JP2012254026A - Method for producing mixture of fermented fish meal and surface-modified steelmaking slag, and method for making seaweed bed - Google Patents

Method for producing mixture of fermented fish meal and surface-modified steelmaking slag, and method for making seaweed bed Download PDF

Info

Publication number
JP2012254026A
JP2012254026A JP2011127557A JP2011127557A JP2012254026A JP 2012254026 A JP2012254026 A JP 2012254026A JP 2011127557 A JP2011127557 A JP 2011127557A JP 2011127557 A JP2011127557 A JP 2011127557A JP 2012254026 A JP2012254026 A JP 2012254026A
Authority
JP
Japan
Prior art keywords
steelmaking slag
slag
mixture
residue
fish meal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011127557A
Other languages
Japanese (ja)
Other versions
JP5667520B2 (en
Inventor
Naoto Tsutsumi
直人 堤
Ryuhei Soma
龍平 相馬
Masanobu Shibuya
正信 渋谷
Masanori Morioka
理紀 森岡
Masaru Hanajima
大 花島
Takateru Maeda
高輝 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCEAN GREEN KK
Nippon Steel Corp
National Agriculture and Food Research Organization
Original Assignee
OCEAN GREEN KK
National Agriculture and Food Research Organization
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCEAN GREEN KK, National Agriculture and Food Research Organization, Nippon Steel and Sumitomo Metal Corp filed Critical OCEAN GREEN KK
Priority to JP2011127557A priority Critical patent/JP5667520B2/en
Publication of JP2012254026A publication Critical patent/JP2012254026A/en
Application granted granted Critical
Publication of JP5667520B2 publication Critical patent/JP5667520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a mixture of fermented fishmeal and surface-modified steelmaking slag, by which steelmaking slag is used in a process for producing fermented fishmeal using fishery product residues as a raw material, whereby the fermented fishmeal capable of being used as a fertilizer for making seaweed bed with the surface-modified steelmaking slag can simply be produced and supplied at a low cost.SOLUTION: The method for producing a mixture of fermented fishmeal and surface-modified steelmaking slag which is capable of being used as a fertilizer material for making the seaweed, includes mixing fishery residues with steelmaking slag and leaving the mixture, whereby the fishery residues can be fermented and the surface of the steelmaking slag can simultaneously be modified. The steelmaking slag contains slag particles having a particle diameter of not more than 2 mm in an amount of not less than 10 mass%.

Description

本発明は、我が国の沿岸域における藻場造成方法の一助となる、海域に必要な栄養塩分を供給する施肥材料として利用することができる物の製造方法および藻場造成方法に関し、特に、藻場造成用施肥材料とすることができる、各地の漁港や水産加工工場等で発生する水産残渣を原料とした発酵生成物(以下、発酵魚粉と称す)と表面改質製鋼スラグとの混合物の効率的な製造方法、および、その方法で製造された混合物を使用した藻場造成方法に関するものである。   The present invention relates to a method for producing a product that can be used as a fertilization material for supplying nutrients necessary for the sea area, and a method for creating a seaweed bed, which are useful for a seaweed bed creation method in coastal areas in Japan. Efficient mixture of fermented products (hereinafter referred to as fermented fish meal) and surface-modified steel slag that can be used as fertilizing materials for creation, and made from marine residues generated at fishing ports and fish processing plants in various regions The present invention relates to a simple production method and a seaweed bed construction method using a mixture produced by the method.

我が国の沿岸域では、ここ約20年間、「磯焼け」とも呼ばれる、ワカメやコンブといった有用な藻類が減少する現象が各地で広がり、漁獲高減少の一因となっている。この磯焼けの原因には諸説があるが、これまでの対策として、例えば、藻類が付着可能な基質となる割り石やブロック等を海中に投入して藻場を形成するという取り組みなどが行われてきた。しかし、割り石投入の当初は藻類繁茂の効果が見られるものの、1〜2年後にはそれらの表面が有用藻類の生育を阻害する石灰藻に覆われてしまう結果、継続的な藻場の形成には至らず、新たな投石という繰り返しの措置が必要となっている。   In Japan's coastal areas, the phenomenon of useful algae such as seaweed and kombu, which is also called “burning firewood”, has been spreading in various parts of the country for the past 20 years, contributing to a decrease in catch. There are various theories about the cause of this burning, but as a countermeasure so far, for example, an approach to form a seaweed bed by introducing quarry stones or blocks into the sea as a substrate to which algae can adhere is carried out. I came. However, although the effect of algae overgrowth can be seen at the beginning of quarrying, the formation of continuous algae beds is a result of their surface being covered with lime algae that hinder the growth of useful algae after one to two years. Therefore, repeated measures such as new stones are required.

一方、各地の漁港周辺地域では、水揚げした水産品の加工等に伴い、魚の内臓や中骨・貝殻・ウロといった水産残渣が発生するが、これらは昭和45年に施工された海洋汚染防止法(昭和四十五年法律第百三十六号)によって、元の海域への投入が禁止されてしまったため、その大半は廃棄物として処理・処分せざるを得ず、元来の水産加工製品の製造コスト高の要因となっている。   On the other hand, fishery residues such as fish internal organs, skeletons, shells, and uro are generated in the areas around fishing ports in various areas due to processing of fishery products that have been landed. (Act No. 136 of 1945) has banned entry into the original sea area, so most of it must be treated and disposed of as waste. This is a cause of high manufacturing costs.

この廃棄物処理業者に委託処理された水産加工残渣は、魚粉製造プラントや魚油製造装置、フィッシュソリュブル(魚粉飼料)製造装置などにかけられて加工される。この概略の加工方法は、水産加工残渣を蒸煮(加熱減要)した後、圧搾して煮汁と圧搾ミールに分離し、煮汁の方はさらに遠心分離や濃縮工程を経て魚油やフィッシュソリュブルに加工される。圧搾ミールの方は、乾燥して魚粉(魚粕)に加工されて、肥料などに用いられる。   The fishery processing residue entrusted to the waste disposal contractor is processed by being applied to a fish meal production plant, a fish oil production apparatus, a fish soluble (fish meal feed) production apparatus, or the like. This rough processing method is that the fishery processing residue is steamed (reduced heating), then squeezed and separated into boiled juice and compressed meal, and the boiled juice is further processed into fish oil and fish soluble through centrifugation and concentration processes The The compressed meal is dried and processed into fish meal (fish carp) and used as fertilizer.

上記、一連の水産加工残渣処理において重要なのは乾燥工程であり、乾燥装置において100℃以上の高温で連続運転しながら圧搾ミールを熱風乾燥するが、効率よくこの乾燥装置を稼働するためには大量の水産加工残渣が必要となり、そのため残渣の広範囲からの集荷が生じ、残渣の鮮度低下や腐敗をもたらす。
そこで鮮度低下を避けるためには、残渣の発生現場での加工が最も有効であるが、そうなると処理が小規模にならざるをえず高価な乾燥装置の使用は困難となる。
The important thing in the above-mentioned series of marine processing residue treatment is the drying process, and the compressed meal is hot-air dried while continuously operating at a high temperature of 100 ° C. or higher in the drying apparatus, but in order to operate this drying apparatus efficiently, a large amount Marine processing residues are required, which causes collection of residues from a wide range, resulting in reduced freshness and decay of the residue.
Therefore, in order to avoid a decrease in freshness, the processing at the site where the residue is generated is most effective. However, if this happens, the processing must be performed on a small scale, and it becomes difficult to use an expensive drying apparatus.

この問題の解決には、残渣の鮮度が低下しないようにその発生現場において、高温をかけずに微生物処理による発酵を行う方法(例えば、非特許文献1参照)や、穀物などを低温で乾燥できる製麹方法に基づく小規模な製造方法(例えば、特許文献1参照)、あるいは残渣の破砕・加熱分解・発酵を同一の加熱釜内で短時間に密閉処理する方法(バイオメスクシステム、例えば、非特許文献2参照)などが提案されてきた。   In order to solve this problem, a method of performing fermentation by microbial treatment without applying high temperature (for example, refer to Non-Patent Document 1) or cereals can be dried at a low temperature so that the freshness of the residue does not decrease. A small-scale production method based on the koji making method (for example, see Patent Document 1), or a method in which crushing / thermal decomposition / fermentation of residue is performed in a short time in the same heating kettle (biomesk system, for example, non- Patent Document 2) has been proposed.

しかしながら、微生物処理による発酵の場合、非特許文献1には、発酵槽内の残渣の堆積高さが20cm以上になると通気性が悪くなり微生物の生育が抑制されるため、現実には通気性を非常によくした発酵槽や、堆積高さが20cm以下になるような広い発酵面積を持つ大型発酵装置が必要になると記載されている。   However, in the case of fermentation by microbial treatment, Non-Patent Document 1 states that if the deposition height of the residue in the fermenter is 20 cm or more, the air permeability deteriorates and the growth of microorganisms is suppressed. It is described that a very good fermenter and a large-scale fermenter having a wide fermentation area with a deposition height of 20 cm or less are required.

また、製麹方法の場合には、特許文献1に記載のように、製麹中において食中毒菌などの有害細菌の発育を阻止するため、例えば圧搾ミールに単糖及び/又はブドウ糖を50重量%以上含む糖を添加して粒状の基質を製造し、この基質に麹菌を接種するという、コスト高となる糖添加が必要で、且つ、複雑な工程を取らざるを得ないことが記載されている。   In the case of the koji making method, as described in Patent Document 1, in order to prevent the growth of harmful bacteria such as food poisoning bacteria during koji making, for example, 50% by weight of monosaccharide and / or glucose is added to the pressed meal. It is described that a sugar substrate containing the above is added to produce a granular substrate, and the substrate is inoculated with gonococcus, which requires costly sugar addition and requires complicated steps. .

さらに、バイオメスク処理では、非特許文献2に記載のように、破砕・加熱分解・発酵を同一釜内で連続処理するため、長時間(40時間程度)、釜を占有して稼働せねばならず、生産効率が低く、事実上、処理コスト高をもたらさざるを得ない、というさらなる問題点があった。   Furthermore, in biomesk processing, as described in Non-Patent Document 2, crushing, thermolysis, and fermentation are continuously processed in the same kettle, so the kettle must be occupied and operated for a long time (about 40 hours). However, there is a further problem that the production efficiency is low and the processing cost is inevitably increased.

特開2004−357581号公報Japanese Patent Laid-Open No. 2004-357581 特開2006−345738号公報JP 2006-345738 A

加藤富民雄ら、:日本農芸化学会誌 Vol.60、No.4 p−287(1986)Tomio Kato et al .: Journal of Japanese Society for Agricultural Chemistry, Vol. 60, no. 4 p-287 (1986) 萱場工業株式会社ホームページ http://www.kayaba−ind.co.jp/nogyo.htmKayaba Industry Co., Ltd. website http: // www. kayaba-ind. co. jp / nogoyo. htm

発明者らは、冒頭に記述した磯焼け海域におけるより有効な藻場造成技術として、例えば、特許文献2に記載のように、鉄鋼スラグから供給される二価鉄(Fe2+) とアンモニア化成する窒素化合物から供給されるアンモニア(NH)との間でつくられる可溶性の錯イオン[Fe(NH2+ からなる鉄系肥料分と、窒素化合物中のリン、窒素からなる有機系肥料分とを、同時に供給する施肥技術を開発してきた。
具体的な例としては、特許文献2の実施例に記載のように、水産残渣を原料とする発酵魚粉(水産残渣を発酵させた加工品)や腐植土等の腐植物質と、鉄鋼製造時に副生する製鋼スラグ等の鉄鋼スラグとを、同時に磯焼け海域への海の肥料として投入(施肥)することにより、発酵魚粉からの窒素やリンといった栄養塩分と同時に、鉄鋼スラグから藻類の光合成成長に必須の元素である鉄分を同時に供給し、藻場を造成・再生するというものである。
The inventors, as a more effective technique for creating seaweed beds in the seared sea area described at the beginning, for example, forms ammonia with divalent iron (Fe 2+ ) supplied from steel slag as described in Patent Document 2. An iron-based fertilizer composed of soluble complex ions [Fe (NH 3 ) 6 ] 2+ formed with ammonia (NH 3 ) supplied from a nitrogen compound, and an organic fertilizer composed of phosphorus and nitrogen in the nitrogen compound We have developed a fertilization technique that supplies the same amount of water.
As specific examples, as described in the Examples of Patent Document 2, fermented fish meal (processed product obtained by fermenting aquatic residues) and humic substances such as humus soil, which are made from marine residues, By adding steel slag such as steelmaking slag as raw fertilizer to the seared seawater at the same time (fertilization), the fermented fish meal can contain nutrients such as nitrogen and phosphorus, and from the steel slag to the photosynthesis growth of algae iron is supplied at the same time is an essential element, is that the reclamation and playback the seaweed beds.

