JP2012237559A - Method for evaluating optimization of seismometer arrangement - Google Patents
Method for evaluating optimization of seismometer arrangement Download PDFInfo
- Publication number
- JP2012237559A JP2012237559A JP2011104813A JP2011104813A JP2012237559A JP 2012237559 A JP2012237559 A JP 2012237559A JP 2011104813 A JP2011104813 A JP 2011104813A JP 2011104813 A JP2011104813 A JP 2011104813A JP 2012237559 A JP2012237559 A JP 2012237559A
- Authority
- JP
- Japan
- Prior art keywords
- seismometer
- earthquakes
- predetermined value
- arrangement
- magnitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本発明は、過去に発生した地震や今後発生が予想される地震に対する地震計配置の最適化評価方法に関するものである。 The present invention relates to a method for optimizing seismometer placement for earthquakes that have occurred in the past or are expected to occur in the future.
気象庁の緊急地震速報や新幹線の早期地震警報システムなど、地震発生直後に震源の位置や規模を推定し、防災・減災対策に活用することができる早期地震情報が、近年注目されている。この早期地震情報を提供する際には、発生が予想される地震に対して適切に地震計(地震検知点)を配置することが重要となる。
そこで、P波速度とS波速度などをパラメータとする余裕時間、すなわちP波による早期地震情報が出力されてからS波である主揺動が到達するまでの時間の計算と、震源距離やマグニチュードなどをパラメータとする距離減衰による地震動推定とを行い、揺れの大きさがある所定の値以上になる領域において余裕時間がある所定の値以上になる確率を計算することにより、対象とする領域や路線などに対して地震計(地震検知点)の配置を定量的に評価し、その最適化を検討するようにしている。
Early earthquake information that can be used for disaster prevention and mitigation measures, such as the Japan Meteorological Agency's emergency earthquake bulletin and the Shinkansen early earthquake warning system, can be used for disaster prevention and mitigation measures by estimating the location and scale of the epicenter immediately after an earthquake. When providing this early earthquake information, it is important to properly arrange seismometers (earthquake detection points) for earthquakes that are expected to occur.
Therefore, calculation of margin time using parameters such as P-wave velocity and S-wave velocity, that is, the time from the output of early earthquake information by P-wave to the arrival of the main oscillation as S-wave, the epicenter distance and magnitude By calculating the probability that the margin time will be greater than a certain value in the region where the magnitude of the shaking is greater than a certain value. The arrangement of seismometers (earthquake detection points) is quantitatively evaluated for routes, etc., and optimization is examined.
しかしながら、余裕時間と地震の揺れの大きさは、地震の発生位置(震源位置)や規模、地震計(地震検知点)の配置や評価を行う地点などによって変化するため、一対一には対応していない。
本発明は、上記状況に鑑みて、地震発生時における余裕時間と揺れの大きさの両方を考慮した地震計(地震検知点)配置の最適化評価方法を提供することを目的とする。
However, the margin time and the magnitude of the earthquake shake vary depending on the location and scale of the earthquake (seismic source location) and scale, the location of the seismometer (earthquake detection point), and the location where the evaluation is performed. Not.
In view of the above situation, an object of the present invention is to provide an optimization evaluation method for the arrangement of seismometers (earthquake detection points) in consideration of both the allowance time and the magnitude of shaking when an earthquake occurs.
本発明は、上記目的を達成するために、
〔1〕地震計配置の最適化評価方法において、地震計配置の評価を行う任意の領域を設定し、この領域において過去に発生した地震や今後発生すると予想される地震のデータを用いることにより、揺れの大きさが所定の値以上になる地点において余裕時間が所定の値以上となる確率Peを求め、この求められた確率Peに基づいて、地震計配置を定量的に評価することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the seismometer layout optimization evaluation method, by setting an arbitrary area to evaluate the seismometer layout, and using data of earthquakes that occurred in the past or expected to occur in this area, A probability Pe that a margin time becomes a predetermined value or more at a point where the magnitude of the shake becomes a predetermined value or more is obtained, and the seismometer arrangement is quantitatively evaluated based on the obtained probability Pe. To do.
