JP2004100599A - Variable capacity type swash plate type fluid pressure rotating machine - Google Patents

Variable capacity type swash plate type fluid pressure rotating machine Download PDF

Info

Publication number
JP2004100599A
JP2004100599A JP2002264429A JP2002264429A JP2004100599A JP 2004100599 A JP2004100599 A JP 2004100599A JP 2002264429 A JP2002264429 A JP 2002264429A JP 2002264429 A JP2002264429 A JP 2002264429A JP 2004100599 A JP2004100599 A JP 2004100599A
Authority
JP
Japan
Prior art keywords
swash plate
support member
plate support
pressure
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002264429A
Other languages
Japanese (ja)
Inventor
Masakazu Takahashi
高橋 正和
Kazumasa Yuasa
湯浅 一正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2002264429A priority Critical patent/JP2004100599A/en
Publication of JP2004100599A publication Critical patent/JP2004100599A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable capacity type swash plate type fluid pressure rotating machine that does not generate any galling between a swash plate and a swash plate support member in a high pressure and can improve durability. <P>SOLUTION: The swash plate 15 is mounted to the swash plate support member 20 fixed to a front bottom section 3A in a casing 3 so that the swash plate 15 can be tilted. Inwardly protruding convex surfaces 15A, 15B in the swash plate 15 slide on recessed curved surfaces 20E, 20F in the swash plate support member 20, and static pressure pockets 18A, 18B are provided on the inwardly protruding convex surfaces 15A, 15B. Then, the recessed curved surfaces 20E, 20F in the swash plate support member 20 are formed where the side of a rotary shaft 5 is recessed toward the front bottom section 3A to form a tilted surface. As a result, even if the center side of the swash plate 15 is deformed toward the swash plate support member 20 in a high pressure, the swash plate 15 is adhered to the swash plate support member 20, the surface pressure between them can be reduced, and a high-pressure pressure oil can reliably be retained in the static pressure pockets 18A, 18B. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば油圧ショベル等の建設機械に搭載される油圧ポンプまたは油圧モータとして好適に用いられる可変容量型斜板式液圧回転機に関する。
【0002】
【従来の技術】
一般に、油圧ショベル等の建設機械には、タンクと共に油圧源を構成する油圧ポンプ、または走行用、旋回用の油圧アクチュエータを構成する油圧モータ等の可変容量型斜板式液圧回転機が設けられている。
【0003】
そして、従来技術による可変容量型斜板式液圧回転機として、ケーシングと、該ケーシング内に回転可能に設けられた回転軸と、軸方向に複数のシリンダが穿設され前記ケーシング内で該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、該各ピストンの突出側の端部に装着されたシューと、前記各ピストンの突出側に位置して前記ケーシング内に配設され表面側が該各シューを摺動可能に案内する摺動面を備えた斜板と、該斜板の裏面側に摺接して前記ケーシングに設けられ該斜板を傾転可能に支持する斜板支持部材と、前記斜板を傾転駆動する傾転アクチュエータとによって構成された斜板式の油圧ポンプが知られている(例えば特開平11−351134号公報等)。
【0004】
このような従来技術による油圧ポンプでは、図9に示すように、斜板101の裏面側に例えば凸湾曲面101A,101Bが形成されると共に、凸湾曲面101A,101B上に圧油が供給される静圧ポケット102A,102Bが凹設されている。また、斜板支持部材103の表面側には凹湾曲面103A,103Bが形成され、凹湾曲面103A,103B上で斜板101の凸湾曲面101A,101Bが摺動変位可能に取付けられる。
【0005】
そして、エンジン等の原動機により回転軸を回転駆動すると、シリンダブロックが回転軸と一体に回転することにより、各ピストンがそれぞれのシリンダ内を往復動し、各ピストンは吸込行程と吐出行程とを順次繰返すことになる。
【0006】
また、ポンプ容量(圧油の吐出量)を変化させる場合には、傾転アクチュエータによって斜板101を傾転駆動し、斜板101の傾転角を変化させる。これにより、各シリンダ内のピストンは、斜板101の傾転角に応じてそのストロークが変化し、ポンプ容量を可変に制御する。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来技術では、油圧ポンプに接続された油圧シリンダ等の負荷が増大したときには、負荷に応じてピストンから高圧の圧油が吐出される。そして、このような高圧時には、図9に示すように吐出行程側に位置する高圧側のピストンから斜板101に押圧力の合力(以下、押圧合力という)Fが作用する。このため、押圧合力Fによって斜板101はその中心側が斜板支持部材103に向かって変形し、斜板101と斜板支持部材102との間には中心側から外縁側に向かって漸次広がった隙間が生じる傾向がある。この結果、斜板101と斜板支持部材103とは中心側でのみ接触するようになるから、これらの間の面圧が上がり、かじり等が生じ易くなるという問題がある。
【0008】
また、斜板101と斜板支持部材103との間には、斜板101を静圧的に浮遊した状態で支持するために圧油が供給される静圧ポケット102A,102Bが設けられている。しかし、上述のように高圧時に斜板101が変形したときには、斜板101と斜板支持部材103との間の隙間から静圧ポケット102A,102B内の圧油が漏れ易くなる。この結果、ポンプの容積効率の低下をきたすだけでなく、静圧ポケット102A,102Bの圧力が低下してしまい、斜板101を浮遊支持できなくなって斜板101の傾転動作が悪くなるという問題もある。
【0009】
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、高圧時に斜板と斜板支持部材との間にかじり等が発生せず、耐久性を向上できるようにした可変容量型斜板式液圧回転機を提供することにある。
【0010】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、中空なケーシングと、該ケーシング内に回転可能に設けられた回転軸と、周方向に離間して軸方向に伸長する複数のシリンダが穿設され前記ケーシング内で該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、該各ピストンの突出側の端部に装着されたシューと、前記各ピストンの突出側に位置して前記ケーシング内に配設され表面側が該各シューを摺動可能に案内する摺動面を備えた斜板と、該斜板の裏面側に位置して前記ケーシングに設けられ表面に該斜板の傾転摺動面を傾転可能に支持する斜板支持面が形成された斜板支持部材と、該斜板支持部材に対して前記斜板を傾転駆動する傾転アクチュエータとからなる可変容量型斜板式液圧回転機に適用される。
【0011】
そして、請求項1の発明が採用する構成の特徴は、前記斜板の傾転摺動面と斜板支持部材の斜板支持面とのうち少なくともいずれか一方の面は、前記ピストンのうち高圧側に位置するピストンの押圧力による前記斜板の変形を補うために前記回転軸から半径方向に向けて傾斜した傾斜面として形成したことにある。
【0012】
このように構成したことにより、高圧時にはピストンの押圧合力によって斜板が変形するものの、斜板の傾転摺動面と斜板支持部材の斜板支持面とのうち少なくともいずれか一方の面は回転軸から半径方向に向けて傾斜した傾斜面をなして形成したから、傾斜面によって斜板の変形を補償することができ、斜板の傾転摺動面と斜板支持部材の斜板支持面とをほぼ全面に亘って摺接させることができる。
【0013】
請求項2の発明は、前記斜板支持部材の表面側には前記回転軸を挟んで凹湾曲面からなる斜板支持面を有する一対の支持脚を設け、該支持脚の凹湾曲面を前記回転軸の軸線に向けてテーパ状に形成したことにある。
【0014】
これにより、斜板支持部材の凹湾曲面に斜板の凸湾曲面を摺接させることによって、斜板を傾転可能に支持することができる。また、斜板支持部材の凹湾曲面をテーパ状に形成したことによって、高圧時の斜板の変形を斜板支持部材の凹湾曲面によって補うことができ、斜板と斜板支持部材との間に形成される隙間をテーパ状をなす斜板支持部材の凹湾曲面によって少なくすることができる。
【0015】
請求項3の発明は、前記斜板と斜板支持部材との間には圧油が供給される静圧ポケットを設けたことにある。
