JP2012253128A - 酸化物超電導コイルとその製造方法 - Google Patents

酸化物超電導コイルとその製造方法 Download PDF

Info

Publication number
JP2012253128A
JP2012253128A JP2011123310A JP2011123310A JP2012253128A JP 2012253128 A JP2012253128 A JP 2012253128A JP 2011123310 A JP2011123310 A JP 2011123310A JP 2011123310 A JP2011123310 A JP 2011123310A JP 2012253128 A JP2012253128 A JP 2012253128A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
ring
superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011123310A
Other languages
English (en)
Inventor
Mitsunori Igarashi
光則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011123310A priority Critical patent/JP2012253128A/ja
Publication of JP2012253128A publication Critical patent/JP2012253128A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】本発明は、酸化物超電導層を用いたコイル構造であっても接続部分のない閉回路を実現でき、従来技術では不可能とされていた20〜77Kの温度領域での永久電流モードの超電導コイルを提供することが可能な技術の提供を目的とする。
【解決手段】本発明の酸化物超電導コイルは、リング状の金属製の基材と該基材の上方に設けられたリング状の中間層とリング状の酸化物超電導層を備えた酸化物超電導リング積層体が、複数、厚さ方向に積層されてなることを特徴とする。
【選択図】図1

Description

本発明は、リング状の基材上に中間層と酸化物超電導層を備えた酸化物超電導リング積層体を複数積層した酸化物超電導コイルとその製造方法に関する。
従来から、金属系の超電導導体を巻胴に巻回した構成の金属系超電導コイルが知られている。金属系超電導体は、金属から構成されているため、材料自体を溶融させて溶接することにより電気的な閉回路を形成できる。また、金属系超電導コイルはその接続部において超電導状態を維持できるため、閉回路では電流が全く減衰しない永久電流モードと呼ばれる通電が可能な特徴を有する。金属系超電導コイルにおいて永久電流モードの通電中は、外部からの電力供給が不要であり、安定して磁場を発生し続けることができる。
これに対し、近年になって発見され、応用開発が進められている酸化物超電導導体は、Bi2223系(BiSrCaCuOy)なる組成系、あるいは、RE−123系(REBaCu7−X:REはYを含む希土類元素)が知られている。これら組成系の酸化物超電導体は液体窒素温度で超電導性を示し、金属系超電導体に比べて高温領域(20K〜77K)で使用できる特徴を有する。
酸化物系超電導導体の中でも、ハステロイ(米国ヘインズ社製商品名)などのような強固なテープ状の金属基材上に酸化物超電導体の薄膜を形成した超電導線材は、機械的強度に優れており、磁場中での通電特性も良好であるがため、このような酸化物超電導線材を使用した酸化物超電導コイルは、強力な磁場を発生させることができる。また、この種の酸化物超電導導体を製造する技術については数100mレベルあるいはそれを超える長さの線材の製造技術が確立され、酸化物超電導導体の長尺化、大面積化が進められている。
また、薄板形状の酸化物超電導体から切り出された平板リング状の単結晶が複数積層されてなる超電導マグネットが知られている。この超電導マグネットにおいて平板リング状結晶は1つ1つが単結晶として連続された構造であり、平板リング状結晶の周方向に結晶が連続しているならば、積層されている平板リング状結晶どうしの間にクラックなどが存在していても差し支えない構造とされている。(特許文献1参照)
特開平3−11604号公報
前記金属系の超電導導体を用いた閉回路を適用した閉回路型超電導コイルは、永久電流モードを達成できるが、金属系超電導体の中でもNbTiは超電導転移温度(Tc)が約10Kであり、NbSnは超電導転移温度が約18Kであり、いずれにしても極めて低いため、液体ヘリウムなどを使用した極低温環境が必要となる。そのため、金属系の超電導体を用いた閉回路型超電導コイルは、大がかりな冷却システムが必要となり、冷却コストが高くなるという問題を有している。
また、ハステロイなどのような強固なテープ状の金属基材上に酸化物超電導薄膜を形成した超電導線材を利用した超電導コイルは、金属系の超電導導体を用いるよりは高温で使用できるというメリットはあるが、一般的に電源との接続端子部において超電導状態を維持できないために、完全な永久電流モードは作り出せないという問題がある。
更に、平板リング状の結晶を用いた構造では、永久電流モードが得られたとする開示もなされているが、この構造では閉回路を構成するための超電導導体のサイズを大きくする必要があるが、十分なボア径を有するような大型の単結晶の酸化物超電導体を製造すること自体が極めて難しく、実現は容易ではないという問題がある。