〔2〕上記〔1〕記載の地震計配置の最適化評価方法において、前記揺れの大きさは、計測震度の他、最大加速度、最大速度、SI値などの地震動指標を用いることを特徴とする。
〔3〕上記〔1〕又は〔2〕記載の地震計配置の最適化評価方法において、前記確率Peの計算式が、
Pe=N(A≧a, Tm≧t;x, y)/N(A≧a;x, y)
ここで、N(A≧a;x, y)はある任意の地点(x, y)における地震動指標が所定の値a以上である入力地震の回数、N(A≧a, Tm≧t;x, y)は前記任意の地点(x, y)における地震動指標が所定の値a以上かつ余裕時間がt(秒)以上である入力地震の回数を表すことを特徴とする。
[2] In the method for optimizing seismometer placement described in [1] above, the magnitude of the shaking uses a seismic motion index such as a maximum acceleration, a maximum speed, and an SI value in addition to the measured seismic intensity. .
[3] In the optimization evaluation method of the seismometer arrangement according to [1] or [2], the calculation formula of the probability Pe is:
Pe = N (A ≧ a, Tm ≧ t; x, y) / N (A ≧ a; x, y)
Here, N (A ≧ a; x, y) is the number of input earthquakes where the ground motion index at a given point (x, y) is a predetermined value a or more, N (A ≧ a, Tm ≧ t; x , y) represents the number of input earthquakes whose seismic motion index at the arbitrary point (x, y) is a predetermined value a or more and a margin time is t (seconds) or more.
〔4〕上記〔1〕から〔3〕の何れか一項記載の地震計配置の最適化評価方法において、前記任意の領域における対象鉄道線路のキロ程と緯度・経度をリンクさせた定量的評価のデータベースを構築することを特徴とする。 [4] In the method for optimizing seismometer placement according to any one of [1] to [3] above, the quantitative evaluation in which the kilometer distance and the latitude / longitude of the target railway line in the arbitrary region are linked. It is characterized by constructing a database.
早期地震情報を出力するための地震計の配置に関しては、これまで余裕時間に着目して検討されてきたが、余裕時間は地震による揺れの大きさとは独立した指標である。そこで、本発明によれば、地震の余裕時間と揺れの大きさの両方を考慮して地震計(地震検知点)配置の最適化を図ることによって、地震発生時の安全性を高めることができる。 The arrangement of seismometers for outputting early-time earthquake information has been studied focusing on the margin time so far, but the margin time is an index independent of the magnitude of the shaking caused by the earthquake. Therefore, according to the present invention, by optimizing the arrangement of the seismometers (earthquake detection points) in consideration of both the earthquake surplus time and the magnitude of the shake, safety at the time of the occurrence of the earthquake can be improved. .
本発明の地震計配置の最適化評価方法は、地震計配置の評価を行う任意の領域を設定し、この領域において過去に発生した地震や今後発生すると予想される地震のデータを用いることにより、揺れの大きさが所定の値以上になる地点において余裕時間が所定の値以上となる確率Peを求め、この求められた確率Peに基づいて、地震計配置を定量的に評価する。 The seismometer placement optimization evaluation method of the present invention sets an arbitrary region for evaluating the seismometer placement, and by using data of earthquakes that occurred in the past and predicted to occur in the future in this region, A probability Pe that the margin time becomes a predetermined value or more at a point where the magnitude of the shake becomes a predetermined value or more is obtained, and the seismometer arrangement is quantitatively evaluated based on the obtained probability Pe.
以下、本発明の実施の形態について詳細に説明する。
図1は本発明に係る首都圏の地震計(地震検知点)配置モデルと仮想的に設定した路線を示す模式図、図2はある条件で選定した過去に発生した地震の分布図である。
図1に示すように、5箇所の仮想警報検知点1〜5と、仮想路線1と2が配置されている。なお、仮想警報検知点(仮想地震計配置点)、及び仮想路線は任意に設定することができるが、ここでは、仮想警報検知点(仮想地震計配置点)は本出願人の首都圏地震観測網による検知点、仮想路線は本出願人の国立研究所の所在地点の上を通過する路線としている。また、これらの図の横軸は経度、縦軸は緯度を示している。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram showing a metropolitan seismometer (earthquake detection point) arrangement model according to the present invention and a virtually set route, and FIG. 2 is a distribution map of earthquakes that occurred in the past selected under certain conditions.