【0016】
この場合、高圧時の斜板の変形によって斜板と斜板支持部材との間に隙間が生じるときには、静圧ポケットから圧油が漏洩して容積効率が低下する傾向がある。しかし、本発明では、斜板の傾転摺動面と斜板支持部材の斜板支持面とのうち少なくともいずれか一方の面は傾斜面として形成したから、高圧時でも傾斜面によって斜板の変形を補償し、斜板と斜板支持部材とを隙間なく摺接させることができる。この結果、ポンプの容積効率の低下を防止できると共に、静圧ポケットの圧力低下を防止して斜板を確実に浮遊支持することができ、斜板を円滑に傾転動作させることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態による可変容量型斜板式液圧回転機を、斜板式油圧ポンプに適用した場合を例に挙げ、添付図面に従って詳細に説明する。
【0018】
まず、図1ないし図7は第1の実施の形態を示し、図において、1は可変容量型の斜板式油圧ポンプで、該油圧ポンプ1は、後述のケーシング2、回転軸5、シリンダブロック8、ピストン10、シュー14、斜板15、斜板支持部材20等によって構成されている。
【0019】
2は斜板式油圧ポンプのケーシングで、該ケーシング2は、一端側がフロント底部3Aとなった段付筒状のケーシング本体3と、該ケーシング本体3の他端側を閉塞するようにケーシング本体3に設けられたリヤケーシング4とにより構成されている。
【0020】
また、ケーシング2のケーシング本体3には、図2に示すようにフロント底部3Aから軸方向に離間した位置にアクチュエータ取付部3Bが設けられ、該アクチュエータ取付部3Bはケーシング本体3の径方向外側へと突出している。そして、アクチュエータ取付部3B内には後述の傾転アクチュエータ22等が設けられている。
【0021】
一方、ケーシング2のリヤケーシング4には、後述の吐出通路12、吸入通路13等が形成され、これらの通路12,13は、後述の弁板11を介してシリンダ9内へと作動油(圧油)を給排させるものである。
【0022】
5はケーシング2内に回転可能に設けられた回転軸で、該回転軸5は、一端(先端)側がケーシング本体3のフロント底部3A内に軸受6を介して回転可能に取付けられ、他端(基端)側はリヤケーシング4に軸受7を介して回転可能に取付けられている。
【0023】
そして、回転軸5の一端側は、ケーシング本体3のフロント底部3Aから外部に突出し、この回転軸5の突出端部に連結された原動機(図示せず)を駆動することにより、回転軸5が軸線O−Oを中心として回転する構成となっている。
【0024】
8はケーシング2内に位置して回転軸5の外周側に設けられたシリンダブロックで、該シリンダブロック8には、周方向に離間して軸方向に延びる複数(通常は奇数個)のシリンダ9,9,…が穿設されている。そして、シリンダブロック8は、回転軸5にスプライン結合され回転軸5と一体に回転するものである。
【0025】
10,10,…はシリンダブロック8の各シリンダ9内に摺動可能に挿嵌されたピストンで、該各ピストン10は、シリンダブロック8の回転によってそれぞれのシリンダ9内を往復動し、後述の弁板11側から各シリンダ9内に作動油を吸込みつつ、これを高圧の圧油として吐出させるものである。
【0026】
この場合、これらのピストン10は、図1に示すように回転軸5の上側となる位置でシリンダ9から大きく突出(伸長)した下死点位置となり、回転軸5の下側となる位置ではシリンダ9内へと後退(縮小)した上死点位置となる。そして、シリンダブロック8が1回転する間に、各ピストン10はシリンダ9内を上死点から下死点に向けて摺動変位する吸入行程と、下死点から上死点に向けて摺動変位する吐出行程とを繰返すことになる。
【0027】
そして、シリンダブロック8の半回転分に相当するピストン10の吸入行程では、後述の吸入通路13側からシリンダ9内に作動油を吸込み、シリンダブロック8の残りの半回転分に相当するピストン10の吐出行程では、ピストン10が各シリンダ9内の油液を高圧の圧油として後述の吐出通路12側から吐出配管(図示せず)側へと吐出させる。
【0028】
11はリヤケーシング4に固定して設けられた弁板で、該弁板11はシリンダブロック8の端面に摺接する切換弁板を構成し、弁板11には、図2に示すように回転軸5の周囲を眉形状をなして延びる高圧側の吐出ポート11Aと低圧側の吸入ポート11Bとが形成されている。
【0029】
12,13はリヤケーシング4にそれぞれ形成された吐出通路,吸入通路で、高圧側の吐出通路12は弁板11の吐出ポート11Aに連通し、低圧側の吸入通路13は吸入ポート11Bに連通している。
【0030】
そして、ケーシング2内で回転軸5を回転駆動すると、シリンダブロック8の回転に伴って各シリンダ9内をピストン10が往復動し、これらのピストン10が吸入通路13側からシリンダ9内に作動油を吸込みつつ、吐出通路12側に圧油を吐出するものである。
【0031】
14,14,…は各ピストン10の突出側端部に揺動可能に設けられたシューで、該各シュー14はピストン10からの押付力(油圧力)で後述する斜板15の摺動面15Cに押圧されることにより、リング状軌跡を描くように摺動面15C上を摺動するものである。
【0032】
15はケーシング本体3のフロント底部3A側に後述の斜板支持部材20を介して設けられた斜板で、該斜板15は、裏面側が斜板支持部材20の凹湾曲面20E,20F上で摺動する傾転摺動面としての凸湾曲面15A,15Bとなり、表面側がシュー14を摺動可能に案内する摺動面15Cとなると共に、その中央部には回転軸5が隙間をもって挿通される軸挿通穴15Dが穿設されている。ここで、斜板15の凸湾曲面15A,15Bは、弁板11の吐出ポート11A、吸入ポート11Bと対応(対向)して左,右に離間して配置されている。
【0033】
また、斜板15の側部には傾転レバー16が一体形成され、該傾転レバー16は、図2に示すように斜板15の側部から後述のサーボピストン23に向けて延設されている。そして、傾転レバー16の先端側には突出ピン16Aが設けられ、該突出ピン16Aは係合板17を介して後述のサーボピストン23に連結されている。
【0034】
そして、斜板15は当該油圧ポンプの容量可変部を構成し、斜板15の凸湾曲面15A,15Bは斜板支持部材20の凹湾曲面20E,20F上に傾転可能に当接されている。これによって斜板15は、後述の傾転アクチュエータ22により図1中の矢示A,B方向に傾転駆動されるものである。
【0035】
18A,18Bは凸湾曲面15A,15Bの表面に凹設された長溝状の静圧ポケットで、該静圧ポケット18A,18Bには、ケーシング本体3等に穿設された高圧導入路19がそれぞれ連通し、該高圧導入路19を通じて当該油圧ポンプの吐出側の圧油が供給されている。これにより、静圧ポケット18A,18Bは、ピストン10の油圧反力を受承し、斜板15を浮遊状態で斜板支持部材18上に支持する。
【0036】
なお、静圧ポケット18A,18Bのうち吐出行程のピストン10の油圧反力を受承する高圧側の静圧ポケット18Aは、吸入行程のピストン10の油圧反力を受承する低圧側の静圧ポケット18Bよりも大きな面積をもって形成されている。
【0037】
20は回転軸5の周囲に位置してケーシング本体3のフロント底部3Aに設けられたクレイドルと呼ばれる斜板支持部材で、該斜板支持部材20は、斜板15をケーシング2内で傾転可能に支持するものである。そして、斜板支持部材20は、フロント底部3Aに取付けられる円板状の取付板20Aと、該取付板20Aの中心部に穿設され回転軸5が挿通される軸挿通穴20Bと、該軸挿通穴20Bを挟んで取付板20Aに設けられ斜板15側に向けて突出した一対の支持脚20C,20Dと、該支持脚20C,20Dの突出端側(表面側)に設けられた斜板支持面としての凹湾曲面20E,20Fとによって大略構成されている。
【0038】
ここで、斜板支持部材20の凹湾曲面20Eは、斜板15の凸湾曲面15Aに比べて回転軸5側(中心側)が外縁側よりも数μm〜数十μm程度の傾斜量δ1だけフロント底部3Aに向けて窪み、回転軸5から半径方向外側に向けて傾斜した傾斜面をなしている。
【0039】
一方、斜板支持部材20の凹湾曲面20Fも、凹湾曲面20Eと同様に斜板15の凸湾曲面15Bに比べて回転軸5側が外縁側よりも数μm〜数十μm程度の傾斜量δ2だけフロント底部3Aに向けて窪み、回転軸5から半径方向外側に向けて傾斜した傾斜面をなしている。
【0040】
そして、凹湾曲面20Eの傾斜量δ1は、油圧ポンプ1を最大吐出圧(最高圧)で駆動したときにピストン10による押圧合力Fによって斜板15が変形したときの凸湾曲面15Aの変形量Δ1よりも小さい値(δ1<Δ1)に設定されている(図5、図9参照)。同様に、凹湾曲面20Fの傾斜量δ2は、油圧ポンプ1を最大吐出圧(最高圧)で駆動したときの凸湾曲面15Bの変形量Δ2よりも小さい値(δ2<Δ2)に設定されている。
【0041】
また、斜板支持部材20の左,右両端側には斜板15の横ずれを防ぐスライド突起21が形成されている。これにより、斜板15は左,右両側からスライド突起21によって挟まれた状態で、その左,右両端側がスライド突起21に摺接している。
【0042】
22はケーシング本体3のアクチュエータ取付部3B内に設けられた傾転アクチュエータで、該傾転アクチュエータ22は、両端が大径,小径のシリンダ穴(図示せず)内に摺動可能に挿嵌された段付のサーボピストン23によって構成され、該サーボピストン23は係合板17を介して傾転レバー16の突出ピン16Aに接続されている。そして、傾転アクチュエータ22は、サーボピストン23を摺動変位させることによって斜板15を矢示A,B方向に傾転駆動する。
【0043】
24は傾転アクチュエータ22に傾転制御圧を給排するレギュレータで、該レギュレータ24は、フィードバックリンク25を介してサーボピストン23に接続されている。そして、フィードバックリンク25がサーボピストン23に追従して変位することによって、レギュレータ24はフィードバック制御される。
【0044】
本実施の形態による斜板式油圧ポンプは上述の如き構成を有するもので、次に、その容量制御動作について説明する。
【0045】
まず、斜板15の傾転角を小さくするときには、レギュレータ24を通じて傾転アクチュエータ22に傾転制御圧を供給し、サーボピストン23を一方側に向けて摺動変位させる。これにより、斜板15は、図1中の矢示A方向に向けて変位し、小傾転側へと駆動される。このとき、レギュレータ24は、サーボピストン23の動きがフィードバックリンク25を介して伝えられることによってフィードバック制御され、斜板15の傾転角が所望の角度となったときに、傾転アクチュエータ22を停止させる。
【0046】
一方、斜板15の傾転角を大きくするときには、レギュレータ24を通じて傾転アクチュエータ22に傾転制御圧を供給し、サーボピストン23を他方側に向けて摺動変位させる。これにより、斜板15は、図1中の矢示B方向に向けて変位し、大傾転側へと駆動される。このときにも、レギュレータ24は、サーボピストン23の動きがフィードバックリンク25を介して伝えられてフィードバック制御され、斜板15の傾転角が所望の角度となったときに、傾転アクチュエータ22を停止させる。