本発明は、以上のような従来の実情に鑑みなされたものであり、酸化物超電導体を用いたコイル構造であって、抵抗を生じる接続部分のない閉回路を実現でき、従来技術では実現が難しいとされていた20〜77Kの温度領域での永久電流モードを実現できる酸化物超電導コイルとその製造方法を提供することが可能な技術の提供を目的とする。
本発明は、リング状の金属製の基材と該基材の上方に設けられたリング状の中間層及び酸化物超電導層を備えた酸化物超電導リング積層体が、複数、厚さ方向に積層されてなる酸化物超電導コイルに関する。
リング状の酸化物超電導層を複数備えるので、従来の金属系超電導体用の冷却温度域よりも高い20〜77Kの温度領域に冷却して酸化物超電導層の超電導状態を維持することができ、この温度領域に冷却しつつ酸化物超電導層に通電することにより、閉回路を構成するリング状の酸化物超電導層に永久電流モードの通電が可能となる。
閉回路を構成するリング状の酸化物超電導層を複数積層したので、永久電流モードで電流を流すことができ、安定した状態で磁場を発生し続けることが可能な酸化物超電導コイルを提供できる。
また、金属製の基材上に中間層を介し酸化物超電導層を形成する技術は現状の成膜法に基づき長尺かつ大面積で製造する技術が確立しているので、酸化物超電導体の単結晶体を製造する従来技術に比べて大型のコイルを製造することが確実にできる結果、永久電流モード対応の大型の酸化物超電導コイルを実現できる。
本発明において、前記中間層が基材上に結晶を2軸配向させた配向層とキャップ層を有し、該キャップ層を介し酸化物超電導層が積層された構成とすることができる。
2軸配向させた結晶配向性の良好な配向層の上のキャップ層上に形成されたリング状の酸化物超電導層は、結晶配向性に優れ、臨界電流値が高いので、大電流をリング状の酸化物超電導層に流すことが可能であり、このため、永久電流モードで強力な磁場を発生できる酸化物超電導コイルを提供できる。
本発明において、前記リング状の金属製の基材の外周部に引出端子用突出部が形成され、該引出端子用突出部の上方に中間層と酸化物超電導層が形成され、引出端子用突出部の上方にリング状の酸化物超電導層に接続された超電導引出端子が形成されていても良い。
酸化物超電導層による超電導引出端子を備えているので、リング状の酸化物超電導層に通電して永久電流モードとする場合に超電導状態の引出端子から損失が無い状態でリング状の酸化物超電導層に通電が可能となる。
本発明において、前記超電導引出端子の一部に超電導引出端子の温度を臨界温度以上に昇温する加熱手段が設けられた構成としても良い。
超電導引出端子を介して電源からリング状の酸化物超電導層に通電した後、加熱手段により超電導引出端子の一部の温度を臨界温度を超える温度に加熱することで、超電導引出端子の部分を超電導状態ではない状態とすることにより、リング状の酸化物超電導層を電源と切り離して分離独立した閉回路にできるので、永久電流モード状態を実現できる。
本発明の製造方法は、金属製の基材と該基材の上方に設けられた中間層及び酸化物超電導層を備えた酸化物超電導積層体から、リング状の金属製の基材とその上方のリング状の中間層および酸化物超電導層を備えた酸化物超電導リング積層体をくり抜き、この酸化物超電導リング積層体を複数、厚さ方向に積層することを特徴とする。
金属製の基材と中間層と酸化物超電導層を備える酸化物超電導積層体からくり抜いた酸化物超電導リング積層体を複数積層することで、永久電流モードで通電可能な構造の酸化物超電導コイルを得ることができる。
本発明によれば、従来の金属系超電導体用の冷却温度域よりも高い20〜77Kの温度領域に冷却してリング状の酸化物超電導層を超電導状態とすることができ、20〜77Kの温度領域において閉回路を構成するリング状の酸化物超電導層に永久電流モードで電流を流すことが可能となる。よって、永久電流モードで磁場を発生し続けることができる酸化物超電導コイルを提供できる。
また、本発明の製造方法によれば、永久電流モードで磁場を発生し続けることができる酸化物超電導コイルを製造することができる。
本発明に係る酸化物超電導コイルの第1実施形態の斜視図。 図1に示す酸化物超電導コイルを構成する酸化物超電導リング積層体の一例を示す断面図。 図2に示す酸化物超電導リング積層体の部分断面図。 図2に示す酸化物超電導リング積層体を製造するための工程の一例を示すもので、図4(a)はテープ状の酸化物超電導積層体の一例を示す平面図、図4(b)はテープ状の酸化物超電導積層体から分離した酸化物超電導リング積層体の一例を示す説明図。 図2に示す酸化物超電導リング積層体を製造するための工程の一部を示すもので、図5(a)はレーザー蒸着装置を用いて基材上に酸化物超電導層を形成している状態の一例を示す正面図、図5(b)は同状態の側面図。 本発明に係る酸化物超電導コイルの第2実施形態に適用される酸化物超電導コイル積層体の一例を示す構成図。
以下、本発明に係る酸化物超電導コイルの第1実施形態について図面に基づいて説明するが、本発明は以下の実施形態に制限されるものではない。
図1に示すように本実施形態の酸化物超電導コイルAは、薄型のリング状の酸化物超電導リング積層体1を複数それらの厚さ方向にそれらの中心軸を位置合わせして積層してなる。
酸化物超電導リング積層体1は、図2に断面構造を示す如く金属製の薄板リング状の基材3の上面側(一面側)に、中間層5と酸化物超電導層6と安定化層7をこの順で積層してなる。本実施形態では基材3の上に積層されている中間層5と酸化物超電導層6と安定化層7もそれぞれリング状に形成されている。
