JP2012248637A - 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス - Google Patents

薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス Download PDF

Info

Publication number
JP2012248637A
JP2012248637A JP2011118435A JP2011118435A JP2012248637A JP 2012248637 A JP2012248637 A JP 2012248637A JP 2011118435 A JP2011118435 A JP 2011118435A JP 2011118435 A JP2011118435 A JP 2011118435A JP 2012248637 A JP2012248637 A JP 2012248637A
Authority
JP
Japan
Prior art keywords
thin film
film device
layer
insulating layer
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118435A
Other languages
English (en)
Inventor
Toshiharu Fukuda
俊治 福田
Katsuya Sakayori
勝哉 坂寄
Keita Arihara
慶太 在原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011118435A priority Critical patent/JP2012248637A/ja
Publication of JP2012248637A publication Critical patent/JP2012248637A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイスの製造方法を提供する。
【解決手段】一例として、強磁性体層11の表面側に絶縁層12を積層して、可撓性の薄膜デバイス基材を得る積層工程と、薄膜デバイス基材を支持するために、前記強磁性体層の裏面側に、強磁性体層と引き合う磁性平板21を磁力で密着させる支持板密着工程と、薄膜デバイス基材の前記絶縁層上にデバイス素子13を形成する素子形成工程と、強磁性体層の裏面側から磁性平板21を取り外す支持板離脱工程と、を備える薄膜デバイスの製造方法である。
【選択図】図4

