applied from the legs 12A and 12B of the swash plate 12 toward the tilt support surfaces 11A and 11B of the swash plate support 11 (that is, the hydraulic pressure generated in each cylinder 6), the swash plate 12 is tilted. The structure may be appropriately selected according to the sliding resistance, torsional force, and the like when rolling.

次に、図7ないし図10は本発明の第2の実施の形態を示し、本実施の形態の特徴は、斜板支持部の傾転支持面と軸受部材との間に帯状のインサート部材を介挿して設ける構成としたことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 7 to FIG. 10 show a second embodiment of the present invention. The feature of the present embodiment is that a band-like insert member is provided between the tilt support surface of the swash plate support portion and the bearing member. The configuration is such that it is provided by insertion. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図中、31,32は第2の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル31,32は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル31,32は、斜板支持体11の傾転支持面11A,11Bとの間に後述のインサートメタル33,34が介挿されている点で、第1の実施の形態とは異なっている。   In the figure, reference numerals 31 and 32 denote bearing metals as bearing members employed in the second embodiment. The bearing metals 31 and 32 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 31 and 32 in this case are the first embodiment in that insert metals 33 and 34 (described later) are interposed between the tilt support surfaces 11A and 11B of the swash plate support 11. It is different from the form.

このため、軸受メタル31,32の各接合部31A,32Aは、図8、図10に示すように後述のインサートメタル33,34と一緒に斜板支持体11の傾転支持面11A,11Bに対して塑性流動状態で接合されている。即ち、一方の軸受メタル31には、図8に示す摩擦撹拌接合用の工具16により合計6個の接合部31Aが円形状の接合痕として形成され、これらの各接合部31Aは、斜板12の傾転方向に延びる傾転支持面11Aに沿って一列に並べて配置されている。また、各接合部31Aの周囲には、後述のインサートメタル33、斜板支持体11の傾転支持面11Aに対して接合されることなくインサートメタル33と一緒に傾転支持面11Aを外側から面接触状態で覆う非接合被覆部31Bが形成されている。   For this reason, the joint portions 31A and 32A of the bearing metals 31 and 32 are formed on the tilt support surfaces 11A and 11B of the swash plate support 11 together with the insert metals 33 and 34, which will be described later, as shown in FIGS. On the other hand, it is joined in a plastic flow state. That is, on one bearing metal 31, a total of six joints 31A are formed as circular joint marks by the friction stir welding tool 16 shown in FIG. 8, and each of these joints 31A is formed on the swash plate 12. Are arranged in a line along the tilt support surface 11A extending in the tilt direction. In addition, around each joint 31A, the tilt support surface 11A is inserted from the outside together with the insert metal 33 without being joined to the insert metal 33 described later and the tilt support surface 11A of the swash plate support 11. A non-bonding covering portion 31 </ b> B that covers the surface contact state is formed.

他方の軸受メタル32には、2本の接合部32Aが傾転支持面11Bに沿って互いに平行に細長く直線状に延びた形状に形成されている。但し、この場合の接合部32Aを形成する摩擦撹拌接合用の工具には、図8に示す工具16の先端部16Aよりも細い形状のものが使用され、このために各接合部32Aは、その幅寸法が細く形成されている。また、軸受メタル32には、接合部32Aの周囲に位置して非接合被覆部32Bが形成され、該非接合被覆部32Bは、後述のインサートメタル34、斜板支持体11の傾転支持面11Bに対して接合されることなく、インサートメタル33と一緒に傾転支持面11Bを外側から面接触状態で覆っている。   On the other bearing metal 32, two joint portions 32A are formed in a shape that is elongated in a straight line parallel to each other along the tilt support surface 11B. However, the friction stir welding tool for forming the joint portion 32A in this case has a shape that is narrower than the tip portion 16A of the tool 16 shown in FIG. 8, and for this reason, each joint portion 32A has its The width dimension is narrow. Further, the bearing metal 32 is formed with a non-bonding coating portion 32B located around the bonding portion 32A, and the non-bonding coating portion 32B includes an insert metal 34 and a tilt support surface 11B of the swash plate support 11 which will be described later. The tilt support surface 11B is covered in a surface contact state from the outside together with the insert metal 33 without being bonded to.

33,34は斜板支持体11の傾転支持面11A,11Bと軸受メタル31,32との間に設けられたインサート部材としてのインサートメタルである。このインサートメタル33,34は、例えば鉄とニッケルの合金、銅合金等からなる薄い金属板(例えば、アルミ箔等のように薄い金属箔、金属シートも含む)により形成されている。即ち、インサートメタル33,34は、傾転支持面11A,11Bと軸受メタル31,32との接合性を改善する元素を含有し、両者の接合性を高めるものである。インサートメタル33,34は、傾転支持面11A,11Bと軸受メタル31,32との間に介在し、傾転支持面11A,11Bに沿って凹湾曲状に延びる帯状シートとして形成されている。   33 and 34 are insert metals as insert members provided between the tilting support surfaces 11A and 11B of the swash plate support 11 and the bearing metals 31 and 32, respectively. The insert metals 33 and 34 are formed of a thin metal plate (for example, including a thin metal foil and a metal sheet such as an aluminum foil) made of an alloy of iron and nickel, a copper alloy, or the like. That is, the insert metals 33 and 34 contain an element that improves the bondability between the tilting support surfaces 11A and 11B and the bearing metals 31 and 32, and enhances the bondability between them. The insert metals 33 and 34 are formed as belt-like sheets that are interposed between the tilt support surfaces 11A and 11B and the bearing metals 31 and 32 and extend in a concave curve along the tilt support surfaces 11A and 11B.

ここで、一方のインサートメタル33は、図8に示すように摩擦撹拌接合用の工具16を用いて軸受メタル31に各接合部31Aを形成するときに、軸受メタル31と一緒に斜板支持体11の傾転支持面11Aに塑性流動状態で接合されている。また、他方のインサートメタル34は、図8に示す工具16と同様な工具(図示せず)を用いて軸受メタル32に各接合部32Aを形成するときに、軸受メタル32と一緒に斜板支持体11の傾転支持面11Bに塑性流動状態で接合されている。   Here, when one joining metal 33 forms each joining part 31A in the bearing metal 31 using the tool 16 for friction stir welding as shown in FIG. 11 tilt support surfaces 11A are joined in a plastic flow state. Further, the other insert metal 34 supports the swash plate together with the bearing metal 32 when each joint portion 32A is formed in the bearing metal 32 using a tool (not shown) similar to the tool 16 shown in FIG. The body 11 is joined to the tilt support surface 11B in a plastic flow state.

かくして、このように構成される第2の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル31,32を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第2の実施の形態は、斜板支持体11の傾転支持面11A,11Bと軸受メタル31,32との間にインサートメタル33,34を介挿する構成としている。   Thus, also in the second embodiment configured as described above, the bearing metals 31 and 32 can be joined to the tilt support surfaces 11A and 11B of the swash plate support 11 by using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. Particularly, in the second embodiment, the insert metals 33 and 34 are inserted between the tilt support surfaces 11A and 11B of the swash plate support 11 and the bearing metals 31 and 32.

このため、斜板支持体11の傾転支持面11A,11Bには、摩擦撹拌接合用の工具16等を用いて軸受メタル31,32とインサートメタル33,34とを一緒に塑性流動状態で接合することができ、インサートメタル33,34により傾転支持面11A,11Bと軸受メタル31,32との接合性を高めることができる。このように、インサートメタル33,34を用いることにより、軸受メタル31,32として性質を保持したままで、傾転支持面11A,11Bに対する接合強度をより一層に高めることができる。また、接合部31A,32Aを形成するときの作業性を向上することができる。   Therefore, the bearing metals 31 and 32 and the insert metals 33 and 34 are joined together in the plastic flow state to the tilting support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding tool 16 or the like. In addition, the insert metal 33, 34 can enhance the joining property between the tilt support surfaces 11A, 11B and the bearing metals 31, 32. Thus, by using the insert metals 33 and 34, it is possible to further increase the bonding strength to the tilt support surfaces 11A and 11B while maintaining the properties as the bearing metals 31 and 32. Moreover, workability | operativity when forming junction part 31A, 32A can be improved.