しかしながら、前述のように水産加工残渣の発生現場における従来方法に基づく発酵魚粉の製造では、製造装置(加熱装置や発酵槽など)の規模にもよるが、1回に処理できる量(ロット)が少量のため生産性が低く、設備費は元より、長時間、加熱・熟成させるための光熱費等のランニングコストもかかることから、製造コストが高くなるという問題を抱えており、地域からは水産加工残渣をより安価に高効率に発酵させる新たな手段が求められていた。   However, as described above, in the production of fermented fish meal based on the conventional method at the site where fishery processing residues are generated, the amount (lot) that can be processed at one time depends on the scale of the production equipment (heating device, fermenter, etc.). Productivity is low due to the small amount, and equipment costs are high, and running costs such as heating and aging are also required for a long time. There has been a need for a new means for fermenting processing residues at lower cost and higher efficiency.

また、藻場造成用の施肥材料の効果を高めるためには、鉄鋼スラグのうち、鉄分を比較的多く含む製鋼スラグを使用することが有効であるが、製鋼スラグは海中においてその表面から海水中へのアルカリ溶出が多い場合、海水のpH上昇に伴う水酸化マグネシウム(Mg(OH))の析出による白濁が生じることもあり、それを抑制することが好ましい。そのためには、製鉄所において事前に製鋼スラグの表面をコンクリート構造物と同様に大量の水で洗い流す灰汁抜き処理や、炭酸ガスを用いた炭酸化処理を施して表面改質製鋼スラグとする必要があるが、この表面改質処理のための手間やコストが嵩むという問題もあった。 In order to increase the effect of fertilizer material for the seaweed formation, it is effective to use steelmaking slag that contains a relatively large amount of iron among steel slag. When there is a lot of alkali elution to the seawater, white turbidity due to precipitation of magnesium hydroxide (Mg (OH) 2 ) accompanying the increase in pH of seawater may occur, and it is preferable to suppress it. For that purpose, it is necessary to make the surface-modified steelmaking slag by removing the lye in which the surface of the steelmaking slag is washed with a large amount of water like a concrete structure in advance, or by carbonation using carbon dioxide gas at the steelworks. However, there is also a problem that labor and cost for the surface modification treatment increase.

そこで、本発明においては、藻場造成用の肥料とすることができる発酵魚粉と鉄鋼スラグとの混合物を、簡便に製造し、低価格にて供給するための製造方法を提供することを目的とする。特に、鉄鋼製造の副産物である鉄鋼スラグの一種の製鋼スラグを、水産残渣を原料とする発酵魚粉の製造工程から活用することで、藻場造成用の肥料とすることができる発酵魚粉と表面改質製鋼スラグの混合物を簡便に製造し、低価格にて供給するための発酵魚粉と表面改質した製鋼スラグの混合物の製造方法を提供することを目的とする。   Therefore, in the present invention, it is an object to provide a production method for easily producing a mixture of fermented fish meal and steel slag, which can be used as a fertilizer for seaweed establishment, and supplying it at a low price. To do. In particular, fermented fish meal and surface modification that can be used as fertilizer for seaweed development by utilizing a type of steel slag, a by-product of steel production, from the production process of fermented fish meal made from fishery residues. An object of the present invention is to provide a method for producing a mixture of fermented fish meal and surface-modified steelmaking slag for easily producing a mixture of quality steelmaking slag and supplying it at a low price.

本発明者らは、上記目的のため、藻場造成実験のために磯焼け海域に投入する施肥用材料の事前準備段階として、従来方法で製造された発酵魚粉と鉄鋼スラグや腐植物質とを混合する作業を観察して、鋭意研究を重ねた結果、水産残渣と鉄鋼スラグ、中でも製鋼工程で発生する製鋼スラグを、発酵処理前の水産残渣または発酵中の水産残渣魚粉と混合することで、水産残渣の発酵が促進されることを見出した。また、非常に興味深いことに、水産加工残渣の発酵と並行して、製鋼スラグの表面で炭酸化反応が進行することが判った。   For the above purpose, the present inventors mixed fermented fish meal produced by a conventional method with steel slag and humic substances as a preliminary preparation stage for fertilizing materials to be introduced into the seawater-burned sea area for the seaweed development project. As a result of intensive research, the fishery residue and steel slag, particularly steelmaking slag generated in the steelmaking process, are mixed with the fishery residue before fermentation treatment or the fishery residue during fermentation. It has been found that fermentation of the residue is promoted. It was also very interesting that the carbonation reaction progressed on the surface of the steelmaking slag in parallel with the fermentation of the fishery processing residue.

これらの知見により、簡便に、かつ高効率に、藻場造成用施肥材料とすることができる発酵魚粉と表面改質製鋼スラグの混合物を製造できることを見出して本発明を為すに至った。   Based on these findings, the inventors have found that a mixture of fermented fish meal and surface-modified steel slag that can be used as a fertilizer for algae beds can be produced easily and efficiently.

本発明の要旨は以下の通りである。
(1)水産残渣と製鋼スラグとを混合して放置することで、前記水産残渣を発酵させると共に、前記製鋼スラグを表面改質して、発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。
(2)前記製鋼スラグは、粒径2mm以下のスラグ塊を10質量%以上含むことを特徴とする(1)に記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。
(3)水産残渣と製鋼スラグとを混合して放置した後、当該放置後の混合物に、更に、水産残渣と製鋼スラグとを混合して放置することを繰り返して、発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする(1)又は(2)に記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。
(4)前記水産残渣は、事前に加熱又は煮沸され、その後、前記製鋼スラグと混合されることを特徴とする(1)〜(3)のいずれか1つに記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。
(5)水産残渣と製鋼スラグに、更に(1)〜(4)のいずれか1つの製造方法により製造された発酵魚粉と表面改質した製鋼スラグの混合物を加えて混合して放置し、前記水産残渣を発酵させると共に、前記製鋼スラグを表面改質して発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。
(6)(1)〜(5)のいずれか1つに記載の方法で製造した発酵魚粉と表面改質した製鋼スラグの混合物を、藻場造成用施肥材料として海域に投与することを特徴とする藻場造成方法。
The gist of the present invention is as follows.
(1) Mixing and leaving aquatic residues and steelmaking slag to ferment the aquatic residues and surface-modify the steelmaking slag to produce a mixture of fermented fish meal and surface-modified steelmaking slag A method for producing a mixture of fermented fish meal and surface-modified steelmaking slag characterized by the above.
(2) The method for producing a mixture of fermented fish meal and surface-modified steelmaking slag according to (1), wherein the steelmaking slag contains 10 mass% or more of a slag lump having a particle size of 2 mm or less.
(3) After mixing and leaving the fishery residue and steelmaking slag, the mixture after the leaving is further mixed with the fishery residue and steelmaking slag, and then left to improve the surface of the fermented fish meal. A method for producing a mixture of fermented fish meal and surface-modified steel slag according to (1) or (2), wherein a mixture of steel slag is produced.
(4) The fermented fish meal and surface modification according to any one of (1) to (3), wherein the fishery residue is heated or boiled in advance and then mixed with the steelmaking slag. Method for producing a steelmaking slag mixture.
(5) A mixture of fermented fish meal and surface-modified steelmaking slag produced by any one of the production methods (1) to (4) is added to the fishery residue and steelmaking slag, and the mixture is left to stand, A method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, wherein fermented marine residues and surface-modifying the steelmaking slag to produce a mixture of fermented fish meal and surface-modified steelmaking slag.
(6) A mixture of fermented fish meal produced by the method according to any one of (1) to (5) and surface-modified steel slag is administered to the sea as a fertilizer material for seaweed formation. How to create a seaweed bed.

また、本発明においては、水産残渣と製鋼スラグを混合して生じた混合物を放置する際、既設のコンクリート製ピットやヤード(土間)にて堆積させて発酵させる堆肥盤方式を採用することによって、より簡便に、かつ高効率に、藻場造成用施肥材料として使用できる大量の発酵魚粉と表面改質された製鋼スラグの混合物を製造できる。   Also, in the present invention, when leaving a mixture produced by mixing fishery residues and steelmaking slag, by adopting a composting system that is deposited in an existing concrete pit or yard (between soil) and fermented, A mixture of a large amount of fermented fish meal and surface-modified steelmaking slag that can be used as a fertilization material for algae beds is more easily and efficiently produced.

本発明の藻場造成用施肥材料とすることができる発酵魚粉と表面改質製鋼スラグの混合物の製造方法によれば、製麹のために糖を添加して粒状基質を製造して麹菌を接種する特殊な工程や、特段の大型発酵槽等を用いることもなく、あるいは専用の釜を発酵段階まで拘束するといった装置稼働効率の低下もなく、藻場造成用の施肥肥料に使用できる材料を、簡便に低価格にて供給することができる。   According to the method for producing a mixture of fermented fish meal and surface-modified steelmaking slag that can be used as a fertilizing material for seaweed formation according to the present invention, a sugar is added for koji making to produce a granular substrate and inoculating koji mold Without using special processes, special large-scale fermenters, etc., or deteriorating equipment operating efficiency such as constraining a dedicated kettle to the fermentation stage, materials that can be used for fertilizing fertilizer for seaweed development, It can be easily supplied at a low price.

従来の稲わらなど乾燥植物残渣材料の堆肥製造方法を示す流れ図である。It is a flowchart which shows the compost manufacturing method of dry plant residue materials, such as the conventional rice straw. 従来の牛糞堆肥製造方法(戻し堆肥による連続製造)を示す流れ図である。It is a flowchart which shows the conventional cow dung compost manufacturing method (continuous manufacture by a return compost). 本発明による藻場造成用施肥材料の製造方法を示す流れ図である。It is a flowchart which shows the manufacturing method of the fertilization material for seaweed bed creation by this invention. 一般的な道路用路盤材の粒度分布の範囲を示すグラフである。It is a graph which shows the range of the particle size distribution of the general roadbed material. 本発明の実施例1に係る藻場造成用施肥材料製造時の品温の推移(初期一括混合)を示すグラフである。It is a graph which shows transition (initial batch mixing) of the product temperature at the time of manufacture of the fertilization material for seaweed formation concerning Example 1 of the present invention. 本発明の実施例2に係る藻場造成用施肥材料製造時の品温の推移(分割混合)を示すグラフである。It is a graph which shows transition of the product temperature (division mixing) at the time of manufacture of the fertilization material for seaweed formation concerning Example 2 of the present invention. 本発明の実施例3に係る藻場造成用施肥材料製造時の品温の推移(加熱分割混合)を示すグラフである。It is a graph which shows transition (heating division | segmentation mixing) of the product temperature at the time of manufacture of the fertilization material for seaweed bed creation concerning Example 3 of this invention. 本発明の実施例4に係る藻場造成用施肥材料製造時の品温の推移(冬期加熱分割混合)を示すグラフである。It is a graph which shows transition of the product temperature (winter heating division mixing) at the time of manufacture of the fertilization material for seaweed bed creation concerning Example 4 of the present invention. 本発明の実施例5に係る藻場造成用施肥材料製造時の品温の推移(粉分の多いスラグ使用時)を示すグラフである。It is a graph which shows transition of the product temperature at the time of manufacture of the fertilization material for seaweed bed creation concerning Example 5 of this invention (at the time of slag with much powder content). 本発明の実施例6に係る藻場造成用施肥材料製造時の品温の推移(粉分の少ないスラグ使用時)を示すグラフである。It is a graph which shows transition of the product temperature at the time of manufacture of the fertilization material for seaweed bed creation concerning Example 6 of this invention (at the time of slag with little powder content). 本発明の実施例7に係る藻場造成用施肥材料製造時の品温の推移(施肥材料戻し)を示すグラフである。It is a graph which shows transition of the article temperature at the time of manufacture of the fertilization material for seaweed bed creation concerning Example 7 of the present invention (fertilization material return). 比較例1に係る藻場造成用施肥材料製造時の品温の推移(天然石使用)を示すグラフである。It is a graph which shows the transition (use of natural stone) of the product temperature at the time of manufacture of the fertilization material for seaweed bed construction concerning the comparative example 1.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明に係る藻場造成用施肥材料とすることができる発酵魚粉と表面改質製鋼スラグの混合物の製造方法は、水産残渣と、鉄鋼スラグのうち製鋼工程で発生する製鋼スラグとを混合して、しばらくの間放置することで、水産残渣の発酵が著しく進行すると共に、製鋼スラグの表面で炭酸化反応が進行し、発酵魚粉と表面改質製鋼スラグの混合物を簡便に製造できるものである。   The method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, which can be used as a fertilizer for seaweed formation according to the present invention, comprises mixing marine residues and steelmaking slag generated in the steelmaking process among steel slags. By leaving it to stand for a while, the fermentation of the marine product residue proceeds remarkably, and the carbonation reaction proceeds on the surface of the steelmaking slag, so that a mixture of fermented fish meal and surface-modified steelmaking slag can be easily produced.