前記酸化物超電導リング積層体1は、より詳細には、図3に示すように基材3の上面側に、拡散防止層とベッド層の少なくとも一方を備えた下地層8と、結晶を2軸配向制御した多結晶薄膜の配向層9と、キャップ層10とを備えてなる中間層5が積層され、その上にRE123系などの酸化物超電導層6と安定化層7を積層して構成されている。なお、下地層8は必須の構成要素ではなく、場合によっては略しても良い。
以下に酸化物超電導リング積層体1の各要素について説明する。
前記基材3は、通常の酸化物超電導線材用基材として使用することができる材料からなり、高強度な材料、かつ、高耐熱性の金属材料からなるリング形状のものが好ましい。例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種高強度高耐熱性の金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属材料の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材3の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜200μmの範囲とすることができる。
下地層8は、通常は拡散防止層とベッド層の複層構造とされるが、どちらか一方からなる層構造でも良く、更に、以下に説明する拡散防止層やベッド層の構成材料を組み合わせた3層以上の複層構造であっても良い。また、下地層8はその上に形成される配向層9の材料に応じて略することもできる。
拡散防止層は、基材3の構成元素拡散を防止する目的で形成されるもので、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜400nmである。
ベッド層は、耐熱性が高く、界面反応性を低減するために設けられ、その上に配される膜の配向性を得るために用いる。このようなベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1−x)で示されるものが例示できる。より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができる。このベッド層は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜100nmである。
配向層9は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層10の結晶配向性を制御するために2軸配向する物質から選択される。配向層9の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この配向層9をIBAD(Ion-Beam-Assisted Deposition)法により良好な結晶配向性(例えば結晶軸分散の半値幅Δφを15゜以下とした2軸配向性)で成膜するならば、その上に形成するキャップ層10の結晶配向性を良好な値(例えば結晶軸分散の半値幅Δφを5゜前後とした2軸配向性)とすることができ、これによりキャップ層10の上に成膜する酸化物超電導層6の結晶配向性を良好なものとして優れた超電導特性を発揮できる酸化物超電導層6を得るようにすることができる。
2軸配向とは、配向層9を構成する多結晶薄膜の結晶が正方晶系の結晶であり、結晶軸にa軸、b軸、c軸を有している場合、各結晶粒のc軸が基材成膜面あるいは下地層8の上面に対しいずれも90゜向きに配向し、a軸あるいはb軸が概ね同じ方向に向いて配向していることを意味する。各結晶粒の結晶軸の方向が概ね同じ方向とは、上述のΔφの値として20゜以下、より好ましくはΔφの値が15゜以下などのような配向性が良好であることを意味する。
例えば、GdZr、MgO又はZrO−Y(YSZ)からなる配向層9は、IBAD法における結晶配向度を表す指標であるΔφ(FWHM:半値全幅)の値を小さくできるため、特に好適である。なお、配向層9をGdZr層から構成する場合は下地層8を略しても良い。
キャップ層10は、上述のように面内結晶軸が配向した配向層9の表面に成膜されることによってエピタキシャル成長し、その後、横方向に粒成長して、結晶粒が面内方向に自己配向し得る材料、であれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、ZrO、Ho、Nd、LaMnO等を例示できる。キャップ層10の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
例えばCeOによって構成されるキャップ層10は、上述のように自己配向していることにより、配向層9よりも更に高い面内配向度、例えばΔφ=4〜6゜程度を得ることができる。
例えば、CeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができる。CeO層の膜厚は、十分な配向性を得るには100nm以上が好ましいが、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲とすることができる。
酸化物超電導層6は希土類系の公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層6として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示することができる。
酸化物超電導層6は、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。
酸化物超電導層6の上に積層されている安定化層7はAgなどの良電導性かつ酸化物超電導層6と接触抵抗が低くなじみの良い金属材料からなる層として形成される。Agの安定化層7を成膜するには、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法物理的蒸着法、化学気相成長法(CVD法)などの成膜法を採用し、その厚さを1〜30μm程度に形成できる。