なお、前記第2の実施の形態で述べた軸受メタル31,32についても、前述した第1の実施の形態の変更と同様に、例えば2本の接合部32Aを有する軸受メタル32を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、複数の接合部31Aを有する軸受メタル31を設ける構成としてもよい。   For the bearing metals 31 and 32 described in the second embodiment, for example, the bearing metal 32 having two joint portions 32A is supported by a swash plate, as in the modification of the first embodiment described above. It is good also as a structure which provides the bearing metal 31 which has a several junction part 31A in the one inclination support surface 11A side of the body 11, and the other inclination support surface 11B side.

次に、図11ないし図14は本発明の第3の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する各接合部を、周囲の非接合被覆部よりも凹状に窪ませて形成する構成としたことにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 11 to FIG. 14 show a third embodiment of the present invention. The feature of this embodiment is that each joint portion formed in the bearing member is recessed more concavely than the surrounding non-joint covering portion. It is in the structure which does not form. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図中、41,42は第3の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル41,42は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル41,42は、後述の接合部41A,42Aが周囲の非接合被覆部41B,42Bよりも凹状に窪ませて形成されている点で、第1の実施の形態とは異なっている。   In the figure, reference numerals 41 and 42 denote bearing metals as bearing members employed in the third embodiment. The bearing metals 41 and 42 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 41 and 42 in this case are the same as those in the first embodiment in that joint portions 41A and 42A described later are formed to be recessed more concave than the surrounding non-joint coating portions 41B and 42B. Is different.

即ち、一方の軸受メタル41には、摩擦撹拌接合用の工具(図示せず)により合計4個の接合部41Aが、斜板12の傾転方向(即ち、傾転支持面11Aに沿った方向)に対し垂直な方向に細長く延びた長円形状に形成されている。但し、この場合の接合部41Aを形成する摩擦撹拌接合用の工具には、図8に示す工具16の先端部16Aよりも細い形状のものが使用され、このために各接合部41Aは、その幅寸法が細く形成されている。   That is, one bearing metal 41 has a total of four joint portions 41A by a friction stir welding tool (not shown), and the tilt direction of the swash plate 12 (ie, the direction along the tilt support surface 11A). ) In the shape of an ellipse extending in a direction perpendicular to the vertical direction. However, the friction stir welding tool for forming the joint portion 41A in this case has a shape that is thinner than the tip portion 16A of the tool 16 shown in FIG. The width dimension is narrow.

一方の軸受メタル41には、前述の如く長円形状をなす各接合部41Aが、傾転支持面11Aに沿った方向に互いに間隔をあけて配置されている。また、各接合部41Aの周囲には、斜板支持体11の傾転支持面11Aに対して接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部41Bが形成されている。   On one bearing metal 41, each of the joint portions 41A having an oval shape as described above is disposed at a distance from each other in the direction along the tilt support surface 11A. Further, a non-bonding covering portion 41B that covers the tilt support surface 11A from the outside in a surface contact state without being bonded to the tilt support surface 11A of the swash plate support 11 is formed around each joint portion 41A. Has been.

この上で、図12、図14に示すように、各接合部41Aは、その周囲の非接合被覆部41Bよりも凹状に窪ませて形成され、これにより、各接合部41Aの表面側には、周囲の非接合被覆部41Bに対して凹状に窪んだ凹部41Cがそれぞれ形成されている。これらの凹部41Cは、例えば斜板支持体11に形成した導油通路20を介して供給される圧油を、潤滑油として保持する機能を有している。   Then, as shown in FIG. 12 and FIG. 14, each joint 41A is formed to be recessed in a concave shape from the surrounding non-joining covering part 41B, and thereby, on the surface side of each joint 41A. Recessed portions 41C that are recessed in a concave shape with respect to the surrounding non-bonded covering portion 41B are formed. These concave portions 41 </ b> C have a function of holding, as lubricating oil, the pressure oil supplied through, for example, the oil guide passage 20 formed in the swash plate support 11.

また、他方の軸受メタル42には、図8に例示した摩擦撹拌接合用の工具16と同様な工具(図示せず)により合計5個の接合部42Aが円形状の接合痕として形成され、これらの各接合部42Aは、斜板12の傾転方向に延びる傾転支持面11Bに沿って一列に並べて配置されている。また、軸受メタル42には、各接合部42Aの周囲に位置して非接合被覆部42Bが形成され、該非接合被覆部42Bは、斜板支持体11の傾転支持面11Bに対して接合されることなく、傾転支持面11Bを外側から面接触状態で覆っている。   Further, a total of five joint portions 42A are formed as circular joint marks on the other bearing metal 42 by a tool (not shown) similar to the friction stir welding tool 16 illustrated in FIG. 42A are arranged in a line along the tilt support surface 11B extending in the tilt direction of the swash plate 12. Further, the bearing metal 42 is formed with a non-bonding covering portion 42B located around each of the bonding portions 42A, and the non-bonding covering portion 42B is bonded to the tilt support surface 11B of the swash plate support 11. Without tilting, the tilting support surface 11B is covered in a surface contact state from the outside.

この上で、図13、図14に示すように、各接合部42Aは、その周囲の非接合被覆部42Bよりも凹状に窪ませて形成され、これにより、各接合部42Aの表面側には、周囲の非接合被覆部42Bに対して凹状に窪んだ凹部42Cがそれぞれ形成されている。これらの凹部42Cは、例えば斜板支持体11に形成した導油通路20を介して供給される圧油を、潤滑油として保持する機能を有している。   Further, as shown in FIGS. 13 and 14, each joint 42A is formed to be recessed in a concave shape rather than the surrounding non-joining covering part 42B, and thus, on the surface side of each joint 42A. The concave portions 42C that are recessed in a concave shape with respect to the surrounding non-bonding covering portions 42B are formed. These concave portions 42 </ b> C have a function of holding, for example, pressure oil supplied via the oil guide passage 20 formed in the swash plate support 11 as lubricating oil.

さらに、第3の実施の形態にあっても、前述の如く摩擦撹拌接合用の工具を用いて一方の軸受メタル41に複数の接合部41A、凹部41Cを形成し、他方の軸受メタル42にも複数の接合部42A、凹部42Cを形成した後には、例えば研削手段、研磨手段等を用いた仕上げ加工を軸受メタル41,42の表面側に施す。これによって、軸受メタル41,42の表面(斜板12の脚部12A,12Bが傾転可能に摺接する面)は、各凹部41C,42Cを残して均一な滑面に形成されている。   Further, even in the third embodiment, as described above, a plurality of joints 41A and recesses 41C are formed in one bearing metal 41 using the friction stir welding tool, and the other bearing metal 42 is also formed. After the plurality of joint portions 42A and the concave portions 42C are formed, a finishing process using, for example, a grinding means or a polishing means is performed on the surface side of the bearing metals 41 and 42. As a result, the surfaces of the bearing metals 41 and 42 (surfaces on which the leg portions 12A and 12B of the swash plate 12 are slidably contacted so as to be tiltable) are formed as uniform smooth surfaces leaving the recesses 41C and 42C.

かくして、このように構成される第3の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル41,42を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第3の実施の形態では、軸受メタル41,42の各接合部41A,42Aを周囲の非接合被覆部41B,42Bよりも凹状に窪ませて凹部41C,42Cを形成する構成としている。   Thus, also in the third embodiment configured as described above, the bearing metals 41 and 42 can be joined to the tilting support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the third embodiment, the joint portions 41A and 42A of the bearing metals 41 and 42 are recessed in a concave shape with respect to the surrounding non-joint covering portions 41B and 42B to form the recess portions 41C and 42C.

このため、各接合部41A,42Aの凹部41C,42C内には、例えば図12に二点鎖線で示した導油通路20等を通じて供給される潤滑油一部を、斜板12の傾転動作等に応じて導くことができ、この潤滑油を凹部41C,42C内に保持して油膜を形成できると共に、斜板12の脚部12A,12Bと軸受メタル41,42との間の傾転摺動面を前記油膜により潤滑状態に保つことができる。   Therefore, for example, a part of the lubricating oil supplied through the oil guide passage 20 shown by a two-dot chain line in FIG. 12 is moved into the concave portions 41C and 42C of the joint portions 41A and 42A. The lubricating oil can be held in the recesses 41C and 42C to form an oil film, and the sliding between the leg portions 12A and 12B of the swash plate 12 and the bearing metals 41 and 42 can be performed. The moving surface can be kept in a lubricated state by the oil film.