【0047】
然るに、油圧ポンプ1を最大吐出圧で駆動したときには、ピストン10から高圧の圧油が吐出される。このとき、吸入行程のピストン10に比べて吐出行程のピストン10には大きな押圧力が作用するから、各ピストン10による押圧合力Fは、斜板15の中心よりも吐出行程のピストン10が接触する凸湾曲面15A側に位置ずれした部位に集中的に作用する。
【0048】
このため、例えば図9に示した従来技術のように、製造段階において斜板101の凸湾曲面101A,101Bと斜板支持部材103の凹湾曲面103A,103Bとが密着して摺接する構造とした場合には、油圧ポンプを最大吐出圧で駆動したときに、ピストンによる押圧合力Fによって斜板101の中心側が外縁側に比べて斜板支持部材103に向けて変形し、斜板101と斜板支持部材103との間の外縁側(スライド突起104側)には変形量Δ1,Δ2に応じた隙間が生じてしまう。
【0049】
このとき、斜板101と斜板支持部材103との間の隙間をなす斜板101の変形量Δ1,Δ2は、例えば外径が180mmのシリンダブロックに9本のピストンを設け、35MPa(350kgf/cm)の最大吐出圧力としたときに、10μm程度の僅かな値となる。しかし、斜板101と斜板支持部材103との間の静圧ポケット102A,102Bには、ピストンの押圧力に抗して斜板101を静圧的に支持するために、吐出側の高圧の圧油が供給されている。このため、斜板101と斜板支持部材103との間の僅かな隙間であっても静圧ポケット102A,102Bから圧油が漏れてしまう傾向があり、ポンプの容積効率の低下をきたすだけでなく、静圧ポケット102A,102Bの圧力が低下してしまい、斜板101を静圧的に支持ができなくなって斜板101と斜板支持部材103との間でかじり等が発生し易い傾向がある。
【0050】
これに対し、本実施の形態では、斜板支持部材20の凹湾曲面20E,20Fは回転軸5側から外縁側に向けて傾斜した傾斜面として形成したから、油圧ポンプ1が最大吐出圧で駆動してピストン10の押圧合力Fによって斜板15が変形したときでも、傾斜面をなす斜板支持部材20の凹湾曲面20E,20Fによって斜板15の変形量Δ1,Δ2を補償することができ、図6に示すように斜板15の凸湾曲面15A,15Bと斜板支持部材20の凹湾曲面20E,20Fとをほぼ全面に亘って摺接させることができる。
【0051】
この結果、油圧ポンプ1を最大吐出圧で駆動した高圧時であっても、斜板15の凸湾曲面15A,15Bと斜板支持部材20の凹湾曲面20E,20Fとの面圧を下げることができ、かじり等の発生を防止でき、信頼性、耐久性を高めることができる。
【0052】
また、静圧ポケット18A,18B内に確実に圧油を保持することができるから、従来技術に比べて高圧時の容積効率を高めることができると共に、斜板15を確実に浮遊支持することができ、斜板15を円滑に摺動変位させることができる。
【0053】
一方、本実施の形態では、斜板支持部材20の凹湾曲面20E,20Fを傾斜面として形成したから、図7に示すように油圧ポンプ1を最小吐出圧で駆動した低圧時には、斜板15の変形量が小さく、斜板15と斜板支持部材20との間に回転軸5に近付くに従って間隔寸法が広がった隙間が形成されることになる。しかし、低圧時には、高圧側(吐出側)のピストン10による押圧力も小さいから、斜板15の凸湾曲面15A,15Bと斜板支持部材20の凹湾曲面20E,20Fとの面圧が過剰に高くなることはない。また、静圧ポケット18A,18B内の圧力も低いから、圧油の漏洩も少なく、容積効率が極端に低下することはない。
【0054】
また、斜板支持部材20の表面側には回転軸5を挟んで凹湾曲面20E,20Fを有する一対の支持脚20C,20Dを設けたから、斜板支持部材20の凹湾曲面20E,20Fに斜板15の凸湾曲面15A,15Bを摺接させることによって、斜板を傾転可能に支持することができる。また、凹湾曲面20E,20Fを回転軸5から半径方向外側に向けてテーパ状に形成したから、高圧時の斜板15の変形を斜板支持部材20の凹湾曲面20E,20Fによって補うことができ、斜板15と斜板支持部材20との間に形成される隙間をテーパ状をなす凹湾曲面20E,20Fによって少なくすることができる。
【0055】
さらに、本実施の形態では、傾斜面となった凹湾曲面20E,20Fの傾斜量δ1,δ2は油圧ポンプ1が最大吐出圧で駆動したときの凸湾曲面15A,15Bの変形量Δ1,Δ2よりも少ない値に設定したから、従来技術のように凸湾曲面15A,15Bと略平行な凹湾曲面103A,103Bを形成した場合に比べて、高圧時の斜板15と斜板支持部材20との間の隙間を確実に小さくすることができると共に、低圧時の斜板15と斜板支持部材20との間の隙間が不必要に大きくなるのを防ぐことができる。
【0056】
次に、図8は本発明の第2の実施の形態を示し、本実施の形態の特徴は、斜板の傾転摺動面を傾斜面として形成したことにある。なお、本実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0057】
31は本実施の形態による斜板で、該斜板31は、第1の実施の形態による斜板15と同様にケーシング本体3のフロント底部3A側に後述の斜板支持部材35を介して取付けられている。そして、斜板31は、裏面側が斜板支持部材35の凹湾曲面35E,35F上に摺接する傾転摺動面としての凸湾曲面31A,31Bとなり、表面側がシュー14が摺動する平滑面31Cとなると共に、その中央部には回転軸5が隙間をもって挿通される軸挿通穴31Dが穿設されている。また、斜板31の凸湾曲面31A,31Bは左,右に離間して配置されると共に、斜板31の側部にはサーボピストン23に連結される傾転レバー32が一体的に形成されている。
【0058】
ここで、斜板31の凸湾曲面31Aは、斜板支持部材35の凹湾曲面35Eに比べて回転軸5側が外縁側よりも数μm〜数十μm程度の傾斜量δ1だけ斜板支持部材35から離間する方向に向けて窪み、回転軸5から半径方向に向けて傾斜した傾斜面をなしている。一方、斜板31の凸湾曲面31Bも、斜板支持部材35の凹湾曲面35Fに比べて回転軸5側が外縁側よりも数μm〜数十μm程度の傾斜量δ2だけ斜板支持部材35から離間する方向に窪み、回転軸5から半径方向に向けて傾斜した傾斜面をなしている。
【0059】
そして、凸湾曲面31A,31Bの傾斜量δ1,δ2は、高圧時のピストン10の押圧合力Fによって斜板31の凸湾曲面31A,31Bが斜板支持部材35側に向けて変形したときの変形量Δ1,Δ2(図9参照)よりも小さい値に設定されている。
【0060】
33A,33Bは凸湾曲面31A,31Bの表面に凹設された長溝状の静圧ポケットで、該静圧ポケット33A,33Bには、後述の斜板支持部材35等に穿設された高圧導入路34がそれぞれ連通し、該高圧導入路34を通じて当該油圧ポンプの吐出側の圧油が供給されている。
【0061】
35は回転軸5の周囲に位置してケーシング本体3のフロント底部3Aに設けられた斜板支持部材で、該斜板支持部材35は、フロント底部3Aに取付けられる円板状の取付板35Aと、該取付板35Aの中心部に穿設され回転軸5が挿通される軸挿通穴35Bと、該軸挿通穴35Bを挟んで取付板35Aに設けられ斜板31側に向けて突出した一対の支持脚35C,35Dと、該支持脚35C,35Dの突出端側(表面側)に設けられた斜板支持面としての凹湾曲面35E,35Fとによって大略構成されている。
【0062】
さらに、斜板支持部材35の左,右両端側には斜板31の横ずれを防ぐスライド突起36が形成されている。これにより、斜板31は左,右両側からスライド突起36によって挟まれた状態で、その左,右両端側がスライド突起36に摺接している。
【0063】
かくして、このように構成される本実施の形態でも、前述した第1の実施の形態とほぼ同様の作用効果を得ることができ、油圧ポンプ1が最大吐出圧で駆動してピストン10の押圧合力Fによって斜板31が変形したときでも、傾斜面をなす斜板31の凸湾曲面31A,31Bによって斜板31の変形を補償することができ、斜板31の凸湾曲面31A,31Bと斜板支持部材35の凹湾曲面35E,35Fとをほぼ全面に亘って摺接させることができる。
【0064】
なお、前記第1の実施の形態では斜板支持部材20の凹湾曲面20E,20Fを傾斜面とし、第2の実施の形態では斜板31の凸湾曲面31A,31Bを傾斜面とする構成とした。しかし、本発明はこれに限らず、例えば斜板の傾転摺動面と斜板支持部材の斜板支持面の両方を傾斜面としてもよい。
【0065】
また、前記各実施の形態では、高圧側の凹湾曲面20E、凸湾曲面31Aと低圧側の凹湾曲面20F、凸湾曲面31Bとの両方の面をテーパ形状に形成するものとした。しかし、本発明はこれに限らず、押圧合力が作用したときに低圧側の凸湾曲面に比べて高圧側の凸湾曲面が主に変形する場合には、高圧側の凹湾曲面、凸湾曲面だけをテーパ形状に形成してもよい。
【0066】
また、前記各実施の形態では、斜板支持部材20,35をケーシング本体3とは別部材として形成する構成としたが、例えばケーシング本体のフロント底部に斜板支持部材を一体形成する構成としてもよい。
【0067】
さらに、前記各実施の形態では、可変容量型斜板式液圧回転機として斜板式油圧ポンプを用いた場合を例に挙げて説明したが、本発明はこれに限るものではなく、例えば可変容量型の斜板式油圧モータに適用してもよいものである。
【0068】
【発明の効果】
以上詳述した如く、請求項1に記載の発明によれば、斜板の傾転摺動面と斜板支持部材の斜板支持面とのうち少なくともいずれか一方の面は回転軸から半径方向に向けて傾斜した傾斜面として形成したから、高圧時のピストンの押圧合力によって斜板が変形したときでも、傾斜面によって斜板の変形を補償することができ、斜板の傾転摺動面と斜板支持部材の斜板支持面とをほぼ全面に亘って摺接させることができる。この結果、高圧時であっても、斜板と斜板支持部材との間の面圧を下げることができ、かじり等の発生を防止でき、信頼性、耐久性を高めることができる。
【0069】
請求項2の発明によれば、斜板支持部材の表面側には回転軸を挟んで凹湾曲面からなる斜板支持面を有する一対の支持脚を設け、該支持脚の凹湾曲面を回転軸の軸線に向けてテーパ状に形成したから、高圧時の斜板の変形を斜板支持部材の凹湾曲面によって補うことができ、斜板と斜板支持部材との間に形成される隙間をテーパ状をなす斜板支持部材の凹湾曲面によって少なくすることができる。
【0070】
請求項3の発明によれば、斜板と斜板支持部材との間には圧油が供給される静圧ポケットを設けたから、高圧時に斜板が変形したときであっても、傾斜面によって変形を補償して静圧ポケット内に確実に圧油を保持することができる。このため、高圧時の容積効率を高めることができると共に、斜板を確実に浮遊支持することができ、斜板を円滑に摺動変位させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による可変容量型の斜板式油圧ポンプを示す縦断面図である。
【図2】油圧ポンプを図1中の矢示II−II方向からみた断面図である。
【図3】図1中の斜板を単体で示す斜視図である。
【図4】図1中の斜板支持部材を単体で示す斜視図である。