また、安定化層7の上に酸化物超電導層6の更なる安定化のために第2の安定化層を設けることができる。この第2の安定化層は、酸化物超電導層6が常電導状態に転移してしまった場合に電流のバイパス路となるように設けられるもので、CuやAlまたはそれらの合金などの良導電性の金属材料から形成される。
第2の安定化層は安定化層7よりも厚く形成して電流のバイパス路として十分な容量を確保するため、10〜500μm程度の厚さに形成することができる。その場合、半田や導電性接着剤による貼り付け法あるいはめっき法などを用いて安定化層7の上に形成することができる。
図1に示す構造の酸化物超電導コイルAを永久電流モードとして利用するには、酸化物超電導コイルAを液体窒素あるいは冷凍機などを用いて希土類系酸化物超電導体が超電導状態を示す温度域(例えば20K〜77Kの温度域)に冷却する。この冷却操作により積層されている各酸化物超電導層6が超電導状態となるので、酸化物超電導コイルAの全体に例えば強力な磁石を用いて磁界を急激に印加し、各酸化物超電導層6に誘導電流を発生させた後、磁界を徐々に除去すると、各酸化物超電導層6は抵抗が0の状態であるがために、永久電流が流れる。
ここで用いる強力な磁石とは、永久磁石であるNd磁石などの希土類磁石を用いることができ、他に、酸化物超電導線材を巻胴に巻線した超電導磁石、あるいは、従来から用いられている金属系の超電導体を巻胴に巻回した超電導磁石を用いることができる。強力な磁界を印加するという面において超電導磁石であれば、1T(テスラ)以上の磁界を発生させることができる点で好ましい。
図1に示す酸化物超電導コイルAにあっては、酸化物超電導層6を臨界温度以下に冷却しておくことで、超電導状態を維持できるので、一旦電流が流れると、電流が減衰することがなく、永久電流モードで電流が流れ続けるので、酸化物超電導層6を臨界温度以下に冷却している間は磁界を安定的に発生させることができる。
本実施形態の酸化物超電導コイルAは、例えば、上述したIBAD法により結晶配向性をΔφの値において15゜程度に整えた2軸配向性に優れた配向層9を備え、更に配向層9上にキャップ層10を積層し、キャップ層10の配向性をΔφの値において5゜前後に整え、その上に成膜法で形成した酸化物超電導層6を備えているので、酸化物超電導層6の結晶配向性に優れ、酸化物超電導層6の臨界電流値が高いので、酸化物超電導層6に強い電流を流すことができる。よって、高い磁場を発生できる酸化物超電導コイルAを提供できる。
図1に示す構造の酸化物超電導コイルAを製造するには、製造しようとする酸化物超電導コイルAの外径よりも大きな幅を有するテープ状の金属基材を用い、この金属基材の表面上に下地層8、配向層9、キャップ層10、酸化物超電導層6、安定化層7を上述した成膜法により積層して図4(a)に示す酸化物超電導積層体12を形成した後、この酸化物超電導積層体12をレーザー切断装置などを用いて図4(a)の鎖線に沿ってレーザービームを照射し、図4(b)に示す如くリング状に切り出す(くり出す)ことで酸化物超電導リング積層体1を得ることができる。テープ状の金属基材の長さ方向に沿って必要な数の酸化物超電導リング積層体1を切り出すことで必要な数の酸化物超電導リング積層体1を得ることができる。
そして、この酸化物超電導リング積層体1を必要枚数、積み重ねて接着層を介し厚さ方向に接着一体化することにより、図1に示す構造の酸化物超電導コイルAを製造することができる。
前記テープ状の金属基材を用いて金属基材上にキャップ層あるいは酸化物超電導層を成膜するためのパルスレーザー蒸着装置(PLD装置)の一例を図5に示す。なお、このPLD装置で成膜する以前に下地層8、配向層9を先に説明した成膜法によりそれぞれ基材上に形成しておき、その後、図5に示すPLD装置によりキャップ層あるいは酸化物超電導層を形成することができる。
図5はPLD装置の一例を示すもので、この例のPLD装置は、真空ポンプなどの減圧装置に接続された減圧容器を備え、その内部に設置されたターゲット20に減圧容器外部に設置されているレーザービームの照射装置からレーザービームBを照射できるように構成されている。また、減圧容器の内部に、供給リール21と巻取リール22とこれらの中間位置に板状の加熱装置23が設置され、供給リール21から加熱装置23を介してテープ状の基材3を巻取リール22側に移動することができ、この移動中に加熱装置23で目的の成膜温度に加熱した基材3に対しレーザービームBによりターゲット20から発生させた粒子を堆積させて成膜できるように構成されている。
図5に示す構成のPLD装置は、基材3をキャップ層10あるいは酸化物超電導層6の成膜温度に好適な温度(例えば500〜900℃)に加熱しながら成膜する。
図5に示す如く基材3は幅が大きいので、レーザービームBをターゲット20の数カ所に順次照射角度を変えて照射しながら複数の粒子噴流F1、F2、F3、F4を発生させて幅の大きな基材3の表面側全面に成膜することが好ましい。
用いるターゲットについては、キャップ層10を成膜する場合はキャップ層10の組成に合致した成分組成あるいは類似組成のターゲットを用い、酸化物超電導層6を成膜する場合は酸化物超電導層6の組成に合致した成分組成あるいは類似組成のターゲットを用い、それぞれのターゲットを備えた別々のPLD装置にリール21、22を移し替えて順次成膜する。
次に、酸化物超電導コイルAの酸化物超電導層6に直接通電することによって酸化物超電導コイルAを永久電流モードで使用することができる形態について図6を基に以下に説明する。