なお、前記第3の実施の形態で述べた軸受メタル41,42についても、前述した第1の実施の形態の変更と同様に、例えば複数の接合部42Aを有する軸受メタル42を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、複数の接合部41Aを有する軸受メタル41を設ける構成としてもよい。   For the bearing metals 41 and 42 described in the third embodiment, for example, the bearing metal 42 having a plurality of joints 42A is replaced by a swash plate support, as in the modification of the first embodiment described above. 11 is provided on one tilt support surface 11A side, and the other tilt support surface 11B side may be provided with a bearing metal 41 having a plurality of joint portions 41A.

次に、図15および図16は本発明の第4の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する各接合部を、斜板の傾転方向に対し斜めに傾いた方向に延ばして形成する構成としたことにある。なお、第4の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 15 and FIG. 16 show a fourth embodiment of the present invention. The feature of this embodiment is that each joint formed on the bearing member is inclined obliquely with respect to the inclination direction of the swash plate. In other words, the structure is formed so as to extend in a certain direction. Note that in the fourth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図中、51,52は第4の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル51,52は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル51,52は、後述の各接合部51A,52Aが斜め傾いて延びるように形成されている点で、前記第1の実施の形態とは異なっている。   In the figure, reference numerals 51 and 52 denote bearing metals as bearing members employed in the fourth embodiment. The bearing metals 51 and 52 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metal 51, 52 in this case is different from the first embodiment in that each of the joints 51A, 52A described later is formed so as to extend obliquely.

即ち、一方の軸受メタル51には、摩擦撹拌接合用の工具(図示せず)により合計5個の接合部51Aが、斜板12の傾転方向(即ち、傾転支持面11Aに沿った方向)に対し斜めに傾いた方向に細長く延びて長円形状に形成されている。そして、長円形状をなす各接合部51Aは、互いに平行に間隔をあけて配置されている。また、各接合部51Aの周囲には、斜板支持体11の傾転支持面11Aに対して接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部51Bが形成されている。   That is, one bearing metal 51 has a total of five joints 51A by a friction stir welding tool (not shown), and the tilt direction of the swash plate 12 (that is, the direction along the tilt support surface 11A). ) In an obliquely inclined direction and is formed in an oval shape. And each joint part 51A which makes an ellipse shape is arrange | positioned at intervals in parallel with each other. Further, a non-bonding covering portion 51B that covers the tilt support surface 11A from the outside in a surface contact state without being bonded to the tilt support surface 11A of the swash plate support 11 is formed around each joint portion 51A. Has been.

また、他方の軸受メタル52には、これと同様に斜めに傾いた長円形状の各接合部52Aと、該各接合部52Aの周囲に位置する非接合被覆部52Bとが設けられている。但し、軸受メタル51の各接合部51Aと軸受メタル52の各接合部52Aとは、図15に示すように斜板支持体11の軸挿通穴11Cを挟んで左,右対称なる位置関係に配列されている。   Similarly, the other bearing metal 52 is provided with an oblong joint portion 52A inclined obliquely and a non-joining covering portion 52B positioned around each joint portion 52A. However, the joint portions 51A of the bearing metal 51 and the joint portions 52A of the bearing metal 52 are arranged in a positional relationship that is symmetrical left and right with the shaft insertion hole 11C of the swash plate support 11 interposed therebetween as shown in FIG. Has been.

かくして、このように構成される第4の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル51,52を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第4の実施の形態では、軸受メタル51,52の各接合部51A,52Aを斜板12の傾転方向に対して斜めに傾いた方向に延ばして形成することができる。   Thus, also in the fourth embodiment configured as described above, the bearing metals 51 and 52 can be joined to the tilting support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the fourth embodiment, the joint portions 51A and 52A of the bearing metals 51 and 52 can be formed to extend in a direction inclined obliquely with respect to the inclination direction of the swash plate 12.

これによって、斜板12の傾転動作に伴って軸受メタル51,52に働く剥離力、即ち傾転支持面11A,11Bから軸受メタル51,52を剥離させるような力を考慮して、各接合部51A,52Aが延びる傾斜方向を適宜に選択することができる。この結果、傾転支持面11A,11Bから軸受メタル51,52が剥離したりするのを、各接合部51A,52Aの形状等を選択することにより抑えることができ、軸受メタル51,52としての耐久性、寿命、信頼性を向上することができる。   Accordingly, the peeling force acting on the bearing metals 51 and 52 accompanying the tilting operation of the swash plate 12, that is, the force for peeling the bearing metals 51 and 52 from the tilting support surfaces 11A and 11B is taken into consideration. The inclination direction in which the portions 51A and 52A extend can be appropriately selected. As a result, the bearing metal 51, 52 can be prevented from peeling off from the tilt support surfaces 11A, 11B by selecting the shape or the like of each joint 51A, 52A. Durability, life, and reliability can be improved.

次に、図17および図18は本発明の第5の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する接合部を、斜板の傾転方向と平行な方向に延ばして形成する構成としたことにある。なお、第5の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 17 and FIG. 18 show a fifth embodiment of the present invention. The feature of this embodiment is that the joint formed on the bearing member is extended in a direction parallel to the tilting direction of the swash plate. The configuration is to be formed. Note that in the fifth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図中、61,62は第5の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル61,62は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル61,62は、後述の接合部61A,62Aが斜板12の傾転方向と平行な方向に延びて形成されている点で、第1の実施の形態とは異なっている。   In the figure, 61 and 62 are bearing metals as bearing members employed in the fifth embodiment, and the bearing metals 61 and 62 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 61 and 62 in this case are different from the first embodiment in that joints 61A and 62A described later are formed extending in a direction parallel to the tilting direction of the swash plate 12. ing.

即ち、一方の軸受メタル61には、摩擦撹拌接合用の工具(図示せず)により1本の接合部61Aが、斜板12の傾転方向(即ち、傾転支持面11Aに沿った方向)に細長く延びて形成されている。また、1本の接合部61Aの周囲には、斜板支持体11の傾転支持面11Aに対して接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部61Bが形成されている。   That is, on one bearing metal 61, one joint 61A is tilted by a tool for friction stir welding (not shown), and the tilt direction of the swash plate 12 (that is, the direction along the tilt support surface 11A). It is elongated and formed. Further, there is a non-bonding covering portion 61B that covers the tilt support surface 11A in a surface contact state from the outside without being bonded to the tilt support surface 11A of the swash plate support 11 around one joint portion 61A. Is formed.

また、他方の軸受メタル62には、2本の接合部62Aが斜板12の傾転方向と平行に、かつ同方向に位置をずらして形成されている。また、各接合部62Aの周囲には、斜板支持体11の傾転支持面11Bに対して接合されることなく傾転支持面11Bを外側から面接触状態で覆う非接合被覆部62Bが形成されている。   Further, the other bearing metal 62 is formed with two joint portions 62 </ b> A parallel to the tilting direction of the swash plate 12 and shifted in the same direction. Further, a non-bonding covering portion 62B that covers the tilt support surface 11B from the outside in a surface contact state without being bonded to the tilt support surface 11B of the swash plate support 11 is formed around each joint portion 62A. Has been.

かくして、このように構成される第5の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル61,62を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第5の実施の形態では、軸受メタル61,62の接合部61A,62Aを斜板12の傾転方向と平行な方向に延ばして形成することができる。   Thus, also in the fifth embodiment configured as described above, the bearing metals 61 and 62 can be joined to the tilt support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the fifth embodiment, the joint portions 61A and 62A of the bearing metals 61 and 62 can be formed to extend in a direction parallel to the tilting direction of the swash plate 12.