なお、本発明における発酵魚粉と表面改質製鋼スラグの混合物を、以下では簡略化して藻場造成用施肥材料とも呼称する。   In the following, the mixture of fermented fish meal and surface-modified steel slag in the present invention will be simplified and also referred to as a fertilizer material for seaweed bed construction.

本発明においては、水産加工で生じた魚の頭・中骨・内臓・アラなどの水産残渣や、商品価値に乏しい魚介残材等の水産残渣、または、これらを加熱処理した水産残渣を用いることができる。また、本発明においては、鉄鋼製造において発生する転炉スラグや電炉スラグ等の製鋼スラグを使用することができる。   In the present invention, it is possible to use aquatic residues such as fish head, middle bone, internal organs, ara, etc. produced by marine processing, seafood residues such as seafood residue with poor commercial value, or aquatic residues obtained by heating these. it can. In the present invention, steel slag such as converter slag and electric furnace slag generated in steel production can be used.

本発明においては、上述の水産残渣(非加熱・加熱の一方でも両方でもよい)と、製鋼スラグとを混合し、その後、放置することで、水産残渣は発酵が進んで発酵魚粉となり、製鋼スラグは炭酸化反応が進行して表面改質製鋼スラグとなって、発酵魚粉と表面改質製鋼スラグの混合物が製造される。   In the present invention, the above-described marine residue (either non-heated or heated) may be mixed with steelmaking slag, and then left to stand so that the marine residue is fermented to become fermented fish meal, resulting in steelmaking slag. The carbonation reaction proceeds to form surface-modified steelmaking slag, and a mixture of fermented fish meal and surface-modified steelmaking slag is produced.

その際、混合する方式は問わないが、例えば、鍋等の容器内で、スラリー状やケーキ状で混合することができる。その後の放置は、混合容器内で放置しても、他の場所に移動して放置してもどちらでも構わず、室内外も問わない。   At that time, the mixing method is not limited, but it can be mixed in a slurry form or a cake form in a container such as a pan. The subsequent leaving can be left in the mixing container or moved to another place and left outside, whether it is indoors or outdoors.

また、放置する期間は、水産残渣の発酵が進んで発酵魚粉となり、製鋼スラグの炭酸化反応が進行して表面改質製鋼スラグとなるまで放置すればよく、発酵温度のピークが過ぎるまで放置すれば、発酵が進行して発酵魚粉が生成しているだけでなく製鋼スラグの炭酸化による表面改質も進行して表面改質スラグとなっているといえる。   In addition, during the standing period, the fermentation of the fishery residue proceeds to fermented fish meal, and it can be left until the carbonation reaction of the steelmaking slag progresses to the surface-modified steelmaking slag. For example, it can be said that not only fermented fish meal is produced due to fermentation, but also surface modification by carbonation of steelmaking slag has progressed to form surface-modified slag.

また、より好ましくは、発酵の過程で温度が上昇しピーク温度(例えば60℃)が過ぎて全体の温度低下が収まってくるまで(発酵開始温度とピーク温度との中間温度程度になるまで)の期間以上放置すれば、より十分に発酵と表面改質が進行していると言える。   More preferably, until the temperature rises in the course of fermentation and the peak temperature (for example, 60 ° C.) passes and the overall temperature drop is settled (until the temperature between the fermentation start temperature and the peak temperature is about). If it is left for a period of time or longer, it can be said that fermentation and surface modification are more fully progressed.

さらに、本発明においては、特に、既設のコンクリート製ピットやヤード(土間)にて堆積させて発酵させる堆肥盤方式を用いると、簡便に、かつより高効率に発酵魚粉と表面改質製鋼スラグの混合物を製造させることができて好ましい。   Furthermore, in the present invention, in particular, when using a composting system that is fermented by depositing in an existing concrete pit or yard (between soils), fermented fish meal and surface-modified steel slag can be easily and more efficiently produced. It is preferable that a mixture can be produced.

以下に、堆肥盤方式について説明する。   The composting method will be described below.

そもそも堆肥化というものは、「生物系廃棄物(有機物)をあるコントロールされた条件下で、取り扱い易く、貯蔵性良くそして環境に害を及ぼすことなく安全に土壌還元可能な状態にまで微生物分解すること」と定義されており、主に動物の排泄物(大半は大量の家畜糞である牛糞)を堆肥化生物が分解することを指す。有機物分解が不完全な状態では肥料として様々な問題を持つため、これらの問題が起こらなくなるまで人為的に分解を進めることが堆肥化ともいわれる。   In the first place, composting refers to “biological decomposition of organic waste (organic matter) under certain controlled conditions so that it is easy to handle, has good storability and can be safely reduced to the soil without harming the environment. It means that composting organisms break down mainly animal excrement (mostly cow dung, which is a large amount of livestock dung). In the state where organic matter decomposition is incomplete, there are various problems as fertilizers, and it is also said that composting is carried out artificially until these problems do not occur.

また、一般的な稲わらなどの植物残渣は、図1に示される以下の工程を経て堆肥化される
(堆肥盤方式)
1)堆肥化の材料準備 (水かけ、切断) →1日
2)積み込み(石灰乳添加)と寝かし →2週間
3)本積み(切り崩し、水かけ、硫安添加) →4週間(3〜4日で発熱、60℃2週間以上)
4)切り返し(温度低下後、積み上げ) →1か月で完熟以上、ほぼ3カ月
Moreover, general plant residues such as rice straw are composted through the following steps shown in FIG. 1 (composting method).
1) Preparation of composting materials (watering, cutting) → 1 day 2) Loading (lime milk added) and laying down → 2 weeks 3) Full loading (cutting, watering, adding ammonium sulfate) → 4 weeks (3-4 days) Fever, 60 ° C over 2 weeks)
4) After the crosscut (temperature drop, stacking) → 1 month ripened more, almost three months

また、同じく図1には、石灰乳と硫安のかわりに、窒素原として石灰窒素を使用し、製造期間を短縮する速成堆肥の従来製造方法も示した。この場合、石灰乳による寝かしを必要とせず、最初から本積みができることからより効率的といわれている。   Similarly, FIG. 1 also shows a conventional method for producing rapid compost, which uses lime nitrogen as a nitrogen source instead of lime milk and ammonium sulfate, and shortens the production period. In this case, it is said that it is more efficient because it does not require sleeping with lime milk and it can be booked from the beginning.

一方、牛糞からの堆肥製造方法を図2に示す。家畜糞は水分含量が高く、生糞水分含量の半分程度(水分含量50%台)になるまで事前に乾燥させないと堆肥化しないため、まず始めに天日乾燥の工程が必要である。ここで水分が40%程度になったら、生牛糞を重さで等量混合して堆積発酵させる。2〜3日に1回の割合で切り返し(混合)を行い、約10日で熟成したタネ堆肥が得られる。さらにこのタネ堆肥を生牛糞と等量混合させると、タネ堆肥から持ち込まれた有用微生物郡が発酵源となり数日後には60℃くらいに温度があがり、これを2〜3日に1回切り返しすれば2〜3週間で完熟した牛糞堆肥が得られる。   On the other hand, a method for producing compost from cow dung is shown in FIG. Livestock manure has a high water content, and since it does not compost unless it is dried in advance until it reaches about half of the water content of the live feces (water content level of 50%), a sun drying process is required first. When the water content reaches about 40%, raw cow dung is mixed in an equal amount by weight and fermented. Performed crosscut (mixing) at a rate of once every 2-3 days, seed compost obtained was aged at about 10 days. Furthermore, when this seed compost is mixed with an equal amount of raw cattle manure, the useful microorganisms brought from the seed compost become the fermentation source, and after a few days the temperature rises to about 60 ° C, and this is cut back once every two to three days. For example, fully-ripened cow manure compost can be obtained in 2 to 3 weeks.

ただし、生糞の天日乾燥ないし堆積発酵の初期には、排泄物特有の異臭は発生する。   However, a nasty smell peculiar to excreta is generated in the early stage of sun drying or sedimentation fermentation of raw feces.

以上のように従来の堆肥盤方式においても、牛糞の水分含量低下のために乾燥させる必要があることから、同程度以上の水分含量を有し、1回の発生量が少ない水産残渣に本方式を適用することは殆ど試みられず、その結果、これまでの発酵魚粉製造、前述の製麹方式や専用釜内で発酵させるバイオメスク方式などが主流であったものと推察できる。   As described above, even in the conventional composting system, it is necessary to dry to reduce the water content of cow dung. As a result, it can be inferred that the production of fermented fish meal, the aforementioned koji making method, the biomesk method of fermenting in a dedicated kettle, etc. were the mainstream.

次に、本発明に係る藻場造成用施肥材料の製造方法を説明する。   Next, the manufacturing method of the fertilization material for seaweed bed construction concerning the present invention is explained.

図3は、本発明による製造方法の1例を示したものであり、以下にその要点を述べる。   FIG. 3 shows an example of the manufacturing method according to the present invention, and the main points thereof will be described below.

まずは、漁港ないしは漁港周辺の水産加工場で発生する、魚の頭・中骨・内臓・アラなどの水産残渣、あるいは商品価値に乏しい魚介残材などを一定の容器に回収し、発酵処理を施す敷地に搬送させる。   First, a site where fishery residue such as fish heads, bones, internal organs, and ara, generated from fisheries processing plants around the fishing port or around the fishing port, or seafood residues with poor commercial value are collected in a certain container and subjected to fermentation treatment To transport.

なお、鉛といった特異的な重金属を蓄積するイカゴロやタコの頭、季節的に貝毒などを濃縮するホタテ貝のワタなど、海洋汚染の防止に関する法律(環境庁告示第14号)の水底土砂判定基準に適合しない有害物質を含む恐れのある残渣などは、用いないことが好ましい。   Sediment judgment of marine pollution prevention law (Environment Agency Notification No. 14), such as squid and octopus heads that accumulate specific heavy metals such as lead, and scallop cotton that concentrates shellfish poisons seasonally It is preferable not to use residues that may contain harmful substances that do not meet the standards.

次に、製鉄所にて発生した製鋼スラグをフレコン(フレキシブルコンテナバッグ)などのバッグに納めて該敷地に搬入する。ここでいう製鋼スラグとは、主に高炉方式の一貫製鉄所における製鋼工程(炭素含有量の高い溶けた銑鉄に酸素を吹いて炭素含有量の低い鋼鉄に精錬させる工程)にて副産物として生成するCaOやSiO、FeOやFeといった成分からなり、さらに製鉄所構内において溶けた状態から冷却された岩石状の複合酸化物のことを指す。表1には、製鋼スラグの一般的な化学成分の分析結果を質量%表示で示す。元来、天然資源である鉄鉱石から鉄分を回収した副産物のため天然の鉱物状態に近く、これまでは破砕、分級工程を経てその粒度が調整され、主に道路用路盤材料といった土木工事用の骨材材料として多用されてきたものである。 Next, the steelmaking slag generated at the steelworks is stored in a bag such as a flexible container (flexible container bag) and carried into the site. Steelmaking slag here is mainly produced as a by-product in the steelmaking process in the blast furnace-type integrated steelworks (the process of blowing oxygen to molten pig iron with a high carbon content and refining it to steel with a low carbon content). It refers to a rock-like complex oxide composed of components such as CaO, SiO 2 , FeO, and Fe 2 O 3 and cooled from a melted state in the steelworks premises. In Table 1, the analysis result of the general chemical component of steelmaking slag is shown by the mass% display. Originally, it is close to the natural mineral state because it is a by-product of recovering iron from iron ore, which is a natural resource. So far, the particle size is adjusted through crushing and classification processes, mainly for civil engineering work such as roadbed material for roads. It has been used extensively as an aggregate material.