【図5】斜板支持部材を図4中の矢示V−V方向からみた断面図である。
【図6】高圧時の斜板と斜板支持部材とを示す図5と同様位置の断面図である。
【図7】低圧時の斜板と斜板支持部材とを示す図5と同様位置の断面図である。
【図8】第2の実施の形態による斜板と斜板支持部材とを低圧時の状態で示す図5と同様位置の断面図である。
【図9】従来技術による斜板と斜板支持部材とを高圧時の状態で示す断面図である。
【符号の説明】
1 油圧ポンプ
2 ケーシング
5 回転軸
8 シリンダブロック
9 シリンダ
10 ピストン
14 シュー
15,31 斜板
20,35 斜板支持部材
15A,15B,31A,31B 凸湾曲面(傾転摺動面)
20E,20F,35E,35F 凹湾曲面(斜板支持面)
22 傾転アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a variable displacement swash plate type hydraulic rotary machine preferably used as a hydraulic pump or a hydraulic motor mounted on a construction machine such as a hydraulic shovel.
[0002]
[Prior art]
Generally, a construction machine such as a hydraulic shovel is provided with a variable displacement type swash plate type hydraulic rotary machine such as a hydraulic pump which forms a hydraulic source together with a tank, or a hydraulic motor which forms a hydraulic actuator for traveling and turning. I have.
[0003]
As a conventional variable capacity swash plate type hydraulic rotating machine, a casing, a rotating shaft rotatably provided in the casing, and a plurality of cylinders are bored in the axial direction, and the rotating shaft is provided in the casing. A cylinder block that rotates integrally with the cylinder block, a plurality of pistons reciprocally inserted into each cylinder of the cylinder block, a shoe attached to a protruding end of each piston, A swash plate, which is disposed in the casing at the projecting side and has a sliding surface whose front surface side slidably guides each shoe, and is provided on the casing in sliding contact with the back surface side of the swash plate. A swash plate type hydraulic pump including a swash plate support member that supports the swash plate so as to be tiltable and a tilt actuator that tilts and drives the swash plate is known (for example, Japanese Patent Application Laid-Open No. H11-351134). Broadcast, etc.).
[0004]
In such a conventional hydraulic pump, as shown in FIG. 9, for example, convex curved surfaces 101A and 101B are formed on the back surface side of the swash plate 101, and pressure oil is supplied onto the convex curved surfaces 101A and 101B. Static pressure pockets 102A and 102B are recessed. Concave curved surfaces 103A and 103B are formed on the front surface side of the swash plate support member 103, and the convex curved surfaces 101A and 101B of the swash plate 101 are slidably mounted on the concave curved surfaces 103A and 103B.
[0005]
Then, when the rotating shaft is driven to rotate by a motor such as an engine, the cylinder block rotates integrally with the rotating shaft, so that each piston reciprocates in each cylinder, and each piston sequentially performs a suction stroke and a discharge stroke. It will be repeated.
[0006]
When the pump capacity (pressure oil discharge amount) is changed, the tilt actuator drives the swash plate 101 to tilt, thereby changing the tilt angle of the swash plate 101. Thereby, the stroke of the piston in each cylinder changes according to the tilt angle of the swash plate 101, and the pump displacement is controlled variably.
[0007]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional technology, when the load of the hydraulic cylinder or the like connected to the hydraulic pump increases, high-pressure oil is discharged from the piston according to the load. At such a high pressure, as shown in FIG. 9, a resultant force of pressing force (hereinafter referred to as a pressing resultant force) F acts on the swash plate 101 from the piston on the high pressure side located on the discharge stroke side. For this reason, the center of the swash plate 101 is deformed toward the swash plate support member 103 by the pressing force F, and the swash plate 101 gradually spreads from the center to the outer edge side between the swash plate 101 and the swash plate support member 102. Gaps tend to form. As a result, the swash plate 101 and the swash plate support member 103 come into contact with each other only on the center side, so that there is a problem that the surface pressure between them increases, and galling or the like is likely to occur.
[0008]
Further, between the swash plate 101 and the swash plate support member 103, there are provided static pressure pockets 102A and 102B to which pressurized oil is supplied to support the swash plate 101 in a statically floating state. . However, when the swash plate 101 is deformed at the time of high pressure as described above, the pressure oil in the static pressure pockets 102A and 102B easily leaks from the gap between the swash plate 101 and the swash plate support member 103. As a result, not only the volume efficiency of the pump is reduced, but also the pressure in the static pressure pockets 102A and 102B is reduced, so that the swash plate 101 cannot be floated and supported, and the tilting operation of the swash plate 101 is deteriorated. There is also.