これによって、斜板12の脚部12A,12Bを接合部61A,62Aの伸長方向で傾転駆動することができ、このときの傾転動作を滑らかに行うことができる。この結果、傾転支持面11A,11Bから軸受メタル61,62が剥離したりするのを、各接合部61A,62Aの形状等を選択することにより抑えることができ、軸受メタル61,62としての耐久性、寿命、信頼性を向上することができる。   Accordingly, the leg portions 12A and 12B of the swash plate 12 can be tilted in the extending direction of the joint portions 61A and 62A, and the tilting operation at this time can be performed smoothly. As a result, the separation of the bearing metals 61 and 62 from the tilt support surfaces 11A and 11B can be suppressed by selecting the shape of each joint 61A and 62A. Durability, life, and reliability can be improved.

なお、前記第5の実施の形態で述べた軸受メタル61,62についても、前述した第1の実施の形態の変更と同様に、例えば接合部62Aを有する軸受メタル62を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、接合部61Aを有する軸受メタル61を設ける構成としてもよい。   For the bearing metals 61 and 62 described in the fifth embodiment, for example, the bearing metal 62 having the joint 62A is replaced with the swash plate support 11 in the same manner as the change in the first embodiment described above. It is good also as a structure which provides the bearing metal 61 which has 61 A of junction parts in the one inclination support surface 11A side and the other inclination support surface 11B side.

次に、図19は本発明の第6の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する接合部を、斜板の傾転方向に対して垂直な方向に延ばして形成する構成としたことにある。なお、第6の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 19 shows a sixth embodiment of the present invention. The feature of this embodiment is that a joint formed on the bearing member is extended in a direction perpendicular to the tilting direction of the swash plate. The configuration is to be formed. Note that in the sixth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof are omitted.

図中、71,72は第6の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル71,72は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル71,72は、後述の各接合部71A,72Aが斜板12の傾転方向と垂直な方向に延びる長円形状に形成されている点で、第1の実施の形態とは異なっている。   In the figure, reference numerals 71 and 72 denote bearing metals as bearing members employed in the sixth embodiment. The bearing metals 71 and 72 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 71 and 72 in this case are the first embodiment in that each of the joints 71A and 72A described later is formed in an oval shape extending in a direction perpendicular to the tilting direction of the swash plate 12. It is different from the form.

即ち、一方の軸受メタル71には、摩擦撹拌接合用の工具(図示せず)により3本の接合部71Aが、斜板12の傾転方向(即ち、傾転支持面11Aに沿った方向)と垂直な方向に細長く延びて形成され、各接合部71Aは、傾転支持面11Aに沿った方向で互いに間隔をもって配置されている。また、各接合部71Aの周囲には、斜板支持体11の傾転支持面11Aに対して接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部71Bが形成されている。   That is, on one bearing metal 71, three joints 71A are tilted by a tool for friction stir welding (not shown), and the tilt direction of the swash plate 12 (that is, the direction along the tilt support surface 11A). The joining portions 71A are arranged at intervals in the direction along the tilt support surface 11A. Further, a non-bonding covering portion 71B that covers the tilt support surface 11A from the outside in a surface contact state without being bonded to the tilt support surface 11A of the swash plate support 11 is formed around each joint portion 71A. Has been.

また、他方の軸受メタル72には、斜板12の傾転方向と垂直な方向に細長く延びる複数(例えば、合計4本)の接合部72Aが形成され、該各接合部72Aも斜板12の傾転方向に互いに離間して配置されている。また、各接合部72Aの周囲には、斜板支持体11の傾転支持面11Bに対して接合されることなく傾転支持面11Bを外側から面接触状態で覆う非接合被覆部72Bが形成されている。   The other bearing metal 72 is formed with a plurality of (for example, a total of four) joints 72A that are elongated in a direction perpendicular to the tilting direction of the swash plate 12, and each of the joints 72A is also formed of the swash plate 12. They are spaced apart from each other in the tilt direction. Further, a non-bonding covering portion 72B that covers the tilt support surface 11B from the outside in a surface contact state without being bonded to the tilt support surface 11B of the swash plate support 11 is formed around each joint portion 72A. Has been.

かくして、このように構成される第6の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル71,72を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第6の実施の形態では、軸受メタル71,72の接合部71A,72Aを斜板12の傾転方向と垂直な方向に延ばして形成することができる。   Thus, also in the sixth embodiment configured as described above, the bearing metals 71 and 72 can be joined to the tilting support surfaces 11A and 11B of the swash plate support 11 by using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the sixth embodiment, the joint portions 71A, 72A of the bearing metals 71, 72 can be formed to extend in a direction perpendicular to the tilting direction of the swash plate 12.

なお、前記第6の実施の形態で述べた軸受メタル71,72についても、前述した第1の実施の形態の変更と同様に、例えば接合部72Aを有する軸受メタル72を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、接合部71Aを有する軸受メタル71を設ける構成としてもよい。   For the bearing metals 71 and 72 described in the sixth embodiment, for example, the bearing metal 72 having the joining portion 72A is replaced with the swash plate support 11 in the same manner as the modification of the first embodiment described above. It is good also as a structure which provides the bearing metal 71 which has 71 A of joining parts in the one inclination support surface 11A side and the other inclination support surface 11B side.

次に、図20は本発明の第7の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する複数個の接合部を、例えば円形のスポット状に形成する構成としたことにある。なお、第7の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 20 shows a seventh embodiment of the present invention. The feature of this embodiment is that a plurality of joints formed on the bearing member are formed in a circular spot shape, for example. It is in. Note that in the seventh embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof are omitted.

図中、81,82は第7の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル81,82は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル81,82は、後述の各接合部81A,81B,82Aが円形のスポット状をなして形成されている点で、第1の実施の形態とは異なっている。   In the figure, reference numerals 81 and 82 denote bearing metals as bearing members adopted in the seventh embodiment, and the bearing metals 81 and 82 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 81 and 82 in this case are different from those of the first embodiment in that joints 81A, 81B, and 82A described later are formed in a circular spot shape.

即ち、一方の軸受メタル81には、摩擦撹拌接合用の工具(図示せず)により合計4個の接合部81Aと合計4個の接合部81Bとが、それぞれ斜板12の傾転方向(即ち、傾転支持面11Aに沿った方向)で一列に並べて、かつ互いに間隔をもって配置され、各接合部81Aと各接合部81Bとは、斜板12の傾転方向と垂直な方向で互いに離間して配置されている。   That is, a total of four joints 81A and a total of four joints 81B are provided on one bearing metal 81 by a friction stir welding tool (not shown). In the direction along the tilting support surface 11A) and arranged with a space between each other, and each joint 81A and each joint 81B are separated from each other in a direction perpendicular to the tilting direction of the swash plate 12. Are arranged.

ここで、各接合部81Aと各接合部81Bとは、互いに異なった径寸法で円形状に形成され、全体としてはスポット状に配置されている。また、各接合部81A,81Bの周囲には、斜板支持体11の傾転支持面11Aに対して接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部81Cが形成されている。   Here, each joining part 81A and each joining part 81B are formed in a circular shape with mutually different diameter dimensions, and are arranged in a spot shape as a whole. Further, there is a non-joining covering portion 81C that covers the tilt support surface 11A in a surface contact state from the outside without being bonded to the tilt support surface 11A of the swash plate support 11 around each of the joint portions 81A and 81B. Is formed.

また、他方の軸受メタル82には、斜板12の傾転方向と垂直な方向に並べた複数個(例えば、合計3個)で1組の接合部82Aが形成され、これらの1組の各接合部82Aは、斜板12の傾転方向で複数組(例えば、4組)互いに間隔をもって配置されている。また、各接合部82Aの周囲には、斜板支持体11の傾転支持面11Bに対して接合されることなく傾転支持面11Bを外側から面接触状態で覆う非接合被覆部82Bが形成されている。   The other bearing metal 82 has a plurality of (for example, a total of three) joint portions 82A arranged in a direction perpendicular to the tilting direction of the swash plate 12, and each of the one set of these sets. A plurality of sets (for example, four sets) of the joint portions 82A are arranged at intervals in the tilting direction of the swash plate 12. In addition, a non-bonding covering portion 82B that covers the tilt support surface 11B in a surface contact state from the outside without being bonded to the tilt support surface 11B of the swash plate support 11 is formed around each joint portion 82A. Has been.