本実施形態において用いる酸化物超電導リング積層体30は、先の実施形態において説明した酸化物超電導リング積層体1に対し、電源と接続するための酸化物超電導端子を一体化して備えている点に特徴を有する。
本実施形態の酸化物超電導リング積層体30は、リング状の基材3上に中間層5と酸化物超電導層6と安定化層7を備えている点については第1実施形態の構造と同等であるが、リング状の基材3と中間層5と酸化物超電導層6の外周部にコ字型の引出端子部31が形成され、引出端子部31の一部に加熱ヒータ25が接続され、引出端子部31の両側に電源28を接続するための配線26、27が接続されている点に特徴を有する。また、複数の酸化物超電導リング積層体30を図1に示すように積層して酸化物超電導コイルを製造できる点について、先の第1実施形態の構造と同様である。
引出端子部31は、リング状の基材3の外周縁部から突出させて設けたコ字型の引出端子用突出部33とこの引出端子用突出部33の上に順次積層された中間層突出部35と超電導引出端子36と安定化層端子部37とからなる。そして、コ字型の引出端子部31の両側に配線26、27を介して電源28が接続されている。配線26、27は図6の例では安定化層端子部37の上に半田付け等の手段で接合されているが、配線26、27を接合する部分の安定化層端子部37を部分的に略し、配線26、27を直接超電導引出端子36に接合しても良い。
図6に示す構成の酸化物超電導リング積層体30に永久電流モードで通電するには、酸化物超電導リング積層体30を20〜77Kの温度範囲に冷却し、超電導引出端子36と酸化物超電導層6に電源28から配線26、27を介し通電する。この後、加熱ヒータ25に通電して超電導引出端子36の一部分を臨界温度より高い温度に加熱し、超電導引出端子36に沿う電気の流れを分断し、配線26、27を外すと、電源28から印加した電流がリング状の酸化物超電導層6を周回するように流れるので、永久電流モードの状態とすることができる。
なお、上述した実施形態においては、リング状の基材3の上に中間層5を介し酸化物超電導層6を積層した構造に適用したが、Ni−W合金の圧延材などのような配向性リング状基材上に中間層と酸化物超電導層を積層する構造の酸化物超電導リング積層体を設けた構造を採用できる。Ni−W合金の圧延材などのような配向性リング状基材に中間層と酸化物超電導層を設けた超電導リング積層体についても、先に記載の実施形態と同等の優れた結晶配向性のリング状の酸化物超電導層を得ることができるので、先の実施形態と同等の効果を得ることができる。
また、上述した実施形態においては、円環状の酸化物超電導層6を備えた構成について説明したが、酸化物超電導層6はレーストラック状あるいは楕円形状など環状であればいずれの形状を採用しても良い。
「実施例1」
ハステロイC276(米国ヘインズ社商品名)からなる幅60mm、厚さ0.1mmのテープ状の基材を用意し、このテープ状基材の表面にAlからなる厚さ100nmの拡散防止層を形成し、更にその上にイオンビームスパッタ法を用いてYからなる厚さ30nmのベッド層を形成した。イオンビームスパッタ法の実施にあたりテープ状の基材はスパッタ装置の内部においてリールに巻回しておき、一方のリールから他方のリールに繰り出す間に成膜できるようにして幅60mmのテープ状基材の全長にわたり、拡散防止層とベッド層を形成した。次に、イオンビームアシスト蒸着法によりベッド層上に厚さ10nmのMgOの配向層を形成した。この場合、アシストイオンビームの入射角度は、テープ状基材成膜面の法線に対し、45゜とした。
続いてパルスレーザー蒸着法(PLD法)を用いてMgOの配向層上にCeOの厚さ500nmのキャップ層を形成した。更に、このキャップ層上にパルスレーザー蒸着法によりGdBaCu7−xの厚さ約2μmの酸化物超電導層を形成した。
次に、スパッタ法により酸化物超電導層上に厚さ10μmのAgの安定化層を形成し、酸素アニールを500℃で行った。以上の工程により、幅60mmのテープ状の基材上に拡散防止層とベッド層と配向層とキャップ層と酸化物超電導層と安定化層を備えた構造の酸化物超電導積層体を形成した。
次いで、この酸化物超電導積層体をファイバーレーザー装置により切断して外径50mm、内径30mmの酸化物超電導リング積層体を得た。同様の切断工程をテープ状の基材に対し繰り返し行い、酸化物超電導リング積層体を100枚切り出した。
得られた酸化物超電導リング積層体を100枚積層し、酸化物超電導コイルを作製し、この酸化物超電導コイルを液体窒素に浸漬して超電導状態とした。
液体窒素で冷却されている酸化物超電導コイルに対し、5000ガウスの強力なNd磁石を急激に接近させて誘導電流を発生させ、積層された酸化物超電導コイルに誘導電流を生じさせたところ、500ガウスの磁場を発生させることができた。
この酸化物超電導コイルを液体窒素に浸漬したまま1ヶ月間冷却し続けたところ、1ヶ月後においても同じく500ガウスの磁場を発生していることを確認できた。
これにより、本実施例の酸化物超電導コイルは永久電流モードにて電流の低下を生じることなく発生磁場を維持できることが分かった。
本発明は、例えば超電導モーター、超電導電力貯蔵装置などの各種の超電導機器に用いられる酸化物超電導コイルに適用することができる。
1…酸化物超電導リング積層体、3…基材、5…中間層、6…酸化物超電導層、7…安定化層、8…下地層、9…配向層、10…キャップ層、12…酸化物超電導積層体、20…ターゲット、21…供給リール、22…巻取リール、23…加熱装置、B…レーザービーム、30…酸化物超電導リング積層体、31…引出端子部、33…引出端子用突出部、36…超電導引出端子、37…安定化層端子部。