Description

本発明は、デバイス素子を備える薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイスに関する。
従来、ディスプレイを初めとするデバイスの基板としてガラス板が用いられていた。しかし、近年、ノートパソコン、電子書籍等の電子モバイルが普及し、操作性等の観点から、薄型化、軽量化、耐久性が要請されている。
しかしながら、多くのデバイスの製造プロセスは、基本的に基板がガラス等の硬質材料であることを前提として設計されているため、可撓性を有する材料を基材にすると、基材の撓みや折れ等、製造プロセスのハンドリングに課題がある。
このため、ガラス等の基板上にデバイス素子を形成した後、デバイス素子を基板から剥離して樹脂フィルム等の可撓性材料上に転写することが検討されている(特許文献1参照)。
特開2003−323132号公報
しかしながら、特許文献1の方法では、基板からの剥離とフィルムへの転写を行う必要があり、この工程が煩雑である。
本発明は、以上のような状況に鑑みてなされたものであり、硬質材料を基板とした従来公知の製造プロセスで薄膜デバイスを形成するという制約の下、従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイス基材及び薄膜デバイスを提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、強磁性体層と、この強磁性体層と引き合う磁性を有する磁性平板とを用いることで従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイス基材及び薄膜デバイスを提供できることを見出し、本発明を完成するに至った。具体的に本発明は以下のものを提供する。
(1)本発明は、絶縁層と強磁性体層とを積層して、可撓性の薄膜デバイス基材を得る積層工程と、前記薄膜デバイス基材に、前記強磁性体層と引き合う磁性平板を磁力で密着させる支持板密着工程と、前記薄膜デバイス基材上にデバイス素子を形成するデバイス素子形成工程と、前記デバイス素子形成後の薄膜デバイスから前記磁性平板を取り外す支持板離脱工程と、を備える薄膜デバイスの製造方法である。
(2)また、本発明は、前記デバイス素子形成工程は、複数の工程を経てデバイス素子が形成され、そのうちの少なくとも1つの工程中で、前記薄膜デバイス基材に前記磁性平板が密着されている請求項1記載の薄膜デバイスの製造方法。
(3)また、本発明は、前記強磁性体層の厚さが10nm以上1mm以下である(1)又は(2)に記載の薄膜デバイスの製造方法である。
(4)また、本発明は、前記強磁性体層が強磁性を有するステンレス箔である(1)から(3)のいずれかに記載の薄膜デバイスの製造方法である。
(5)また、本発明は、前記絶縁層の厚さが0.1μm以上1mm以下である(1)から(4)のいずれかに記載の薄膜デバイスの製造方法である。
(6)また、本発明は、前記絶縁層が、ポリイミドを75重量%以上含むポリイミド含有層である(1)から(5)のいずれかに記載の薄膜デバイスの製造方法である。
(7)また、本発明は、前記デバイス素子形成工程が、塗布、加熱、貼り合わせ、スパッタリング、蒸着、めっき、露光、現像、印刷、プラズマ処理及びフォトリソグラフィーより選択される1工程又は2以上の工程の組合せである(1)から(6)のいずれかに記載の薄膜デバイスの製造方法である。
(8)また、本発明は、前記デバイス素子形成工程が、スピンコート工程、前記薄膜デバイス基材を150℃以上で加熱する加熱工程、前記薄膜デバイス基材を真空度10−1torr以下にして行う真空下工程、前記薄膜デバイス基材が液体と直接触れるウエット工程である(1)から(7)のいずれかに記載の薄膜デバイスの製造方法である。
(9)また、本発明は、強磁性体層と絶縁層とを積層してなる、可撓性の薄膜デバイス基材である。
(10)また、本発明は、(9)に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上にデバイス素子が形成された薄膜デバイスである。
(11)また、本発明は、(10)に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上に形成されたデバイス素子が薄膜トランジスタである薄膜デバイスである。
(12)また、本発明は、(10)に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上に形成されたデバイス素子が有機EL素子である薄膜デバイスである。
(13)また、本発明は、強磁性体層と、前記強磁性体層と引き合う磁性平板を磁力で密着させる支持板密着工程と、前記密着した状態で、前記強磁性体層上に絶縁層を積層して、可撓性の薄膜デバイス基材を得る絶縁層積層工程と、前記磁性平板を取り外す支持板離脱工程と、を備える薄膜デバイス基材の製造方法である。
本発明によれば、従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイス基材及び薄膜デバイスが提供される。
本発明の薄膜デバイス基材の概略断面図である。 本発明の薄膜デバイスの概略断面図である。 薄膜デバイス基材に磁性平板を接触させることによって形成された積層体の概略断面図である。 図3の積層体における絶縁層にデバイス素子を積層させることによって形成された積層体の概略断面図である。 従来の薄膜デバイスの概略断面図である。
以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
[薄膜デバイス基材1]
図1は、本発明の薄膜デバイス基材1を示す。薄膜デバイス基材1は、磁石と引き合う強磁性を有する強磁性体層11と、絶縁性を有する絶縁層12とが積層された積層体からなり、全体として可撓性を有する。本発明における「可撓性」とは、強磁性体層11と絶縁層12とが積層された積層体の状態でガラス基板のような剛性がなく、いわゆる撓む性質を有していれば足りることをいい、積層体としての軽量性を追求した結果、ハンドリング性に劣る状態を意味する。よって、強磁性体層11、絶縁層12の単体では、撓む性質を有していてもよいし、厚さが薄すぎるために撓む性質を有しない場合も含む意味である。強磁性体層/絶縁層の組合せとしては、金属箔/樹脂フィルム、金属薄膜/樹脂フィルム、金属箔/樹脂薄膜、等が挙げられる。積層体全体の厚さで例示すれば、1μm以上2mm以下が例示できる。
本発明の薄膜デバイス基材1は、磁石と引き合う強磁性体層11を構成要素とした点に特徴がある。本発明の薄膜デバイス基材1を用いれば、強磁性体層11の表面にその強磁性体層11と引き合う磁性を有する硬質の磁性平板を接触させることで、従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイスを製造することができる。以下、本発明の薄膜デバイス基材1について、具体的に説明する。
<強磁性体層11>
強磁性体層11は、磁石と引き合う強磁性のほか、耐酸化性、耐熱性、水蒸気バリア性及び熱伝導性を有し、線熱膨張係数が低く、低コストのものであれば、金属、合金、化合物のいずれであってもよいが、可撓性の点からは金属又は合金が好ましく用いられる。金属であれば、鉄、コバルト、ニッケル等が挙げられる。合金であれば、鉄−ニッケル合金(パーマロイ、インバー)、鉄−コバルト合金、鉄ーニッケルーコバルト合金(スーパーインバー)、鉄−ニッケル−コバルト−アルミニウム合金(アルニコ磁石)、強磁性を有するステンレス(SUS)等が挙げられる。化合物であれば、SmCo(サマリウム磁石)、NdFe14B(ネオジウム磁石)等が挙げられる。強磁性体層11として酸化物(Fe(磁鉄鉱)、γ−Fe(マグヘマイト)、BaFe1219(バリウム鉱石)等)を用いることは、可撓性及び熱伝導性に劣り、薄膜デバイスの発熱による素子性能が劣化する可能性があるため、好ましくない。
強磁性体層11の線熱膨張係数は、強磁性体層11と絶縁層12との線熱膨張係数が近いほど、薄膜デバイス基材1の反りが抑制されるとともに、薄膜デバイス基材1の熱環境が変化した際に、強磁性体層11と絶縁層12との界面の応力が小さくなり密着性が向上する。また、強磁性体層11と絶縁層12との線熱膨張係数が大きく異なると、薄膜デバイス基材1が熱環境の変化により反ってしまう。なお、薄膜デバイス基材1に反りが発生していないとは、薄膜デバイス基材1を幅10mm、長さ50mmの短冊状に切り出し、得られたサンプルの一方の短辺を水平で平滑な台上に固定した際に、サンプルのもう一方の短辺の台表面からの浮上距離が1.0mm以下であることをいう。