As shown in FIG. 1, five virtual alarm detection points 1 to 5 and virtual routes 1 and 2 are arranged. The virtual alarm detection point (virtual seismometer placement point) and virtual route can be set arbitrarily, but here the virtual alarm detection point (virtual seismometer placement point) is the applicant's metropolitan area earthquake observation. The detection points and virtual routes by the network are routes that pass over the location of the applicant's national laboratory. In these figures, the horizontal axis indicates longitude, and the vertical axis indicates latitude.
ここでは、過去に実際に発生した地震に対して評価を行っている。地震の選定条件は、1923年から2009年までに実際に発生したマグニチュード5.5以上、震源深さ100km以下の地震としており、その分布図は、図2に示される。図2において、円の大きさはマグニチュードの大きさに対応している。
なお、評価に用いる地震は、過去に実際に発生した地震のみならず、将来に発生が予想されるものに対しても適用が可能である。また、揺れの大きさは、計測震度の他、最大加速度、最大速度、SI値などの地震動指標を用いることができる。
Here, we are evaluating earthquakes that have actually occurred in the past. The selection conditions for the earthquake are earthquakes with a magnitude of 5.5 or more and an epicenter depth of 100 km or less that actually occurred from 1923 to 2009. The distribution map is shown in FIG. In FIG. 2, the size of the circle corresponds to the size of the magnitude.
The earthquake used for evaluation can be applied not only to earthquakes that have actually occurred in the past, but also to earthquakes that are expected to occur in the future. In addition to the measured seismic intensity, seismic motion indices such as maximum acceleration, maximum speed, SI value, and the like can be used as the magnitude of shaking.
次に、本発明の第1実施例について説明する。
図3は本発明の第1実施例を示す地震計配置の評価値(Pe)マップを示す図である。
この実施例では、警報検知点(地震計配置点)は1〜5の5箇所とし、評価式は次の通りである。
Pe=N(A≧a, Tm≧t;x, y)/N(A≧a;x, y)
ここで、Peは評価値、N(A≧a;x, y)はある任意の地点(x, y)における地震動指標が所定の値a以上である入力地震の回数、N(A≧a, Tm≧t;x, y)は前記任意の地点(x, y)における地震動指標が所定の値a以上かつ余裕時間がt(秒)以上である入力地震の回数を表す。
Next, a first embodiment of the present invention will be described.
FIG. 3 is a diagram showing an evaluation value (Pe) map of the seismometer arrangement showing the first embodiment of the present invention.
In this embodiment, there are five alarm detection points (seismometer placement points) 1 to 5, and the evaluation formula is as follows.
Pe = N (A ≧ a, Tm ≧ t; x, y) / N (A ≧ a; x, y)
Here, Pe is an evaluation value, N (A ≧ a; x, y) is the number of input earthquakes whose seismic motion index at a given point (x, y) is equal to or greater than a predetermined value a, N (A ≧ a, Tm ≧ t; x, y) represents the number of input earthquakes in which the earthquake motion index at the arbitrary point (x, y) is a predetermined value a or more and a margin time is t (seconds) or more.
なお、入力地震としては、図2の分布図で用いたのと同様に、1923年から2009年までに発生したマグニチュード5.5以上、震源深さ100km以下の地震としている。
上記評価式において、aを計測震度4.5、tを余裕時間5秒に設定して評価値(Pe)を算出し、Peの値に基づいて、地震計の配置として評価値が高いことを示す1.0(白色)から評価値が低いことを示す0.0(黒色)までを図3にプロットした。
The input earthquake is an earthquake having a magnitude of 5.5 or more and an epicenter depth of 100 km or less that occurred from 1923 to 2009, as used in the distribution map of FIG.