この製鋼スラグを、荷を解いた後に重機などを用いて山状に積み直し、最後に水産残渣を混ぜ込みやすいように、山の頂上の一部を削ってすり鉢状とする。   This steelmaking slag is unloaded and then piled up again using a heavy machine or the like, and finally a part of the top of the mountain is cut into a mortar shape so that it is easy to mix fishery residues.

Figure 2012254026
Figure 2012254026

この製鋼スラグのすり鉢状の山に、水産残渣を注ぎ、重機などを用いて製鋼スラグと水産残渣を十分に混合させ、最後に改めて該混合物を山状に積み上げて堆積させる。この際に、製鋼スラグが水産加工残渣中の水分を吸収し、余剰な水分が山すそから系外に放出しないため、このあとの腐敗等に伴う悪臭の発生を相当に抑制することができる。   A fishery residue is poured into the mortar-like pile of the steelmaking slag, the steelmaking slag and the fishery residue are sufficiently mixed using a heavy machine or the like, and finally the mixture is piled up again in a mountain shape and deposited. At this time, the steelmaking slag absorbs moisture in the fishery processing residue, and excess moisture is not released from the bottom of the mountain to the outside of the system, so that it is possible to considerably suppress the generation of bad odor due to subsequent decay.

なお、この製鋼スラグは、前述のこれまで道路用路盤材料といった土木工事用材料として製造されているものをそのまま使用できるが、該用途のためにJIS A5015「道路用鉄鋼スラグ」にてその粒度分布が図4中の帯で示すような特定の範囲内に調整することが規定されている。ここで、2mm以下の砂に近いものが上述の水産残渣中の水分の吸収に効果的な役割を示すことから、全質量に対してその質量比は10%以上であることが望ましい。   In addition, although this steelmaking slag can use what was manufactured as a civil engineering material, such as the above-mentioned roadbed material for roads as it is, the particle size distribution by JIS A5015 "steel slag for roads" for this use. Is regulated within a specific range as indicated by a band in FIG. Here, since the thing close | similar to the sand of 2 mm or less shows the effective role in the absorption of the water | moisture content in the above-mentioned fishery residue, it is desirable that the mass ratio is 10% or more with respect to the total mass.

逆に、細かな塊が多すぎる場合は山全体としての通気性の低下にも結びつくことから、5mm以下の塊分の質量比は40%以下であることがさらに望ましい。但し、40%以上の場合でも、適宜、山の底部にパイプなどを挿入して空気を送り込む方法と組み合わせればその限りではない。   On the other hand, when there are too many fine lumps, it leads to a decrease in the air permeability of the whole mountain, so that the mass ratio of the lumps of 5 mm or less is more preferably 40% or less. However, even if it is 40% or more, it is not limited as long as it is combined with a method of inserting air into the bottom of the mountain and feeding air.

この混合物の堆積作業の途中に、混合物の各部に温度ならびに必要に応じて湿度を測定できるセンサーを埋設して発酵準備を整わせる。ここで降雨が多い梅雨の時期などは、この山にシートを掛けて、混合物の水分があがらないようにすることが好ましい。   In the middle of the deposition operation of the mixture, sensors capable of measuring temperature and humidity as necessary are embedded in each part of the mixture to prepare for fermentation. Here, during the rainy season when there is a lot of rainfall, it is preferable to place a sheet on this mountain so that the water in the mixture does not rise.

その後は放置することで、特段の作業や加熱処理を行わなくとも、季節にもよるが1週間から2週間程度、経過すれば発酵に伴い堆積物内部で温度が上昇し、その後2週間ほどは60℃以上の温度が保持でき、この熱によって病原性微生物を死滅させることができる。   After that, if left unattended, the temperature inside the sediment rises with the fermentation after 1 to 2 weeks, depending on the season, even if no special work or heat treatment is performed. A temperature of 60 ° C. or more can be maintained, and pathogenic microorganisms can be killed by this heat.

本方法の特徴として、まずは塊状の製鋼スラグが水産残渣の水分を吸収するため、過剰水分が山の周辺に浸み出すこともなく、従来法のように事前に十分な水産残渣の乾燥を行わなくとも水産残渣自体の含水量を低下させることができることがあげられる。   As a feature of this method, the massive steelmaking slag first absorbs the moisture of the marine residue, so that excess moisture does not ooze out around the mountain, and the marine residue is sufficiently dried in advance as in the conventional method. Even if not, it is possible to reduce the water content of the fishery residue itself.

但し、水産残渣の含水率を低下させるために、事前に加熱することで水分を蒸発させる方法と組み合わせても何の遜色もない。   However, in order to reduce the moisture content of the fishery residue, there is no inferiority even when combined with a method of evaporating moisture by heating in advance.

さらには、先に図2にも示した従来の堆肥盤方式の製造効率を高める方法として用いられる、完成した堆肥の一部を混合して水分調整を行う「戻し堆肥」方法も本発明における発酵の促進にきわめて有効である。   Furthermore, the “return compost” method, which is used as a method for increasing the production efficiency of the conventional composting method shown in FIG. It is extremely effective in promoting

以上、この特徴の結果として、塊状製鋼スラグの表面には、比較的含水率の下がった水産残渣の内容物(半固形物)が被覆されるが、製鋼スラグの塊同士の間には十分な空隙が確保できるため、従来の堆肥盤方式のように山詰み時に丸太やビニールパイプを立てておき、後ほどそれらを抜き取って空気穴を作る、といった工夫を一切行わずとも、山全体として通気性を確保することができる。   As described above, as a result of this feature, the surface of the massive steelmaking slag is covered with the contents (semi-solid matter) of the marine product having a relatively low moisture content, but there is sufficient space between the masses of the steelmaking slag. Since the air gap can be secured, the entire mountain can be made breathable without any ingenuity such as standing logs or vinyl pipes when clogging, and then drawing them out to create air holes. Can be secured.

また、製鋼スラグには、数%程度の水に溶け出しやすいカルシウム成分が存在し(以後、遊離石灰と称す)、この遊離石灰は非常にゆっくりと溶出して有機物の微生物分解を促進しやすくするため、従来の堆肥盤方式のように初期に石灰乳や硫安ないしは石灰窒素を添加する必要もない。   Steelmaking slag contains a calcium component that easily dissolves in water of several percent (hereinafter referred to as free lime), and this free lime elutes very slowly, facilitating the microbial degradation of organic matter. Therefore, it is not necessary to add lime milk, ammonium sulfate or lime nitrogen at the initial stage as in the conventional composting method.

さらに製鋼スラグ中に含水する水分ならびにスラグの間隙水中に存在する水分中にはこの遊離石灰が溶解する(Ca2+)ためアルカリ性となるが、発酵に伴い微生物が生成するCOがこのCa分と反応して炭酸化反応が起こる。この反応は発熱を伴うため、特に冬季の北海道地区のように外気温の低い場合でも、廃食油の添加や外部からの加熱などを行わなくとも、山全体の温度を高位に保つことができる。 Furthermore, although this free lime dissolves in the water contained in the steelmaking slag and in the water present in the slag pore water (Ca 2+ ), it becomes alkaline, but the CO 2 produced by the microorganisms during fermentation is the Ca content. A carbonation reaction takes place upon reaction. Since this reaction is exothermic, the temperature of the whole mountain can be maintained at a high level without adding waste cooking oil or heating from the outside even when the outside air temperature is low, especially in the Hokkaido area in winter.

このように、外気温が低い場合でも安定して60℃以上の高温を2週間以上、維持することができ、この熱によって病原性微生物を死滅させることができる。   Thus, even when the outside air temperature is low, a high temperature of 60 ° C. or higher can be stably maintained for 2 weeks or more, and pathogenic microorganisms can be killed by this heat.

夏季など、この発酵による発熱に伴い、山全体の温度が過剰に上昇する場合には、従来方式のように、時折、重機などによって山の一部を切り崩す、あるいは、適宜、山の底部にパイプなどを挿入し、そのパイプを介して空気を送り込む、といった抜熱処理を行うことが効果的であるのはいうまでもない。   If the temperature of the whole mountain rises excessively due to this heat generation due to fermentation, such as in summer, as in the conventional method, a part of the mountain is occasionally broken down by heavy machinery, or a pipe is appropriately attached to the bottom of the mountain. insert the like, send air through the pipe, it is of course effective to perform heat removal process such.

ここで、この反応の生成物である炭酸カルシウム(CaCO)が水産残渣と製鋼スラグの界面に生成するが、言いかえれば製鋼スラグの表面の一部あるいは殆どをこれらの生成物が水産残渣とともに被覆することになり、製鋼スラグ表面が改質される。 Here, calcium carbonate (CaCO 3 ), which is a product of this reaction, is generated at the interface between the fishery residue and the steelmaking slag. In other words, a part or most of the surface of the steelmaking slag is mixed with the fishery residue. It will coat | cover, and the steelmaking slag surface will be improved.

従来の藻場造成用施肥材料の製造では、それぞれに用意した個別原料を混合すると先に述べたが、遊離石灰が多い製鋼スラグを用いる場合には、表面から海水へのアルカリ溶出を抑制する目的で、製鉄所において大量の水による洗浄や、この炭酸化反応などを用いた表面改質処理を施す必要があった。一方、本発明においては、このような製鋼スラグの事前改質処理も不要となり、こうして製造された藻場造成用施肥材を海域に投与した場合の周辺の海水のpHを、従来法の発酵魚粉と表面改質製鋼スラグを混合した施肥材料を海域投与した場合の数値と遜色なく安定させることができる。   In the production of conventional fertilization materials for seaweed bed construction, it was stated earlier that the individual raw materials prepared for each were mixed, but when using steelmaking slag with a lot of free lime, the purpose is to suppress alkali elution from the surface to seawater. Therefore, it was necessary to wash the surface with a large amount of water at the steelworks and to perform a surface modification treatment using this carbonation reaction. On the other hand, in the present invention, such a pre-modification treatment of steelmaking slag is not required, and the pH of the surrounding seawater when the fertilizer for creating seaweed beds produced in this way is administered to the sea area, the fermented fish meal of the conventional method fertilizing material obtained by mixing the surface modified steel slag and it is possible to numerically comparable to that stability in the case of waters administered.

なお、製鋼スラグが表面改質されたことを確認するには、化学分析によって遊離石灰が減少していることで、あるいはより具体的には、炭酸化によりCaCOが生じるため、混合前の製鋼スラグと混合して放置した後の製鋼スラグとを粉末X線回折にて測定し、放置後の製鋼スラグの方がCaCOのピーク強度が強くなっていることを見ることにより確認できる。あるいは、EPMA測定により、放置後の製鋼スラグ表面のC成分が増加していることにより確認してもよい。 In order to confirm that the steelmaking slag has been surface-modified, the free lime is reduced by chemical analysis, or more specifically, since CaCO 3 is produced by carbonation. This can be confirmed by measuring the steelmaking slag after mixing with the slag by powder X-ray diffraction and seeing that the peak strength of CaCO 3 is stronger in the steelmaking slag after being left. Alternatively, it may be confirmed by an EPMA measurement that the C component on the steelmaking slag surface after being left is increased.

また、発酵の進捗状況については、適宜、山の温度や、内部から採取したガスのアンモニア濃度を測定することにより、一次発酵(高温期における易分解性有機物の分解)ならびに二次発酵(完熟度の醸成)の状況を管理することができる。   In addition, as for the progress of fermentation, primary fermentation (decomposition of readily decomposable organic substances in the high temperature period) and secondary fermentation (completeness degree) are measured by measuring the temperature of the mountain and the ammonia concentration of the gas collected from the inside as appropriate. Can be managed.

すなわち、品温の推移と有機物指標の低下から見ると、品温60℃が1〜2週間程度維持されれば有機物の分解が十分に進行すると考えられ、このときアンモニアの発生も低減することから、堆肥の品質及び環境配慮の観点からも、品温の維持は重要であるといえる。   That is, when viewed from the transition of the product temperature and the decrease of the organic matter index, it is considered that the decomposition of the organic matter proceeds sufficiently if the product temperature of 60 ° C. is maintained for about 1 to 2 weeks, and at this time, the generation of ammonia is also reduced. From the viewpoint of compost quality and environmental consideration, it can be said that maintaining the product temperature is important.

本方式で発生するアンモニアは、堆肥近傍からサンプリングするため測定値としては幾分、高いが、敷地境界線では大気により希釈され、特に臭気が気になるようなことにはならない。また、畜産糞尿を処理する堆肥化施設での測定値に比べて格段に高いものではないことも確認された。   Ammonia generated by this method is sampled from the vicinity of compost, so the measured value is somewhat high, but it is diluted by the atmosphere at the boundary of the site, so that odor is not particularly worrisome. It was also confirmed that the measured values were not much higher than those measured at the composting facility that processed livestock manure.