[0009]
The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to prevent the occurrence of galling between a swash plate and a swash plate support member at high pressure and improve durability. An object of the present invention is to provide a variable capacity swash plate type hydraulic rotating machine.
[0010]
[Means for Solving the Problems]
In order to solve the problems described above, the present invention provides a hollow casing, a rotating shaft rotatably provided in the casing, and a plurality of cylinders extending in an axial direction spaced apart in a circumferential direction. A cylinder block that rotates integrally with the rotary shaft in the casing, a plurality of pistons reciprocally fitted into each cylinder of the cylinder block, and mounted on the protruding end of each piston. A shoe, a swash plate disposed on the projecting side of each of the pistons and provided in the casing and having a sliding surface whose front surface slidably guides each of the shoes; and a swash plate located on the back side of the swash plate. A swash plate support member provided on the casing, the surface of which is formed with a swash plate support surface for tiltably supporting a tilt sliding surface of the swash plate; and the swash plate with respect to the swash plate support member. And a tilt actuator that drives the tilt It applied to the variable capacity swash plate type hydraulic rotary machine.
[0011]
The first aspect of the present invention is characterized in that at least one of the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member has a high pressure in the piston. In order to supplement the deformation of the swash plate due to the pressing force of the piston located on the side, the swash plate is formed as an inclined surface inclined in the radial direction from the rotation axis.
[0012]
With this configuration, at high pressure, the swash plate is deformed by the resultant force of the piston, but at least one of the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member is deformed. Since the swash plate is formed so as to be inclined in the radial direction from the rotation axis, deformation of the swash plate can be compensated by the inclined surface. The surface can be slid over almost the entire surface.
[0013]
The invention according to claim 2 is provided with a pair of support legs having a swash plate support surface formed of a concave curved surface with the rotation axis interposed therebetween, on the surface side of the swash plate support member, and the concave curved surface of the support leg is provided. The tapered shape is formed toward the axis of the rotating shaft.
[0014]
Thus, the swash plate can be tiltably supported by sliding the convex curved surface of the swash plate against the concave curved surface of the swash plate support member. Further, by forming the concave curved surface of the swash plate support member into a tapered shape, deformation of the swash plate at high pressure can be compensated for by the concave curved surface of the swash plate support member. The gap formed therebetween can be reduced by the concave curved surface of the tapered swash plate support member.
[0015]
According to a third aspect of the present invention, there is provided a static pressure pocket for supplying pressure oil between the swash plate and the swash plate support member.
[0016]
In this case, when a gap is formed between the swash plate and the swash plate support member due to the deformation of the swash plate at high pressure, pressure oil tends to leak from the static pressure pocket and reduce the volumetric efficiency. However, in the present invention, at least one of the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member is formed as an inclined surface. The deformation can be compensated and the swash plate and the swash plate support member can be brought into sliding contact with no gap. As a result, a decrease in the volumetric efficiency of the pump can be prevented, and a decrease in the pressure of the static pressure pocket can be prevented, so that the swash plate can be reliably supported in a floating manner, and the swash plate can be smoothly tilted.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example in which the variable displacement type swash plate type hydraulic rotary machine according to the embodiment of the present invention is applied to a swash plate type hydraulic pump will be described in detail with reference to the accompanying drawings.
[0018]
First, FIGS. 1 to 7 show a first embodiment. In the drawings, reference numeral 1 denotes a variable displacement swash plate type hydraulic pump. The hydraulic pump 1 includes a casing 2, a rotating shaft 5, and a cylinder block 8 described later. , A piston 10, a shoe 14, a swash plate 15, a swash plate support member 20, and the like.
[0019]
Reference numeral 2 denotes a casing of a swash plate type hydraulic pump. The casing 2 has a stepped cylindrical casing body 3 having one end serving as a front bottom portion 3A, and a casing body 3 so as to close the other end of the casing body 3. And a rear casing 4 provided.
[0020]
As shown in FIG. 2, the casing main body 3 of the casing 2 is provided with an actuator mounting portion 3B at a position axially separated from the front bottom portion 3A, and the actuator mounting portion 3B extends radially outward of the casing main body 3. And protrude. A tilt actuator 22 described later is provided in the actuator mounting portion 3B.
[0021]
On the other hand, a discharge passage 12, a suction passage 13, and the like described later are formed in the rear casing 4 of the casing 2, and these passages 12 and 13 flow into the cylinder 9 through a valve plate 11 described below into the hydraulic oil (pressure). Oil).
[0022]
Reference numeral 5 denotes a rotating shaft rotatably provided in the casing 2. The rotating shaft 5 is rotatably mounted at one end (end) side in a front bottom portion 3 </ b> A of the casing body 3 via a bearing 6, and the other end ( The (base end) side is rotatably attached to the rear casing 4 via a bearing 7.
[0023]
One end of the rotating shaft 5 protrudes outside from the front bottom 3A of the casing main body 3 and drives a motor (not shown) connected to the protruding end of the rotating shaft 5 so that the rotating shaft 5 is driven. It is configured to rotate about the axis OO.
[0024]
Reference numeral 8 denotes a cylinder block provided in the casing 2 and provided on the outer peripheral side of the rotary shaft 5. The cylinder block 8 includes a plurality (usually an odd number) of cylinders 9 which are spaced apart in the circumferential direction and extend in the axial direction. , 9, ... are drilled. The cylinder block 8 is spline-coupled to the rotating shaft 5 and rotates integrally with the rotating shaft 5.
[0025]
Are pistons slidably inserted into the respective cylinders 9 of the cylinder block 8. The respective pistons 10 reciprocate in the respective cylinders 9 by the rotation of the cylinder block 8, and will be described later. While sucking hydraulic oil into each cylinder 9 from the valve plate 11 side, this is discharged as high-pressure oil.
[0026]
In this case, as shown in FIG. 1, these pistons 10 are located at the bottom dead center position where they protrude (extend) greatly from the cylinder 9 at the position above the rotary shaft 5 and at the position below the rotary shaft 5 at the cylinder bottom. 9 is the top dead center position that has receded (reduced) into 9. While the cylinder block 8 makes one rotation, each piston 10 slides in the cylinder 9 from the top dead center to the bottom dead center, and the piston 10 slides from the bottom dead center to the top dead center. The displacing discharge stroke is repeated.
[0027]
Then, in the suction stroke of the piston 10 corresponding to a half rotation of the cylinder block 8, hydraulic oil is sucked into the cylinder 9 from the suction passage 13, which will be described later, and the piston 10 corresponding to the remaining half rotation of the cylinder block 8 is moved. In the discharge stroke, the piston 10 causes the oil liquid in each cylinder 9 to be discharged as high-pressure oil from a discharge passage 12 described later to a discharge pipe (not shown).
[0028]
Reference numeral 11 denotes a valve plate fixedly provided on the rear casing 4. The valve plate 11 constitutes a switching valve plate which slides on the end face of the cylinder block 8, and the valve plate 11 has a rotating shaft as shown in FIG. 5, a high pressure side discharge port 11A and a low pressure side suction port 11B are formed extending in the form of eyebrows.
[0029]
Reference numerals 12 and 13 denote a discharge passage and a suction passage formed in the rear casing 4, respectively. The discharge passage 12 on the high pressure side communicates with the discharge port 11A of the valve plate 11, and the suction passage 13 on the low pressure side communicates with the suction port 11B. ing.
[0030]
When the rotating shaft 5 is driven to rotate in the casing 2, the pistons 10 reciprocate in the respective cylinders 9 with the rotation of the cylinder block 8, and these pistons 10 move hydraulic fluid into the cylinders 9 from the suction passage 13 side. While discharging the pressurized oil toward the discharge passage 12 side.
[0031]
Reference numerals 14, 14,... Denote swingable shoes provided at the protruding ends of the respective pistons 10. Each of the shoes 14 is a sliding surface of a swash plate 15 described later by a pressing force (hydraulic pressure) from the piston 10. By being pressed by 15C, it slides on the sliding surface 15C so as to draw a ring-shaped locus.
[0032]
Reference numeral 15 denotes a swash plate provided on the front bottom 3A side of the casing body 3 via a swash plate support member 20 described later. The swash plate 15 has a rear surface on the concave curved surfaces 20E and 20F of the swash plate support member 20. Convex curved surfaces 15A and 15B as tilting sliding surfaces for sliding, a sliding surface 15C for slidably guiding the shoe 14 on the surface side, and a rotary shaft 5 is inserted through a central portion thereof with a gap. A shaft insertion hole 15D is formed. Here, the convex curved surfaces 15A and 15B of the swash plate 15 are disposed to be separated (left and right) in correspondence (facing) with the discharge port 11A and the suction port 11B of the valve plate 11.