強磁性体層11の線熱膨張係数は、寸法安定性の観点から、25ppm/℃以下であり、18ppm/℃以下であることが好適であり、12ppm/℃以下であることがより好適であり、7ppm/℃以下であることがさらに好適である。線熱膨張係数が25ppm/℃を超えると、温度変化時に生じる伸び縮みが大きくなるため、寸法安定性に悪影響を及ぼすからである。
また、金属層の線熱膨張係数は、絶縁層に限らず、デバイス素子部として形成される層の線熱膨張係数と近いことが望ましい。金属層の線熱膨張係数がデバイス素子部として形成される層の線熱膨張係数と異なると、寸法安定性が低下するとともに反りやクラックの原因となるからである。デバイス素子部として形成される層が、Zn、In、Ga、Cd、Ti、St、Sn、Te、Mg、W、Mo、Cu、Al、Fe、Sr、Ni、Ir、Mg等の金属の酸化物や、Si、Ge、B等の非金属の酸化物、また上記元素の窒化物、硫化物、セレン化物、及びこれらの混合物(多元素からなるセラミックの様に原子レベルで混合されているものも含む)等の無機材料を主成分とする場合は、これらの無機材料には、線熱膨張係数が10ppm/℃以下のものも含まれることから、金属層の線熱膨張係数もより小さいことが望ましい。
なお、線熱膨張係数は、次のように測定する。まず、強磁性体層11を幅5mm×長さ20mmに切断し、評価サンプルとする。線熱膨張係数は、熱機械分析装置(例えばThermo Plus TMA8310(リガク社製))によって測定する。測定条件は、昇温速度を10℃/min、評価サンプルの断面積当たりの加重が同じになるように引張り加重を1g/25000μmとし、100℃〜200℃の範囲内の平均の線熱膨張係数を線熱膨張係数(C.T.E.)とする。
強磁性体層11の厚さは、上述の特性を満たすことができれば特に限定されないが、1μm以上1mm以下であることが好適であり、1μm以上500μm以下であればより好適であり、1μm以上200μm以下であればさらに好適であり、1μm以上50μm以下であればなお好適である。強磁性体層11の厚さが1mm以上であると、薄膜デバイス基材1の可撓性が劣る点、薄膜デバイス基材1の製造コストが増大する点及び薄膜デバイス基材1に素子からなるデバイス素子を積層した後の薄膜デバイスの薄型化を図ることができず、薄膜デバイスが重くなる点で好ましくない。また、強磁性体層11の厚さが1μm以下であると、強磁性体層単体及び薄膜デバイス基材1の強度が低下する可能性がある点で好ましくない。強磁性体層11は、圧延箔であってもよく電解箔であってもよく、強磁性材料の種類に応じて適宜選択される。通常、強磁性体層11は、圧延により作製される。
上記の観点から、強磁性体層11として厚さが1μm以上1mm以下のSUS430箔に代表される強磁性ステンレスを用いることが特に好適である。SUS430は耐酸化性及び耐熱性に優れ、銅等に比べ線熱膨張係数が小さく寸法安定性に優れる。また、SUS430は容易に入手できる。この点から、特に大型の薄膜デバイス基材1及び薄膜デバイスを製造する際は、強磁性体層11としてSUS430箔を用いること好適である。
なお、本発明においては、上記と逆に、絶縁層上に強磁性体層を形成してもよく、この場合には、10nm以上200μm以下であることが好ましく、10nm以上100μm以下であることがより好ましく、10nm以上50μm以下であることがさらに好ましい。厚さが10nm以下であると、磁石と引き合う強磁性を保つことができない可能性があり、また、酸素や水蒸気に対する水蒸気バリア性が低下する可能性がある。200μmを越える厚膜の形成には、時間及びコストがかかる。
なお、強磁性体層11上に、絶縁層12を形成し、形成した絶縁層12上に、デバイス素子13を形成する場合は、強磁性体層11の絶縁層12と積層される側の表面粗さRaは、200nm以下であることが好適であり、100nm以下であることがより好適である。この表面粗さRaは、原子間力顕微鏡(AFM)もしくは走査型白色干渉計を用いて測定した値である。例えば、AFMを用いて測定する場合は、Nanoscope V multimode(Veeco社製)を用いて、タッピングモードで、カンチレバー:MPP11100、走査範囲:50μm×50μm、走査速度:0.5Hzにて、表面形状を撮像し、得られた像から算出した粗さ曲線の中心線からの平均のずれを算出することよりRaを求めることができる。また、走査型白色干渉計を用いて測定する場合は、New View 5000(Zygo社製)を用いて、対物レンズ:100倍、ズームレンズ:2倍、Scan Length:15μmにて、50μm×50μmの範囲の表面形状を撮像し、得られた像から算出した粗さ曲線の中心線からの平均のずれを算出することよりRaを求めることができる。
一方、強磁性体層11上に、直接デバイス素子13を形成する場合は、強磁性体層11のデバイス素子13が形成される側の表面粗さRaは、100nm以下が好適であり、50nm以下であることがより好適であり、25nm以下であることがさらに好適である。
<絶縁層12>
絶縁層12は、絶縁層からなる層であり、強磁性体層11の表面に形成される。絶縁層は絶縁性を備えるものである。具体的に、絶縁層の体積抵抗は、1.0×109Ω・m以上であることが好ましく、1.0×1010Ω・m以上であることがより好ましく、1.0×1011Ω・m以上であることがさらに好ましい。なお、体積抵抗は、JIS K6911、JIS C2318、ASTM D257等の規格に準拠する手法で測定することが可能である。また、絶縁層12の形成時に、強磁性体層11の表面の凹凸が平坦化されることが好ましい。
絶縁層12を構成する絶縁体は、ポリイミドを含むものが好ましいであればよいが、なかでもポリイミドを主成分とすることが好適である。ポリイミドを主成分とすることにより、絶縁性、耐熱性に優れた絶縁層とすることが可能となる。また、ポリイミドを主成分とすることにより、絶縁層からなる絶縁層12の薄膜化が可能となり絶縁層12の熱伝導性が向上し、熱伝導性に優れた薄膜デバイス基材1とすることができる。
なお、絶縁層がポリイミドを主成分とするとは、上述の特性を満たす程度に、絶縁層がポリイミドを含有することをいう。具体的には、絶縁層におけるポリイミドの含有量が75重量%以上の場合をいい、90重量%以上であることが好適であり、100重量%であることがより好適である。絶縁層に含まれるポリイミドの含有量が75重量%未満であると、十分な絶縁性及び耐熱性を確保できない可能性がある。
ポリイミドとしては、絶縁層12の線熱膨張係数や吸湿膨張係数を薄膜デバイス基材1及び薄膜デバイスに好適なものとする観点から、芳香族骨格を含むポリイミドであることが好適である。ポリイミドの中でも芳香族骨格を含有するポリイミドは、その剛直で平面性の高い骨格に由来して、耐熱性や薄膜での絶縁性に優れ、線熱膨張係数も低いことから、絶縁層として好適に用いられる。
ポリイミドは、低吸湿膨張、低線熱膨張であることが求められるため、下記式(1)で表される繰り返し単位を有することが好適である。このようなポリイミドは、その剛直な骨格に由来する高い耐熱性や絶縁性を示すとともに、金属と同等の線熱膨張を示す。さらには、吸湿膨張係数も小さくすることが可能である。
Figure 2012248637
(式(1)中、R1は4価の有機基、R2は2価の有機基であり、繰り返されるR1同士及びR2同士はそれぞれ同一であってもよく異なっていてもよい。nは1以上の自然数である。)
式(1)において、一般に、Rはテトラカルボン酸二無水物由来の構造であり、Rはジアミン由来の構造である。
絶縁層12は絶縁性を有し、絶縁層12の体積抵抗は、1.0×109Ω・m以上であることが好適であり、1.0×1010Ω・m以上であることがより好適であり、1.0×1011Ω・m以上であることがさらに好適である。体積抵抗は、JIS K6911法、JIS C2318法及びASTM D257法等に準拠する手法で測定できる。
強磁性体層11上に、絶縁層12を形成し、形成した絶縁層12上に、デバイス素子13を形成する場合は、絶縁層12の表面粗さRaは、表裏面共に強磁性体層11の表面粗さRaよりも小さいものであればよいが、50nm以下であることが好適であり、25nm以下であることがより好適であり、10nm以下であることがさらに好適である。表面粗さRaの測定方法は、強磁性体層11の表面粗さRaの測定方法と同様である。
一方、絶縁層12上に、強磁性体層11を形成し、形成した強磁性体層11上に、デバイス素子13を形成する場合は、絶縁層12の強磁性体層11と積層される側の表面粗さRaは、200nm以下であることが好適であり、100nm以下であることがより好適であり、50nm以下であることがさらに好適である。
絶縁層12は、ポリイミドを含むものであり、好ましくはポリイミドを主成分とする。一般にポリイミドは吸水性を有する。しかし、一般に薄膜デバイス基材1に積層する素子は水分に弱いことから、素子内部の水分を低減し、湿気存在下において高い信頼性を実現するために、絶縁層12の吸水性は小さいことが好適である。
吸水性を示す指標の一つとして、吸湿膨張係数がある。したがって、絶縁層12の吸湿膨張係数は、小さいほど好ましく、少なくとも15ppm/%RH以下であり、12ppm/%RH以下であることが好適であり、10ppm/%RH以下であることがさらに好適である。吸湿膨張係数が15ppm/%RHを超えると、水蒸気バリア性が劣り、薄膜デバイス基材1に素子からなるデバイス素子を積層した後の薄膜デバイスの品質が劣化する点で好ましくない。また、寸法安定性に欠け、吸湿膨張係数がほぼ0である強磁性体層11との膨張率の差によって、湿度の上昇とともに薄膜デバイス基材1が反る可能性がある点、絶縁層12と強磁性体層11との密着性が低下する可能性がある点でも好ましくない。また、薄膜デバイスの製造工程でウェットプロセスを含む場合において、一定品質の薄膜デバイスを提供できない可能性がある点でも好ましくない。
吸湿膨張係数は、次のように測定する。まず、絶縁層12のみのフィルムを作製する。絶縁層12フィルムの作成方法は、耐熱フィルム(ユーピレックス
S 50S(宇部興産(株)製))やガラス基板上に絶縁層12フィルムを作製した後、絶縁層12フィルムを剥離する方法や金属基板上に絶縁層12フィルムを作製した後、金属をエッチングで除去し絶縁層12フィルムを得る方法等がある。次いで、得られた絶縁層12フィルムを幅5mm×長さ20mmに切断し、評価サンプルとする。吸湿膨張係数は、湿度可変機械的分析装置(Thermo Plus TMA8310(リガク社製))によって測定する。例えば、温度を25℃で一定とし、まず、湿度を15%RHの環境下でサンプルが安定となった状態とし、概ね30分〜2時間その状態を保持した後、測定部位の湿度を20%RHとし、さらにサンプルが安定になるまで30分〜2時間その状態を保持する。その後、湿度を50%RHに変化させ、それが安定となった際のサンプル長と20%RHで安定となった状態でのサンプル長との違いを、湿度の変化(この場合50−20の30)で割り、その値をサンプル長で割った値を吸湿膨張係数(C.H.E)とする。測定の際、評価サンプルの断面積当たりの加重が同じになるように引張り加重は1g/25000μm2とする。
また、絶縁層12の線熱膨張係数は、寸法安定性の観点から、30ppm/℃以下であり、25ppm/℃以下であることがより好適であり、18ppm/℃以下であることがさらに好適であり、12ppm/℃以下であることがより好適であり、7ppm/℃以下であることが最も好適である。線熱膨張係数が30ppm/℃を超えると、薄膜デバイス基材1に反りが生じる可能性がある点、製造時点では生じていなくてもその後の熱環境の変化によって反りを生じ得る点で好ましくない。
また、絶縁層12は、寸法安定性の観点から、絶縁層の線熱膨張係数と金属層の線熱膨張係数との差が15ppm/℃以下であることが好ましく、より好ましくは10ppm/℃以下、さらに好ましくは5ppm/℃以下である。線熱膨張係数の差が15ppm/℃を超えると、薄膜デバイス基材1に反りが生じる可能性がある点、製造時点では生じていなくてもその後の熱環境の変化によって反りを生じ得る点で好ましくない。また、絶縁層と金属層との線熱膨張係数が近いほど、電子素子用積層基板の熱環境が変化した際に、絶縁層と金属層との界面の応力が小さくなり密着性が向上するため好ましい。
一般に強磁性体層11の線熱膨張係数、すなわち金属の線熱膨張係数はある程度定まっているため、使用する強磁性体層11の線熱膨張係数に応じて絶縁層12の線熱膨張係数を決定し、ポリイミドの構造を適宜選択することが好適である。例えば、本発明の薄膜デバイス基材1を用いてTFT基板を作製する場合には、TFTの線熱膨張係数に応じて強磁性体層11の線熱膨張係数を決定し、その強磁性体層11の線熱膨張係数に応じて絶縁層12の線熱膨張係数を決定し、ポリイミドの構造を適宜選択することが好適である。また、本発明の薄膜デバイス基材1を用いて有機EL表示装置や電子ペーパーを作製する場合には、有機EL表示装置や電子ペーパーの線熱膨張係数に応じて強磁性体層11の線熱膨張係数を決定し、その強磁性体層11の線熱膨張係数に応じて絶縁層12の線熱膨張係数を決定し、ポリイミドの構造を適宜選択することが好適である。
本発明においては、絶縁層12が上述の式(1)で表される繰り返し単位を有するポリイミドを含有していればよく、必要に応じて適宜、このポリイミドと他のポリイミドとを積層したり組み合わせたりして、絶縁層12として用いてもよい。
絶縁層12の厚さは、上述の特性を満たすことができる厚さであれば特に限定されないが、具体的には、0.1μm以上1mm以下であり、0.1μm以上200μm以下であることが好適であり、0.1μm以上100μm以下であることがより好適である。絶縁層12の厚さが1mm以上であると、薄膜デバイス基材1の可撓性が劣る点、絶縁層12を形成した後の絶縁層を容易に乾燥できない可能性がある点及び薄膜デバイス基材1の製造コストが増大する点で好ましくない。また、絶縁層は、金属よりも熱伝導率が低いため、薄膜デバイス基材1全体としての熱伝導性が低下する点でも好ましくない。絶縁層12の厚さが0.1μm未満であると、絶縁性に欠ける可能性がある点、強磁性体層11の表面の凹凸を容易に平坦化できない可能性がある点で好ましくない。
[薄膜デバイス2]
図2には、本発明に係る薄膜デバイス2を示す。薄膜デバイス2は、薄膜デバイス基材1における絶縁層12に素子からなるデバイス素子13が積層された積層体を含む。薄膜デバイス2とは、デバイスを構成しているデバイス素子13が、少なくとも1つの膜厚50μm以下の機能層からなるものをいう。機能層としては、発光層、受光層、平坦化層、保護層、遮光層、絶縁層、電極層、半導体層、誘電体層、密着層、シード層等が挙げられる。説明の便宜のため、図2は、絶縁層12の表面にデバイス素子13が積層された態様になっているが、これに限られるものではなく、絶縁層12にデバイス素子13が積層された態様であれば、他の絶縁層等を介していてもよい。
<デバイス素子13>
デバイス素子は、薄膜デバイス2を構成するものであれば、導電体であってもよいし、半導体であってもよいし、絶縁層であってもよい。薄膜デバイス2は、有機ELディスプレイや有機EL照明等のEL素子、電子ペーパー及び反射型液晶ディスプレイ、薄膜太陽電池、薄膜トランジスタ基板、RFID(Radio Frequency IDentification:ICタグ)、メモリー等等従来公知の種々の形態を含む。例えば、薄膜デバイス2が有機ELディスプレイであれば、デバイス素子として有機発光体等が挙げられる。
デバイス素子13は、一般に薄膜の単層又は多層として形成される。また、形成される各層は、所望の形状にパターニングされることもある。薄膜デバイス2が有機ELディスプレイである場合を例にすると、デバイス素子13として、有機発光体からなる有機発光層を含むEL層等が挙げられる。通常、EL層は、背面電極からなる背面電極層を介して絶縁層12に積層される。
通常、EL層は、有機発光層だけでなく、複数層で構成される。有機発光層以外にEL層内に形成される層としては、正孔注入層、正孔輸送層、電子注入層及び電子輸送層を挙げることができる。正孔注入層及び正孔輸送層は一体化されている場合がある。同様に、電子注入層及び電子輸送層は一体化されている場合がある。その他、EL層内に形成される層としては、キャリアブロック層のような正孔もしくは電子の突き抜けを防止し、さらに励起子の拡散を防止して発光層内に励起子を閉じ込めることにより、再結合効率を高めるための層等を挙げることができる。このようにEL層は種々の層を積層した積層構造を有することが多く、積層構造としては多くの種類がある。
通常、EL層は、塗布法で形成される。塗布法で形成する場合、溶媒との関係で多数の層を積層することが困難であることから、EL層は1層もしくは2層の有機層を有する場合が多いが、溶媒への溶解性が異なるように有機材料を工夫したり、真空蒸着法を組み合わせたりすることにより、さらに多数層とすることも可能である。
有機EL表示装置は、上述の構成の他に、必要に応じて、絶縁層、隔壁、封止部材等を有していてもよい。
<薄膜デバイスの形成方法>
続いて、図1、図3、図4及び図2の順で図面を参照しながら薄膜デバイス2の形成方法を説明する。
[積層工程]
まず、絶縁層12上に強磁性体層11を積層する積層工程を行う。この工程を経ることで、強磁性体層11と絶縁層12とを積層してなる可撓性の薄膜デバイス基材1が形成される(図1)。
絶縁層12の形成方法としては、平滑性の良好な絶縁層12が得られる方法であればよく特に限定されない。ポリイミドの例で言えば、強磁性体層11上にポリイミド溶液又はポリイミド前駆体溶液を塗布する方法、強磁性体層11とポリイミドフィルムとを加熱圧着する方法のいずれであってもよいが、平滑性に優れる絶縁層12が得られる点でポリイミド溶液又はポリイミド前駆体溶液を塗布する方法が好適であり、ポリイミド前駆体溶液を塗布する方法がより好適である。一般にポリイミドは溶媒への溶解性に乏しいからである。また、溶媒への溶解性が高いポリイミドは、耐熱性、線熱膨張係数、吸湿膨張係数等の物性に劣るからである。
一方、強磁性体層11とポリイミドフィルムとを接着剤を介して貼り合せる方法を用いてもよい。特に、絶縁層もしくは強磁性体層の厚みが厚い場合は、塗布や蒸着、めっき等よりも容易に積層することが可能になるので、好ましい。
塗布方法としては、平滑性の良好な絶縁層12を得ることができる方法であれば特に限定されるものではなく、例えば、スピンコート法、ダイコート法、ディップコート法、バーコート法、グラビア印刷法、スクリーン印刷法等を用いることができる。
ポリイミド溶液又はポリイミド前駆体溶液を塗布する場合、塗布後にポリイミド又はポリイミド前駆体のガラス転移温度以上に加熱することで、膜の流動性を高め、平滑性を良くすることもできる。
なお、本実施態様は、強磁性体層11の表面側に絶縁層12を形成する構成となっているが、本発明においては、逆に絶縁層12上に、鉄をスパッタする等して強磁性体層を形成してもよく、この態様も本発明の範囲内である。
絶縁層12は、強磁性体層11上に全面に形成されていてもよく、強磁性体層11上に部分的に形成されていてもよい。すなわち、強磁性体層11の絶縁層12が形成されている面に、絶縁層12が存在せず、強磁性体層11が露出している強磁性体層露出領域が設けられていてもよい。このような強磁性体層露出領域を有する場合には、本発明の薄膜デバイス基材1を用いて薄膜デバイスを作製する際に、封止部材と強磁性体層1とを直に密着させることが可能となり、薄膜デバイスへの水分の浸入をより強固に防ぐことが可能となる。また、封止部を強磁性体層露出領域に選択的に形成することで、薄膜デバイスを面内で区分けしたり、多面付けした状態で封止したりすることが可能となり、高い生産性で素子を製造できるといった利点を有する。また、強磁性体層露出領域は、絶縁層12及び密着層を貫通し強磁性体層11に電気的に導通をとるための貫通孔にもなり得る。
絶縁層12を強磁性体層11の表面に部分的に形成する場合、その形成方法としては、印刷法、フォトリソグラフィー法、レーザー等で直接加工する方法を用いることができる。
この薄膜デバイス基材1は、後にデバイス素子13を絶縁層12上に形成するための基材となるが、強磁性箔層11と絶縁層12は共に剛性を有さないので、積層後の薄膜デバイス基材1は可撓性を有する。このため、この段階ではデバイス素子形成プロセスにおけるハンドリング性に劣るものとなっている。
なお、本発明においては、強磁性体層11(強磁性体層)側を加工してもよい。具体的には、全体的に厚みを削って薄くする(1μm以下でも可)ことや、パターニングによって、例えば配線層を形成することが例示できる。この場合において、パターニングする場合には、強磁性体層の残存部が減少すると、磁石で貼り付けた際に固定が不十分になるので、面積で強磁性体層の50%以上残っていることが好ましく、80%以上残っていることがさらに好ましく、90%以上残っていることがさらに好ましい。
[支持板密着工程]
続いて、強磁性体層11と引き合う磁性を有する硬質の磁性平板21を強磁性体層11の裏面側に接触させる支持板密着工程を行う。この工程を経ることで、強磁性体層11と磁性平板21とが磁力により密着される(図3)。この工程によって可撓性を有する薄膜デバイス基材1が磁性平板21によって支持ざれ、後のデバイス素子形成プロセスにおけるハンドリング性を一時的に維持できる。この点が本発明の特徴である。
磁性平板21は、強磁性体層11と引き合う磁性を有した硬質の平板であればどのようなものであってもよく、永久磁石そのものであってもよいし、磁石と接触して磁性を帯びた磁性体であってもよいし、電磁石であってもよい。また、広く一般に知られた薄膜デバイス2の製造プロセスで支障を生じない程度であれば、磁性平板21の厚さはどのような厚さであってもよい。
磁性平板21を強磁性体層11の裏面側に密着させるとは、直接強磁性体層11の裏面に直接に接触させることはもちろん、間接的に、すなわち他の層を介して密着させることも含む意味であり、必ずしも直接接触を意味するものではない。
なお、本実施態様は、強磁性箔層11側に磁性平板21を密着させる構成となっているが、本発明においては、逆に絶縁層12面側に磁性平板21を密着させて、強磁性箔層11側に素子を形成してもよい。
磁性平板21を直接薄膜デバイス基材1と接触させる場合は、磁性平板21の薄膜デバイス基材1と接する面の表面粗さRaは、200nm以下であることが好適であり、100nm以下であることがより好適であり、50nm以下であることがさらに好適である。
また、磁性平板21と薄膜デバイス基材1の間に他の層を介して間接的に接触させる場合においても、薄膜デバイス基材1と直に接する面の表面粗さRaは、200nm以下であることが好適であり、100nm以下であることがより好適であり、50nm以下であることがさらに好適である。間に挟む層としては、ガラス板等の表面平坦性の高いものが好適である。
[素子形成工程]
続いて、絶縁層12に素子からなるデバイス素子13を積層する素子形成工程を行う(図4)。デバイス素子部は、機能層から構成され、機能層としては、具体的には、絶縁層、電極層、半導体層、誘電体層、密着層、シード層、保護層等が挙げられる。
この素子形成工程は、例えば、塗布、加熱、貼り合わせ、スパッタリング、蒸着、めっき、露光、現像、印刷、プラズマ処理及びフォトリソグラフィーより選択される1工程又は2以上の工程の組合せで行われる。本発明の効果はこの素子形成工程において生じるものであるが、これについては後述する。
[支持板離脱工程]
続いて、強磁性体層11から磁性平板21を外す支持板離脱工程を行う。この工程を経ることで、薄膜デバイス基材1における絶縁層12に素子からなるデバイス素子13が積層された積層体を含む薄膜デバイス2が得られる(図2)。磁性平板21の取り外しは、例えば磁性平板21が永久磁石の場合には物理的に取り外せばよく、電磁石の場合には電気的なオンオフによって着脱可能である。
[プロセス毎の効果]
本発明の効果は、素子形成工程の具体的プロセス毎に異なるので、以下、具体的に、1)支持体がなく薄膜デバイス基材のみの場合、2)図5のように粘着剤を介して支持基材と積層して後に剥離する場合、と比較する。図5に示すように、この方法は、粘着剤からなる粘着層31を介してガラス板32及び金属箔33を積層し、さらに金属箔33の表面に樹脂からなる樹脂層34及びデバイス素子13を形成し、その後ガラス板32を剥離することで薄膜デバイス30を形成する方法である。
塗布工程においては、例えばスピンコートの際には、1)では薄膜デバイス基材が折れ曲がったりし、2)では裏周りによる粘着剤の劣化の恐れがあるが、本発明によればそのような短所がなくプロセス適性に優れる。また、他のスリットコートや、スクリーン印刷やグラビア印刷の際には、2)では支持基材を張り合わせ時にシワや凹凸が発生し易いが、本発明によればそのような短所がなくプロセス適性に優れる。また、インクジェット工程は後に高温プロセスになる場合が多いので、2)では粘着剤の劣化が問題になるが、本発明によればそのような短所がなくプロセス適性に優れる。スピンコートによる塗布、さらには、100rpm以上の回転数でデバイス基材を回転させるスピンコートによる塗布プロセスにおいては、回転時の風圧により基材の折れ曲がりが顕著になることから、本発明のプロセス適正はより高いものになる。
加熱工程においては、例えばホットプレート、オーブン、送風型の搬送炉、等では、1)では薄膜デバイス基材が浮いたり撓んだりして安定せず、2)では粘着剤の熱劣化が生じるが、本発明によればそのような短所がなくプロセス適性に優れる。特に、150℃以上、好ましくは200℃以上の加熱においては、粘着剤の熱劣化が顕著になることから、本発明のプロセス適正はより高いものになる。
スパッタリングや蒸着(PVD/CVD)工程においては、1)では真空引き時に薄膜デバイス基材が浮いたり撓んだりして安定せず、2)では粘着剤からの脱ガスの問題、高温プロセスでは熱劣化が生じるが、本発明によればそのような短所がなくプロセス適性に優れる。特に、真空度10−1torr以下の真空プロセスにおいては、粘着剤からの脱ガスにの影響が顕著になることから、本発明のプロセス適正はより高いものになる。
めっき工程においては、1)では液の流動撹拌によって薄膜デバイス基材が撓んだり折れたりし、2)では粘着剤の耐薬品性の問題が生じるが、本発明によればそのような短所がなくプロセス適性に優れる。
湿式現像工程方式においては、1)ではスプレー現像では液を激しく吹き付け、パドル現像は回転するので薄膜デバイス基材が撓んだり折れたりし、ディップ現像においても液に浸したり引き上げたりする際に薄膜デバイス基材が撓んだり折れたりし、2)では粘着剤の現像液に対する耐薬品性の問題が生じるが、本発明によればそのような短所がなくプロセス適性に優れる。特に、デバイス基材が液体と直接触れるプロセスにおいては、気体のみしか触れないプロセスに比べて、基材に受ける力が大きくなることから、撓みや折れが発生しやすく、本発明のプロセス適正はより高いものになる。
このように、本発明は非常に多岐に渡る素子形成プロセス、具体的には薄膜デバイス基材自体に撓みや折れが生じる程度の力がプロセス上かかる危険性がある工程に適用可能であり、ガラスを用いず可撓性を有する薄膜デバイスにおいても、従来のガラス基板と同等のプロセス適性を有する、極めて簡便で優れた方法である。
本発明においては、塗布工程後に加熱工程を行う等、上記のデバイス素子形成工程が複数の工程を経てデバイス素子が形成される場合には、そのうちの少なくとも1つの工程中で、薄膜デバイス基材に磁性平板が密着されていればよい。例えば、薄膜デバイス基材自体に撓みや折れが生じる程度の力がプロセス上かからない加熱工程等の場合には、磁性平板は外した状態であってもよい。ただし、通常は全デバイス素子形成工程で薄膜デバイス基材に磁性平板が密着されていることが好ましい。
なお、本発明には、上記の思想を積層工程にも適用し、強磁性体層11のような強磁性体層と、前記強磁性体層と引き合う磁性平板を磁力で密着させる強磁性体層−支持板密着工程後に、密着した状態で強磁性体層上に絶縁層12を積層して、可撓性の薄膜デバイス基材を得る絶縁層積層工程と、その後に磁性平板を取り外す支持板離脱工程と、を備える薄膜デバイス基材の製造方法も含まれる。
以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
<ポリイミド前駆体溶液の調製>
パラフェニレンジアミン(PPD)10.8g(100mmol)を500mlのセパラブルフラスコに投入し、200gの脱水されたN−メチル−2−ピロリドン(NMP)に溶解させ、窒素気流下、オイルバスによって液温が50℃になるように熱電対でモニターし加熱しながら撹拌した。それらが完全に溶解したことを確認した後、そこへ、少しずつ30分かけて3,3’,4,4’−ビフェニルテトラカルボン酸2無水物(BPDA) 29.1g(99mmol)を添加し、添加終了後、50℃で5時間撹拌した。その後室温まで冷却し、ポリイミド前駆体溶液を得た。
<積層工程>
15cm角に切り出した厚さ20μmのSUS430−H箔(東洋精箔社製)の表面に、上記ポリイミド前駆体溶液をダイコーターでコーティングし、80℃のオーブン中、大気下で60分乾燥させた後、窒素雰囲気下、350℃、1時間熱処理し(昇温速度 10℃/分、自然放冷)、膜厚10μmのポリイミド膜を形成し、薄膜デバイス基材を得た。薄膜デバイス基材は、温度や湿度環境の変化に対しても反りが発生しなかった。
<支持板密着工程>
マグネットクリーンシートMSKW−08、(マグエックス社製)からなる硬質の磁性平板1上に無アルカリガラスOA−10GF(0.7mm厚 日本電気硝子社製)を配置し、この上部に、上記薄膜デバイス基材をSUS430箔の露出面がガラスに接触するよう静置させることにより貼り付けた。
<素子形成工程>
上記ポリイミド膜に下記のデバイス素子を積層した。第1密着層としてのアルミニウム膜をDCスパッタリング法(成膜圧力0.2Pa(アルゴン)、投入電力1kW、成膜時間10秒)により厚さ5nmで形成した。次いで、第2密着層としての酸化シリコン膜をRFマグネトロンスパッタリング法(成膜圧力0.3Pa(アルゴン:酸素=3:1)、投入電力2kW、成膜時間30分)により厚さ100nmで形成してフレキシブルデバイス用基板を得た。
ボトムゲート・ボトムコンタクト構造のTFTを上記フレキシブルデバイス用基板上に作製した。まず、厚さ100nmのアルミニウム膜をゲート電極膜として成膜した後、レジストパターンをフォトリソグラフィー法で形成した後に燐酸溶液でウェットエッチングし、アルミニウム膜を所定パターンにパターニングしてゲート電極を形成した。次に、そのゲート電極を覆うように厚さ300nmの酸化ケイ素をゲート絶縁膜として全面に形成した。このゲート絶縁膜は、RFマグネトロンスパッタリング装置を用い、6インチのSiOターゲットに投入電力:1.0kW(=3W/cm)、圧力:1.0Pa、ガス:アルゴン+O(50%)の成膜条件で形成した。この後、レジストパターンをフォトリソグラフィー法で形成した後にドライエッチングを施し、コンタクトホールを形成した。次に、ゲート絶縁膜上の全面に厚さ100nmのチタン膜、アルミニウム膜、IZO膜をソース電極及びドレイン電極とするために蒸着した後、レジストパターンをフォトリソグラフィー法で形成した後に過酸化水素水溶液、燐酸溶液で連続的にウェットエッチングし、チタン膜を所定パターンにパターニングしてソース電極及びドレイン電極を形成した。このとき、ソース電極及びドレイン電極は、ゲート絶縁膜上であってゲート電極の中央部直上以外に離間したパターンとなるように形成した。
次に、ソース電極及びドレイン電極を覆うように、全面に、In:Ga:Znが1:1:1のInGaZnO系アモルファス酸化物薄膜(InGaZnO)を厚さ25nmとなるように形成した。アモルファス酸化物薄膜は、RFマグネトロンスパッタリング装置を用い、室温(25℃)、Ar:Oを30:50とした条件下で、4インチのInGaZnO(In:Ga:Zn=1:1:1)ターゲットを用いて形成した。その後、アモルファス酸化物薄膜上にレジスト層をスピンコートにより塗布し、ホットプレートにより乾燥後、レジストパターンをフォトリソグラフィーで形成した後、シュウ酸溶液でウェットエッチングし、そのアモルファス酸化物薄膜をパターニングし、所定パターンからなるアモルファス酸化物薄膜を形成した。こうして得られたアモルファス酸化物薄膜は、ゲート絶縁膜上であってソース電極及びドレイン電極に両側で接触するとともに該ソース電極及びドレイン電極を跨ぐように形成されていた。続いて全体を覆うように、厚さ100nmの酸化ケイ素を保護膜としてRFマグネトロンスパッタリング法で形成した後、レジストパターンをフォトリソグラフィー法で形成した後にドライエッチングを施した。
その後、マグネットクリーンシートを取り外し、裏面に4箇所サマリウムコバルト磁石(KK005 二六製作所製)を貼り付けたSUS−430板(2mm厚 小山鋼材社製)からなる磁性平板2上に、無アルカリガラスごと薄膜デバイス基材を貼り付けた。
大気中300℃1時間のアニールを施した後、SUS−430板から、サマリウムコバルト磁石を取り除いた後、無アルカリガラスごと薄膜デバイス基材を磁性平板1に貼り付けた後、アクリル系のポジ型レジストを用いてELの隔壁層を形成し、TFT基板を作製した。このTFT基板上に白色となるようにEL層を蒸着した後、電極としてIZO膜を蒸着し、バリアフィルムを用いてELの封止を行った。
<支持板離脱工程>
この段階で、SUS430箔から磁性平板を外し、その後、次にPENフィルム上に形成したフレキシブルなカラーフィルターを貼り合わせ、フレキシブルな対角4.7インチ、解像度85dpi、320×240×RGB(QVGA)のアクティブマトリックス駆動のフルカラーELディスプレイを作製した。作製したフルカラーELディスプレイについて、スキャン電圧15V、ベータ電圧10V、電源電圧10Vにて作動を確認した。作製したフルカラーELディスプレイについて24時間の連続作動及び作製後6ヶ月後における作動を確認した。
上記のように、強磁性体層11の表面にその強磁性体層11と引き合う磁性を有する硬質の磁性平板21を接触させることで、従来公知のデバイス素子の形成手法を広く一般的に使用でき、かつ、品質にも優れた薄膜デバイスを製造できることが確認された。
1 薄膜デバイス基材
2 薄膜デバイス
11 強磁性体層
12 絶縁層
13 テバイス素子
21 磁性平板

Claims (13)

  1. 絶縁層と強磁性体層とを積層して、可撓性の薄膜デバイス基材を得る積層工程と、
    前記薄膜デバイス基材に、前記強磁性体層と引き合う磁性平板を磁力で密着させる支持板密着工程と、
    薄膜デバイス基材上にデバイス素子を形成するデバイス素子形成工程と、
    前記デバイス素子形成後の薄膜デバイスから前記磁性平板を取り外す支持板離脱工程と、
    を備える薄膜デバイスの製造方法。
  2. 前記デバイス素子形成工程は、複数の工程を経てデバイス素子が形成され、そのうちの少なくとも1つの工程中で、前記薄膜デバイス基材に前記磁性平板が密着されている請求項1記載の薄膜デバイスの製造方法。
  3. 前記強磁性体層の厚さは、10nm以上1mm以下である請求項1又は2に記載の薄膜デバイスの製造方法。
  4. 前記強磁性体層は、強磁性を有するステンレス箔である請求項1から3のいずれかに記載の薄膜デバイスの製造方法。
  5. 前記絶縁層の厚さは、0.1μm以上1mm以下である請求項1から4のいずれかに記載の薄膜デバイスの製造方法。
  6. 前記絶縁層は、ポリイミドを75重量%以上含むポリイミド含有層である請求項1から5のいずれかに記載の薄膜デバイスの製造方法。
  7. 前記デバイス素子形成工程は、塗布、加熱、貼り合わせ、スパッタリング、蒸着、めっき、露光、現像、印刷、プラズマ処理及びフォトリソグラフィーより選択される1工程又は2以上の工程の組合せである請求項1から6のいずれかに記載の薄膜デバイスの製造方法。
  8. 前記デバイス素子形成工程は、スピンコート工程、前記薄膜デバイス基材を150℃以上で加熱する加熱工程、前記薄膜デバイス基材を真空度10−1torr以下にして行う真空下工程、前記薄膜デバイス基材が液体と直接触れるウエット工程である請求項1から7のいずれかに記載の薄膜デバイスの製造方法。
  9. 強磁性体層と、絶縁層とを積層してなる可撓性の薄膜デバイス基材。
  10. 請求項9に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上にデバイス素子が形
    成された薄膜デバイス。
  11. 請求項10に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上に形成されたデバイス素子が薄膜トランジスタである薄膜デバイス。
  12. 請求項10に記載の薄膜デバイス基材の前記絶縁層又は強磁性体層上に形成されたデバイス素子が有機EL素子である薄膜デバイス。
  13. 強磁性体層と、前記強磁性体層と引き合う磁性平板を磁力で密着させる支持板密着工程と、
    前記密着した状態で、前記強磁性体層上に絶縁層を積層して、可撓性の薄膜デバイス基材を得る絶縁層積層工程と、
    前記磁性平板を取り外す支持板離脱工程と、を備える薄膜デバイス基材の製造方法。
JP2011118435A 2011-05-26 2011-05-26 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス Withdrawn JP2012248637A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118435A JP2012248637A (ja) 2011-05-26 2011-05-26 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118435A JP2012248637A (ja) 2011-05-26 2011-05-26 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス

Publications (1)

Publication Number Publication Date
JP2012248637A true JP2012248637A (ja) 2012-12-13

Family

ID=47468844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118435A Withdrawn JP2012248637A (ja) 2011-05-26 2011-05-26 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス

Country Status (1)

Country Link
JP (1) JP2012248637A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161479A (zh) * 2021-03-08 2021-07-23 复旦大学 一种剥离式自支撑的神经突触仿生器件的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161479A (zh) * 2021-03-08 2021-07-23 复旦大学 一种剥离式自支撑的神经突触仿生器件的制备方法

Similar Documents

Publication Publication Date Title
JP5732740B2 (ja) フレキシブルデバイス用薄膜トランジスタ基板およびフレキシブルデバイス
US10833106B2 (en) Flexible array substrate, manufacturing method thereof, and display panel
KR101262551B1 (ko) 롤 형상의 모기판을 이용한 플렉서블 전자소자의 제조방법
JP6094044B2 (ja) 放熱基板およびそれを用いた素子
JP5906574B2 (ja) フレキシブルデバイス用基板及びその製造方法
TW200306768A (en) Printed circuit board and method of producing the same
KR20120006844A (ko) 물리적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
WO2011040440A1 (ja) フレキシブルデバイス用基板、フレキシブルデバイス用薄膜トランジスタ基板、フレキシブルデバイス、薄膜素子用基板、薄膜素子、薄膜トランジスタ、薄膜素子用基板の製造方法、薄膜素子の製造方法および薄膜トランジスタの製造方法
JP2012212522A (ja) 電子素子用積層基板、電子素子、有機エレクトロルミネッセンス表示装置、電子ペーパー、および電子素子用積層基板の製造方法
Shin et al. Display process compatible accurate graphene patterning for OLED applications
KR101328275B1 (ko) 화학적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
JP4548828B2 (ja) 金属被覆基板の製造方法
JP5164465B2 (ja) 樹脂基板
JP5223481B2 (ja) 金属被覆ポリイミド基板とその製造方法
KR101476746B1 (ko) 내부식성 모기판을 이용한 플렉서블 금속 기판과 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 금속 기판
JP2012248637A (ja) 薄膜デバイスの製造方法、薄膜デバイス基材、及び、薄膜デバイス
WO2013168968A1 (ko) 금속 산화물/질화물/황화물 박막의 전사 방법 및 이에 사용되는 전사용 시트
JP2008230096A (ja) 金属層付き積層フィルム
JP2007208251A (ja) フレキシブル基板用基材およびそれを用いたフレキシブル基板ならびにそれらの製造方法
WO2005051652A1 (ja) 金属被覆基板及びその製造方法
Chen et al. A flexible universal plane for displays
JP2006003775A (ja) ディスプレイ用基板
CN113068313A (zh) 一种线路板的制作方法及其制作的线路板、电子设备
JP2016105183A (ja) 薄膜素子用基板、薄膜素子、有機エレクトロルミネッセンス表示装置、および電子ペーパー
JP5961970B2 (ja) 積層体およびそれを用いた素子

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805