このように、本発明の藻場造成用施肥材料の製造方法によれば、製麹のために糖を添加して粒状基質を製造して麹菌を接種する特殊な工程や、特段の大型発酵槽等を用いることもなく、あるいは専用の釜を発酵段階まで拘束するといった装置稼働効率の低下もなく、藻場造成用肥料を低価格にて供給することができる。   Thus, according to the method for producing a fertilizer material for seaweed formation according to the present invention, a special process for adding a sugar for producing koji and producing a granular substrate and inoculating koji mold or a special large-scale fermenter The fertilizer for creating seaweed beds can be supplied at a low price without the use of a device or the like, or without reducing the efficiency of operation of the apparatus such as restraining a dedicated kettle to the fermentation stage.

具体的には、煮沸ボイラーを用いて水産残渣を加熱し、その後に同一の釜内で水分を飛ばしながら密閉条件で発酵を行わせる従来のバイオメスク方法と、当該釜で水産残渣の加熱のみを行い製鋼スラグと混合させる本発明の方法による製造可能量を試算比較した結果、本発明では釜で加熱のみを実施し、占有率が低いため、約3倍の生産が可能であり、原燃料や人件費など製造に必要なコストは従来の1/2以下に抑制できるということが判った。   Specifically, the aquatic residue is heated using a boiling boiler, and then the conventional biomesk method in which the fermentation is performed in a closed condition while removing moisture in the same kettle, and the aquatic residue is only heated in the kettle. As a result of trial calculation and comparison of the manufacturable amount by the method of the present invention to be mixed with steelmaking slag, in the present invention, only heating in the kettle is carried out, and since the occupation rate is low, the production can be about three times, and the raw fuel and labor It was found that the cost required for manufacturing, such as expenses, can be reduced to less than half of the conventional cost.

また、このようにして製造した藻場造成材料は、従来技術である、発酵魚粉、製鋼スラグおよび/または腐植物質といった各種原料をそれぞれ用意した後に混合する方法で製造した藻場造成材料と比べて、製造時に発生する粉塵や臭気の発生も抑制されて、製造時の作業性が非常に良好である。   In addition, the seaweed bed building material produced in this way is compared with the conventional seaweed bed building material produced by a method of preparing various raw materials such as fermented fish meal, steelmaking slag and / or humic substances and then mixing them. Further, the generation of dust and odor generated during production is suppressed, and the workability during production is very good.

さらには、海域への施肥材料の施工作業に際しても、本発明の製造方法による藻場造成用施肥材料は製鋼スラグの塊のまわりに発酵魚粉が固着していることから、従来技術で見られた海水への投入時に軽くて粉体である発酵魚粉のみが飛散するという問題もなく、歩留りがよいという効果も得られた。   Furthermore, in the construction work of fertilizer material in the sea area, the fermented fish meal is fixed around the lump of the steelmaking slag in the fertilizer material for seaweed formation by the production method of the present invention. There was no problem that only fermented fish meal, which was light and powdery, was thrown into the seawater, and the yield was good.

更にまた、本発明の製造方法による藻場造成用施肥材料は、従来のそれぞれの混合品によるそれと遜色ない藻場造成に関する施肥効果を有することを、実際の磯焼け海域への施肥実験においても確認している。   Furthermore, it was confirmed in a fertilization experiment on actual sea urchin sea area that the fertilization material for seaweed bed creation by the production method of the present invention has a fertilization effect related to the creation of seaweed bed inferior to that of each conventional mixture. is doing.

以下、実施例および比較例をもって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

(実施例1)
製鉄所から搬入して、すり鉢状の山に積上げた製鋼スラグ約10トンに、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約4トンを注ぎこみ、重機を用いてこれらをよく混合し、新たな山を積み上げた。ここで用いた製鋼スラグは、元来、道路用路盤材向けの骨材として粒度調整されたもので、2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%であった。
Example 1
About 10 tons of steelmaking slag loaded from a steel mill and piled up in a mortar-shaped mountain, about 4 tons of marine residue (water content of about 85%) including the hockey and cocoon bones brought in from a nearby fishery processing plant Poured and mixed them well using heavy machinery and piled up a new pile. The steelmaking slag used here was originally adjusted in particle size as an aggregate for road base materials, and the mass ratio of slag lumps of 2 mm or less was about 20%, and the mass ratio of 5 mm or less was about 35%. there were.

この混合物の山の頂点(深さ200mm)と中腹、ならびに山すその数箇所に温度計ならびに湿度計をセットした後に、全体をブルーシートで覆い発酵準備を完了した。この混合作業時に、水産残渣の水分はほとんど全て製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   After setting a thermometer and a hygrometer at the top (200 mm depth) and middle of the mountain of this mixture, and several parts of the mountain bottom, the whole was covered with the blue sheet, and the preparation for fermentation was completed. During this mixing operation, almost all the water from the fishery residue was absorbed by the steelmaking slag piles, and no spillage from the piles was observed even when the piles were completed.

この後、適宜、温度や湿度の観測、ならびに適宜、ブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature and humidity were appropriately observed, and a dedicated odor cover was appropriately installed inside the blue sheet, and the ammonia concentration was measured using a detection type gas measuring device.

図5に、水産残渣と製鋼スラグを混合、山積みした日からの経過日数に対する、外気温ならびに山の頂点部の温度の推移を示す。この図から、放置後しばらくは山内の温度は外気温とほぼ同じだが、図中に点線で示した10日を過ぎた頃から、発酵が活発となり山内部の温度が上昇しだし、20日すぎには60℃に達し、そこから約20日間は山内温度が60℃以上で推移し、発酵状態の継続が見られた。この間、数回、ブルーシートをめくり、重機を用いた切り替えし(混合)も行ったが、極端な温度低下は観察されなかった。   FIG. 5 shows changes in the outside air temperature and the temperature at the top of the mountain with respect to the number of days elapsed from the day when the seafood residue and steelmaking slag were mixed and piled up. From this figure, the temperature in the mountain is almost the same as the outside temperature for a while after being left, but since the 10th day indicated by the dotted line in the figure, the fermentation has become active and the temperature inside the mountain has started to rise, and it has been over 20 days. The temperature reached 60 ° C., and the temperature in the mountains was maintained at 60 ° C. or higher for about 20 days, and the fermentation state continued. During this time, the blue sheet was turned over several times, and switching (mixing) was performed using a heavy machine, but no extreme temperature drop was observed.

20日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、温度が60℃となった発酵初期には約200ppm程度であったが、30日を過ぎたあたりから徐々にその濃度が低下、40日目以降の温度の低下に伴いその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、ブルーシートを取って発酵作業を終了した。この間、ブルーシートの外側では特段の異臭は感知されなかった。   From the 20th day, when the ammonia concentration in the gas in the mountain was measured as appropriate, it was about 200 ppm at the beginning of the fermentation when the temperature reached 60 ° C., but the concentration gradually increased after about 30 days. As the temperature decreased from the 40th day onward, the concentration became 50 ppm or less, and it was found that the decomposition of the organic matter was sufficiently advanced. During this time, no particular off-flavor was detected outside the blue sheet.

また、切り返しの時点で山内の材料を採取し、蒸留水によるしん透抽出・遠心分離法によって上透水を分離し、TOC(全有機炭素)や易分解性有機物の指標としての生物化学的酸素要求量(BOD)などの分析も実施したが、日数の経過とともにBODが低下し、有機物の分解が進行していることも確認できた。   At the time of turnover, the material in the mountain is collected, the permeate is separated by permeation extraction / centrifugation with distilled water, and the biochemical oxygen demand as an indicator of TOC (total organic carbon) and readily decomposable organic matter. The amount (BOD) and the like were also analyzed, but the BOD decreased with the passage of days, and it was also confirmed that the decomposition of organic substances was progressing.

さらに当該試料の一部を樹脂に埋め込み、研磨作業によってその断面を磨きだし、EPMA測定を実施した結果、製鋼スラグ表面にC成分が薄い膜状に存在することも検出され改質状況を確認できた。   Furthermore, as a result of embedding a part of the sample in resin, polishing the cross section by polishing work, and conducting EPMA measurement, it was detected that the C component was present in the form of a thin film on the steelmaking slag surface, and the modification status could be confirmed. It was.

このようにして製造された藻場造成用施肥材料をさらに1カ月ほど静置して完熟させたうえで、海洋汚染の防止に関する法律(環境庁告示第14号)の水底土砂判定基準の評価方法に基づき溶出試験を実施したところ、重金属など全ての元素について判定基準を満たしていることが確認できたため、約2トンを透水性の袋に小分けしながら鋼製の箱に充填し、藻類の成長が芳しくない海域(海底)に春先に設置した。   The method for evaluating the sediment sediment criteria of the Law Concerning the Prevention of Marine Contamination (Environmental Agency Notification No. 14) after allowing the fertilized material for seaweed bed construction produced in this way to stand for a further month to complete ripeness As a result of the dissolution test based on the above, it was confirmed that the criteria for all elements such as heavy metals were met. Therefore, about 2 tons were filled into a water-permeable bag and filled into a steel box to grow algae. It was installed in early spring in an unseasonable sea area (the seabed).

設置に際して、設置前後の海水のpHを測定したが、いずれも約8.2を示し著しい変化は認められなかった。その後、該海域の藻場状況について観察を実施したところ、周辺海域に比べ、鋼製の箱の周辺の藻類の成長が良好なことも確認できた。   At the time of installation, the pH of the seawater before and after the installation was measured, and all showed about 8.2 and no significant change was observed. Then, when the seaweed place situation of this sea area was observed, it has also confirmed that the growth of the algae around the steel box was favorable compared with the surrounding sea area.

(実施例2)
実施例1では数日間かけて近隣から搬入した水産残渣4トンをまとめて一括混合したが、現実的には1日あたりに発生する水産残渣の量には差もあることから、都度、発生する新鮮な残渣を追加投入する処理を行った。実施例1と同じ、道路用路盤材向けの骨材として粒度調整された2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%の製鋼スラグ約10トンをすり鉢状の山に積上げ、そこに近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を2日おきに注ぎこみ、重機を用いてこれらをよく混合した。
(Example 2)
In Example 1, 4 tons of marine residues brought in from the vicinity over several days were collectively mixed, but in reality, there is a difference in the amount of marine residues that are generated per day. A process of adding an additional fresh residue was performed. As in Example 1, the mass ratio of the slag lump of 2 mm or less adjusted as the aggregate for the roadbed material for roads is about 20%, and the mass ratio of 5 mm or less is about 35 tons of steelmaking slag of about 10 tons. The fishery residue (including water content of about 85%), including the hockey and salmon bones carried from the nearby seafood processing plant, was poured into the mountain at every 2 days, and these were used using heavy machinery. Mixed well.

処理開始から8日目に約4トンの水産残渣の混合が完了したので、山の頂点や中腹ならびに山すその数箇所に温度計をセットし、全体をブルーシートで覆い発酵処理を開始した。この分割混合作業時にも、水産残渣の水分はほとんど全て、製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   On the 8th day from the start of the treatment, mixing of about 4 tons of marine residue was completed, so thermometers were set at the top and middle of the mountain, and at several places on the mountain slope, and the whole was covered with a blue sheet, and the fermentation treatment was started. Even during this divided mixing operation, almost all of the water in the fishery residue was absorbed by the piles of steelmaking slag, and no spillage from the piles was observed when the piles were completed.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図6に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、図5に示した初期一括混合に比べると、必要な水産残渣の充填完了までに日数を要したために発酵開始が遅れた分、温度の上昇開始が数日、遅れたものの、しばらくは山内の温度は外気温とほぼ同じだが、2週間を過ぎた頃から発酵に伴い山内部の温度が上昇、25日目すぎには60℃に達し、そこから約20日間は山内温度が60℃以上で推移し、発酵状態の継続が見られた。この間、数回、ブルーシートをめくり、重機を用いた切り替えし(混合)も行ったが、極端な温度低下は観察されなかった。   Figure 6 shows changes in the temperature of the top portion of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, compared to the initial batch mixing shown in FIG. 5, the start of the fermentation was delayed because it took several days to complete the filling of the necessary aquatic residue, but the start of the temperature increase was delayed for several days, but for a while Although the temperature inside the mountain is almost the same as the outside temperature, the temperature inside the mountain rises with fermentation after about 2 weeks, reaches 60 ° C after the 25th day, and the temperature inside the mountain reaches 60 ° C for about 20 days. The temperature remained above ℃, and the fermentation state continued. During this time, the blue sheet was turned over several times, and switching (mixing) was performed using a heavy machine, but no extreme temperature drop was observed.