かくして、このように構成される第7の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル81,82を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第7の実施の形態では、一方の軸受メタル81にそれぞれ複数の接合部81A,81Bを互いに間隔をもってスポット状に配置して形成することができ、他方の軸受メタル82にも、複数の列をなした各接合部82Aを互いに間隔をもってスポット状に配置して形成することができる。   Thus, also in the seventh embodiment configured as described above, the bearing metals 81 and 82 can be joined to the tilting support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the seventh embodiment, a plurality of joints 81A and 81B can be formed on one bearing metal 81 in a spot shape with a space between each other, and the other bearing metal 82 can also be formed with a plurality of joints. It is possible to form the joining portions 82A in a row by arranging them in a spot shape at intervals.

なお、前記第7の実施の形態で述べた軸受メタル81,82についても、前述した第1の実施の形態の変更と同様に、例えば接合部82Aを有する軸受メタル82を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、接合部81A,81Bを有する軸受メタル81を設ける構成としてもよい。   For the bearing metals 81 and 82 described in the seventh embodiment, for example, the bearing metal 82 having the joining portion 82A is replaced with the swash plate support 11 in the same manner as the change in the first embodiment described above. It is good also as a structure which provides in the one inclination support surface 11A side, and provides the bearing metal 81 which has joining part 81A, 81B in the other inclination support surface 11B side.

次に、図21は本発明の第8の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する接合部を、例えば四角形の枠形状をなして形成する構成としたことにある。なお、第8の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 21 shows an eighth embodiment of the present invention. The feature of this embodiment is that the joint portion formed on the bearing member is formed in a rectangular frame shape, for example. is there. In the eighth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図中、91,92は第8の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル91,92は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル91,92は、後述の各接合部91A,92A等が四角形の枠形状をなして形成されている点で、第1の実施の形態とは異なっている。   In the figure, 91 and 92 are bearing metals as bearing members employed in the eighth embodiment, and the bearing metals 91 and 92 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 91 and 92 in this case are different from those of the first embodiment in that joints 91A and 92A, which will be described later, are formed in a rectangular frame shape.

即ち、一方の軸受メタル91には、摩擦撹拌接合用の工具(図示せず)により四角形の枠形状をなす接合部91Aと、該接合部91Aの内側に位置して斜板12の傾転方向と垂直に延びた細幅な合計2本の接合部91Bと、該各接合部91Bの間に位置して円形のスポット形状をなす1個の接合部91Cとが形成されている。また、接合部91Aの内側と外側には、各接合部91B,91Cの周囲に位置して斜板支持体11の傾転支持面11Aに接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部91Dが形成されている。   That is, on one bearing metal 91, a joining portion 91A having a rectangular frame shape by a friction stir welding tool (not shown), and a tilting direction of the swash plate 12 located inside the joining portion 91A are provided. A total of two joining portions 91B extending vertically and one joining portion 91C having a circular spot shape located between the joining portions 91B are formed. Further, on the inner side and the outer side of the joint portion 91A, the tilt support surface 11A is faced from the outside without being joined to the tilt support surface 11A of the swash plate support 11 located around the joint portions 91B and 91C. A non-bonding covering portion 91D that covers the contact state is formed.

また、他方の軸受メタル92には、四角形の枠形状をなす接合部92Aと、該接合部92Aの内側に位置して斜板12の傾転方向と垂直に延びた細幅な合計3本の接合部92Bとが形成されている。また、接合部92Aの内側と外側には、各接合部92Bの周囲に位置して斜板支持体11の傾転支持面11Bに接合されることなく傾転支持面11Bを外側から面接触状態で覆う非接合被覆部92Cが形成されている。   Further, the other bearing metal 92 includes a joint portion 92A having a quadrangular frame shape, and a total of three narrow portions located inside the joint portion 92A and extending perpendicularly to the tilting direction of the swash plate 12. A junction 92B is formed. Further, on the inner side and the outer side of the joint portion 92A, the tilt support surface 11B is in surface contact from the outside without being joined to the tilt support surface 11B of the swash plate support 11 located around each joint portion 92B. A non-bonding covering portion 92C that is covered with is formed.

かくして、このように構成される第8の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル91,92を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。特に、第8の実施の形態では、一方の軸受メタル91に、四角形の枠形状をなす接合部91Aと、該接合部91Aの内側に位置して斜板12の傾転方向と垂直に延びた細幅な接合部91Bと、小さな円形のスポット形状をなす接合部91Cとを形成することができる。   Thus, also in the eighth embodiment configured as described above, the bearing metals 91 and 92 can be joined to the tilt support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment. In particular, in the eighth embodiment, one bearing metal 91 has a rectangular frame-shaped joint portion 91A, and is positioned inside the joint portion 91A and extends perpendicular to the tilting direction of the swash plate 12. A narrow joint portion 91B and a joint portion 91C having a small circular spot shape can be formed.

また、他方の軸受メタル92にも、四角形の枠形状をなす接合部92Aと、該接合部92Aの内側に位置して斜板12の傾転方向と垂直に延びた細幅な接合部92Bとを容易に形成することができる。これにより、斜板12の脚部12A,12Bを接合部91A,92Aの伸長方向で傾転駆動することができ、このときの傾転動作を滑らかに行うことができる。また、傾転支持面11A,11Bから軸受メタル91,92が剥離したりするのを、各接合部の形状等を選択することにより抑えることができ、軸受メタル91,92としての耐久性、寿命、信頼性を向上することができる。   Also, the other bearing metal 92 includes a joint portion 92A having a quadrangular frame shape, and a narrow joint portion 92B located inside the joint portion 92A and extending perpendicularly to the tilting direction of the swash plate 12. Can be easily formed. Accordingly, the leg portions 12A and 12B of the swash plate 12 can be tilted in the extending direction of the joint portions 91A and 92A, and the tilting operation at this time can be performed smoothly. Further, the bearing metals 91 and 92 can be prevented from peeling off from the tilting support surfaces 11A and 11B by selecting the shape of each joint, and the durability and life of the bearing metals 91 and 92 can be suppressed. , Reliability can be improved.

なお、前記第8の実施の形態で述べた軸受メタル91,92についても、前述した第1の実施の形態の変更と同様に、例えば接合部92A,92Bを有する軸受メタル92を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、接合部91A,91B,91Cを有する軸受メタル91を設ける構成としてもよい。   Note that, for the bearing metals 91 and 92 described in the eighth embodiment, for example, the bearing metal 92 having the joint portions 92A and 92B is replaced with the swash plate support, similarly to the modification of the first embodiment described above. 11 may be provided on one tilt support surface 11A side, and a bearing metal 91 having joints 91A, 91B, 91C may be provided on the other tilt support surface 11B side.

次に、図22ないし図24は本発明の第9の実施の形態を示し、本実施の形態の特徴は、軸受部材に形成する接合部によって導油通路の開口側を外側から取囲む構成としたことにある。なお、第9の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 22 to FIG. 24 show a ninth embodiment of the present invention. The feature of this embodiment is that the opening side of the oil guide passage is surrounded from the outside by a joint formed on the bearing member. It is to have done. Note that, in the ninth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図中、101,102は第9の実施の形態で採用した軸受部材としての軸受メタルで、該軸受メタル101,102は、第1の実施の形態で述べた軸受メタル14,15とほぼ同様に構成されている。しかし、この場合の軸受メタル101,102は、後述する接合部101A,101B,102A,102B等の形状が前記第1の実施の形態とは相違している。   In the figure, reference numerals 101 and 102 denote bearing metals as bearing members employed in the ninth embodiment. The bearing metals 101 and 102 are substantially the same as the bearing metals 14 and 15 described in the first embodiment. It is configured. However, the bearing metals 101 and 102 in this case are different from the first embodiment in the shapes of joints 101A, 101B, 102A, and 102B described later.