Claims (5)

  1. リング状の金属製の基材と該基材の上方に設けられたリング状の中間層及び酸化物超電導層を備えた酸化物超電導リング積層体が、複数、厚さ方向に積層されてなることを特徴とする酸化物超電導コイル。
  2. 前記中間層が基材上に結晶を2軸配向させた配向層とキャップ層を有し、該キャップ層を介し酸化物超電導層が積層されたことを特徴とする請求項1に記載の酸化物超電導コイル。
  3. 前記リング状の金属製の基材の外周部に引出端子用突出部が形成され、該引出端子用突出部の上方に中間層と酸化物超電導層が形成され、引出端子用突出部の上方にリング状の酸化物超電導層に接続された超電導引出端子が形成されたことを特徴とする請求項1または2に記載の酸化物超電導コイル。
  4. 前記超電導引出端子の一部に超電導引出端子の温度を臨界温度以上に昇温する加熱手段が設けられたことを特徴とする請求項1〜3のいずれか一項に記載の酸化物超電導コイル。
  5. 金属製の基材と該基材の上方に設けられた中間層及び酸化物超電導層を備えた酸化物超電導積層体から、リング状の金属製の基材とその上方のリング状の中間層および酸化物超電導層を備えた酸化物超電導リング積層体をくり抜き、この酸化物超電導リング積層体を複数、厚さ方向に積層することを特徴とする酸化物超電導コイルの製造方法。
JP2011123310A 2011-06-01 2011-06-01 酸化物超電導コイルとその製造方法 Withdrawn JP2012253128A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123310A JP2012253128A (ja) 2011-06-01 2011-06-01 酸化物超電導コイルとその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123310A JP2012253128A (ja) 2011-06-01 2011-06-01 酸化物超電導コイルとその製造方法