25日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、発酵初期には約200ppm程度であったが、35日を過ぎたあたりから徐々にその濃度が低下、45日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、ブルーシートを取って発酵作業を終了した。   From the 25th day, when the ammonia concentration in the gas in the mountain was measured appropriately, it was about 200 ppm in the early stage of fermentation, but the concentration gradually decreased after about 35 days. The concentration became 50 ppm or less, and it was found that the decomposition of the organic matter was sufficiently advanced.

(実施例3)
発明者らは本発明を検討するまでは、破砕・加熱分解・発酵を同一釜内で連続処理するバイオメスク処理方式を用いて水産残渣から発酵魚粉の製造を行っていた。この方式では、蒸気加熱を用いて水産残渣を加熱、煮沸処理することで、水産残渣中の水分を減らすと同時に、内容物中の固形分を軟化させることができる。そこで、実施例3においては、実施例2に述べた分割混合処理に、この水産残渣の加熱を組み合わせる処理を実施した。
(Example 3)
Until the inventors studied the present invention, fermented fish meal was produced from aquatic residues using a biomesk processing method in which crushing, thermal decomposition, and fermentation were continuously processed in the same kettle. In this method, by heating and boiling the aquatic residue using steam heating, the water content in the aquatic residue can be reduced and the solid content in the contents can be softened. Therefore, in Example 3, a process of combining the division and mixing process described in Example 2 with the heating of the fishery residue was performed.

具体的には、実施例1や2と同様に、道路用路盤材向けの骨材として粒度調整された2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%の製鋼スラグ約10トンをすり鉢状の山に積上げた上で、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を、上述の加熱用専用釜内にて加熱・煮沸処理を施し、これを2日おきに製鋼スラグの山に注ぎこみ、重機を用いてよく混合した。なお、保熱のために混合処理後は、都度、ブルーシートで全体を覆った。   Specifically, as in Examples 1 and 2, the mass ratio of slag lumps of 2 mm or less adjusted in particle size as aggregate for road roadbed materials is about 20%, and the mass ratio of 5 mm or less is about 35%. About 10 tons of steelmaking slag is piled up in a mortar-shaped mountain, and about 1 ton / time of fishery residue (water content about 85%) including hockey and cocoon bones brought in from a nearby fishery processing plant Heating and boiling were performed in a heating kettle, which was poured into a steel slag pile every two days and mixed well using heavy equipment. In addition, after the mixing process for heat retention, the whole was covered with a blue sheet each time.

処理開始から8日目に約4トンの加熱水産残渣の混合が完了し、山の頂点や中腹ならびに山すその数箇所に温度計をセットし、全体をブルーシートで覆い発酵処理を開始した。この分割混合作業時にも、水産残渣の水分はほとんど全て、製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   On the 8th day from the start of the treatment, the mixing of about 4 tons of heated marine product residue was completed, and thermometers were set at the top and middle of the mountain as well as at several places on the mountain slope, and the whole was covered with a blue sheet to start the fermentation treatment. Even during this divided mixing operation, almost all of the water in the fishery residue was absorbed by the piles of steelmaking slag, and no spillage from the piles was observed when the piles were completed.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図7に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、図6に示した加熱なしの分割混合に比べ、初日から水産残渣の熱分により山の温度が30℃程度となり、必要な水産残渣量の充填が完了した翌日から発酵に伴う山内部温度が上昇し、14日目には60℃に達して、そこから約20日間は山内温度が60℃以上を推移し、発酵状態の継続が見られた。この間も、数回、ブルーシートをめくり、重機を用いた切り替えし(混合)も行ったが、極端な温度低下は観察されなかった。   Figure 7 shows changes in the temperature of the top portion of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, compared to the split mixing without heating shown in FIG. 6, the temperature of the mountain is about 30 ° C. due to the heat of the marine residue from the first day, and the mountain accompanying fermentation from the next day when the required amount of marine residue is filled. The internal temperature rose and reached 60 ° C. on the 14th day, and the temperature in the mountain changed to 60 ° C. or higher for about 20 days from that point, and the continuation of the fermentation state was observed. During this time, the blue sheet was turned over several times, and switching (mixing) was performed using a heavy machine, but no extreme temperature drop was observed.

15日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、発酵初期には約200ppm程度であったが、30日を過ぎたあたりから徐々にその濃度が低下、35日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、ブルーシートを取って発酵作業を終了できた。   From the 15th day, when the ammonia concentration in the gas in the mountain was measured appropriately, it was about 200 ppm at the beginning of the fermentation, but the concentration gradually decreased after about 30 days. The concentration became 50 ppm or less, and it was found that the decomposition of the organic matter was sufficiently advanced. Therefore, the fermentation operation could be completed by taking a blue sheet.

(実施例4)
これまでの実施例は、春から夏にかけての外気温が良好な状態での処理に関するものであるが、秋から冬場にかけて、特に寒冷地で温度が低い地域においては、従来の牛糞堆肥製造などでも補助的な加熱などに伴う発酵促進処理が必要と言われている。実施例3で述べた水産残渣の加熱を行ったケースがこのような寒冷地で有効かどうか、積雪前の10月から11月にかけて処理を実施した。
(Example 4)
The examples so far relate to treatment in a state where the outside air temperature is good from spring to summer, but in autumn and winter, especially in cold regions where the temperature is low, conventional cow manure compost production etc. It is said that a fermentation acceleration treatment accompanying auxiliary heating is necessary. Whether or not the case where the fishery residue heated in Example 3 was heated was effective in such a cold region, the treatment was carried out from October to November before snow accumulation.

これまでの実施例と同様の、道路用路盤材向けの骨材として粒度調整された2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%の製鋼スラグ約10トンをすり鉢状の山に積上げた上で、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を、上述の加熱用専用釜内にて加熱・煮沸処理を施し、これを2日おきに製鋼スラグの山に注ぎこみ、重機を用いてよく混合した。なお、保熱のために混合処理後は、都度、ブルーシートで全体を覆った。   Similar to the previous examples, the mass ratio of the slag lump of 2 mm or less adjusted as the aggregate for the roadbed material for roads is about 20%, and the mass ratio of 5 mm or less is about 35 tons of steelmaking slag of about 10 tons. The fishery residue (water content about 85%) including the hockey and the heel bones brought in from the nearby fishery processing plant is stacked in a mortar-shaped mountain, and the above-mentioned heating-only pot is used. subjected to heating and boiling treatment at, poured it into a mountain of steel slag in every two days, and mixed well by using heavy machinery. In addition, after the mixing process for heat retention, the whole was covered with a blue sheet each time.

処理開始から10日目に約4トンの加熱水産残渣の混合が完了、山の頂点や中腹ならびに山すそ数箇所に温度計をセットし、全体をブルーシートで覆い発酵処理を開始した。この分割混合作業時にも、水産残渣の水分はほとんど全て、製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   On the 10th day from the start of the treatment, mixing of about 4 tons of heated marine product residue was completed, thermometers were set at the top and middle of the mountain, and at the bottom of the mountain, and the whole was covered with blue sheet, and the fermentation treatment was started. Even during this divided mixing operation, almost all of the water in the fishery residue was absorbed by the piles of steelmaking slag, and no spillage from the piles was observed when the piles were completed.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図8に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、図7に示した夏季の加熱・分割混合に比べると、初日から山の温度が20℃程度であり、必要な水産残渣量の充填が完了した10日目以降も山内の温度は上昇せず発酵が開始しない状態であった。日数の経過とともに外気温も低下してきたため、約2週間後に山の底部に、内径20mmのSUS製パイプに穴あけしたもの3本を山すそから差込み、昼間の間、ブロアーを用いて送風を行った。   Figure 8 shows changes in temperature at the top part of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, compared with the summer heating / division mixing shown in FIG. 7, the mountain temperature is about 20 ° C. from the first day, and the temperature in the mountain after the 10th day when the required amount of fishery residue is filled is It did not rise and was in a state where fermentation did not start. Since the outside air temperature also decreased with the passage of days, about 2 weeks later, three SUS pipes with an inner diameter of 20 mm were inserted into the bottom of the mountain from the mountain skirt, and air was blown using a blower during the daytime.

この結果、外気温の低下にもかかわらず、送風開始から約1週間経過したあたりから温度があがりはじめ、30日経過時には山内温度は60℃に達して、そこから約20日間、外気温度が0℃を下回る日があるにもかかわらず山内温度が60℃以上を推移し、発酵状態の継続が見られた。   As a result, in spite of the decrease in the outside air temperature, the temperature starts to rise from about one week after the start of the air blowing, and the mountain temperature reaches 60 ° C. after 30 days, and the outside air temperature is 0 for about 20 days. ℃ despite Yamauchi temperature there is a day less than it remained more than 60 ℃, continuation of the fermentation state was observed.

適宜、山内のガス中のアンモニア濃度を測定したところ、30日目あたりでは約200ppm程度であったが、40日を過ぎたあたりから徐々にその濃度が低下、45日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、送風を停止し発酵作業を終了させた。   When the ammonia concentration in the gas in the mountain was measured appropriately, it was about 200 ppm around the 30th day, but the concentration gradually decreased after about 40 days, and the concentration was also 50 ppm on the 45th day. following the will for the decomposition of organic matter, which is that you have sufficiently proceed was found, it was to end the fermentation work to stop the blower.

(実施例5)
本発明で用いる製鋼スラグは、先に図3にも示したように道路用路盤材向けの骨材として粒度調整されたものであり、先の実施例では2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%のものを用いたが、山内の通気性の観点から2mm以下の粉分が多い場合に適正な処理が可能かどうかを確認するために、別途、製鉄所にて2mm以下のスラグ塊の質量比が約30%、5mm以下の質量比は約45%という製鋼スラグ、約10トンを調整して搬入し、それをすり鉢状の山に積上げた上で、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を、上述の加熱用専用釜内にて加熱・煮沸処理を施し、これを2日おきに製鋼スラグの山に注ぎこみ、重機を用いてよく混合した。なお、保熱のために混合処理後は、都度、ブルーシートで全体を覆った。
(Example 5)
The steelmaking slag used in the present invention has been adjusted in particle size as an aggregate for road roadbed materials as previously shown in FIG. 3, and in the previous embodiment, the mass ratio of slag lumps of 2 mm or less is about The mass ratio of 20% and 5mm or less was about 35%, but from the viewpoint of air permeability in the mountain, in order to confirm whether proper processing is possible when the powder content is 2mm or less, separately, At steelworks, the mass ratio of slag lumps of 2 mm or less is about 30%, and the mass ratio of 5 mm or less is about 45% of steelmaking slag, about 10 tons is adjusted and loaded, and it is stacked on a mortar-shaped mountain Then, about 1 ton / time of fishery residue (water content: about 85%) including hockey and salmon bones brought in from the nearby fishery processing plant is heated and boiled in the above-mentioned dedicated heating pot, Pour this into a pile of steel slag every two days and mix well using heavy machinery . In addition, after the mixing process for heat retention, the whole was covered with a blue sheet each time.

混合処理開始から8日目に約4トンの加熱水産残渣の混合が完了し、山の頂点や中腹ならびに山すその数箇所に温度計をセットし、全体をブルーシートで覆い発酵処理を開始した。この分割混合作業時にも、水産残渣の水分はほとんど全て、製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   On the 8th day from the start of the mixing treatment, mixing of about 4 tons of heated marine product residue was completed, thermometers were set at the top, middle and top of the mountain, and at several places on the mountain slope, and the whole was covered with blue sheet, and the fermentation treatment was started. Even during this divided mixing operation, almost all of the water in the fishery residue was absorbed by the piles of steelmaking slag, and no spillage from the piles was observed when the piles were completed.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図9に、水産残渣を分割混合した日からの経過日数に対する外気温(○印)ならびに山の頂点部の温度の推移(▲印)を示す。この図には、先に図7に示した粉分が適度な実施例3の測定結果も示したが(●印)、やはり粉分が多く通気性が低下するためか、10日を経過しても山の温度は実施例3ほどは上昇しない。但し、15日を経過したあたりから徐々にではあるが温度が上がり始めたため、20日目にブルーシートをめくり、重機にて山の切り崩しを行ったところ、その翌日から山内部温度が上昇し、25日目には60℃に到達、そこから約20日の間、山内温度は60℃以上を推移し、発酵状態の継続が見られた。   FIG. 9 shows changes in the outside air temperature (◯ mark) and the temperature at the peak of the mountain (▲ mark) with respect to the number of days elapsed from the day when the fishery residue was divided and mixed. This figure also shows the measurement results of Example 3 in which the powder content shown in FIG. 7 was moderate (marked with ●), but 10 days have passed since the powder content is too much and the air permeability is lowered. However, the mountain temperature does not rise as much as in Example 3. However, since the temperature began to rise gradually from the 15th day, when turning the blue sheet on the 20th day and cutting the mountain with heavy machinery, the temperature inside the mountain rose from the next day, 25 day is reached 60 ° C., for about 20 days therefrom, Yamauchi temperature remained over 60 ° C., continuing the fermentation state was observed.