[0033]
Further, a tilting lever 16 is integrally formed on a side portion of the swash plate 15, and the tilting lever 16 extends from a side portion of the swash plate 15 toward a servo piston 23 described later, as shown in FIG. ing. A projecting pin 16A is provided on the tip side of the tilting lever 16, and the projecting pin 16A is connected to a servo piston 23 described later via an engaging plate 17.
[0034]
The swash plate 15 constitutes a variable displacement part of the hydraulic pump, and the convex curved surfaces 15A and 15B of the swash plate 15 are tiltably abutted on the concave curved surfaces 20E and 20F of the swash plate support member 20. I have. As a result, the swash plate 15 is tilted in the directions indicated by arrows A and B in FIG.
[0035]
Reference numerals 18A and 18B denote long groove-shaped static pressure pockets recessed on the surfaces of the convex curved surfaces 15A and 15B. The static pressure pockets 18A and 18B are respectively provided with high-pressure introduction passages 19 drilled in the casing body 3 and the like. The hydraulic oil on the discharge side of the hydraulic pump is supplied through the high-pressure introduction passage 19 in communication. Thereby, the static pressure pockets 18A and 18B receive the hydraulic reaction force of the piston 10 and support the swash plate 15 on the swash plate support member 18 in a floating state.
[0036]
The high-pressure-side static pressure pocket 18A that receives the hydraulic reaction force of the piston 10 in the discharge stroke of the static pressure pockets 18A and 18B is the low-pressure side static pressure that receives the hydraulic reaction force of the piston 10 in the suction stroke. It is formed with an area larger than the pocket 18B.
[0037]
Reference numeral 20 denotes a swash plate support member called a cradle provided on the front bottom portion 3A of the casing main body 3 located around the rotation shaft 5, and the swash plate support member 20 can tilt the swash plate 15 in the casing 2. It is to support. The swash plate support member 20 includes a disk-shaped mounting plate 20A mounted on the front bottom 3A, a shaft insertion hole 20B that is bored at the center of the mounting plate 20A, and through which the rotary shaft 5 is inserted. A pair of support legs 20C and 20D provided on the mounting plate 20A with the insertion hole 20B interposed therebetween and protruding toward the swash plate 15, and a swash plate provided on the protruding end side (surface side) of the support legs 20C and 20D. It is roughly constituted by concave curved surfaces 20E and 20F as support surfaces.
[0038]
Here, the concave curved surface 20E of the swash plate support member 20 has an inclination amount δ1 of about several μm to several tens μm on the rotating shaft 5 side (center side) as compared with the convex curved surface 15A of the swash plate 15 than the outer edge side. Only, it is depressed toward the front bottom portion 3A and forms an inclined surface that is inclined radially outward from the rotation shaft 5.
[0039]
On the other hand, similarly to the concave curved surface 20E, the concave curved surface 20F of the swash plate support member 20 also has a tilt amount of about several μm to several tens μm on the rotating shaft 5 side more than the outer edge side compared with the convex curved surface 15B of the swash plate 15. It is depressed toward the front bottom portion 3A by δ2, and forms an inclined surface inclined radially outward from the rotation shaft 5.
[0040]
The inclination amount δ1 of the concave curved surface 20E is the deformation amount of the convex curved surface 15A when the swash plate 15 is deformed by the resultant force F of the piston 10 when the hydraulic pump 1 is driven at the maximum discharge pressure (highest pressure). It is set to a value smaller than Δ1 (δ1 <Δ1) (see FIGS. 5 and 9). Similarly, the inclination amount δ2 of the concave curved surface 20F is set to a value (δ2 <Δ2) smaller than the deformation amount Δ2 of the convex curved surface 15B when the hydraulic pump 1 is driven at the maximum discharge pressure (highest pressure). I have.
[0041]
Slide projections 21 are formed on both left and right ends of the swash plate support member 20 to prevent the swash plate 15 from laterally shifting. Thus, the swash plate 15 is sandwiched between the left and right sides by the slide protrusions 21, and the left and right ends are in sliding contact with the slide protrusions 21.
[0042]
Reference numeral 22 denotes a tilt actuator provided in an actuator mounting portion 3B of the casing body 3, and the tilt actuator 22 is slidably inserted into both large-diameter and small-diameter cylinder holes (not shown). The servo piston 23 is connected to a protruding pin 16A of the tilt lever 16 via an engagement plate 17. Then, the tilt actuator 22 tilts and drives the swash plate 15 in directions indicated by arrows A and B by causing the servo piston 23 to slide.
[0043]
Reference numeral 24 denotes a regulator for supplying and discharging the tilt control pressure to the tilt actuator 22. The regulator 24 is connected to the servo piston 23 via a feedback link 25. The regulator 24 is feedback-controlled by the displacement of the feedback link 25 following the servo piston 23.
[0044]
The swash plate type hydraulic pump according to the present embodiment has the above-described configuration. Next, the displacement control operation will be described.
[0045]
First, when reducing the tilt angle of the swash plate 15, a tilt control pressure is supplied to the tilt actuator 22 through the regulator 24, and the servo piston 23 is slid toward one side. Thereby, the swash plate 15 is displaced in the direction of arrow A in FIG. 1 and is driven to the small tilting side. At this time, the regulator 24 is feedback-controlled by the movement of the servo piston 23 being transmitted through the feedback link 25, and stops the tilt actuator 22 when the tilt angle of the swash plate 15 reaches a desired angle. Let it.
[0046]
On the other hand, when increasing the tilt angle of the swash plate 15, the tilt control pressure is supplied to the tilt actuator 22 through the regulator 24, and the servo piston 23 is slid toward the other side. Thereby, the swash plate 15 is displaced in the direction of arrow B in FIG. 1 and is driven to the large tilt side. Also at this time, the regulator 24 controls the movement of the servo piston 23 via the feedback link 25 and performs feedback control. When the tilt angle of the swash plate 15 reaches a desired angle, the regulator 24 controls the tilt actuator 22. Stop.
[0047]
However, when the hydraulic pump 1 is driven at the maximum discharge pressure, high-pressure oil is discharged from the piston 10. At this time, since a large pressing force acts on the piston 10 in the discharge stroke as compared with the piston 10 in the suction stroke, the pressing force F of each piston 10 comes into contact with the piston 10 in the discharge stroke more than the center of the swash plate 15. It acts intensively on the part shifted to the convex curved surface 15A side.
[0048]
Therefore, for example, as in the prior art shown in FIG. 9, the convex curved surfaces 101A and 101B of the swash plate 101 and the concave curved surfaces 103A and 103B of the swash plate support member 103 are brought into close contact with each other and slidably contact at the manufacturing stage. In this case, when the hydraulic pump is driven at the maximum discharge pressure, the center side of the swash plate 101 is deformed toward the swash plate support member 103 as compared with the outer edge side by the resultant force F of the piston, and A gap corresponding to the deformation amounts Δ1 and Δ2 is formed on the outer edge side (the slide projection 104 side) between the plate supporting member 103 and the plate supporting member 103.
[0049]
At this time, the deformation amounts Δ1 and Δ2 of the swash plate 101 forming a gap between the swash plate 101 and the swash plate support member 103 are determined, for example, by providing nine pistons in a cylinder block having an outer diameter of 180 mm, at 35 MPa (350 kgf / cm 2 ) Has a slight value of about 10 μm. However, the static pressure pockets 102A and 102B between the swash plate 101 and the swash plate support member 103 have a high pressure on the discharge side to statically support the swash plate 101 against the pressing force of the piston. Pressure oil is being supplied. For this reason, even in a small gap between the swash plate 101 and the swash plate support member 103, there is a tendency that the pressure oil leaks from the static pressure pockets 102A and 102B, and only the volume efficiency of the pump is reduced. However, the pressure in the static pressure pockets 102A and 102B is reduced, and the swash plate 101 cannot be supported statically, so that the swash plate 101 and the swash plate support member 103 tend to be seized. is there.
[0050]
On the other hand, in the present embodiment, the concave curved surfaces 20E and 20F of the swash plate support member 20 are formed as inclined surfaces inclined from the rotary shaft 5 side toward the outer edge side. Even when the swash plate 15 is deformed by the pressing force F of the piston 10 by driving, the deformation amounts Δ1 and Δ2 of the swash plate 15 can be compensated by the concave curved surfaces 20E and 20F of the swash plate support member 20 forming the inclined surface. 6, the convex curved surfaces 15A, 15B of the swash plate 15 and the concave curved surfaces 20E, 20F of the swash plate support member 20 can be brought into sliding contact over substantially the entire surface.
[0051]
As a result, the surface pressure between the convex curved surfaces 15A and 15B of the swash plate 15 and the concave curved surfaces 20E and 20F of the swash plate support member 20 can be reduced even at a high pressure when the hydraulic pump 1 is driven at the maximum discharge pressure. And the occurrence of galling and the like can be prevented, and the reliability and durability can be improved.