即ち、一方の軸受メタル101には、摩擦撹拌接合用の工具(図示せず)により斜板12の傾転方向と平行な方向に延びた細幅な合計2本の接合部101Aと、該各接合部101A間の中間位置に配置され後述の連通孔103Bを外側から取囲む小径な円筒状の接合部101Bとが形成されている。また、各接合部101A,101Bの周囲には、斜板支持体11の傾転支持面11Aに接合されることなく傾転支持面11Aを外側から面接触状態で覆う非接合被覆部101Cが形成されている。   That is, one bearing metal 101 has two thin joint portions 101A extending in a direction parallel to the tilting direction of the swash plate 12 by a friction stir welding tool (not shown), A small-diameter cylindrical joint portion 101B that is disposed at an intermediate position between the joint portions 101A and surrounds a communication hole 103B described later from the outside is formed. Further, a non-bonding covering portion 101C that covers the tilt support surface 11A from the outside in a surface contact state without being bonded to the tilt support surface 11A of the swash plate support 11 is formed around each of the joint portions 101A and 101B. Has been.

また、他方の軸受メタル102には、四角形の枠形状をなす接合部102Aと、該接合部102Aの内側に位置して斜板12の傾転方向と垂直に延びた細幅な合計3本の接合部102Bとが形成されている。また、接合部102Aの内側と外側には、各接合部102Bの周囲に位置して斜板支持体11の傾転支持面11Bに接合されることなく傾転支持面11Bを外側から面接触状態で覆う非接合被覆部102Cが形成されている。   Further, the other bearing metal 102 includes a joint portion 102A having a rectangular frame shape, and a total of three narrow portions located inside the joint portion 102A and extending perpendicularly to the tilting direction of the swash plate 12. A junction 102B is formed. Further, on the inner side and the outer side of the joint portion 102A, the tilt support surface 11B is in surface contact from the outside without being joined to the tilt support surface 11B of the swash plate support 11 located around each joint portion 102B. A non-bonding covering portion 102 </ b> C covered with is formed.

103,104は斜板支持体11に形成した導油通路で、該導油通路103,104は、第1の実施の形態で述べた第2の導油通路20(図5中に二点鎖線で図示)とほぼ同様に形成され、その基端側が第1の導油通路19(図1参照)の先端側に連通する接続端103A,104Aとなっている。なお、導油通路103,104は、例えば接続端103A,104A間を1本の通路で互いに連通させる構成としてもよく、互いに別々に第1の導油通路19に接続する構成であってもよい。   103 and 104 are oil guide passages formed in the swash plate support 11, and the oil guide passages 103 and 104 are the second oil guide passages 20 described in the first embodiment (two-dot chain lines in FIG. 5). The base end side of the first oil guide passage 19 (see FIG. 1) serves as connection ends 103A and 104A. Note that the oil guide passages 103 and 104 may be configured such that, for example, the connection ends 103A and 104A communicate with each other through a single passage, or may be configured to be connected to the first oil guide passage 19 separately. .

また、導油通路103の先端側は、図23に示すように軸受メタル101の表面に開口するように、軸受メタル101に形成された連通孔103Bとなっている。この連通孔103Bは、図22に示す如く軸受メタル101の接合部101Bにより周囲が取囲まれている。このため、導油通路103内を流れる圧油(潤滑油)が、斜板支持体11の傾転支持面11Aと軸受メタル101の非接合被覆部101Cとの間の重合せ面(接触面)から漏洩するのを、小径な筒状の接合部101Bにより阻止できるものである。   Further, the leading end side of the oil guide passage 103 is a communication hole 103B formed in the bearing metal 101 so as to open on the surface of the bearing metal 101 as shown in FIG. The communication hole 103B is surrounded by a joint 101B of the bearing metal 101 as shown in FIG. For this reason, the pressure oil (lubricating oil) flowing in the oil guide passage 103 is a superposed surface (contact surface) between the tilt support surface 11A of the swash plate support 11 and the non-bonding covering portion 101C of the bearing metal 101. Can be prevented by a small-diameter cylindrical joint 101B.

一方、導油通路104の先端側は、図24に示すように軸受メタル102の表面に開口するように、軸受メタル102に形成された連通孔104Bとなっている。この連通孔104Bは、図22に示す如く軸受メタル102の接合部102Aと2本の接合部102Bとにより周囲が取囲まれている。このため、導油通路104内を流れる圧油(潤滑油)が、斜板支持体11の傾転支持面11Bと軸受メタル102の非接合被覆部102Cとの間の重合せ面(接触面)から漏洩するのを、接合部102A,102Bとにより阻止できるものである。   On the other hand, the leading end side of the oil guide passage 104 is a communication hole 104B formed in the bearing metal 102 so as to open to the surface of the bearing metal 102 as shown in FIG. As shown in FIG. 22, the communication hole 104B is surrounded by a joint 102A of the bearing metal 102 and two joints 102B. For this reason, the pressure oil (lubricating oil) flowing in the oil guide passage 104 is a superposed surface (contact surface) between the tilt support surface 11B of the swash plate support 11 and the non-bonding coating portion 102C of the bearing metal 102. Can be prevented by the joints 102A and 102B.

かくして、このように構成される第9の実施の形態でも、摩擦撹拌接合手段を用いて軸受メタル101,102を斜板支持体11の傾転支持面11A,11Bに接合することができ、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。   Thus, also in the ninth embodiment configured as described above, the bearing metals 101 and 102 can be joined to the tilting support surfaces 11A and 11B of the swash plate support 11 using the friction stir welding means. It is possible to obtain substantially the same operational effects as those of the first embodiment.

特に、第9の実施の形態では、一方の軸受メタル101に穿設した導油通路103の連通孔103Bを小径な筒状の接合部101Bで取囲むことにより、導油通路103からの潤滑油が傾転支持面11Aと軸受メタル101との間に浸入、漏洩するのを防止できる。また、他方の軸受メタル102側でも、導油通路104の連通孔104Bを接合部102Aと2本の接合部102Bとで外側から取囲むことにより、導油通路104からの潤滑油が傾転支持面11Bと軸受メタル102との間に浸入、漏洩するのを防止できる。   In particular, in the ninth embodiment, the lubricating oil from the oil guide passage 103 is surrounded by surrounding the communication hole 103B of the oil guide passage 103 formed in one bearing metal 101 with a small-diameter cylindrical joint portion 101B. Can be prevented from entering and leaking between the tilting support surface 11A and the bearing metal 101. On the other side of the bearing metal 102, the communication hole 104B of the oil guide passage 104 is surrounded by the joint 102A and the two joints 102B from the outside, so that the lubricating oil from the oil guide passage 104 is tilted and supported. Intrusion and leakage between the surface 11B and the bearing metal 102 can be prevented.

この結果、軸受メタル101,102の非接合被覆部101C,102Cと斜板支持部11の傾転支持面11A,11Bとの間に仮に微小な隙間が形成されたとしても、連通孔103B,104Bの周囲を接合部で取囲むことにより、導油通路103,104からの圧油が前記隙間内に漏洩するのを阻止でき、斜板12の脚部12A,12Bと軸受メタル101,102との間の傾転摺動面に十分な量の圧油(潤滑油)を供給することができる。また、傾転支持面11A,11Bから軸受メタル101,102が剥離したりするのを、各接合部の形状等を選択することにより抑えることができ、軸受メタル101,102としての耐久性、寿命、信頼性を向上することができる。   As a result, even if a minute gap is formed between the non-bonding covering portions 101C and 102C of the bearing metals 101 and 102 and the tilt support surfaces 11A and 11B of the swash plate support portion 11, the communication holes 103B and 104B are formed. Is surrounded by a joint portion, so that the pressure oil from the oil guide passages 103 and 104 can be prevented from leaking into the gap, and the leg portions 12A and 12B of the swash plate 12 and the bearing metals 101 and 102 are A sufficient amount of pressure oil (lubricating oil) can be supplied to the inclined sliding surface. Further, the bearing metal 101, 102 can be prevented from peeling off from the tilt support surfaces 11A, 11B by selecting the shape of each joint, etc., and the durability and life of the bearing metal 101, 102 can be suppressed. , Reliability can be improved.