25日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、発酵初期には約200ppm程度であったが、35日を過ぎたあたりから徐々にその濃度が低下、40日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、ブルーシートを取って発酵作業を終了した。   From the 25th day, when the ammonia concentration in the gas in the mountain was measured appropriately, it was about 200 ppm at the beginning of the fermentation, but the concentration gradually decreased after about 35 days. The concentration became 50 ppm or less, and it was found that the decomposition of the organic matter was sufficiently advanced.

(実施例6)
先に実施例5で、製鋼スラグの粉分が多い場合でも、切り返しなどの処理により本発明で発酵処理が行えることが確認されたが、逆に粉分が少ない場合にはどのようになるかの確認も実施した。
(Example 6)
In Example 5, it was confirmed that fermentation treatment can be performed in the present invention by processing such as reversal even when the steelmaking slag has a large amount of powder. On the contrary, what happens when the amount of powder is small? Was also confirmed.

製鉄所において、これまで用いてきた道路用路盤材向け骨材として粒度調整された製鋼スラグを、一端、5mmの篩で篩い分けて5mm以下を分級し、この篩下のスラグをさらに2mmの篩で篩い分けたうえで、2mm以下の粉状スラグをスラグ全体に対して質量比で5%、5mm以下のスラグは実施例5と同様の質量比で約35%となるように、再度、混合し直したものを準備し、搬入した。この2mm以下の質量比が約5%の製鋼スラグ、約10トンをすり鉢状の山に積上げた上で、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を、上述の加熱用専用釜内にて加熱・煮沸処理を施し、これを2日おきに製鋼スラグの山に注ぎこみ、重機を用いてよく混合した。なお、保熱のために混合処理後は、都度、ブルーシートで全体を覆った。   In steelworks, steelmaking slag, which has been used as an aggregate for road roadbed materials, has been used to classify the steelmaking slag with a 5 mm sieve to classify 5 mm or less, and the slag under the sieve is further filtered with a 2 mm sieve. After sieving, the powdered slag of 2 mm or less is mixed again so that the mass ratio is 5% with respect to the whole slag, and the slag of 5 mm or less is about 35% in the same mass ratio as in Example 5. Prepared and carried in the redone. This steelmaking slag with a mass ratio of 2mm or less, about 10% of steelmaking slag, about 10 tons stacked on a mortar-shaped mountain, and then a fishery residue (water content about approx. 85%) About 1 ton / time was heated and boiled in the above-mentioned heating-only kettle, poured into a pile of steel slag every two days, and mixed well using a heavy machine. In addition, after the mixing process for heat retention, the whole was covered with a blue sheet each time.

この混合作業時に、2mm以下の質量比が約5%の製鋼スラグの山の場合、やはり粉分が少ないため水分の吸収能が低下し、混合初期には山すそから幾分、外に漏れ出す水分が観察されたが、この水分を製鋼スラグで覆うようにしてこれらをうまく吸収させて混合を完了させ、山の頂点や中腹ならびに山すそ数箇所に温度計をセットし、全体をブルーシートで覆った。   In the case of steelmaking slag piles with a mass ratio of 2% or less of about 5% during this mixing operation, the water absorption capacity decreases due to the small amount of powder, and moisture leaks out from the mountain ridges somewhat at the beginning of mixing. However, the water was covered with steel slag so that it was absorbed well, mixing was completed, and thermometers were set at the top and middle of the mountain and at the base of the mountain, and the whole was covered with a blue sheet. .

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図10に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、粉分が少ないことに起因すると考えられる遊離石灰分の減少のためか、先に図7に示した粉分が適度な実施例3の測定結果に比べると、山の温度が30℃程度と期間が少し長くなったが、12日目から温度の上昇がみられ、18日目には60℃に達して、そこから約20日間は山内温度が60℃以上を推移し、発酵状態の継続が見られた。この間も、数回、ブルーシートをめくり、重機を用いた切り替えし(混合)も行ったが、極端な温度低下は観察されなかった。   Figure 10 shows changes in the temperature of the top portion of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, the temperature of the mountain is 30 compared to the measurement result of Example 3 where the powder content shown in FIG. Although the period was about a little longer, the temperature increased from the 12th day, reached 60 ° C on the 18th day, and then the temperature in the mountains remained above 60 ° C for about 20 days. Continuation of the condition was observed. During this time, the blue sheet was turned over several times, and switching (mixing) was performed using a heavy machine, but no extreme temperature drop was observed.

20日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、発酵初期には約200ppm程度であったが、35日を過ぎたあたりから徐々にその濃度が低下、40日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、ブルーシートを取って発酵作業を終了できた。   From the 20th day, when the ammonia concentration in the gas in the mountain was measured appropriately, it was about 200 ppm at the beginning of fermentation, but the concentration gradually decreased after about 35 days. The concentration became 50 ppm or less, and it was found that the decomposition of the organic matter was sufficiently advanced. Therefore, the fermentation operation could be completed by taking a blue sheet.

こうして製造された藻場造成用施肥材料をさらに1カ月ほど静置して完熟させたうえ、海洋汚染の防止に関する法律(環境庁告示第14号)の水底土砂判定基準の評価方法に基づき溶出試験を実施し、重金属など全ての元素について判定基準を満たしていることを確認したうえで、約1.5トンの該施肥材料と、別途準備した0.5トンの腐植物質とを混合しながら透水性の袋に小分けしつつ鋼製の箱に充填し、藻類が繁茂していない磯焼け海域に秋に設置した。設置に際し、設置前後の海水のpHを測定したが、いずれも約8.2を示し変化は認められなかった。海水の白濁も全く生じなかった。その後、冬季を経て翌年の春には、鋼製の箱の周辺に新たな藻類の繁殖(再生)が確認できた。   The fertilizer material for the seaweed basin production thus produced is left to stand for about one month to be fully matured, and then the dissolution test is based on the evaluation method of the bottom sediment judgment criteria of the Act on the Prevention of Marine Pollution (Environmental Agency Notification No. 14) After confirming that all the elements such as heavy metals meet the criteria, water permeability was mixed while mixing about 1.5 tons of the fertilizer and 0.5 tons of humic substances prepared separately. It was packed in a steel box while being divided into sex bags, and installed in the fallen sea area where no algae grows. At the time of installation, the pH of the seawater before and after the installation was measured. There was no cloudiness of the seawater. After that, in the spring of the following year after the winter season, new algae breeding (regeneration) was confirmed around the steel box.

(実施例7)
牛糞の堆肥化において、すでに発酵が完了したタネ堆肥を用いて効率を高める戻し堆肥の方法が有効であることは図2にも示したが、この方法が本発明にも有効かどうかの処理を実施した。
(Example 7)
In the composting of cow dung, it is shown in FIG. 2 that the method of returning compost that increases the efficiency using the seed compost that has already been fermented is effective. Carried out.

道路用路盤材向けの骨材として粒度調整された2mm以下のスラグ塊の質量比が約20%、5mm以下の質量比は約35%の製鋼スラグ約5トンと、本発明方法で先に製造を行った藻場造成用施肥材料3トンを混ぜ合わせたうえですり鉢状の山に積上げで、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)4トンを、該山に注ぎこみ、重機を用いてよく混合した。   The mass ratio of the slag lump of 2 mm or less, which is adjusted in particle size as the aggregate for roadbed material for roads, is about 20%, and the mass ratio of 5 mm or less is about 35 tons of steelmaking slag, which is first produced by the method of the present invention. After mixing 3 tons of fertilizer materials for creating seaweed beds, they were piled up on a mortar-shaped mountain, and fishery residues (including water content of about 85%) including the hockey and salmon bones brought in from the nearby fishery processing plant 4 tons were poured into the pile and mixed well using heavy equipment.

混合完了後に、山の頂点や中腹ならびに山すそ数箇所に温度計をセットし、全体をブルーシートで覆い発酵処理を開始した。この混合作業時にも、水産残渣の水分はほとんど全て、製鋼スラグの山に吸収され、山積み完了時も山すそからの流出は観察されなかった。   After completion of mixing, thermometers were set at the top and middle of the mountain, and at the base of the mountain, and the whole was covered with a blue sheet to start the fermentation process. Even during this mixing operation, almost all the water in the fishery residue was absorbed by the steelmaking slag piles, and no spillage from the mountain skirts was observed when the piles were completed.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図11に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、加熱を行っていない水産残渣にもかかわらず、混合から2日後には山の温度が上昇しはじめ1週間後には60℃に達し、そこから約20日間は山内温度が60℃以上を推移し、発酵状態の継続が見られた。この間、数回、ブルーシートをめくり、重機を用いた切り替えし(混合)も行ったが、極端な温度低下は観察されなかった。   Figure 11 shows changes in the temperature of the top portion of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, despite the unheated marine residue, the mountain temperature started to rise 2 days after mixing and reached 60 ° C after 1 week, and the temperature in the mountain exceeded 60 ° C for about 20 days. The fermentation state continued. During this time, the blue sheet was turned over several times, and switching (mixing) was performed using a heavy machine, but no extreme temperature drop was observed.

8日目以降、適宜、山内のガス中のアンモニア濃度を測定したところ、2週間目には約200ppm程度であったが、20日を過ぎたあたりから徐々にその濃度が低下、25日目にはその濃度も50ppm以下となり有機物の分解は十分に進行したことが判明したため、30日目にブルーシートを取って作業を終了した。   After the 8th day, the ammonia concentration in the gas in the mountain was measured as appropriate, and it was about 200 ppm in the 2nd week, but the concentration gradually decreased after about 20th day. Since the concentration became 50 ppm or less and it was found that the decomposition of the organic matter was sufficiently advanced, the blue sheet was taken on the 30th day and the operation was completed.

(比較例1)
本発明のポイントは、水産残渣の発酵処理時に製鋼スラグを用いて、通気性確保ならびに適度なアルカリ溶出にともなう発酵ならびに発熱(保熱)促進をもたらす点にある。この効果を見極めるため、製鋼スラグの代わりに、ほぼ類似の粒度分布(2mm以下の塊分の質量比が約20%、5mm以下の質量比は約35%)となるように天然骨材(大半がケイ砂ならびに花崗岩)を混合調整したものを準備し、処理を行った。
(Comparative Example 1)
The point of the present invention is that the steelmaking slag is used during the fermentation treatment of aquatic residues to ensure air permeability and promote fermentation accompanying moderate alkali elution and heat generation (heat retention). In order to determine this effect, natural aggregate (mostly mass ratio of mass of 2mm or less is about 20%, mass ratio of 5mm or less is about 35%) instead of steelmaking slag Prepared and mixed with silica sand and granite).

粒度調整を行った天然骨材 約10トンをすり鉢状の山に積上げで、近隣の水産加工場から搬入したホッケと鮭の中骨を含む水産残渣(含水率 約85%)約1トン/回を、上述の加熱用専用釜内にて加熱・煮沸処理を施し、これを2日おきに山に注ぎこみ、重機を用いてよく混合した。なお、保熱のために混合処理後は、都度、ブルーシートで全体を覆った。   About 10 tons of natural aggregate with adjusted particle size is piled up in a mortar-shaped mountain, and aquatic residues (water content of about 85%) including hockey and salmon bones brought in from a nearby fishery processing plant are about 1 ton / time. Was heated and boiled in the above-mentioned heating-only kettle, poured into a pile every two days, and mixed well using a heavy machine. In addition, after the mixing process for heat retention, the whole was covered with a blue sheet each time.

この混合作業時に、天然骨材は製鋼スラグに比べて緻密質で吸水率が低いためか、水産残渣の水分はさほど吸収されず、山すそから殆どが外に漏れ出してしまった。この混合完了後に、山の頂点や中腹ならびに山すそ数箇所に温度計をセットし、全体をブルーシートで覆った。   During this mixing operation, the natural aggregate was denser and less water-absorbing than steelmaking slag, so the water from the fishery residue was not absorbed so much and most of it leaked out of the mountain skirt. After the mixing is complete, set the thermometer to the mountain of the vertex and the middle as well as the foot of the mountain several places, covered the whole a blue sheet.