In the above evaluation formula, the evaluation value (Pe) is calculated by setting a as the seismic intensity of 4.5 and t as the margin time of 5 seconds. Based on the value of Pe, the evaluation value is high as the arrangement of the seismometers. 3 is plotted in FIG. 3 from 1.0 (white) indicating 0.0 to black (black) indicating that the evaluation value is low.
なお、図3では任意の領域における地震計配置の評価値(Pe)の分布を示しており、このような任意の領域においてはその領域の全評価値(Pe)の平均値で評価することができる。
次に、本発明の第2実施例について説明する。
図4は本発明の第2実施例を示す地震計配置の評価値(Pe)マップを示す図である。
FIG. 3 shows the distribution of evaluation values (Pe) of seismometer placement in an arbitrary area. In such an arbitrary area, evaluation can be performed using the average value of all evaluation values (Pe) in that area. it can.
Next, a second embodiment of the present invention will be described.
FIG. 4 is a diagram showing an evaluation value (Pe) map of the seismometer arrangement showing the second embodiment of the present invention.
この実施例では、警報検知点(地震計配置点)は1〜3の3箇所としている。
上記第1実施例に示したのと同じ評価式を用いて、同様にaを計測震度4.5、tを余裕時間5秒に設定して評価値(Pe)を算出し、1.0(白色)から0.0(黒色)までを同様に図4にプロットした。
また、図4でも、任意の領域における地震計配置の評価値(Pe)の分布を示しており、このような任意の領域においてはその領域の全評価値(Pe)の平均値で評価することができる。
In this embodiment, there are three alarm detection points (seismometer arrangement points) 1 to 3.
Using the same evaluation formula as shown in the first embodiment, the evaluation value (Pe) is calculated by setting a to a seismic intensity of 4.5 and t to a surplus time of 5 seconds. From white) to 0.0 (black) was similarly plotted in FIG.
FIG. 4 also shows the distribution of evaluation values (Pe) of seismometer placement in an arbitrary area. In such an arbitrary area, evaluation is made with the average value of all evaluation values (Pe) in that area. Can do.
図5は本発明に係る地震計配置の評価値(Pe)と仮想路線1のキロ程との関係を示す図であり、仮想路線1において警報検知点が5点の場合と3点の場合を重ねてプロットしている。また、図6はその地震計配置の評価値(Pe)と仮想路線2のキロ程との関係を示す図であり、仮想路線2において警報検知点が5点の場合と3点の場合を重ねてプロットしている。 FIG. 5 is a diagram showing the relationship between the evaluation value (Pe) of the seismometer arrangement and the kilometer of the virtual route 1 according to the present invention. In the virtual route 1, there are five alarm detection points and three alarm detection points. It is plotted on top of each other. FIG. 6 is a diagram showing the relationship between the evaluation value (Pe) of the seismometer arrangement and the kilometer of the virtual route 2, and the case where there are five alarm detection points and three points on the virtual route 2 are overlapped. Plot.
これらの図において、横軸のキロ程(km)は、各仮想路線の始点からの距離を示しており、仮想路線1は南西端、仮想路線2は西端を始点としている。縦軸は仮想路線のキロ程に対する評価値(Pe)をプロットしている。
図5と図6において、St3は警報検知点(地震計配置点)が3箇所の場合、St5は5箇所の場合のキロ程に対する評価値(Pe)をそれぞれ示し、Ave.St3は警報検知点(地震計配置点)が3箇所の場合、Ave.St5は5箇所の場合の各仮想路線全線にわたる評価値(Pe)の平均値をそれぞれ示している。
In these figures, the kilometer (km) on the horizontal axis indicates the distance from the starting point of each virtual route, with virtual route 1 starting from the southwest end and virtual route 2 starting from the west end. The vertical axis plots the evaluation value (Pe) for the kilometer of the virtual route.