なお、前記第9の実施の形態で述べた軸受メタル101,102についても、前述した第1の実施の形態の変更と同様に、例えば接合部102A,102Bを有する軸受メタル102を斜板支持体11の一方の傾転支持面11A側に設け、他方の傾転支持面11B側には、接合部101A,101Bを有する軸受メタル101を設ける構成としてもよい。   In the bearing metals 101 and 102 described in the ninth embodiment, for example, the bearing metal 102 having the joint portions 102A and 102B is replaced by a swash plate support, as in the modification of the first embodiment described above. 11 may be provided on the one tilt support surface 11A side and the other tilt support surface 11B side may be provided with a bearing metal 101 having joint portions 101A and 101B.

また、前記第1の実施の形態では、斜板支持体11の傾転支持面11A,11Bに軸受メタル14,15を設ける構成とした場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば高分子系の樹脂材料から帯状体として形成された軸受部材を、斜板支持体11の傾転支持面11A,11Bに対して塑性流動状態で接合する構成としてもよい。そして、この点は、第2〜第9の実施の形態についても同様である。   In the first embodiment, the case where the bearing metals 14 and 15 are provided on the tilt support surfaces 11A and 11B of the swash plate support 11 has been described as an example. However, the present invention is not limited to this, and for example, a bearing member formed as a strip from a polymer resin material is joined to the tilt support surfaces 11A and 11B of the swash plate support 11 in a plastic flow state. It is good also as a structure. This also applies to the second to ninth embodiments.

また、前記第2の実施の形態では、斜板支持体11の傾転支持面11A,11Bと軸受メタル31,32との間にインサートメタル33,34を介挿する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば樹脂材料から帯状体として形成されたインサート部材を斜板支持体11の傾転支持面11A,11Bと軸受メタル31,32との間に介挿して設ける構成としてもよい。なお、前記第1,第3〜第9の実施の形態についても、インサートメタル33,34等のインサート部材を介挿して設ける構成としてもよいものである。   In the second embodiment, the case where the insert metals 33 and 34 are interposed between the tilt support surfaces 11A and 11B of the swash plate support 11 and the bearing metals 31 and 32 will be described as an example. did. However, the present invention is not limited to this. For example, an insert member formed as a strip from a resin material is provided between the tilt support surfaces 11A and 11B of the swash plate support 11 and the bearing metals 31 and 32. It is good also as a structure. The first to third to ninth embodiments may also be configured to be provided with insert members such as the insert metals 33 and 34 interposed therebetween.

また、前記第1,第2,第4〜第9の実施の形態については、前記第3の実施の形態で述べた接合部41A,42Aと周囲の非接合被覆部41B,42Bと同様に、接合部を周囲の非接合被覆部よりも凹状に窪ませて形成する構成としてもよいものである。   As for the first, second, and fourth to ninth embodiments, similarly to the joint portions 41A and 42A and the surrounding non-joining covering portions 41B and 42B described in the third embodiment, It is good also as a structure which forms a junction part indented rather than the surrounding non-joining coating | covering part.

また、前記第1の実施の形態では、ケーシング2に設けられた第1の導油通路19一側をリヤケーシング2C側で高圧側の給排通路3Bに接続する場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば低圧のパイロットポンプを含む他の油圧ポンプに導油通路19の一側を接続し、これらのポンプから供給される圧油により斜板12の傾転摺動面を潤滑する構成としてもよい。この点は、第2〜第9の実施の形態についても同様である。   In the first embodiment, the case where one side of the first oil guide passage 19 provided in the casing 2 is connected to the supply / discharge passage 3B on the high pressure side on the rear casing 2C side is described as an example. . However, the present invention is not limited to this. For example, one side of the oil guide passage 19 is connected to another hydraulic pump including a low-pressure pilot pump, and the swash plate 12 is tilted and slid by the pressure oil supplied from these pumps. It is good also as a structure which lubricates a moving surface. This also applies to the second to ninth embodiments.

さらに、前記各実施の形態では、可変容量型斜板式液圧回転機を斜板式油圧ポンプ1に適用した場合を例に挙げて説明した。しかし、本発明の適用対象は、可変容量型の斜板式油圧ポンプに限るものではなく、例えば斜板式油圧モータ等の可変容量型斜板式液圧回転機に適用してもよいものである。   Further, in each of the above-described embodiments, the case where the variable displacement swash plate type hydraulic rotating machine is applied to the swash plate type hydraulic pump 1 has been described as an example. However, the application target of the present invention is not limited to the variable displacement swash plate hydraulic pump, and may be applied to a variable displacement swash plate hydraulic rotary machine such as a swash plate hydraulic motor.

1 油圧ポンプ(可変容量型斜板式液圧回転機)
2 ケーシング
3A,3B 給排通路
4 回転軸
5 シリンダブロック
6 シリンダ
7 ピストン
8 シュー
10 弁板
11 斜板支持体(斜板支持部)
11A,11B 傾転支持面
12 斜板
12A,12B 脚部
12C 平滑面
12D 貫通穴
14,15,31,32,41,42,51,52,61,62,71,72,81,82,91,92,101,102 軸受メタル(軸受部材)
14A,15A,31A,32A,41A,42A,51A,52A,61A,62A,71A,72A,81A,81B,82A,91A,91B,91C,92A,92B,101A,101B,102A,102B 接合部
14B,15B,31B,32B,41B,42B,51B,52B,61B,62B,71B,72B,81C,82B,91D,92C,101C,102C 非接合被覆部
16 摩擦撹拌接合用の工具
17,18 傾転アクチュエータ
17B,18B 液圧室
17C,18C 傾転ピストン
19 第1の導油通路
20 第2の導油通路
33,34 インサートメタル(インサート部材)
41C,42C 凹部
103,104 導油通路
103B,104B 連通孔
1 Hydraulic pump (variable displacement swash plate type hydraulic rotating machine)
2 Casing 3A, 3B Supply / exhaust passage 4 Rotating shaft 5 Cylinder block 6 Cylinder 7 Piston 8 Shoe 10 Valve plate 11 Swash plate support (swash plate support)
11A, 11B Tilt support surface 12 Swash plate 12A, 12B Leg 12C Smooth surface 12D Through hole 14, 15, 31, 32, 41, 42, 51, 52, 61, 62, 71, 72, 81, 82, 91 , 92, 101, 102 Bearing metal (bearing member)
14A, 15A, 31A, 32A, 41A, 42A, 51A, 52A, 61A, 62A, 71A, 72A, 81A, 81B, 82A, 91A, 91B, 91C, 92A, 92B, 101A, 101B, 102A, 102B Joint 14B , 15B, 31B, 32B, 41B, 42B, 51B, 52B, 61B, 62B, 71B, 72B, 81C, 82B, 91D, 92C, 101C, 102C Non-bonded coating 16 Tool for friction stir welding 17, 18 Tilt Actuator 17B, 18B Hydraulic chamber 17C, 18C Tilt piston 19 First oil guide passage 20 Second oil guide passage 33, 34 Insert metal (insert member)
41C, 42C Concave portion 103, 104 Oil guide passage 103B, 104B Communication hole

Claims (6)