この後、適宜、温度の観測、およびブルーシートの内側に専用の臭気カバーを設置し、検知式ガス測定器を用いてアンモニア濃度を測定した。   Thereafter, the temperature was observed, and a dedicated odor cover was installed inside the blue sheet, and the ammonia concentration was measured using a detection gas meter.

図12に、水産残渣を分割混合した日からの経過日数に対する外気温ならびに山の頂点部の温度の推移を示す。この図から、混合時には水産残渣の熱分により山の温度が30℃程度となり、必要な水産残渣量の充填完了まではほぼ同温度で推移したが、混合が完了した10日目以降も山の温度上昇はほとんど見られず、むしろ外気温と同じレベルまで温度が低下してしまい、切り返しを実施しても現象に変化はなく、発酵はほとんど進まなかった。   Figure 12 shows changes in the temperature of the top portion of the outside air temperature and the mountain with respect to an elapsed number of days obtained by dividing mixed fisheries residue. From this figure, the temperature of the mountain became about 30 ° C due to the heat of the fishery residue during mixing, and it remained at the same temperature until the filling of the required amount of the fishery residue was completed. Almost no increase in temperature was observed, rather the temperature dropped to the same level as the outside air temperature, and even when switching back, the phenomenon did not change, and fermentation did not proceed.

10日目以降、適宜、山内のガス中のアンモニア濃度を測定したが、いつまでも約200ppm程度で、有機物の分解は観察できなかった。   From the 10th day onward, the ammonia concentration in the gas in the mountain was measured as appropriate, but it was about 200 ppm indefinitely, and no decomposition of organic matter could be observed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

本発明の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法によって製造された混合物は、海域における藻場造成用施肥材料としてだけでなく、陸域における植物における施肥材料としても利用できる可能性を有する。

The mixture produced by the method for producing a mixture of fermented fish meal and surface-modified steelmaking slag according to the present invention can be used not only as a fertilizer material for seaweed formation in the sea area but also as a fertilizer material for plants in the land area. Have

Claims (6)

水産残渣と製鋼スラグとを混合して放置することで、前記水産残渣を発酵させると共に、前記製鋼スラグを表面改質して、発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。   It is characterized by producing a mixture of fermented fish meal and surface-modified steelmaking slag by fermenting the fishery residue and surface-modifying the steelmaking slag by mixing and leaving the fishery residue and steelmaking slag. A method for producing a mixture of fermented fish meal and surface-modified steelmaking slag. 前記製鋼スラグは、粒径2mm以下のスラグ塊を10質量%以上含むことを特徴とする請求項1に記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。   The method for producing a mixture of fermented fish meal and surface-modified steel slag according to claim 1, wherein the steel slag contains 10% by mass or more of a slag lump having a particle size of 2 mm or less. 水産残渣と製鋼スラグとを混合して放置した後、当該放置後の混合物に、更に、水産残渣と製鋼スラグとを混合して放置することを繰り返して、発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする請求項1又は2に記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。   After the aquatic residue and the steelmaking slag are mixed and left, the mixture after the leaving is further mixed with the aquatic residue and the steelmaking slag and then left, so that the fermented fish meal and the surface-modified steelmaking slag The method for producing a mixture of fermented fish meal and surface-modified steelmaking slag according to claim 1 or 2, wherein the mixture is produced. 前記水産残渣は、事前に加熱又は煮沸され、その後、前記製鋼スラグと混合されることを特徴とする請求項1〜3のいずれか1項に記載の発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。   The mixture of fermented fish meal and surface-modified steelmaking slag according to any one of claims 1 to 3, wherein the marine residue is heated or boiled in advance and then mixed with the steelmaking slag. Manufacturing method. 水産残渣と製鋼スラグに、更に請求項1〜4のいずれか1項の製造方法により製造された発酵魚粉と表面改質した製鋼スラグの混合物を加えて混合して放置し、前記水産残渣を発酵させると共に、前記製鋼スラグを表面改質して発酵魚粉と表面改質した製鋼スラグの混合物を製造することを特徴とする発酵魚粉と表面改質した製鋼スラグの混合物の製造方法。   A mixture of fermented fish meal produced by the production method of any one of claims 1 to 4 and a surface-modified steel slag is further added to the marine residue and the steel slag, and the mixture is left to stand to ferment the marine residue. And producing a mixture of fermented fish meal and surface-modified steelmaking slag by modifying the surface of the steelmaking slag to produce a mixture of fermented fish meal and surface-modified steelmaking slag. 請求項1〜5のいずれか1項に記載の方法で製造した発酵魚粉と表面改質した製鋼スラグの混合物を、藻場造成用施肥材料として海域に投与することを特徴とする藻場造成方法。

A seaweed bed creation method comprising administering a mixture of fermented fish meal produced by the method according to any one of claims 1 to 5 and surface-modified steel slag to a sea area as a fertilizer material for seaweed bed creation. .

JP2011127557A 2011-06-07 2011-06-07 Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed Active JP5667520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127557A JP5667520B2 (en) 2011-06-07 2011-06-07 Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127557A JP5667520B2 (en) 2011-06-07 2011-06-07 Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed

Publications (2)

Publication Number Publication Date
JP2012254026A true JP2012254026A (en) 2012-12-27
JP5667520B2 JP5667520B2 (en) 2015-02-12

Family

ID=47526246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127557A Active JP5667520B2 (en) 2011-06-07 2011-06-07 Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed

Country Status (1)

Country Link
JP (1) JP5667520B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480879A (en) * 1977-11-22 1979-06-27 Terukichi Nagata Calsium compost * method and apparatus for producing same
JPS5491475A (en) * 1977-12-27 1979-07-19 Fuji Electric Co Ltd Compost making method
JPS5556086A (en) * 1978-10-17 1980-04-24 Noriyoshi Monma Slag mixed fertilizer
JPS55149185A (en) * 1979-05-11 1980-11-20 Kawasaki Steel Co Composting composition
JPS57183386A (en) * 1981-04-30 1982-11-11 Nihon Raifu Kk Manufacture of fertilizer
JPS61215284A (en) * 1985-03-19 1986-09-25 門馬 義芳 Manufacture of fertilizer accompanied with raising ground temperature
JPS61254126A (en) * 1985-04-09 1986-11-11 阪神港湾工業株式会社 Method and apparatus for producing fertilized other-place soil
JPH10210879A (en) * 1997-01-29 1998-08-11 Heisei Eng:Kk Artificial fish bank and manufacture of artificial fish bank
JPH11147781A (en) * 1997-11-12 1999-06-02 Showa Senmou Kk Compost treatment for organic industrial waste and compost-treating material using the same
JP2000140874A (en) * 1998-11-09 2000-05-23 Nkk Corp Porous stone for purifying water quality and water quality purifying method
JP2001061368A (en) * 1999-08-26 2001-03-13 Japan Science & Technology Corp Artificial reef and its production
JP2002136947A (en) * 2000-11-06 2002-05-14 Nippon Recycling Kk Method for eliminating garbage
JP2002136946A (en) * 2000-11-06 2002-05-14 Nippon Recycling Kk Method for eliminating garbage
JP2006257030A (en) * 2005-03-17 2006-09-28 Nippon Steel Corp Mineral supplement for water area, alga reef block and method for producing the same
JP2006345738A (en) * 2005-06-14 2006-12-28 Nippon Steel Corp Fertilizer material and fertilizing method
JP2007136452A (en) * 2005-10-21 2007-06-07 Jfe Steel Kk Slag material, method of producing the same, material for improving environment using the slag material, environmental improvement method and structural engineering material
JP2007330254A (en) * 2006-05-18 2007-12-27 Nippon Steel Corp Environmental preservation material for water area, environmental preservation system for water area and method for preserving water area environment
JP2008247690A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for treating slag
JP2009045006A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Hydrated solidified body for underwater installation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480879A (en) * 1977-11-22 1979-06-27 Terukichi Nagata Calsium compost * method and apparatus for producing same
JPS5491475A (en) * 1977-12-27 1979-07-19 Fuji Electric Co Ltd Compost making method
JPS5556086A (en) * 1978-10-17 1980-04-24 Noriyoshi Monma Slag mixed fertilizer
JPS55149185A (en) * 1979-05-11 1980-11-20 Kawasaki Steel Co Composting composition
JPS57183386A (en) * 1981-04-30 1982-11-11 Nihon Raifu Kk Manufacture of fertilizer
JPS61215284A (en) * 1985-03-19 1986-09-25 門馬 義芳 Manufacture of fertilizer accompanied with raising ground temperature
JPS61254126A (en) * 1985-04-09 1986-11-11 阪神港湾工業株式会社 Method and apparatus for producing fertilized other-place soil
JPH10210879A (en) * 1997-01-29 1998-08-11 Heisei Eng:Kk Artificial fish bank and manufacture of artificial fish bank
JPH11147781A (en) * 1997-11-12 1999-06-02 Showa Senmou Kk Compost treatment for organic industrial waste and compost-treating material using the same
JP2000140874A (en) * 1998-11-09 2000-05-23 Nkk Corp Porous stone for purifying water quality and water quality purifying method
JP2001061368A (en) * 1999-08-26 2001-03-13 Japan Science & Technology Corp Artificial reef and its production
JP2002136947A (en) * 2000-11-06 2002-05-14 Nippon Recycling Kk Method for eliminating garbage
JP2002136946A (en) * 2000-11-06 2002-05-14 Nippon Recycling Kk Method for eliminating garbage
JP2006257030A (en) * 2005-03-17 2006-09-28 Nippon Steel Corp Mineral supplement for water area, alga reef block and method for producing the same
JP2006345738A (en) * 2005-06-14 2006-12-28 Nippon Steel Corp Fertilizer material and fertilizing method
JP2007136452A (en) * 2005-10-21 2007-06-07 Jfe Steel Kk Slag material, method of producing the same, material for improving environment using the slag material, environmental improvement method and structural engineering material
JP2007330254A (en) * 2006-05-18 2007-12-27 Nippon Steel Corp Environmental preservation material for water area, environmental preservation system for water area and method for preserving water area environment
JP2008247690A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Method for treating slag
JP2009045006A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Hydrated solidified body for underwater installation

Also Published As

Publication number Publication date
JP5667520B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
Ingram et al. Growth media for container grown ornamental plants
RU2376083C1 (en) Method of oil sludge process and residue ground cleaning
CA2654886C (en) Organo-mineral soil amendment
CN106905077A (en) A kind of after-treatment building waste waste prepares the method for planting soil and the planting soil of acquisition
JP2015006979A (en) Mixture of natural humic
JP5665254B2 (en) Hydrated solidified body for submerged submergence
CN104119190B (en) The production method of gangue compression Nutrition Soil
US11766705B2 (en) Synthetic soil and methods for producing same from waste
Kapoor et al. Vermicomposting for organic waste management
RU2513558C1 (en) Method of preparation compost from sewage sludge (versions)
RU2664296C1 (en) Enriched ecological black soil, enriched concentrated soil solution, method and device for producing thereof
JP5667520B2 (en) Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed
RU2410337C2 (en) Method for wastewater silt and slurring briquetting
CN111236207B (en) Method for restoring abandoned mine pit into paddy field based on building residue soil filling engineering
CN112745153A (en) Pure plant source microbial organic fertilizer and preparation method thereof
KR100316178B1 (en) Stone material for submerging into water and method of production thereof
JP4892196B2 (en) Greening soil, method for producing greening soil, and greening method using greening soil
JP2007161975A (en) Novel method for using pelytes of geological ages including the mesozoic jurassic period and periods prior to the same
JPH02135027A (en) Cultivation of high mineral rice
CA2957972C (en) Process to produce a commercial soil additive prepared from compost and in situ oxidized sulphur and soil additive so formed
JP3766898B2 (en) A novel soil conditioner for high calcium crops
RU2281272C1 (en) Process of manufacturing organomineral fertilizers from manure and rice grain production wastes and licorice rootstock extracts
Chhabra et al. Reclamation and Management of Alkali Soils for Crop Production
JPS6140889A (en) Soil application material enriched with nitrohumic acid by treating compost or like with nitric acid and manufacture
JPH1146577A (en) Culture soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R150 Certificate of patent or registration of utility model

Ref document number: 5667520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250