[0052]
Further, since the pressurized oil can be reliably held in the static pressure pockets 18A and 18B, the volumetric efficiency at the time of high pressure can be increased as compared with the related art, and the floating support of the swash plate 15 can be ensured. As a result, the swash plate 15 can be smoothly slid and displaced.
[0053]
On the other hand, in the present embodiment, since the concave curved surfaces 20E and 20F of the swash plate support member 20 are formed as inclined surfaces, the swash plate 15 is driven at a low pressure when the hydraulic pump 1 is driven at the minimum discharge pressure as shown in FIG. Is small, and a gap is formed between the swash plate 15 and the swash plate support member 20, the gap dimension of which increases with approaching to the rotation shaft 5. However, when the pressure is low, the pressing force of the piston 10 on the high pressure side (discharge side) is also small, so that the surface pressure between the convex curved surfaces 15A and 15B of the swash plate 15 and the concave curved surfaces 20E and 20F of the swash plate support member 20 is excessive. Never be higher. In addition, since the pressures in the static pressure pockets 18A and 18B are low, the leakage of the pressure oil is small, and the volume efficiency is not extremely reduced.
[0054]
Further, since a pair of support legs 20C and 20D having concave curved surfaces 20E and 20F are provided on the front surface side of the swash plate support member 20 with the rotary shaft 5 interposed therebetween, the concave curved surfaces 20E and 20F of the swash plate support member 20 are provided. The swash plate 15 can be tiltably supported by sliding the convex curved surfaces 15A and 15B of the swash plate 15 in contact with each other. In addition, since the concave curved surfaces 20E and 20F are formed in a tapered shape from the rotation shaft 5 toward the outside in the radial direction, the deformation of the swash plate 15 at high pressure is compensated by the concave curved surfaces 20E and 20F of the swash plate support member 20. The gap formed between the swash plate 15 and the swash plate support member 20 can be reduced by the tapered concave curved surfaces 20E and 20F.
[0055]
Further, in the present embodiment, the inclination amounts δ1 and δ2 of the concave curved surfaces 20E and 20F, which are inclined surfaces, are the deformation amounts Δ1 and Δ2 of the convex curved surfaces 15A and 15B when the hydraulic pump 1 is driven at the maximum discharge pressure. The swash plate 15 and the swash plate support member 20 at the time of high pressure are different from the case where the concave curved surfaces 103A and 103B substantially parallel to the convex curved surfaces 15A and 15B are formed as in the related art. And the gap between the swash plate 15 and the swash plate support member 20 at low pressure can be prevented from becoming unnecessarily large.
[0056]
Next, FIG. 8 shows a second embodiment of the present invention. The feature of the present embodiment lies in that the inclined sliding surface of the swash plate is formed as an inclined surface. Note that, in the present embodiment, the same components as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0057]
Reference numeral 31 denotes a swash plate according to the present embodiment. The swash plate 31 is attached to the front bottom 3A side of the casing body 3 via a swash plate support member 35 described later, similarly to the swash plate 15 according to the first embodiment. Have been. The swash plate 31 has convex curved surfaces 31A and 31B as tilting sliding surfaces that slide on the concave curved surfaces 35E and 35F of the swash plate support member 35 on the back surface, and a smooth surface on which the shoe 14 slides on the front surface. 31C, and a shaft insertion hole 31D through which the rotating shaft 5 is inserted with a gap is formed at the center thereof. The convex curved surfaces 31A and 31B of the swash plate 31 are arranged to be separated from each other to the left and right, and a tilt lever 32 connected to the servo piston 23 is integrally formed on the side of the swash plate 31. ing.
[0058]
Here, the convex curved surface 31A of the swash plate 31 has a swash plate support member that has an inclination amount δ1 of about several μm to several tens μm on the rotation shaft 5 side of the outer curved side compared to the concave curved surface 35E of the swash plate support member 35. It is depressed in a direction away from 35 and has an inclined surface inclined in a radial direction from the rotation shaft 5. On the other hand, the convex curved surface 31B of the swash plate 31 also has a swash plate support member 35 with an inclination amount δ2 of about several μm to several tens μm on the rotation shaft 5 side from the outer edge side as compared with the concave curved surface 35F of the swash plate support member 35. And is inclined in a direction away from the rotary shaft 5 in the radial direction.
[0059]
The inclination amounts δ1 and δ2 of the convex curved surfaces 31A and 31B are determined when the convex curved surfaces 31A and 31B of the swash plate 31 are deformed toward the swash plate support member 35 by the resultant force F of pressing the piston 10 at high pressure. It is set to a value smaller than the deformation amounts Δ1, Δ2 (see FIG. 9).
[0060]
Reference numerals 33A and 33B denote long groove-shaped static pressure pockets recessed on the surfaces of the convex curved surfaces 31A and 31B. The static pressure pockets 33A and 33B have a high-pressure introduction drilled in a swash plate support member 35 described later. The passages 34 communicate with each other, and pressure oil on the discharge side of the hydraulic pump is supplied through the high-pressure introduction passage 34.
[0061]
Reference numeral 35 denotes a swash plate support member provided on the front bottom portion 3A of the casing main body 3 located around the rotation shaft 5, and the swash plate support member 35 includes a disc-shaped mounting plate 35A mounted on the front bottom portion 3A. A shaft insertion hole 35B drilled at the center of the mounting plate 35A and through which the rotary shaft 5 is inserted; The support legs 35C and 35D are roughly constituted by concave curved surfaces 35E and 35F as swash plate support surfaces provided on the protruding end sides (front surfaces) of the support legs 35C and 35D.
[0062]
Further, slide projections 36 are formed on both left and right ends of the swash plate support member 35 to prevent the swash plate 31 from laterally shifting. Thus, the swash plate 31 is sandwiched between the left and right sides by the slide protrusions 36, and the left and right ends are in sliding contact with the slide protrusions 36.
[0063]
Thus, also in the present embodiment configured as described above, it is possible to obtain substantially the same operation and effect as in the first embodiment described above, and the hydraulic pump 1 is driven at the maximum discharge pressure, and the pressing force of the piston 10 is increased. Even when the swash plate 31 is deformed by F, the deformation of the swash plate 31 can be compensated by the convex curved surfaces 31A and 31B of the swash plate 31 forming the inclined surface, and the swash plate 31 can be compensated by the convex curved surfaces 31A and 31B. The concave curved surfaces 35E and 35F of the plate supporting member 35 can be brought into sliding contact over substantially the entire surface.
[0064]
In the first embodiment, the concave curved surfaces 20E and 20F of the swash plate support member 20 are inclined surfaces, and in the second embodiment, the convex curved surfaces 31A and 31B of the swash plate 31 are inclined surfaces. And However, the present invention is not limited to this. For example, both the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member may be inclined surfaces.
[0065]
Further, in each of the above embodiments, both the concave curved surface 20E and the convex curved surface 31A on the high voltage side and the concave curved surface 20F and the convex curved surface 31B on the low voltage side are formed in a tapered shape. However, the present invention is not limited to this, and when the convex curved surface on the high pressure side is mainly deformed as compared with the convex curved surface on the low pressure side when the pressing resultant acts, the concave curved surface on the high voltage side, the convex curved surface Only the surface may be formed in a tapered shape.
[0066]
Further, in each of the above embodiments, the swash plate support members 20 and 35 are formed as separate members from the casing main body 3. However, for example, the swash plate support members may be integrally formed on the front bottom of the casing main body. Good.
[0067]
Further, in each of the above embodiments, the case where the swash plate type hydraulic pump is used as the variable displacement type swash plate type hydraulic rotating machine has been described as an example, but the present invention is not limited to this, and for example, the variable displacement type May be applied to the swash plate type hydraulic motor.
[0068]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, at least one of the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member is arranged in a radial direction from the rotation axis. Since the swash plate is formed as an inclined surface inclined toward the swash plate, even when the swash plate is deformed by the resultant force of the piston at the time of high pressure, the swash plate can be compensated for by the inclined surface, and the inclined sliding surface of the swash plate can be compensated. And the swash plate support surface of the swash plate support member can be brought into sliding contact over substantially the entire surface. As a result, even under high pressure, the surface pressure between the swash plate and the swash plate support member can be reduced, galling and the like can be prevented, and reliability and durability can be improved.
[0069]
According to the second aspect of the present invention, a pair of support legs having a swash plate support surface having a concave curved surface are provided on the surface side of the swash plate support member with the rotation axis interposed therebetween, and the concave curved surface of the support leg is rotated. Since the swash plate is formed in a tapered shape toward the axis of the shaft, deformation of the swash plate at high pressure can be compensated by the concave curved surface of the swash plate support member, and a gap formed between the swash plate and the swash plate support member Can be reduced by the concave curved surface of the swash plate support member having a tapered shape.