5 and 6, St3 indicates an evaluation value (Pe) with respect to a kilometer when there are three alarm detection points (seismometer arrangement points), and St5 indicates five points. St3 indicates that when three alarm detection points (seismometer placement points) are present, St5 indicates the average value of the evaluation values (Pe) over all the virtual routes in the case of five locations.
これらの図でAve.St5とAve.St3を比較した場合、Ave.St5の方がPeは大きくなっており、警報検知点(地震計配置点)は3箇所よりも5箇所の方が効果が大きいことがわかる。また、Ave.St5とAve.St3との差異は図5より図6の方が大きくなっており、警報検知点を増やす効果は仮想路線1よりも仮想路線2の方が大きいことがわかる。さらに、Ave.Stの値が大きくなるよう、警報検知点(地震計配置点)の数や配置を変えることで、警報検知点(地震計配置点)配置の最適化を検討することができる。 In these figures, Ave. St5 and Ave. When comparing St3, Ave. In St5, Pe is larger, and it can be seen that the alarm detection point (the seismometer arrangement point) is more effective at five locations than at three locations. Also, Ave. St5 and Ave. The difference from St3 is larger in FIG. 6 than in FIG. 5, and it can be seen that the effect of increasing the alarm detection point is larger in the virtual route 2 than in the virtual route 1. Furthermore, Ave. By changing the number and arrangement of alarm detection points (seismic meter arrangement points) so that the value of St is increased, optimization of the arrangement of alarm detection points (seismometer arrangement points) can be considered.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の地震計配置の最適化評価方法は、地震の余裕時間と揺れの大きさの両方を考慮した地震計(地震検知点)配置の最適化評価方法として利用可能である。 The optimization evaluation method for seismometer arrangement of the present invention can be used as an optimization evaluation method for seismometer (earthquake detection point) arrangement in consideration of both the seismic margin time and the magnitude of shaking.
Claims (4)
Pe=N(A≧a, Tm≧t;x, y)/N(A≧a;x, y)
ここで、N(A≧a;x, y)はある任意の地点(x, y)における地震動指標が所定の値a以上である入力地震の回数、N(A≧a, Tm≧t;x, y)は前記任意の地点(x, y)における地震動指標が所定の値a以上かつ余裕時間がt(秒)以上である入力地震の回数を表すことを特徴とする地震計配置の最適化評価方法。 In the optimization evaluation method of the seismometer arrangement according to claim 1 or 2, the calculation formula of the probability Pe is:
Pe = N (A ≧ a, Tm ≧ t; x, y) / N (A ≧ a; x, y)
Here, N (A ≧ a; x, y) is the number of input earthquakes where the ground motion index at a given point (x, y) is a predetermined value a or more, N (A ≧ a, Tm ≧ t; x , y) represents the number of input earthquakes whose seismic motion index at the arbitrary point (x, y) is a predetermined value a or more and a margin time is t (seconds) or more. Evaluation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011104813A JP5558410B2 (en) | 2011-05-10 | 2011-05-10 | Seismometer placement optimization evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011104813A JP5558410B2 (en) | 2011-05-10 | 2011-05-10 | Seismometer placement optimization evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012237559A true JP2012237559A (en) | 2012-12-06 |
JP5558410B2 JP5558410B2 (en) | 2014-07-23 |
Family
ID=47460592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011104813A Expired - Fee Related JP5558410B2 (en) | 2011-05-10 | 2011-05-10 | Seismometer placement optimization evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5558410B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101403497B1 (en) | 2013-06-05 | 2014-06-09 | 한국지질자원연구원 | Portable device having positioning app for locating temporary seismological observatory and locating method of locating temporary seismological using positioning app |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343126A (en) * | 2005-06-07 | 2006-12-21 | Railway Technical Res Inst | Earthquake-time alarm system of wayside seismometer along railroad line |
JP2007298446A (en) * | 2006-05-01 | 2007-11-15 | Central Japan Railway Co | Seismometer, seismometer system, earthquake alarm issuing method, and program |
JP2008275586A (en) * | 2007-03-30 | 2008-11-13 | Railway Technical Res Inst | Alarm release method by verification of early earthquake specification estimating information |
JP2009150817A (en) * | 2007-12-21 | 2009-07-09 | Tohoku Univ | Early earthquake information processing system |