Publications (1)

Publication Number Publication Date
JP2012253128A true JP2012253128A (ja) 2012-12-20

Family

ID=47525691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123310A Withdrawn JP2012253128A (ja) 2011-06-01 2011-06-01 酸化物超電導コイルとその製造方法

Country Status (1)

Country Link
JP (1) JP2012253128A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524214A (ja) * 2017-06-08 2020-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se セラミックコーティングを施した金属テープを処理するためのロールツーロール装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524214A (ja) * 2017-06-08 2020-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se セラミックコーティングを施した金属テープを処理するためのロールツーロール装置
JP7218994B2 (ja) 2017-06-08 2023-02-07 アメリカン スーパーコンダクター コーポレイション セラミックコーティングを施した金属テープを処理するためのロールツーロール装置

Similar Documents

Publication Publication Date Title
JP5568361B2 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
JP4268645B2 (ja) 希土類系テープ状酸化物超電導体及びそれに用いる複合基板
JP2009507358A (ja) 高温超電導ワイヤ及びコイル
JP5548441B2 (ja) 超電導接続構造体および超電導線材の接続方法、超電導コイル装置
JP5724029B2 (ja) 超電導電流リード、超電導電流リード装置、および超電導マグネット装置
JP5675232B2 (ja) 超電導電流リード
JP2005044636A (ja) 超電導線材
JP2014130788A (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP5624839B2 (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP5405069B2 (ja) テープ状酸化物超電導体及びそれに用いる基板
JP2012253128A (ja) 酸化物超電導コイルとその製造方法
JP2013097889A (ja) 酸化物超電導導体用安定化層の製造方法及び製造装置と酸化物超電導導体
JP2012064323A (ja) 超電導電流リード
JP5597511B2 (ja) 酸化物超電導線材およびその製造方法
JP2011258696A (ja) 超電導コイル及びその製造方法
JP2012150914A (ja) 高抵抗材複合酸化物超電導線材
JP2013030317A (ja) 酸化物超電導積層体及び酸化物超電導線材、並びに、酸化物超電導線材の製造方法
JP6131176B2 (ja) 酸化物超電導線材の製造方法
JP5894907B2 (ja) 酸化物超電導線材およびその製造方法
JP5764421B2 (ja) 酸化物超電導導体
JP2012212571A (ja) 酸化物超電導導体
JP5597516B2 (ja) 超電導線材の製造方法
JP6404556B2 (ja) 酸化物超電導導体およびその製造方法
JP5986871B2 (ja) 酸化物超電導導体およびその製造方法
JP5683355B2 (ja) 酸化物超電導導体及びそれを備えた酸化物超電導コイル

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805