[0070]
According to the third aspect of the present invention, since the static pressure pocket to which the pressure oil is supplied is provided between the swash plate and the swash plate support member, even when the swash plate is deformed at the time of high pressure, the swash plate is formed by the inclined surface. Deformation can be compensated and pressure oil can be reliably held in the static pressure pocket. For this reason, the volumetric efficiency at the time of high pressure can be improved, and the swash plate can be reliably supported in a floating manner, and the swash plate can be smoothly displaced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a variable displacement swash plate type hydraulic pump according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the hydraulic pump as viewed from the direction of arrows II-II in FIG.
FIG. 3 is a perspective view showing the swash plate in FIG. 1 alone;
FIG. 4 is a perspective view showing the swash plate support member in FIG. 1 alone;
FIG. 5 is a cross-sectional view of the swash plate support member as viewed from a direction indicated by arrows VV in FIG.
FIG. 6 is a cross-sectional view showing a swash plate and a swash plate support member at a high pressure at the same position as in FIG. 5;
FIG. 7 is a sectional view showing the swash plate and the swash plate support member at a low pressure at the same position as in FIG. 5;
FIG. 8 is a cross-sectional view at the same position as in FIG. 5 showing the swash plate and the swash plate support member according to the second embodiment in a low pressure state.
FIG. 9 is a cross-sectional view showing a swash plate and a swash plate support member according to the related art in a state of high pressure.
[Explanation of symbols]
1 hydraulic pump
2 casing
5 Rotation axis
8 cylinder block
9 cylinders
10 piston
14 Shoes
15, 31 Swash plate
20,35 Swash plate support member
15A, 15B, 31A, 31B Convex curved surface (tilt sliding surface)
20E, 20F, 35E, 35F Concave curved surface (swash plate support surface)
22 Tilt actuator

Claims (3)

中空なケーシングと、該ケーシング内に回転可能に設けられた回転軸と、周方向に離間して軸方向に伸長する複数のシリンダが穿設され前記ケーシング内で該回転軸と一体的に回転するシリンダブロックと、該シリンダブロックの各シリンダに往復動可能に挿嵌された複数のピストンと、該各ピストンの突出側の端部に装着されたシューと、前記各ピストンの突出側に位置して前記ケーシング内に配設され表面側が該各シューを摺動可能に案内する摺動面を備えた斜板と、該斜板の裏面側に位置して前記ケーシングに設けられ表面に該斜板の傾転摺動面を傾転可能に支持する斜板支持面が形成された斜板支持部材と、該斜板支持部材に対して前記斜板を傾転駆動する傾転アクチュエータとからなる可変容量型斜板式液圧回転機において、
前記斜板の傾転摺動面と斜板支持部材の斜板支持面とのうち少なくともいずれか一方の面は、前記ピストンのうち高圧側に位置するピストンの押圧力による前記斜板の変形を補うために前記回転軸から半径方向に向けて傾斜した傾斜面として形成したことを特徴とする可変容量型斜板式液圧回転機。
A hollow casing, a rotating shaft rotatably provided in the casing, and a plurality of cylinders extending in the axial direction spaced apart in the circumferential direction are bored and rotate integrally with the rotating shaft in the casing. A cylinder block, a plurality of pistons reciprocally fitted into each cylinder of the cylinder block, a shoe mounted on an end of the piston on a protruding side, and a shoe positioned on a protruding side of the piston. A swash plate provided in the casing and having a sliding surface whose front surface slidably guides each of the shoes; and a swash plate provided on the casing located on the back surface side of the swash plate. A variable capacity including a swash plate support member having a swash plate support surface for tiltably supporting a tilt slide surface, and a tilt actuator for tilting and driving the swash plate with respect to the swash plate support member. Type swash plate type hydraulic rotary machine,
At least one of the inclined sliding surface of the swash plate and the swash plate support surface of the swash plate support member is configured to prevent deformation of the swash plate due to a pressing force of a piston located on a high pressure side of the piston. A variable displacement type swash plate type hydraulic rotary machine characterized by being formed as an inclined surface inclined in a radial direction from the rotation shaft to compensate.
前記斜板支持部材の表面側には前記回転軸を挟んで凹湾曲面からなる斜板支持面を有する一対の支持脚を設け、該支持脚の凹湾曲面を前記回転軸の軸線に向けてテーパ状に形成してなる請求項1に記載の可変容量型斜板式液圧回転機。On the surface side of the swash plate support member, there is provided a pair of support legs having a swash plate support surface formed of a concave curved surface with the rotation axis interposed therebetween. 2. The variable capacity swash plate type hydraulic rotary machine according to claim 1, wherein the rotary machine is formed in a tapered shape. 前記斜板と斜板支持部材との間には、圧油が供給される静圧ポケットを設けてなる請求項1または2に記載の可変容量型斜板式液圧回転機。3. The variable capacity swash plate type hydraulic rotary machine according to claim 1, wherein a static pressure pocket to which pressure oil is supplied is provided between the swash plate and the swash plate support member.
JP2002264429A 2002-09-10 2002-09-10 Variable capacity type swash plate type fluid pressure rotating machine Pending JP2004100599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264429A JP2004100599A (en) 2002-09-10 2002-09-10 Variable capacity type swash plate type fluid pressure rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264429A JP2004100599A (en) 2002-09-10 2002-09-10 Variable capacity type swash plate type fluid pressure rotating machine

Publications (1)

Publication Number Publication Date
JP2004100599A true JP2004100599A (en) 2004-04-02

Family

ID=32263881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264429A Pending JP2004100599A (en) 2002-09-10 2002-09-10 Variable capacity type swash plate type fluid pressure rotating machine

Country Status (1)

Country Link
JP (1) JP2004100599A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533739A (en) * 2014-12-30 2015-04-22 南京萨伯工业设计研究院有限公司 Hydraulic pump tilting tray and machining method thereof
CN107620702A (en) * 2017-10-10 2018-01-23 力源液压(苏州)有限公司 A kind of swash plate of novel static hydraulic pressure support structure
DE102020216394A1 (en) 2020-12-21 2022-06-23 Danfoss Power Solutions Gmbh & Co. Ohg Cradle bearing and support of a cradle bearing
CN116464678A (en) * 2023-06-20 2023-07-21 天水师范学院 Hydraulic transformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533739A (en) * 2014-12-30 2015-04-22 南京萨伯工业设计研究院有限公司 Hydraulic pump tilting tray and machining method thereof
CN104533739B (en) * 2014-12-30 2017-06-20 苏州萨伯工业设计有限公司 Hydraulic pump swash plate and its processing method
CN107620702A (en) * 2017-10-10 2018-01-23 力源液压(苏州)有限公司 A kind of swash plate of novel static hydraulic pressure support structure
DE102020216394A1 (en) 2020-12-21 2022-06-23 Danfoss Power Solutions Gmbh & Co. Ohg Cradle bearing and support of a cradle bearing
US11761435B2 (en) 2020-12-21 2023-09-19 Danfoss Power Solutions Gmbh & Co. Ohg Cradle bearing and cradle bearing support
CN116464678A (en) * 2023-06-20 2023-07-21 天水师范学院 Hydraulic transformer
CN116464678B (en) * 2023-06-20 2023-08-15 天水师范学院 Hydraulic transformer

Similar Documents

Publication Publication Date Title
WO2007060822A1 (en) Inclined shaft-type variable displacement pump/motor
JP2004100599A (en) Variable capacity type swash plate type fluid pressure rotating machine
CN110778475B (en) Hydraulic rotary machine
JP4124715B2 (en) Swash plate type hydraulic pump / motor
JPH09166074A (en) Sawsh plate lubricating structure of swash plate piston type variable displacement pump
JP2004239077A (en) Axial swash plate type hydraulic pump
JP2000009024A (en) Variable displacement piston pump
JPH11351134A (en) Variable displacement swash plate type hydraulic pump
KR20170007533A (en) Hydraulic rotation machine
JP3913920B2 (en) Variable capacity swash plate type hydraulic rotating machine
JP2012255375A (en) Variable displacement swash plate hydraulic pump
JP2003343421A (en) Swash plate type fluid machine provided with swash plate pressure equalization device
JP2005201175A (en) Variable displacement swash plate type hydraulic rotating machine
JP7373271B2 (en) hydraulic system
JP6672213B2 (en) Oblique axis type hydraulic rotary machine
WO2021020217A1 (en) Hydraulic pump and hydraulic device
JP3919096B2 (en) Variable capacity swash plate type hydraulic rotating machine
CN219366459U (en) Hydraulic rotating device
JP2000205119A (en) Swash plate type piston pump motor
JPH10141213A (en) Swash plate-type variable displacement piston pump
JPH10331759A (en) Hydraulic machine of swash plate type
JP2020016172A (en) Variable displacement swash plate type hydraulic rotary machine
JP2023131814A (en) Hydraulic pressure rotating machine
JP2001050153A (en) Hydraulic pump
JPH0367067A (en) Liquid pressure rotary machine with swash plate