JP2009236497A (en) * | 2008-03-25 | 2009-10-15 | Railway Technical Res Inst | Quantitative evaluation method of earthquake warning information for railway |
-
2011
- 2011-05-10 JP JP2011104813A patent/JP5558410B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343126A (en) * | 2005-06-07 | 2006-12-21 | Railway Technical Res Inst | Earthquake-time alarm system of wayside seismometer along railroad line |
JP2007298446A (en) * | 2006-05-01 | 2007-11-15 | Central Japan Railway Co | Seismometer, seismometer system, earthquake alarm issuing method, and program |
JP2008275586A (en) * | 2007-03-30 | 2008-11-13 | Railway Technical Res Inst | Alarm release method by verification of early earthquake specification estimating information |
JP2009150817A (en) * | 2007-12-21 | 2009-07-09 | Tohoku Univ | Early earthquake information processing system |
JP2009236497A (en) * | 2008-03-25 | 2009-10-15 | Railway Technical Res Inst | Quantitative evaluation method of earthquake warning information for railway |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101403497B1 (en) | 2013-06-05 | 2014-06-09 | 한국지질자원연구원 | Portable device having positioning app for locating temporary seismological observatory and locating method of locating temporary seismological using positioning app |
Also Published As
Publication number | Publication date |
---|---|
JP5558410B2 (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moschas et al. | Three‐dimensional dynamic deflections and natural frequencies of a stiff footbridge based on measurements of collocated sensors | |
Putra et al. | Seismic hazard analysis for Indonesia | |
Guzman-Acevedo et al. | GPS, Accelerometer, and Smartphone Fused Smart Sensor for SHM on Real‐Scale Bridges | |
CN102628955B (en) | Method for acquiring earthquake early warning magnitude | |
Zülfikar et al. | Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area | |
JP2003287574A (en) | System, method and program for predicting earthquake damage | |
CN108089225B (en) | A kind of earthquake magnitude Method of fast estimating based on separate unit station first arrival P wave | |
JP6177628B2 (en) | Immediate ground motion prediction method using underground ground motion | |
Giordan et al. | Brief Communication: On the rapid and efficient monitoring results dissemination in landslide emergency scenarios: the Mont de La Saxe case study | |
Srinivasa Kumar et al. | A review of the progress, challenges and future trends in tsunami early warning systems | |
Sonaviya et al. | A review on GIS based approach for road traffic noise mapping | |
Xia et al. | System design and demonstration of performance monitoring of a butterfly‐shaped arch footbridge | |
Fu et al. | Spatial analysis of taxi speeding event using GPS trajectory data | |
Rivas-Medina et al. | The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain) | |
JP5558410B2 (en) | Seismometer placement optimization evaluation method | |
Park et al. | Assessment of vibration serviceability for steel cable-stayed bridges using GNSS data | |
ZAINI SOORIA et al. | Proposal for seismic resistant design in Malaysia: assessment of possible ground motions in Peninsular Malaysia | |
Chandler et al. | An attenuation model for distant earthquakes | |
Dragos et al. | Characteristics and results of the near real-time system for estimating the seismic damage in Romania | |
Hashemi et al. | Spatio-temporal analysis of Tehran’s historical earthquakes trends | |
JP2013007728A (en) | Real time estimation method of hypocentral region of giant earthquake | |
JP5770051B2 (en) | Immediate estimation method of the rupture area of a large earthquake | |
JP5406952B2 (en) | Navigation server and navigation system | |
RU2010131268A (en) | METHOD FOR EVALUATING THE BASIC CHARACTERISTICS OF EXPECTED STRONG TSUNAMIGENIC EARTHQUAKE AND SYSTEM FOR ITS IMPLEMENTATION | |
Ramírez-Gaytán et al. | The Tesistan, Mexico earthquake (M w 4.9) of 11 May 2016: seismic-tectonic environment and resonance vulnerability on buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140603 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140604 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5558410 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |