JP2012244070A - Light-emitting device and lighting apparatus using the same - Google Patents

Light-emitting device and lighting apparatus using the same Download PDF

Info

Publication number
JP2012244070A
JP2012244070A JP2011115107A JP2011115107A JP2012244070A JP 2012244070 A JP2012244070 A JP 2012244070A JP 2011115107 A JP2011115107 A JP 2011115107A JP 2011115107 A JP2011115107 A JP 2011115107A JP 2012244070 A JP2012244070 A JP 2012244070A
Authority
JP
Japan
Prior art keywords
light
substrate
emitting device
light emitting
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115107A
Other languages
Japanese (ja)
Other versions
JP5796209B2 (en
Inventor
Keiji Kiba
啓嗣 騎馬
Ryoji Yokoya
良二 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011115107A priority Critical patent/JP5796209B2/en
Publication of JP2012244070A publication Critical patent/JP2012244070A/en
Application granted granted Critical
Publication of JP5796209B2 publication Critical patent/JP5796209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To improve ambient illumination intensity in a light-emitting device using a solid light-emitting diode (LED) by allowing light to be irradiated toward a construction surface.SOLUTION: A light-emitting device 1 includes: a solid light-emitting diode (LED 2); a substrate 3 configured to mount the LED 2 thereon; and an optical member 4 disposed in a light lead-out direction of the LED 2. The optical member 4 is disposed to cover the LED 2 and the substrate 3, and extends toward an outer periphery of the substrate 3 beyond a peripheral edge part thereof, and includes: an incidence surface 41 opposed to the LED 2; a first transmission surface 42 opposing the incidence surface 41; a total reflection surface 43 located closer to the outer periphery of the first transmission surface 42; and a second transmission surface 44 located closer to the outer periphery of the peripheral edge part of the substrate 3. According to this configuration, the light entered from the incidence surface 41 is outputted from the first transmission surface 42, or is subjected to total internal reflection by the total reflection surface 43, and is then outputted from the second transmission surface 44. Therefore, the light can be irradiated toward a construction surface of the light-emitting device 1, thereby improving ambient illumination intensity.

Description

本発明は、光源として複数の固体発光素子を用いた発光装置及びそれを用いた照明装置に関する。   The present invention relates to a light emitting device using a plurality of solid state light emitting elements as a light source, and an illumination device using the same.

発光ダイオード(以下、LED)は、低電力で高輝度の発光が可能であり、しかも長寿命であることから、白熱灯や蛍光灯に代替する照明装置用の光源として注目されている。照明装置に用いられるLEDとして、青色光を出射する青色LEDチップに、この青色光を黄色光に波長変換する蛍光体層を被覆させて、青色光と黄色光との混光にとり白色光を生成する白色LEDパッケージが知られている。   A light-emitting diode (hereinafter referred to as an LED) is attracting attention as a light source for a lighting device that can replace incandescent lamps and fluorescent lamps because it can emit light with high luminance at low power and has a long lifetime. As a LED used in lighting devices, a blue LED chip that emits blue light is coated with a phosphor layer that converts the wavelength of the blue light into yellow light, and white light is generated by mixing the blue light and yellow light. White LED packages are known.

この種のLEDパッケージは、一般的に、搭載される蛍光体層の発光面が、平面又は半球状で形成されているので、LEDの前方への指向性が高い配光となる。そのため、このようなLEDパッケージを、拡散透過パネルを備えた照明装置に搭載したとき、拡散透過パネルの出射面において、LEDの直上部の輝度が局所的に高くなり易く、輝度分布が不均一となり、グレアが生じることがある。   In this type of LED package, the light emitting surface of the phosphor layer to be mounted is generally formed in a flat or hemispherical shape, so that light distribution with high directivity to the front of the LED is obtained. Therefore, when such an LED package is mounted on a lighting device equipped with a diffuse transmission panel, the luminance directly above the LED tends to increase locally on the exit surface of the diffuse transmission panel, resulting in nonuniform luminance distribution. , Glare may occur.

そこで、LEDパッケージからの光の配光を広角配光とするレンズを備えた発光装置が知られている(例えば、特許文献1参照)。この発光装置は、LEDの光出射方向に設けられた、断面形状が双山状となったレンズを用いて、LEDからの光を屈折及び反射させて出射することにより、出射光の配光を広角配光とすると共に、輝度分布を均一化している。   In view of this, a light-emitting device including a lens that distributes light from an LED package to a wide-angle light distribution is known (for example, see Patent Document 1). This light emitting device distributes the emitted light by refracting and reflecting the light from the LED using a lens having a cross-sectional shape that is provided in the light emitting direction of the LED and having a cross-sectional shape. In addition to wide-angle light distribution, the luminance distribution is made uniform.

特開2011−34770号公報JP 2011-34770 A

ところで、照明装置においては、輝度分布の均一化やグレアの低減だけでなく、空間の明るさ感を効果的に向上させることも重要な要素になっている。そして、空間の明るさ感を向上させる照明技術として、天井や壁面等の周囲を均一に明るくする、いわゆるアンビエント照度を向上させることが挙げられる。しかしながら、上記特許文献1に示される発光装置においては、レンズの基板と対向する面が乱反射面として形成されているので、発光装置の施工面側へ光を照射させることができず、アンビエント照度を向上させることができない。   By the way, in the lighting device, not only uniforming the luminance distribution and reducing the glare but also effectively improving the brightness of the space is an important factor. As a lighting technique for improving the brightness of the space, there is an improvement in so-called ambient illuminance that uniformly brightens the surroundings such as the ceiling and the wall surface. However, in the light emitting device shown in Patent Document 1, since the surface of the lens facing the substrate is formed as a diffusely reflecting surface, it is impossible to irradiate the construction surface side of the light emitting device with ambient illuminance. It cannot be improved.

本発明は、上記課題を解決するものであり、施工面側へ光を照射させることができ、アンビエント照度を向上させることができる発光装置及びこの発光装置を用いた照明装置を提供することを目的とする。   This invention solves the said subject, and aims at providing the light-emitting device which can irradiate light to the construction surface side, and can improve ambient illumination intensity, and the illuminating device using this light-emitting device. And

上記課題を解決するため、本発明に係る発光装置は、固体発光素子と、前記固体発光素子が実装される基板と、前記固体発光素子の光導出方向に設けられた光学部材と、を備え、前記光学部材は、前記固体発光素子及び前記基板を覆うように配され、且つ前記基板の周縁部よりも外周側に延設されており、前記固体発光素子と対向して、該固体発光素子からの出射光を入射する入射面と、前記入射面と対峙し、該入射面から入射された光を透過する第1の透過面と、前記第1の透過面の外周側に位置し、前記入射面から入射された光を全反射する全反射面と、前記基板の周縁部の外周側に位置し、前記全反射面で全反射された光を透過する第2の透過面と、を有することを特徴とする。   In order to solve the above-described problem, a light-emitting device according to the present invention includes a solid-state light-emitting element, a substrate on which the solid-state light-emitting element is mounted, and an optical member provided in the light leading direction of the solid-state light-emitting element, The optical member is arranged so as to cover the solid light emitting element and the substrate, and is extended to the outer peripheral side from the peripheral portion of the substrate. An incident surface on which incident light is incident, a first transmission surface that faces the incident surface and transmits light incident from the incident surface, and is positioned on an outer peripheral side of the first transmission surface, and the incident surface A total reflection surface that totally reflects light incident from the surface, and a second transmission surface that is located on the outer peripheral side of the peripheral portion of the substrate and transmits light totally reflected by the total reflection surface. It is characterized by.

上記発光装置において、前記入射面は、前記固体発光素子を収納する凹状の収容部を有し、前記第1の透過面は、前記固体発光素子方向に凹状となる凹状湾曲面を有し、前記全反射面は、前記固体発光素子の光導出方向に凸状となる凸状湾曲面を有することが好ましい。   In the light emitting device, the incident surface has a concave accommodating portion that accommodates the solid light emitting element, and the first transmission surface has a concave curved surface that is concave in the direction of the solid light emitting element, The total reflection surface preferably has a convex curved surface that is convex in the light leading direction of the solid state light emitting device.

上記発光装置において、前記基板上に複数の固体発光素子が実装され、前記光学部材は、前記複数の固体発光素子のうち少なくとも前記基板の周縁部に近接する固体発光素子に設けられていることが好ましい。   In the light-emitting device, a plurality of solid-state light-emitting elements are mounted on the substrate, and the optical member is provided in a solid-state light-emitting element that is at least close to a peripheral portion of the substrate among the plurality of solid-state light-emitting elements. preferable.

上記発光装置において、前記基板上に複数の固体発光素子が実装され、前記光学部材は、複数の前記固体発光素子を覆うように設けられていることが好ましい。   In the light emitting device, it is preferable that a plurality of solid light emitting elements are mounted on the substrate, and the optical member is provided so as to cover the plurality of solid light emitting elements.

上記発光装置において、前記第2の透過面は、内周側から外周側へ前記基板を含む平面から次第に離間するように湾曲されていることが好ましい。   In the light-emitting device, it is preferable that the second transmission surface is curved so as to be gradually separated from a plane including the substrate from the inner peripheral side to the outer peripheral side.

上記発光装置において、前記固体発光素子、前記基板及び前記光学部材を保持する保持部材を備え、前記保持部材は、施工面から突出しており、前記光学部材を前記施工面から所定距離の位置で保持するように構成されていることが好ましい。   The light emitting device includes a holding member that holds the solid state light emitting element, the substrate, and the optical member, the holding member protruding from a construction surface, and holding the optical member at a predetermined distance from the construction surface. It is preferable that it is comprised.

上記発光装置において、前記固体発光素子、前記基板及び前記光学部材を保持する保持部材を備え、前記保持部材が、施工面に埋め込まれるように構成されていることが好ましい。   The light-emitting device preferably includes a holding member that holds the solid-state light-emitting element, the substrate, and the optical member, and the holding member is configured to be embedded in a construction surface.

上記発光装置は、照明装置に用いられることが好ましい。   The light emitting device is preferably used for a lighting device.

本発明の発光装置によれば、光学部材の入射面から入射された光は、第1の透過面から、又は全反射面で全反射されて基板の周縁部より外周側にある第2の透過面から出射されるので、基板を施工面側としたとき、この施工面側へ光が照射され、アンビエント照度を向上させることができる。   According to the light emitting device of the present invention, the light incident from the incident surface of the optical member is totally reflected from the first transmission surface or the total reflection surface and is second transmitted from the peripheral edge of the substrate. Since it radiates | emits from a surface, when a board | substrate is made into the construction surface side, light will be irradiated to this construction surface side, and ambient illuminance can be improved.

本発明の第1の実施形態に係る発光装置の側断面図。1 is a side sectional view of a light emitting device according to a first embodiment of the present invention. 同発光装置の斜視図。The perspective view of the light-emitting device. (a)(b)は同発光装置における光学部材の第1の透過面及び全反射面の形状を説明するための図。(A) and (b) are the figures for demonstrating the shape of the 1st transmission surface and total reflection surface of the optical member in the light-emitting device. 同発光装置に用いられる固体発光装置の詳細な構成を示す側断面図。The sectional side view which shows the detailed structure of the solid light-emitting device used for the light-emitting device. 同上実施形態の変形例に係る発光装置の側断面図。Side sectional drawing of the light-emitting device which concerns on the modification of embodiment same as the above. (a)別の変形例に係る発光装置の側断面図、(b)は更に別の変形例に係る発光装置の側断面図。(A) Side sectional drawing of the light-emitting device which concerns on another modification, (b) is a side sectional view of the light-emitting device which concerns on another modification. 更に別の変形例に係る発光装置の斜視図。The perspective view of the light-emitting device which concerns on another modification. 更に別の変形例に係る発光装置の側断面図。The side sectional view of the light-emitting device concerning another modification. 本発明の第2の実施形態に係る発光装置及びこれを用いた照明装置の側断面図。The sectional side view of the light-emitting device which concerns on the 2nd Embodiment of this invention, and an illuminating device using the same. 同上実施形態の変形例に係る発光装置の側断面図。Side sectional drawing of the light-emitting device which concerns on the modification of embodiment same as the above. 別の変形例に係る発光装置の斜視図。The perspective view of the light-emitting device which concerns on another modification. 更に別の変形例に係る発光装置の側断面図。The side sectional view of the light-emitting device concerning another modification. 更に別の変形例に係る発光装置の側断面図。The side sectional view of the light-emitting device concerning another modification.

本発明の第1の実施形態に係る発光装置及びそれを用いた照明装置について、図1乃至図4を参照して説明する。本実施形態の発光装置1は、図1及び図2に示すように、固体発光素子としての発光ダイオード(以下、LED)2と、LED2が実装される配線基板(以下、基板)3と、LED2から放射された光の配光を調整する光学部材4と、を備える。発光装置1は、基板3側を施工面とすればよく、基板3の下面と施工面との間に、アンビエント照明用の空間が設けられる。   A light emitting device according to a first embodiment of the present invention and a lighting device using the light emitting device will be described with reference to FIGS. As shown in FIGS. 1 and 2, the light emitting device 1 of the present embodiment includes a light emitting diode (hereinafter referred to as LED) 2 as a solid light emitting element, a wiring board (hereinafter referred to as substrate) 3 on which the LED 2 is mounted, and an LED 2. And an optical member 4 for adjusting the light distribution of the light emitted from the light source. The light emitting device 1 only needs to have the construction surface on the substrate 3 side, and a space for ambient illumination is provided between the lower surface of the substrate 3 and the construction surface.

光学部材4は、アクリル樹脂、シリコーン樹脂又はガラス等の透光性材料から形成されたレンズであり、LED2及び基板3を覆うように配され、且つ基板3の周縁部よりも外周側に延設されている。例えば、基板3が矩形状であり、その対角線の長さが3cmであれば、光学部材4の外径はφ9cmとされるが、光学部材4の外周が基板3の周縁部よりも十分に大きければよく、上記サイズに限られない。なお、固体発光素子は、LEDに限らず、例えば、有機EL素子等であってもよい。   The optical member 4 is a lens formed of a translucent material such as acrylic resin, silicone resin, or glass, and is disposed so as to cover the LED 2 and the substrate 3, and extends to the outer peripheral side from the peripheral portion of the substrate 3. Has been. For example, if the substrate 3 is rectangular and the diagonal length is 3 cm, the outer diameter of the optical member 4 is φ9 cm, but the outer periphery of the optical member 4 is sufficiently larger than the peripheral edge of the substrate 3. What is necessary is not restricted to the said size. In addition, a solid light emitting element is not limited to an LED, and may be, for example, an organic EL element.

また、光学部材4は、LED2からの光を入射する入射面41と、入射面41からの光を透過する第1の透過面42と、入射面41からの光を全反射する全反射面43と、全反射面43で全反射された光を透過する第2の透過面44と、を有する。   The optical member 4 includes an incident surface 41 on which light from the LED 2 is incident, a first transmission surface 42 that transmits light from the incident surface 41, and a total reflection surface 43 that totally reflects light from the incident surface 41. And a second transmission surface 44 that transmits the light totally reflected by the total reflection surface 43.

入射面41は、光学部材4の底面の略中央部であって、LED2と対向する位置に形成されている。また、入射面41は、LED2を収納する凹状の収容部41aを有する。この収容部41aの内表面(入射面41)の形状は、LED2から一定の距離を持つように、例えば、半球状に形成されている。また、入射面41の形状は、LED2から放射状に出射された光を全反射することなく効率的に光学部材4内に導入できるように、平滑面とされる。また、収容部41aには、例えば、光学部材4を構成する樹脂材料と同じ材料等が適宜に充填されていてもよい。本実施形態においては、収容部41aの周囲に、基板3を収容する凹部41bが形成される。この凹部41bは、基板3の大きさ及び厚みと略同じ大きさ及び深さに形成され、基板3のLED2が実装されていない面と、光学部材4の底面(第2の透過面44)とが面一な面とされる。   The incident surface 41 is a substantially central portion of the bottom surface of the optical member 4 and is formed at a position facing the LED 2. Further, the incident surface 41 has a concave accommodating portion 41 a that accommodates the LED 2. The shape of the inner surface (incident surface 41) of the accommodating portion 41a is formed in, for example, a hemisphere so as to have a certain distance from the LED 2. The shape of the incident surface 41 is a smooth surface so that light emitted radially from the LED 2 can be efficiently introduced into the optical member 4 without being totally reflected. In addition, the accommodating portion 41a may be appropriately filled with, for example, the same material as the resin material constituting the optical member 4. In the present embodiment, a recess 41b that accommodates the substrate 3 is formed around the accommodating portion 41a. The recess 41b is formed to have substantially the same size and depth as the size and thickness of the substrate 3, and the surface of the substrate 3 on which the LED 2 is not mounted and the bottom surface (second transmission surface 44) of the optical member 4. Is considered to be a level surface.

第1の透過面42は、光学部材4の光出射面の略中央部であって、入射面41と対峙する位置に形成されている。また、第1の透過面42は、LED2の方向に凹状となる凹状湾曲面42aを有する。この凹状湾曲面42aによって、入射面41からの光は、第1の透過面42の界面で外周側へ屈折して、光学部材4外へ放射されるので、LED2からの出射光の配光を広角にすることができる。   The first transmission surface 42 is formed at a substantially central portion of the light emission surface of the optical member 4 and at a position facing the incident surface 41. Further, the first transmission surface 42 has a concave curved surface 42a that is concave in the direction of the LED 2. Due to the concave curved surface 42a, the light from the incident surface 41 is refracted to the outer peripheral side at the interface of the first transmission surface 42 and radiated out of the optical member 4, so that the light distribution of the light emitted from the LED 2 is distributed. Can be wide angle.

図例では、第1の透過面42が平滑な面として形成された例を示すが、これに限らず、第1の透過面42は粗面として形成されていてもよい。すなわち、第1の透過面42の表面を粗面化することによって、入射面41からの光が、第1の透過面42を透過するときに拡散されるので、グレアの発生を抑制することができる。粗面化は、例えば、小さな砂等の光学部材4よりも硬度の高い材料を表面に当てるブラスト処理等によって行われる。このとき、第1の透過面42の表面に当てる砂の量又は砂粒のサイズを適宜に調整することにより粗度を任意に設定することができる。また、第1の透過面42上において、粗度に分布を持たせてもよい。例えば、第1の透過面42におけるLED2の直上部は、特に輝度が高くなるので、この部分の粗度を高くすることにより、グレアの発生を効果的に抑制することができる。   In the example shown in the figure, the first transmission surface 42 is formed as a smooth surface. However, the present invention is not limited to this, and the first transmission surface 42 may be formed as a rough surface. That is, by roughening the surface of the first transmission surface 42, the light from the incident surface 41 is diffused when passing through the first transmission surface 42, so that the occurrence of glare can be suppressed. it can. The roughening is performed, for example, by blasting or the like in which a material having higher hardness than the optical member 4 such as small sand is applied to the surface. At this time, the roughness can be arbitrarily set by appropriately adjusting the amount of sand applied to the surface of the first transmission surface 42 or the size of the sand particles. Further, the roughness may be distributed on the first transmission surface 42. For example, since the luminance directly above the LED 2 on the first transmission surface 42 is particularly high, the occurrence of glare can be effectively suppressed by increasing the roughness of this portion.

全反射面43は、第1の透過面42の外周側の位置に設けられ、その外径は基板3の周縁部より十分に大きく、光学部材4の周縁部を成す。また、全反射面43は、LED2の光導出方向に凸状となる凸状湾曲面43aを有する。入射面41からの光は、凸状湾曲面43a(全反射面43)の界面で全反射されて、光学部材4内における基板3の周縁部よりも外周側の領域へ導光される。   The total reflection surface 43 is provided at a position on the outer peripheral side of the first transmission surface 42, and the outer diameter thereof is sufficiently larger than the peripheral portion of the substrate 3 to form the peripheral portion of the optical member 4. Further, the total reflection surface 43 has a convex curved surface 43 a that is convex in the light-derived direction of the LED 2. The light from the incident surface 41 is totally reflected at the interface of the convex curved surface 43 a (total reflection surface 43) and guided to a region on the outer peripheral side of the peripheral portion of the substrate 3 in the optical member 4.

第2の透過面44は、基板3の周縁部の外周側に位置するように設けられる。本実施形態において、第2の透過面44は、基板3のLED2が実装された面とは反対側の面と面一となる平坦な面として形成され、その外周縁が全反射面43の周縁部と連結されている。第2の透過面44の表面も、上記第1の透過面42と同様に、粗面化されていてもよい。こうすれば、全反射面43からの光が、第2の透過面44を透過するときに拡散されるので、広範囲に光を照射することができる。また、第2の透過面44の表面に微細の凹凸構造を形成してもよく、この場合も粗面化と同様の効果が得られる。   The second transmission surface 44 is provided on the outer peripheral side of the peripheral edge of the substrate 3. In the present embodiment, the second transmission surface 44 is formed as a flat surface that is flush with the surface of the substrate 3 opposite to the surface on which the LED 2 is mounted, and the outer periphery thereof is the periphery of the total reflection surface 43. Connected with the department. Similarly to the first transmission surface 42, the surface of the second transmission surface 44 may be roughened. By so doing, the light from the total reflection surface 43 is diffused when passing through the second transmission surface 44, so that light can be irradiated over a wide range. Further, a fine concavo-convex structure may be formed on the surface of the second transmission surface 44. In this case, the same effect as the roughening can be obtained.

ここで、光学部材4の第1の透過面42及び全反射面43の詳細な形状について図3(a)(b)を参照して説明する。光学部材4の全反射面43は、等角螺旋形状、又はそれに準じた形状に形成されることが好ましい。ここで、等角螺旋とは、図3(a)に示すように、ある原点と等角螺旋上の点を通る直線と、その等角螺旋上の点の接線とのなす角(以下、角αという)が常に一定である曲線をいう。上記原点にLED2の発光部を配置し、角(90°−α)、すなわち、LED2(原点)からの光の全反射面43(等角螺旋)への入射角を、臨界角以上の角度にすれば、LED2(原点)から出た光は理論上、全て全反射面43の界面で全反射する。つまり、図3(b)に示すように、全反射面43は、角αが所定の角度以下である等角螺旋を含む曲面から形成される。一方、第1の透過面42は、角αが所定の角度以上となる曲線を含む曲面から形成される。例えば、光学部材4がポリカーボネート樹脂によって形成されている場合、ポリカーボネート樹脂の屈折率は1.585であり、臨界角は約39°であるから、角α=51°(=90°−39°)となる。つまり、この例において、全反射面43は、角α=51°以下となる等角螺旋を含む曲面から形成され、一方、第1の透過面42は、角α=51°以上となる曲線を含む曲面から形成される。また、これら第1の透過面42及び全反射面43が、滑らかに連続する曲面として形成されることにより、これら曲率が変化する領域における光ムラの発生を抑制することができる。   Here, detailed shapes of the first transmission surface 42 and the total reflection surface 43 of the optical member 4 will be described with reference to FIGS. The total reflection surface 43 of the optical member 4 is preferably formed in an equiangular spiral shape or a shape conforming thereto. Here, as shown in FIG. 3A, the equiangular spiral is an angle (hereinafter referred to as an angle) formed by a straight line passing through a certain origin and a point on the equiangular spiral and a tangent of the point on the equiangular spiral. A curve in which α) is always constant. The light emitting part of the LED 2 is arranged at the origin, and the angle (90 ° −α), that is, the incident angle of the light from the LED 2 (origin) to the total reflection surface 43 (conformal spiral) is set to an angle greater than the critical angle. Then, all the light emitted from the LED 2 (origin) is theoretically totally reflected at the interface of the total reflection surface 43. That is, as shown in FIG. 3B, the total reflection surface 43 is formed of a curved surface including an equiangular spiral whose angle α is equal to or less than a predetermined angle. On the other hand, the first transmission surface 42 is formed of a curved surface including a curve having an angle α equal to or greater than a predetermined angle. For example, when the optical member 4 is formed of a polycarbonate resin, the refractive index of the polycarbonate resin is 1.585, and the critical angle is about 39 °, so the angle α = 51 ° (= 90 ° -39 °). It becomes. That is, in this example, the total reflection surface 43 is formed of a curved surface including an equiangular spiral with an angle α = 51 ° or less, while the first transmission surface 42 has a curve with an angle α = 51 ° or more. Formed from a curved surface. In addition, since the first transmission surface 42 and the total reflection surface 43 are formed as a smoothly continuous curved surface, it is possible to suppress the occurrence of light unevenness in a region where the curvature changes.

LED2は、図4に示すように、LED2の出射光の波長を変換する波長変換部材21が被覆されて、LEDパッケージとして構成される。このLEDパッケージの大きさは、例えば、2mmとされる。LED2は、発光装置1として所望の光色の発光を可能とする光源であれば特に限定されないが、発光ピーク波長が460nmの青色光を放射するGaN系青色LEDチップが好適に用いられる。本実施形態において、LED2には、素子上面に陽極及び陰極の各電極が設けられた、いわゆるフェイスアップ型の素子が用いられる。LED2の実装方法としては、LED2が基板3上に、ダイボンド材31によって接合され、LED2の素子上面に設けられた各電極を、基板3上に設けられた配線パターン32に、ワイヤ33を用いて結線させる。これにより、LED2と配線パターン32とが電気的に接続される。ダイボンド材31としては、例えば、シリコーン系樹脂、銀ペースト、その他高耐熱のエポキシ系樹脂材等が用いられる。なお、ここでは、LED2の実装方法として、フェイスアップ式の素子をワイヤボンディング実装する例を示したが、LED2は下面側に電極を配したフェイスダウン式の素子であってもよく、この場合、例えば、フリップチップ実装によりLED2が実装される。   As shown in FIG. 4, the LED 2 is configured as an LED package by covering with a wavelength conversion member 21 that converts the wavelength of light emitted from the LED 2. The size of the LED package is, for example, 2 mm. Although LED2 will not be specifically limited if it is a light source which can light-emit desired light color as the light-emitting device 1, The GaN-type blue LED chip which radiates | emits blue light whose light emission peak wavelength is 460 nm is used suitably. In the present embodiment, the LED 2 uses a so-called face-up type element in which anode and cathode electrodes are provided on the element upper surface. As a mounting method of the LED 2, the LED 2 is bonded to the substrate 3 by the die bonding material 31, and each electrode provided on the element upper surface of the LED 2 is connected to the wiring pattern 32 provided on the substrate 3 by using the wire 33. Connect. Thereby, LED2 and the wiring pattern 32 are electrically connected. As the die bond material 31, for example, a silicone resin, a silver paste, and other high heat-resistant epoxy resin materials are used. In addition, although the example which mounts a face-up type element by wire bonding was shown here as a mounting method of LED2, LED2 may be a face-down type element which arranged an electrode on the lower surface side. For example, the LED 2 is mounted by flip chip mounting.

基板3は、母材として、例えば、ガラスエポキシ樹脂等の汎用の基板用板材が好適に用いられる。アルミナや窒化アルミ等のセラミック基板、表面に絶縁層が設けられた金属基板であってもよい。この基板3上に、LED2に給電するための配線パターン32が設けられている。基板3の形状は、LED2及び波長変換部材21等の搭載部材を搭載できるサイズ及び形状であればよく、厚みは、取り扱い時に撓み等の変形を生じない強度を有する程度であればよい。   As the base material, for example, a general-purpose board material such as a glass epoxy resin is preferably used as the base material. It may be a ceramic substrate such as alumina or aluminum nitride, or a metal substrate having an insulating layer on the surface. A wiring pattern 32 for supplying power to the LED 2 is provided on the substrate 3. The shape of the board | substrate 3 should just be a size and shape which can mount mounting members, such as LED2 and the wavelength conversion member 21, and thickness should just have the intensity | strength which does not produce deformation | transformation, such as bending at the time of handling.

基板3上に形成された配線パターン32は、例えば、Au表面でメッキ法により形成される。メッキ法は、Auに限られず、例えば、Ag、Cu、Ni等であってもよい。また、各パターン部の表面のAuは、基板3との接着力を向上させるために、例えば、Au/Ni/Agといった積層構造とされてもよい。なお、配線パターン32は、その表面に光反射処理が施され、LED2からの基板3側へ出射された光を反射するように構成されていてもよい。また、基板3及び配線パターン32の表面は、ワイヤ33の結線やLED2の実装に必要な領域を除き、白色レジストによって覆われていることが好ましい。この白色レジストは、例えば、リフトオフ法等により形成される。こうすれば、白色レジストによって各パターン部が保護されるので、配線の安定性が向上し、しかも、発光装置1を照明装置に組み込む際の取り扱いが容易となり、装置の製造効率が良くなる。   The wiring pattern 32 formed on the substrate 3 is formed on the Au surface by a plating method, for example. The plating method is not limited to Au, and may be Ag, Cu, Ni, or the like, for example. Further, the Au on the surface of each pattern portion may have a laminated structure such as Au / Ni / Ag, for example, in order to improve the adhesive force with the substrate 3. Note that the wiring pattern 32 may be configured so that light reflection processing is performed on the surface thereof and the light emitted from the LED 2 toward the substrate 3 is reflected. Moreover, it is preferable that the surface of the board | substrate 3 and the wiring pattern 32 is covered with the white resist except the area | region required for the connection of the wire 33 and mounting of LED2. This white resist is formed by, for example, a lift-off method. In this case, each pattern portion is protected by the white resist, so that the stability of the wiring is improved, and the handling when the light-emitting device 1 is incorporated in the lighting device is facilitated, and the manufacturing efficiency of the device is improved.

ワイヤ33には、例えば、汎用の金ワイヤが用いられる。また、アルミワイヤ、銀ワイヤ又は銅ワイヤ等であってもよい。ワイヤ33は、熱接合又は超音波接合等の公知の接合方法により、LED2の各電極及び配線パターン32に接合される。   For the wire 33, for example, a general-purpose gold wire is used. Moreover, an aluminum wire, a silver wire, or a copper wire may be used. The wire 33 is bonded to each electrode of the LED 2 and the wiring pattern 32 by a known bonding method such as thermal bonding or ultrasonic bonding.

波長変換部材21は、透光性を有する樹脂材料(例えば、シリコーン樹脂)に、LED2から出射された青色光によって励起され、黄色光を放射する粒子状の黄色蛍光体を分散させた混合材料を、上述した形状に形成加工して作製された光学部材である。透光性を有する樹脂材料は、例えば、屈折率が1.2〜1.5のシリコーン樹脂が用いられる。   The wavelength conversion member 21 is made of a mixed material in which a particulate yellow phosphor that is excited by blue light emitted from the LED 2 and emits yellow light is dispersed in a translucent resin material (for example, silicone resin). An optical member produced by forming and processing into the shape described above. As the resin material having translucency, for example, a silicone resin having a refractive index of 1.2 to 1.5 is used.

蛍光体には、LED2から出射された青色光の一部を吸収して励起され、波長500〜650nmの波長域にピーク波長を有する周知の黄色蛍光体が好適に用いられる。この黄色蛍光体は、発光ピーク波長が黄色波長域内にあり、且つ、発光波長域が赤色波長域を含むものである。黄色蛍光体としては、イットリウム(Yttrium)とアルミニウム(Aluminum)の複合酸化物のガーネット(Garnet)構造の結晶から成る、いわゆるYAG系蛍光体が挙げられるが、これに限られない。例えば、色温度や演色性を調整するため等に、複数色の蛍光体を混色させて用いてもよく、赤色蛍光体と緑色蛍光体を適宜に混合させることにより、演色性の高い白色光を得ることができる。なお、波長変換部材21を構成する樹脂材料には、上記蛍光体に加えて、例えば、光拡散材又はフィラー等が添加されてもよい。   As the phosphor, a well-known yellow phosphor having a peak wavelength in the wavelength range of 500 to 650 nm, which is excited by absorbing part of the blue light emitted from the LED 2, is preferably used. This yellow phosphor has an emission peak wavelength in the yellow wavelength range and an emission wavelength range including a red wavelength range. Examples of the yellow phosphor include, but are not limited to, a so-called YAG phosphor composed of a garnet structure crystal of a composite oxide of yttrium and aluminum. For example, in order to adjust color temperature and color rendering, etc., phosphors of a plurality of colors may be mixed and used. By appropriately mixing a red phosphor and a green phosphor, white light having a high color rendering property can be obtained. Can be obtained. For example, a light diffusing material or a filler may be added to the resin material constituting the wavelength conversion member 21 in addition to the phosphor.

波長変換部材21には、図示した半球形状のものが用いられる。また、縦断面視においてはLED2の側方方向の厚さよりも上方方向の厚さが厚く、光導出方向に頂点部を有する縦長の凸形状であって、縦断面が高さ方向に長径を有する半楕円形状となるように形成されていてもよい。このような波長変換部材21を、LED2に被覆させれば、LED2からの出射光の波長を変換して、任意の光色の光を出射するだけでなく、LED2及びワイヤ33を保護することができる。   As the wavelength conversion member 21, the hemispherical shape shown in the figure is used. In addition, when viewed in a longitudinal section, the thickness in the upward direction is greater than the thickness in the lateral direction of the LED 2, and is a vertically long convex shape having a vertex in the light extraction direction, and the longitudinal section has a major axis in the height direction. You may form so that it may become a semi-elliptical shape. If such a wavelength conversion member 21 is coated on the LED 2, the wavelength of the light emitted from the LED 2 is converted to emit light of any light color, and the LED 2 and the wire 33 can be protected. it can.

波長変換部材21の形成方法としては、例えば、上述した形状に成形された金型に、蛍光体含有樹脂を充填し、LED2が実装された基板3を、逆さまの状態で、金型内の樹脂上面に置載して、硬化させる方法が挙げられる。また、LED2が設置される空間に凹部を設けた碗形状の成形品を、蛍光体含有樹脂を用いて予め作成し、この凹部に成形品と同様の樹脂を充填してLED2を覆うように基板3上に置載して、硬化させる方法であってもよい。更に、LED2が実装された基板3上にディスペンサを用いて、比較的チクソ性の高い蛍光体含有樹脂を塗布して所望の形状を形成してもよい。また、この成形体を切削及び研磨することにより、上述した波長変換部材21の形状となるように形成加工する方法であってもよい。形成された波長変換部材21は、上述した樹脂が硬化する前に、その樹脂によって、又は硬化後には同様の樹脂によって、基板3上に接着される。   As a method for forming the wavelength conversion member 21, for example, the mold containing the above-described shape is filled with a phosphor-containing resin, and the substrate 3 on which the LED 2 is mounted is turned upside down in a resin in the mold. There is a method of placing on the upper surface and curing. Moreover, the board-shaped molded product which provided the recessed part in the space where LED2 is installed is previously produced using fluorescent substance containing resin, resin similar to a molded product is filled into this recessed part, and a board | substrate is covered so that LED2 may be covered. The method of mounting on 3 and making it harden | cure may be sufficient. Further, a desired shape may be formed by applying a relatively thixotropic phosphor-containing resin on the substrate 3 on which the LED 2 is mounted using a dispenser. Moreover, the method of forming and processing so that it may become the shape of the wavelength conversion member 21 mentioned above by cutting and grind | polishing this molded object may be sufficient. The formed wavelength conversion member 21 is bonded onto the substrate 3 by the resin before the resin described above is cured or by the same resin after the resin is cured.

LED2から発せられた光は、その発光部の略中心を通る光導出軸を中心として放射状に出射される。光の一部は、波長変換部材21に含まれる蛍光体に当たり、基底状態にある蛍光体を励起状態に遷移させ、励起状態となった蛍光体は、LED2からの光とは波長が異なる光を放出して基底状態に戻る。このとき放出された光と、LED2自体から出射された光とが混光されて、LED2(パッケージ)の発光面から、所定波長の光が放射される。   The light emitted from the LED 2 is emitted radially around the light lead-out axis that passes through the approximate center of the light emitting portion. A part of the light hits the phosphor contained in the wavelength conversion member 21, the phosphor in the ground state is changed to the excited state, and the excited phosphor emits light having a wavelength different from that of the light from the LED 2. Release to the ground state. The light emitted at this time and the light emitted from the LED 2 itself are mixed, and light having a predetermined wavelength is emitted from the light emitting surface of the LED 2 (package).

次に、光学部材4によって、光がどのように配光制御されるか、上述した図1を参照して説明する。LED2から光学部材4の入射面41に入射した光のうち、LED2の直上方向へ向かう光は、第1の透過面42を屈折しながら透過して光学部材4外へ放射される。このとき、第1の透過面42が凹状碗曲面42aとなっていることにより、第1の透過面42に入射した光は外周側へ屈折して出射されるので、出射光の配光を広角にすることができる。次に、第1の透過面42よりも外周側へ向かう光は、全反射面43によって全反射される。この全反射面43によって全反射される光は、第2の透過面44に入射し、その入射角が臨界角以下である場合、第2の透過面44を屈折しながら透過する。その結果、発光装置1は、基板3の周縁部の外周側の領域に光を照射することができる。従って、本実施形態の発光装置1によれば、発光装置1の施工面側(図中下方向)へ光を照射させることができ、アンビエント照度を向上させることができる。   Next, how the light distribution is controlled by the optical member 4 will be described with reference to FIG. Of the light incident on the incident surface 41 of the optical member 4 from the LED 2, the light directed in the direction directly above the LED 2 is transmitted through the first transmission surface 42 while being refracted and radiated out of the optical member 4. At this time, since the first transmission surface 42 is a concave curved surface 42a, the light incident on the first transmission surface 42 is refracted and emitted to the outer peripheral side. Can be. Next, the light traveling toward the outer peripheral side from the first transmission surface 42 is totally reflected by the total reflection surface 43. The light totally reflected by the total reflection surface 43 is incident on the second transmission surface 44, and passes through the second transmission surface 44 while being refracted when the incident angle is equal to or smaller than the critical angle. As a result, the light emitting device 1 can irradiate the region on the outer peripheral side of the peripheral portion of the substrate 3 with light. Therefore, according to the light-emitting device 1 of this embodiment, light can be irradiated to the construction surface side (downward direction in the figure) of the light-emitting device 1, and ambient illuminance can be improved.

ところで、全反射面43によって全反射されて第2の透過面44に入射した光のうち、その入射角が臨界角以上である光(不図示)は、第2の透過面44の界面で全反射されて、再び全反射面43へ入射する。全反射面43は、凸状碗曲面43aとして構成されており、周縁部近傍ほど第2の透過面44との成す角が小さくなるので、この領域において第2の透過面44で全反射された光の全反射面43への入射角は小さくなり易い。従って、再び全反射面43へ入射した光は、この界面を屈折しながら透過して、発光装置1の側方方向へ出射される。   By the way, light (not shown) whose incident angle is greater than or equal to the critical angle out of the light totally reflected by the total reflection surface 43 and incident on the second transmission surface 44 is totally reflected at the interface of the second transmission surface 44. The light is reflected and enters the total reflection surface 43 again. The total reflection surface 43 is configured as a convex saddle curved surface 43a, and the angle formed with the second transmission surface 44 becomes smaller in the vicinity of the peripheral portion. Therefore, the total reflection surface 43 is totally reflected by the second transmission surface 44 in this region. The incident angle of light to the total reflection surface 43 tends to be small. Accordingly, the light incident on the total reflection surface 43 again passes through the interface while being refracted, and is emitted in the lateral direction of the light emitting device 1.

本実施形態の変形例に係る発光装置について図5を参照して説明する。上記実施形態においては、光学部材4の入射面41の周囲に、基板3を収容する凹部41bが形成された例を示した。一方、本変形例の発光装置1は、図5に示すように、光学部材4が、基板3を収容する構造を有しておらず、フラットな底面を有し、基板3の周囲に、基板3と同じ厚みの透明基板45が設けられているものである。この透明基板45は、光学部材4と同じ材料又は同様の屈折率を有する材料で形成されており、光学部材4と透明基板45との界面に入射する光は全反射することなく、この界面を透過することができる。従って、本変形例においては、透明基板45の光学部材4とは反対側の面が、上記実施形態における第2の透過面44に相当する。この面は、粗面化されていてもよい。   A light emitting device according to a modification of the present embodiment will be described with reference to FIG. In the embodiment described above, an example in which the concave portion 41 b that accommodates the substrate 3 is formed around the incident surface 41 of the optical member 4 has been described. On the other hand, as shown in FIG. 5, in the light emitting device 1 of the present modified example, the optical member 4 does not have a structure for housing the substrate 3, has a flat bottom surface, A transparent substrate 45 having the same thickness as that of No. 3 is provided. The transparent substrate 45 is formed of the same material as the optical member 4 or a material having the same refractive index, and light incident on the interface between the optical member 4 and the transparent substrate 45 is not totally reflected, Can penetrate. Therefore, in this modification, the surface of the transparent substrate 45 opposite to the optical member 4 corresponds to the second transmission surface 44 in the above embodiment. This surface may be roughened.

この構成によれば、光学部材4の底面がフラットであるため、光学部材4の成形加工が容易であり、これを用いた発光装置1の生産性を良くすることができる。   According to this configuration, since the bottom surface of the optical member 4 is flat, the optical member 4 can be easily molded, and the productivity of the light-emitting device 1 using the optical member 4 can be improved.

次に、別の変形例に係る発光装置について図6を参照して説明する。本変形例の発光装置1は、図6(a)に示すように、光学部材4の第2の透過面44が、この第2の透過面44の内周側から外周側へ向けて、基板3を含む平面から次第に離間するように湾曲されているものである。すなわち、第2の透過面44は、基板3の周縁部から、全反射面43の周縁部に掛けて次第に大きくなる逆テーパ形状に形成されている。他の構成は上記実施形態と同様である。また、第2の透過面44の表面が粗面化されていてもよい。   Next, a light emitting device according to another modification will be described with reference to FIG. As shown in FIG. 6A, the light emitting device 1 of the present modification has a substrate in which the second transmission surface 44 of the optical member 4 is directed from the inner peripheral side to the outer peripheral side of the second transmission surface 44. 3 is curved so as to be gradually separated from the plane including 3. That is, the second transmission surface 44 is formed in an inversely tapered shape that gradually increases from the peripheral edge of the substrate 3 to the peripheral edge of the total reflection surface 43. Other configurations are the same as in the above embodiment. Further, the surface of the second transmission surface 44 may be roughened.

この構成によれば、入射面41からの光のうち、全反射面43よりも更に外周側へ放射された光が、第2の透過面44に入射して、この界面で全反射されて、全反射面43へ向かい、全反射面43を透過して、光学部材4外へ放射される。つまり、全反射面43からも光が照射されるので、光学部材4の表面全体から光を照射することができる。また、本変形例においては、入射面41からの光は、全反射面43で全反射されて、第2の透過面44へ入射したとき、この界面での入射角が小さくなるので、第2の透過面44で全反射されることなく、この界面を屈折しながら透過する。従って、発光装置1の施工面側(図中下方向)の広い範囲に光を照射することができる。また、光学部材4の体積が小さいので、製造に必要な樹脂等の材料を少なくすることができ、材料コストを低減することができる。   According to this configuration, the light emitted from the incident surface 41 to the outer peripheral side further than the total reflection surface 43 is incident on the second transmission surface 44 and is totally reflected at this interface. The light travels toward the total reflection surface 43, passes through the total reflection surface 43, and is radiated out of the optical member 4. That is, since light is also emitted from the total reflection surface 43, light can be emitted from the entire surface of the optical member 4. Further, in the present modification, when the light from the incident surface 41 is totally reflected by the total reflection surface 43 and enters the second transmission surface 44, the incident angle at this interface becomes small. Without being totally reflected by the transmissive surface 44, the light passes through the interface while being refracted. Therefore, light can be irradiated to a wide range on the construction surface side (downward direction in the drawing) of the light emitting device 1. Moreover, since the volume of the optical member 4 is small, materials, such as resin required for manufacture, can be decreased and material cost can be reduced.

また、同図では、逆テーパ形状の第2の透過面44が、フラットな面として形成された例を示すが、図6(b)に示すように、第2の透過面44が、緩やかに湾曲した碗形状であってもよい。この構成によれば、全反射面43から出射される光の出射角度を、LED2の光導出方向に近いで角度にすることができる。このように、第2の透過面44の傾斜形状を変えることにより、側方方向への光の広がりを変化させることができる。   FIG. 6 shows an example in which the inversely tapered second transmission surface 44 is formed as a flat surface. However, as shown in FIG. 6B, the second transmission surface 44 is gently A curved bowl shape may be used. According to this configuration, the emission angle of the light emitted from the total reflection surface 43 can be made close to the light derivation direction of the LED 2. Thus, by changing the inclined shape of the second transmission surface 44, the spread of light in the lateral direction can be changed.

更に別の変形例に係る発光装置について図7を参照して説明する。本変形例の発光装置1は、基板3上に複数のLED2が実装され、複数のLED2のうち、基板3の周縁部に近接するLED2に、光学部材4が設けられているものである。他の構成は上記実施形態と同様である。なお、図例では、上記実施形態で示した光学部材4を用いた構成を示すが、上記図6に示した変形例の光学部材4を用いてもよい。   A light emitting device according to still another modification will be described with reference to FIG. In the light emitting device 1 of this modification, a plurality of LEDs 2 are mounted on a substrate 3, and the optical member 4 is provided on the LED 2 that is close to the peripheral edge of the substrate 3 among the plurality of LEDs 2. Other configurations are the same as in the above embodiment. In the example shown in the drawing, the configuration using the optical member 4 shown in the above embodiment is shown, but the optical member 4 of the modification shown in FIG. 6 may be used.

また、図例では、LED2は、基板3上に格子状に配置されている構成を示すが、これに限らず、例えば、複数のLED2がアレイ状、同心円状、又は環状等(不図示)に配置されていてもよい。更に、基板3の中央寄りに配置されたLED2にも、基板3の周縁部に近接するLED2と同様に、光学部材4が設けられている構成を示す。なお、基板3の中央寄りに配置されたLED2には、出射光の配光を広角に配光制御し、基板3側へ光を出射しないように構成された別途の光学部材(不図示)が設けられていてもよい。   In the illustrated example, the LEDs 2 have a configuration in which the LEDs 2 are arranged in a grid pattern on the substrate 3. However, the present invention is not limited to this. It may be arranged. Further, a configuration in which the optical member 4 is provided on the LED 2 arranged near the center of the substrate 3 as well as the LED 2 close to the peripheral portion of the substrate 3 is shown. The LED 2 disposed near the center of the substrate 3 has a separate optical member (not shown) configured to control the light distribution of the emitted light at a wide angle and not to emit light to the substrate 3 side. It may be provided.

この構成によれば、複数のLED2を用いているので、アンビエント照度をより向上させることができる。しかも広範囲に亘ってアンビエント照度を高くすることができる。   According to this structure, since several LED2 is used, ambient illuminance can be improved more. In addition, ambient illuminance can be increased over a wide range.

更に別の変形例に係る発光装置について図8を参照して説明する。本変形例の発光装置1は、基板3上に複数のLED2が実装され、一つの光学部材4が、これら複数のLED2を覆うように設けられているものである。本変形例においては、基板3上に複数のLED2がアレイ状に配置されている。これに限らず、上記図7に示した変形例と同様に、複数のLED2が格子状に配置されていてもよいし、同心円状又は環状等(不図示)に配置されていてもよい。本変形例においては、光学部材4の入射面41にある収容部41aが、複数のLED2を収容できるように、大きく形成されている。なお、光学部材4の底面が、上記図5に示した変形例と同様にフラットに形成されていてもよく、この場合、光学部材4の底面に透明基板45(図5参照)が設けられる。また、光学部材4の周縁部が、上記図6で示した変形例と同様に、光学部材4の第2の透過面44が、この第2の透過面44の内周側から外周側へ向けて、基板3を含む平面から次第に離間するように、湾曲されているものであってもよい。他の構成は上記図7に示した変形例と同様である。   A light emitting device according to another modification will be described with reference to FIG. In the light emitting device 1 of this modification, a plurality of LEDs 2 are mounted on a substrate 3, and one optical member 4 is provided so as to cover the plurality of LEDs 2. In this modification, a plurality of LEDs 2 are arranged in an array on the substrate 3. However, the present invention is not limited to this, and the plurality of LEDs 2 may be arranged in a lattice shape, or may be arranged concentrically or annularly (not shown) as in the modification shown in FIG. In this modification, the accommodating part 41a in the incident surface 41 of the optical member 4 is formed large so that a plurality of LEDs 2 can be accommodated. Note that the bottom surface of the optical member 4 may be formed flat similarly to the modification shown in FIG. 5, and in this case, a transparent substrate 45 (see FIG. 5) is provided on the bottom surface of the optical member 4. Further, the peripheral portion of the optical member 4 is arranged so that the second transmission surface 44 of the optical member 4 is directed from the inner peripheral side to the outer peripheral side of the second transmission surface 44 as in the modification shown in FIG. Further, it may be curved so as to be gradually separated from the plane including the substrate 3. Other configurations are the same as those of the modification shown in FIG.

この構成によれば、複数のLED2を密集させたLED群から成る光源を備えた発光装置1おいても、上記実施形態と同様に、発光装置1の施工面側へ光を照射させることができ、アンビエント照度を向上させることができる。また、本変形例のように、アレイ状に配置されている複数のLED2の夫々の出射光は、光学部材4の入射面41と基板3とで囲まれる収容部41a内で、複数回反射されて光学部材4に入射する。従って、発光装置1から照射される光の輝度ムラを低減することができ、また、LED光源特有の粒々感を低減することができる。   According to this configuration, in the light emitting device 1 including the light source composed of the LED group in which the plurality of LEDs 2 are densely packed, the construction surface side of the light emitting device 1 can be irradiated with light as in the above embodiment. Ambient illuminance can be improved. In addition, as in the present modification, the emitted light of the plurality of LEDs 2 arranged in an array is reflected a plurality of times within the accommodating portion 41 a surrounded by the incident surface 41 of the optical member 4 and the substrate 3. Then, the light enters the optical member 4. Accordingly, it is possible to reduce unevenness in the brightness of the light emitted from the light emitting device 1, and it is possible to reduce the graininess peculiar to the LED light source.

次に、本発明の第2の実施形態に係る発光装置及びこれを用いた照明装置について、図9を参照して説明する。本実施形態の発光装置1は、LED2、基板3及び光学部材4を保持する保持部材を備え、この保持部材は、天井等の施工面6から突出しており、光学部材4を施工面6から所定距離の位置で保持するように構成されているものである。本実施形態において、保持部材は、器具本体5の底面に組み込まれている。基板3は、ネジ51により器具本体5(保持部材)に固定される。光学部材4には、上記第1の実施形態の変形例で説明した透明基板45(図5参照)を用い、底面がフラットな光学部材4が用いられてもよい(不図示)。この発光装置1に、光学部材4を覆うように拡散透過パネル7が取り付けられ、更に電源部等(不図示)が設けられて、照明装置10が構成される。照明装置10は、ボルト61により施工面6に固定される。図例では、上記第1の実施形態で示した光学部材4を用いた構成を示すが、上記図6に示した光学部材4であってもよい。   Next, a light emitting device according to a second embodiment of the present invention and a lighting device using the same will be described with reference to FIG. The light emitting device 1 of the present embodiment includes a holding member that holds the LED 2, the substrate 3, and the optical member 4. The holding member protrudes from a construction surface 6 such as a ceiling, and the optical member 4 is protruded from the construction surface 6. It is comprised so that it may hold | maintain at the position of distance. In the present embodiment, the holding member is incorporated in the bottom surface of the instrument body 5. The substrate 3 is fixed to the instrument body 5 (holding member) with screws 51. As the optical member 4, the transparent substrate 45 (see FIG. 5) described in the modification of the first embodiment may be used, and the optical member 4 having a flat bottom surface may be used (not shown). The light-emitting device 1 is provided with a diffuse transmission panel 7 so as to cover the optical member 4, and further provided with a power supply unit (not shown) to constitute a lighting device 10. The lighting device 10 is fixed to the construction surface 6 with bolts 61. In the illustrated example, the configuration using the optical member 4 shown in the first embodiment is shown, but the optical member 4 shown in FIG. 6 may be used.

器具本体5は、所定の剛性を有するアルミニウム板又は鋼板等の板材を、上記形状にプレス加工したものであり、上記電源部が内蔵されている。この電源部からは正負極のリード線(不図示)が引き出されており、これらのリード線により、電源部が所定の外部給電部(不図示)に電気的に接続される。なお、施工面6は、天井に限らず、壁面等であってもよい。この施工面6の表面には、可視光に対する反射率が高い白色の壁紙等が貼着されていることが好ましい。   The instrument main body 5 is obtained by pressing a plate material such as an aluminum plate or a steel plate having a predetermined rigidity into the shape described above, and has the power supply unit incorporated therein. Positive and negative lead wires (not shown) are drawn out from the power source unit, and the power source unit is electrically connected to a predetermined external power feeding unit (not shown) by these lead wires. The construction surface 6 is not limited to the ceiling but may be a wall surface or the like. It is preferable that a white wallpaper or the like having a high reflectance with respect to visible light is attached to the surface of the construction surface 6.

拡散透過パネル7は、器具本体5の施工面6に近接する基部52に固定され、光学部材4の第2の透過面44を覆う第1パネル71と、この第1パネル71に係止され、第2の透過面42及び全反射面43を覆う碗形状の第2パネル72と、を備える。第1パネル71は、器具本体5にネジ53によりネジ止めされており、主として、発光装置1の施工面6側に出射される光を拡散透過する。なお、この第1パネル72は、拡散性の無いクリアパネルであってもよい。第2パネル72は、第1パネル71とネジ又はツメ等により係止されており、発光装置1の施工面6とは反対側にある空間側に出射される光を拡散透過する。この拡散透過パネル7は、アクリル樹脂等の透光性樹脂に酸化チタン等の拡散粒子を添加した乳白色材料を、所定形状に形成加工した部材である。なお、拡散透過パネル7は、透明なガラス板又は樹脂板の表面又は裏面に、サンドブラスト処理を施して粗面としたもの、又はシボ加工を施したもの等であってもよい。   The diffuse transmission panel 7 is fixed to the base 52 close to the construction surface 6 of the instrument body 5, and is locked to the first panel 71 covering the second transmission surface 44 of the optical member 4, and the first panel 71. And a bowl-shaped second panel 72 that covers the second transmission surface 42 and the total reflection surface 43. The first panel 71 is screwed to the instrument body 5 with screws 53 and mainly diffuses and transmits light emitted to the construction surface 6 side of the light emitting device 1. The first panel 72 may be a clear panel without diffusibility. The second panel 72 is locked to the first panel 71 with screws or claws or the like, and diffuses and transmits light emitted to the space side opposite to the construction surface 6 of the light emitting device 1. The diffuse transmission panel 7 is a member obtained by forming and processing a milky white material obtained by adding diffusion particles such as titanium oxide to a translucent resin such as an acrylic resin into a predetermined shape. The diffuse transmission panel 7 may be a transparent glass plate or resin plate that has a rough surface or a textured surface by sandblasting the front or back surface.

この構成によれば、光学部材4の第2の透過面44から出射された光は、第1パネル71により拡散されて放射されるので、施工面6に輝度ムラ無く照射され、見栄えよくアンビエント照度を向上させることができる。また、光学部材4の第1の透過面42から出射された光は、第2パネル71により拡散されて放射されるので、室内に照射される光によるグレアの発生を抑制することができる。   According to this configuration, the light emitted from the second transmission surface 44 of the optical member 4 is diffused and radiated by the first panel 71, so that the construction surface 6 is irradiated without uneven brightness, and has a good appearance and ambient illuminance. Can be improved. Moreover, since the light emitted from the first transmission surface 42 of the optical member 4 is diffused and emitted by the second panel 71, the occurrence of glare due to the light irradiated into the room can be suppressed.

上記第2の実施形態の変形例に係る発光装置及びこれを用いた照明装置について図10を参照して説明する。本変形例の発光装置1は、第2の透過面44から出射された光を側方方向へ反射する反射部材8が、器具本体5を囲うように設けられたものである。器具本体5は施工面6と近接する基部52の外周側に保持枠54が延設されている。本変形例において、器具本体5は箱形状であり、各側面に反射部材8が取り付けられている。この発光装置1に、光学部材4を覆うように拡散透過パネル7が取り付けられ、更に電源部等(不図示)が設けられて、照明装置10が構成される。拡散透過パネル7は、保持枠54の周縁部にネジ55により固定される。   A light emitting device according to a modification of the second embodiment and an illumination device using the light emitting device will be described with reference to FIG. In the light emitting device 1 according to this modification, a reflection member 8 that reflects light emitted from the second transmission surface 44 in a lateral direction is provided so as to surround the instrument body 5. The instrument main body 5 has a holding frame 54 extending on the outer peripheral side of the base 52 adjacent to the construction surface 6. In this modification, the instrument main body 5 has a box shape, and a reflecting member 8 is attached to each side surface. The light-emitting device 1 is provided with a diffuse transmission panel 7 so as to cover the optical member 4, and further provided with a power supply unit (not shown) to constitute a lighting device 10. The diffuse transmission panel 7 is fixed to the periphery of the holding frame 54 with screws 55.

反射部材8は、光学部材4と器具本体5との接合箇所から保持枠54の周縁部を連接し、器具本体5の基部52に向けて凹状に湾曲した形状に形成されている。反射部材8は、上述した形状に形成されたアルミニウム等金属板、又は樹脂形成板に高反射性の白色塗料を塗装して作製された光拡散反射板等が好適に用いられる。反射部材8は、その表面により反射率の高い銀又はアルミニウムが蒸着されたものであってもよい。   The reflecting member 8 is formed in a shape curved in a concave shape toward the base portion 52 of the instrument body 5 by connecting the peripheral edge of the holding frame 54 from the joint portion between the optical member 4 and the instrument body 5. The reflecting member 8 is preferably a metal plate such as aluminum formed in the shape described above, or a light diffusing reflector made by coating a resin-formed plate with a highly reflective white paint. The reflecting member 8 may be one in which silver or aluminum having a high reflectance is deposited on the surface thereof.

本変形例においては、拡散透過パネル7には、直方体箱形状のものが用いられるが、これに限らず、反射部材8を収容できるように形成されていればよい。拡散透過パネル7の周縁部にはネジ孔(不図示)が形成され、このネジ孔にネジ55が挿通されて、保持枠54の周縁部に固定される。このネジ孔には、ネジ55のネジ頭を収容する皿孔が形成されていることが好ましい。こうすれば、ネジ55のネジ頭が照射光を遮らないようにすることができる。   In this modified example, a rectangular parallelepiped box-shaped one is used for the diffuse transmission panel 7, but not limited to this, it may be formed so as to accommodate the reflecting member 8. A screw hole (not shown) is formed in the peripheral portion of the diffuse transmission panel 7, and a screw 55 is inserted into the screw hole and fixed to the peripheral portion of the holding frame 54. The screw hole is preferably formed with a countersink for receiving the screw head of the screw 55. By doing so, it is possible to prevent the screw head of the screw 55 from blocking the irradiation light.

この構成によれば、光学部材4の第2の透過面44から出射された光のうち、器具本体5の基部52の近傍に照射される光が、反射部材8によって側方方向へ反射されるので、施工面6のより広い範囲に光を照射することができ、広い空間のアンビエント照度を向上させることができる。   According to this configuration, of the light emitted from the second transmission surface 44 of the optical member 4, the light irradiated near the base portion 52 of the instrument body 5 is reflected in the lateral direction by the reflecting member 8. Therefore, light can be irradiated to a wider range of the construction surface 6 and ambient illuminance in a wide space can be improved.

別の変形例に係る発光装置及びこれを用いた照明装置について図11を参照して説明する。本変形例に係る発光装置1は、上記図7に示した変形例のように、基板3上に複数のLED2が設けられ、基板3の周縁部に近接するLED2に光学部材4が配され、また、上記保持部材を更に設けたものである。また、基板3の周囲に上記図5に示した透明基板45が配されている。なお、上記図8に示した複数のLED2を覆う光学部材4が用いられてもよい。この発光装置1に、上記図10に示した拡散透過パネル7及び反射部材8が取り付けられ、更に電源部等(不図示)が設けられて、照明装置10が構成される。   A light-emitting device and a lighting device using the light-emitting device according to another modification will be described with reference to FIG. In the light emitting device 1 according to this modification, as in the modification shown in FIG. 7, a plurality of LEDs 2 are provided on the substrate 3, and the optical member 4 is disposed on the LED 2 adjacent to the peripheral edge of the substrate 3, Further, the holding member is further provided. Further, the transparent substrate 45 shown in FIG. 5 is disposed around the substrate 3. Note that the optical member 4 covering the plurality of LEDs 2 shown in FIG. 8 may be used. The diffusing and transmitting panel 7 and the reflecting member 8 shown in FIG. 10 are attached to the light emitting device 1, and a power supply unit and the like (not shown) are further provided to constitute the lighting device 10.

この構成によれば、複数のLED2を用いているので、アンビエント照度をより向上させることができる、しかも広範囲に亘ってアンビエント照度を高くすることができる。   According to this structure, since several LED2 is used, ambient illuminance can be improved more and ambient illuminance can be made high over a wide range.

更に別の変形例に係る発光装置及びこれを用いた照明装置について図12を参照して説明する。本変形例の発光装置1は、光学部材4が、上記図6に示した変形例と同様に、第2の透過面44が、この第2の透過面44の内周側から外周側へ向けて、基板3を含む平面から次第に離間するように湾曲されているものを用いたものである。また、LED2、基板3及び光学部材4を保持する保持部材を備え、この保持部材が、施工面6に埋め込まれるように構成されている。本例において、保持部材は、器具本体5の底面に組み込まれている。この発光装置1には、光学部材4を覆うように拡散透過パネル7が取り付けられ、更に電源部等(不図示)が備えられて、照明装置10が構成される。本変形例の拡散透過パネル7は、光学部材4の第1の透過面42及び全反射面43と対向する面が平坦面73として構成され、第2の透過面44と対向する面が平坦面73の周縁部から器具本体5へテーパ状になるよう傾斜した傾斜面74として形成されている。他の構成は上記図9に示した変形例と同様である。   Further, a light emitting device according to another modification and an illumination device using the light emitting device will be described with reference to FIG. In the light emitting device 1 of this modification, the optical member 4 has the second transmission surface 44 from the inner peripheral side to the outer peripheral side of the second transmission surface 44, as in the modification shown in FIG. Then, the one that is curved so as to be gradually separated from the plane including the substrate 3 is used. Further, a holding member that holds the LED 2, the substrate 3, and the optical member 4 is provided, and this holding member is configured to be embedded in the construction surface 6. In this example, the holding member is incorporated in the bottom surface of the instrument body 5. The light emitting device 1 is provided with a diffuse transmission panel 7 so as to cover the optical member 4, and further provided with a power supply unit and the like (not shown) to constitute an illumination device 10. In the diffuse transmission panel 7 of this modification, the surface facing the first transmission surface 42 and the total reflection surface 43 of the optical member 4 is configured as a flat surface 73, and the surface facing the second transmission surface 44 is a flat surface. It is formed as an inclined surface 74 that is inclined so as to be tapered from the peripheral portion of 73 to the instrument body 5. Other configurations are the same as those of the modification shown in FIG.

この構成によれば、上記実施形態と同様に、発光装置1の施工面側へ光を照射させることができ、アンビエント照度を向上させることができる。また、器具本体5(保持部材)が施工面6に埋め込まれているので、照明装置10における施工面6から突出する部分が少なくなり、照明装置10の外観をスリム化することができる。   According to this structure, similarly to the said embodiment, light can be irradiated to the construction surface side of the light-emitting device 1, and ambient illuminance can be improved. Moreover, since the instrument main body 5 (holding member) is embedded in the construction surface 6, the part which protrudes from the construction surface 6 in the illuminating device 10 decreases, and the external appearance of the illuminating device 10 can be made slim.

更に別の変形例に係る発光装置及びこれを用いた照明装置について図13を参照して説明する。本変形例の発光装置1は、上記第図11に示した変形例と同様に、基板3上に複数のLED2が設けられ、各LED2に、上記図6,9に示し他変形例の光学部材4が用いられたものである。この発光装置1には、光学部材4を覆うように拡散透過パネル7が取り付けられ、更に電源部等(不図示)が備えられて、照明装置10が構成される。他の構成は上記変形例と同様である。   Further, a light-emitting device and a lighting device using the light-emitting device according to another modification will be described with reference to FIG. As in the modification shown in FIG. 11, the light emitting device 1 of the present modification is provided with a plurality of LEDs 2 on the substrate 3, and each LED 2 has an optical member shown in FIGS. 4 was used. The light emitting device 1 is provided with a diffuse transmission panel 7 so as to cover the optical member 4, and further provided with a power supply unit and the like (not shown) to constitute an illumination device 10. Other configurations are the same as those of the above modification.

この構成によれば、上記変形例と同様に、複数のLED2を用いているので、アンビエント照度を広範囲に亘って高くすることができ、また、照明装置10の外観をスリム化することができる。   According to this configuration, since a plurality of LEDs 2 are used as in the above modification, the ambient illuminance can be increased over a wide range, and the appearance of the lighting device 10 can be slimmed.

なお、本発明は、光学部材4が基板3の周縁部より外周側に延設され、この光学部材4の底面側から光を出射するように構成されたものであれば、上述した実施形態に限らず、種々の変形が可能である。例えば、図7,図8,図11及び図13に示した発光装置1においては、複数のLEDに発光色の異なるものを用い、各光色を光学部材4で混光させてもよい。また、LED2の設けられる波長変換部材21の出射面形状と、光学部材4の収容部41aの形状とを対応させて、波長変換部材21から出射される光が、光学部材4へ効率的に入射されるようにすることもできる。   Note that the present invention is not limited to the above-described embodiment as long as the optical member 4 extends from the peripheral edge of the substrate 3 to the outer peripheral side and is configured to emit light from the bottom surface side of the optical member 4. Not limited to this, various modifications are possible. For example, in the light emitting device 1 shown in FIGS. 7, 8, 11, and 13, a plurality of LEDs having different emission colors may be used, and each light color may be mixed by the optical member 4. Further, the light emitted from the wavelength conversion member 21 is efficiently incident on the optical member 4 by making the emission surface shape of the wavelength conversion member 21 provided with the LED 2 correspond to the shape of the housing portion 41 a of the optical member 4. It can also be made.

1 発光装置
10 照明装置
2 LED(固体発光素子)
3 基板
4 光学部材
41 入射面
41a 収容部
42 第1の透過面
42a 凹状湾曲面
43 全反射面
43a 凸状湾曲面
44 第2の透過面
5 器具本体(保持部材)
6 施工面
DESCRIPTION OF SYMBOLS 1 Light-emitting device 10 Illumination device 2 LED (solid-state light emitting element)
DESCRIPTION OF SYMBOLS 3 Substrate 4 Optical member 41 Incident surface 41a Housing part 42 First transmission surface 42a Concave curved surface 43 Total reflection surface 43a Convex curved surface 44 Second transmission surface 5 Instrument body (holding member)
6 Construction surface

Claims (8)

固体発光素子と、前記固体発光素子が実装される基板と、前記固体発光素子の光導出方向に設けられた光学部材と、を備え、
前記光学部材は、
前記固体発光素子及び前記基板を覆うように配され、且つ前記基板の周縁部よりも外周側に延設されており、
前記固体発光素子と対向して、該固体発光素子からの出射光を入射する入射面と、
前記入射面と対峙し、該入射面から入射された光を透過する第1の透過面と、
前記第1の透過面の外周側に位置し、前記入射面から入射された光を全反射する全反射面と、
前記基板の周縁部の外周側に位置し、前記全反射面で全反射された光を透過する第2の透過面と、を有することを特徴とする発光装置。
A solid-state light-emitting element, a substrate on which the solid-state light-emitting element is mounted, and an optical member provided in the light-derived direction of the solid-state light-emitting element,
The optical member is
It is arranged so as to cover the solid-state light emitting element and the substrate, and is extended to the outer peripheral side than the peripheral portion of the substrate,
Opposite the solid-state light-emitting element, an incident surface on which light emitted from the solid-state light-emitting element is incident;
A first transmission surface facing the incident surface and transmitting light incident from the incident surface;
A total reflection surface located on the outer peripheral side of the first transmission surface and totally reflecting the light incident from the incident surface;
A light emitting device comprising: a second transmission surface that is located on an outer peripheral side of the peripheral portion of the substrate and transmits light totally reflected by the total reflection surface.
前記入射面は、前記固体発光素子を収納する凹状の収容部を有し、
前記第1の透過面は、前記固体発光素子方向に凹状となる凹状湾曲面を有し、
前記全反射面は、前記固体発光素子の光導出方向に凸状となる凸状湾曲面を有することを特徴とする請求項1に記載の発光装置。
The incident surface has a concave accommodating portion for accommodating the solid state light emitting device,
The first transmission surface has a concave curved surface that is concave toward the solid-state light emitting element.
The light emitting device according to claim 1, wherein the total reflection surface has a convex curved surface that is convex in a light leading direction of the solid state light emitting device.
前記基板上に複数の固体発光素子が実装され、
前記光学部材は、前記複数の固体発光素子のうち少なくとも前記基板の周縁部に近接する固体発光素子に設けられていることを特徴とする請求項1又は請求項2の発光装置。
A plurality of solid state light emitting devices are mounted on the substrate,
The light-emitting device according to claim 1, wherein the optical member is provided in a solid-state light-emitting element that is at least close to a peripheral portion of the substrate among the plurality of solid-state light-emitting elements.
前記基板上に複数の固体発光素子が実装され、
前記光学部材は、複数の前記固体発光素子を覆うように設けられていることを特徴とする請求項1又は請求項2の発光装置。
A plurality of solid state light emitting devices are mounted on the substrate,
The light emitting device according to claim 1, wherein the optical member is provided so as to cover the plurality of solid state light emitting elements.
前記第2の透過面は、内周側から外周側へ前記基板を含む平面から次第に離間するように湾曲されていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の発光装置。   5. The second transmission surface according to claim 1, wherein the second transmission surface is curved so as to be gradually separated from a plane including the substrate from an inner peripheral side to an outer peripheral side. 6. Light emitting device. 前記固体発光素子、前記基板及び前記光学部材を保持する保持部材を備え、
前記保持部材は、施工面から突出しており、前記光学部材を前記施工面から所定距離の位置で保持するように構成されていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の発光装置。
A holding member for holding the solid-state light emitting element, the substrate, and the optical member;
The said holding member protrudes from a construction surface, It is comprised so that the said optical member may be hold | maintained in the position of predetermined distance from the said construction surface, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The light emitting device according to 1.
前記固体発光素子、前記基板及び前記光学部材を保持する保持部材を備え、
前記保持部材が、施工面に埋め込まれるように構成されていることを特徴とする請求項5に記載の発光装置。
A holding member for holding the solid-state light emitting element, the substrate, and the optical member;
The light emitting device according to claim 5, wherein the holding member is configured to be embedded in a construction surface.
請求項1乃至請求項7のいずれか一項に記載の発光装置を用いた照明装置。   An illumination device using the light emitting device according to any one of claims 1 to 7.
JP2011115107A 2011-05-23 2011-05-23 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Active JP5796209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115107A JP5796209B2 (en) 2011-05-23 2011-05-23 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115107A JP5796209B2 (en) 2011-05-23 2011-05-23 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2012244070A true JP2012244070A (en) 2012-12-10
JP5796209B2 JP5796209B2 (en) 2015-10-21

Family

ID=47465413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115107A Active JP5796209B2 (en) 2011-05-23 2011-05-23 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP5796209B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225620A (en) * 2013-05-17 2014-12-04 パナソニック株式会社 Light emitting module and lighting device
KR20140148272A (en) * 2013-06-19 2014-12-31 엘지디스플레이 주식회사 Light emitting diode package and liquid crystal display device having the same
JP2015043427A (en) * 2013-08-26 2015-03-05 ソウル セミコンダクター カンパニー リミテッド Lens for surface lighting and light-emitting module
JP2016206633A (en) * 2015-04-21 2016-12-08 隆達電子股▲ふん▼有限公司 Light emitting device and its lens structure
JP2017073549A (en) * 2015-10-08 2017-04-13 日亜化学工業株式会社 Light-emitting device, integrated light-emitting device, and light-emitting module
JP2017117858A (en) * 2015-12-22 2017-06-29 日亜化学工業株式会社 Light-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048883A (en) * 2005-08-09 2007-02-22 Koha Co Ltd Optical element for changing direction of light, light source unit for radiating light, and planar light emitting device employing it
JP2007102139A (en) * 2004-12-03 2007-04-19 Sony Corp Light pickup lens, light emitting element assembly, surface light source device, and color liquid crystal display unit assembly
JP2008077979A (en) * 2006-09-21 2008-04-03 Toshiba Lighting & Technology Corp Lighting apparatus
JP2009164046A (en) * 2008-01-09 2009-07-23 Sadao Momiyama Led luminaire
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it
JP2011086580A (en) * 2009-10-19 2011-04-28 Stanley Electric Co Ltd Vehicle headlamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007102139A (en) * 2004-12-03 2007-04-19 Sony Corp Light pickup lens, light emitting element assembly, surface light source device, and color liquid crystal display unit assembly
JP2007048883A (en) * 2005-08-09 2007-02-22 Koha Co Ltd Optical element for changing direction of light, light source unit for radiating light, and planar light emitting device employing it
JP2008077979A (en) * 2006-09-21 2008-04-03 Toshiba Lighting & Technology Corp Lighting apparatus
JP2009164046A (en) * 2008-01-09 2009-07-23 Sadao Momiyama Led luminaire
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it
JP2011086580A (en) * 2009-10-19 2011-04-28 Stanley Electric Co Ltd Vehicle headlamp

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225620A (en) * 2013-05-17 2014-12-04 パナソニック株式会社 Light emitting module and lighting device
KR20140148272A (en) * 2013-06-19 2014-12-31 엘지디스플레이 주식회사 Light emitting diode package and liquid crystal display device having the same
KR102094806B1 (en) * 2013-06-19 2020-03-31 엘지디스플레이 주식회사 Light emitting diode package and liquid crystal display device having the same
JP2015043427A (en) * 2013-08-26 2015-03-05 ソウル セミコンダクター カンパニー リミテッド Lens for surface lighting and light-emitting module
US10809507B2 (en) 2013-08-26 2020-10-20 Seoul Semiconductor Co., Ltd. Lens and light emitting module for surface illumination
US10281111B2 (en) 2013-08-26 2019-05-07 Seoul Semiconductor Co., Ltd. Lens and light emitting module for surface illumination
US9903559B2 (en) 2015-04-21 2018-02-27 Lextar Electronics Corporation Lighting apparatus and lens structure thereof
JP2016206633A (en) * 2015-04-21 2016-12-08 隆達電子股▲ふん▼有限公司 Light emitting device and its lens structure
JP2017073549A (en) * 2015-10-08 2017-04-13 日亜化学工業株式会社 Light-emitting device, integrated light-emitting device, and light-emitting module
US10090441B2 (en) 2015-12-22 2018-10-02 Nichia Corporation Light emitting device
JP2017117858A (en) * 2015-12-22 2017-06-29 日亜化学工業株式会社 Light-emitting device
US10553763B2 (en) 2015-12-22 2020-02-04 Nichia Corporation Light emitting device
US11139418B2 (en) 2015-12-22 2021-10-05 Nichia Corporation Light emitting device
US11631789B2 (en) 2015-12-22 2023-04-18 Nichia Corporation Light emitting device

Also Published As

Publication number Publication date
JP5796209B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5903672B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5899508B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4869275B2 (en) Light source module and light emitting device
JP5047162B2 (en) Light emitting device
JP5796209B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2007266356A (en) Light-emitting device and illuminator using the same
JP2012248553A (en) Light-emitting device and luminaire using the same
JP4948818B2 (en) Light emitting device and lighting device
JP4986608B2 (en) Light emitting device and lighting device
US20230207752A1 (en) Light-emitting device and method of manufacturing the same
JP2006066657A (en) Light emitting device and lighting device
JP6173794B2 (en) Semiconductor light emitting device and lighting device using the same
JP4511238B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP5899476B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP2013149690A (en) Light-emitting device and illuminating device
JP2015090853A (en) Luminaire and lens
CN210398448U (en) Four-side light-emitting light source with large light-emitting angle and backlight module
JP5312556B2 (en) Light emitting device and lighting device
JP2017163002A (en) Light-emitting device and illuminating device
US20190237639A1 (en) Light-emitting device and method of manufacturing the same
JP2014170650A (en) Illumination device
JP2013004941A (en) Light-emitting device and lighting apparatus using the same
KR20130101742A (en) Led package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R151 Written notification of patent or utility model registration

Ref document number: 5796209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151