一側に斜板支持部が設けられ他側に一対の給排通路が設けられた筒状のケーシングと、該ケーシングに回転可能に設けられた回転軸と、該回転軸と一体に回転するように前記ケーシング内に設けられ周方向に離間して軸方向に延びる複数のシリンダを有したシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、前記各シリンダから突出する該各ピストンの突出端側に装着された複数のシューと、表面側が該各シューを摺動可能に案内する平滑面となり裏面側が前記斜板支持部に傾転可能に支持される斜板と、前記ケーシングに設けられ外部から傾転制御圧が給排されることにより該斜板を傾転駆動する傾転アクチュエータとを備え、
前記斜板の裏面側には、前記回転軸を挟んで互いに離間し前記斜板支持部に向けて凸湾曲状に突出する一対の脚部を設け、前記斜板支持部には、該一対の脚部に対応して凹湾曲状に形成され該各脚部を介して前記斜板を傾転可能に支持する一対の傾転支持面を設けてなる可変容量型斜板式液圧回転機において、
前記斜板支持部の各傾転支持面のうち少なくとも一方の傾転支持面には、前記斜板の脚部が傾転可能に摺接する面に沿って凹湾曲状に延びた帯状体からなる軸受部材を設け、
該軸受部材は、摩擦撹拌接合用の工具を回転させながら前記斜板支持部の傾転支持面に向けて押圧することにより当該傾転支持面に塑性流動状態で接合する構成としたことを特徴とする可変容量型斜板式液圧回転機。
A cylindrical casing provided with a swash plate support on one side and a pair of supply / exhaust passages on the other side, a rotary shaft rotatably provided on the casing, and a rotary shaft that rotates integrally with the rotary shaft A cylinder block having a plurality of cylinders extending in the axial direction and spaced apart in the circumferential direction, a plurality of pistons removably fitted in the cylinders of the cylinder block, and the cylinders A plurality of shoes mounted on the projecting end side of each piston projecting from the front surface, and a front surface side which is a smooth surface for slidably guiding each shoe, and a rear surface side which is tiltably supported by the swash plate support portion. A plate and a tilt actuator that tilts and drives the swash plate by supplying and discharging a tilt control pressure from outside.
A pair of legs are provided on the rear surface side of the swash plate so as to be spaced apart from each other across the rotation shaft and project in a convex curve toward the swash plate support, and the swash plate support is provided with the pair of legs. In a variable capacity swash plate type hydraulic rotating machine that is provided with a pair of tilt support surfaces that are formed in a concave curved shape corresponding to the leg portions and support the swash plate so as to be tiltable via the leg portions,
At least one tilt support surface of the tilt support surfaces of the swash plate support portion is formed of a belt-like body extending in a concave curve along the surface in which the leg portion of the swash plate is slidably contacted. A bearing member,
The bearing member is configured to be joined to the tilted support surface in a plastic flow state by pressing toward the tilted support surface of the swash plate support portion while rotating the friction stir welding tool. Variable capacity swash plate type hydraulic rotating machine.
前記斜板支持部の傾転支持面と前記軸受部材との間には、両者の間に介在し前記傾転支持面に沿って凹湾曲状に延びる帯状のインサート部材を設け、前記軸受部材は、前記摩擦撹拌接合用の工具を用いて前記インサート部材と一緒に前記傾転支持面に塑性流動状態で接合する構成としてなる請求項1に記載の可変容量型斜板式液圧回転機。   Between the tilt support surface of the swash plate support portion and the bearing member, a belt-like insert member is provided that extends between the two and extends in a concave curve along the tilt support surface. 2. The variable capacity swash plate type hydraulic rotating machine according to claim 1, wherein the friction stir welding tool is used to join the tilt support surface together with the insert member in a plastic flow state. 前記軸受部材には、前記摩擦撹拌接合用の工具により前記傾転支持面に接合された1個または複数個の接合部と、該接合部の周囲に位置し前記傾転支持面に対して接合されることなく前記傾転支持面を外側から覆う非接合被覆部とを設ける構成としてなる請求項1または2に記載の可変容量型斜板式液圧回転機。   The bearing member has one or a plurality of joints joined to the tilt support surface by the friction stir welding tool, and is located around the joint and joined to the tilt support surface. The variable capacity type swash plate type hydraulic rotating machine according to claim 1 or 2, wherein a non-bonding covering portion that covers the tilting support surface from the outside without being provided is provided. 前記軸受部材を前記傾転支持面に摩擦撹拌接合する前記接合部は、前記斜板支持部に対する前記斜板の傾転方向と平行な方向、前記傾転方向に対して垂直な方向または前記傾転方向に対して斜めに傾いた方向に延びる構成としてなる請求項3に記載の可変容量型斜板式液圧回転機。   The joint for friction stir welding the bearing member to the tilt support surface is a direction parallel to the tilt direction of the swash plate relative to the swash plate support, a direction perpendicular to the tilt direction, or the tilt. The variable capacity swash plate type hydraulic rotating machine according to claim 3, wherein the variable capacity swash plate type hydraulic rotating machine is configured to extend in a direction inclined obliquely with respect to the rolling direction. 前記軸受部材の前記接合部は、その周囲に位置する前記非接合被覆部よりも凹状に窪ませて形成する構成としてなる請求項3または4に記載の可変容量型斜板式液圧回転機。   5. The variable capacity swash plate type hydraulic rotating machine according to claim 3, wherein the joint portion of the bearing member is formed so as to be recessed in a concave shape with respect to the non-joining covering portion positioned around the bearing member. 前記ケーシングには前記斜板と前記斜板支持部との間に向けて延び両者の傾転摺動面を潤滑状態に保つための導油通路を設け、前記軸受部材には、前記導油通路に連通し前記斜板との傾転摺動面に開口する連通孔を設け、前記接合部は、該連通孔の開口部周囲を取囲んで形成する構成としてなる請求項3,4または5に記載の可変容量型斜板式液圧回転機。   The casing is provided with an oil guide passage extending between the swash plate and the swash plate support portion to keep the inclined sliding surfaces thereof in a lubricated state, and the bearing member includes the oil guide passage. A communication hole that opens in a tilting sliding surface with the swash plate is provided, and the joint portion is formed so as to surround the periphery of the opening portion of the communication hole. The variable capacity swash plate type hydraulic rotating machine described.
JP2011129171A 2011-06-09 2011-06-09 Variable capacity swash plate type hydraulic rotating machine Active JP5906025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129171A JP5906025B2 (en) 2011-06-09 2011-06-09 Variable capacity swash plate type hydraulic rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129171A JP5906025B2 (en) 2011-06-09 2011-06-09 Variable capacity swash plate type hydraulic rotating machine

Publications (3)

Publication Number Publication Date
JP2012255391A true JP2012255391A (en) 2012-12-27
JP2012255391A5 JP2012255391A5 (en) 2014-07-10
JP5906025B2 JP5906025B2 (en) 2016-04-20

Family

ID=47527169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129171A Active JP5906025B2 (en) 2011-06-09 2011-06-09 Variable capacity swash plate type hydraulic rotating machine

Country Status (1)

Country Link
JP (1) JP5906025B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051866U (en) * 1991-06-28 1993-01-14 株式会社豊田自動織機製作所 Variable displacement piston pump
JP2002106565A (en) * 2000-10-03 2002-04-10 Taiho Kogyo Co Ltd Composite slide plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051866U (en) * 1991-06-28 1993-01-14 株式会社豊田自動織機製作所 Variable displacement piston pump
JP2002106565A (en) * 2000-10-03 2002-04-10 Taiho Kogyo Co Ltd Composite slide plate

Also Published As

Publication number Publication date
JP5906025B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
EP1599674B1 (en) High-efficiency, large angle, variable displacement hydraulic pump/motor
JP5741554B2 (en) Piston type compressor
JP2000170656A (en) Compressor sealing structure and compressor
JP4124716B2 (en) Swash plate type hydraulic pump / motor
JP5906025B2 (en) Variable capacity swash plate type hydraulic rotating machine
KR20020090108A (en) Compressor
JP2003239856A (en) Piston type compressor
JP6495018B2 (en) Variable displacement swash plate hydraulic pump
JP2014145268A (en) Variable displacement swash plate type hydraulic rotary machine
JP4324165B2 (en) Hydrostatic continuously variable transmission
JP7476059B2 (en) Valve plates, cylinder blocks, hydraulic pumps and motors
JP2002256805A (en) Rotary fluid machine
JP5566343B2 (en) Swash plate type hydraulic rotating machine
JP6246582B2 (en) Hydraulic rotating machine
JP3889592B2 (en) Variable capacity swash plate type hydraulic rotating machine
JP2004100599A (en) Variable capacity type swash plate type fluid pressure rotating machine
JP6390655B2 (en) Double-headed swash plate compressor, and fixing method between swash plate and rotating shaft
JP4506211B2 (en) Sliding mechanism
JP2989814B1 (en) Swash plate type hydraulic pump
JP7476060B2 (en) Valve plates, cylinder blocks, hydraulic motors
JP7478700B2 (en) Swash plate type hydraulic rotary machine
JP2020016172A (en) Variable displacement swash plate type hydraulic rotary machine
KR102027178B1 (en) Double-headed swash plate type compressor
JP2013124611A (en) Variable displacement swash plate type hydraulic rotary machine
JP2018155153A (en) Swash type-hydraulic rotary machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160318

R150 Certificate of patent or registration of utility model

Ref document number: 5906025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150