JP2006343126A - Earthquake-time alarm system of wayside seismometer along railroad line - Google Patents

Earthquake-time alarm system of wayside seismometer along railroad line Download PDF

Info

Publication number
JP2006343126A
JP2006343126A JP2005166777A JP2005166777A JP2006343126A JP 2006343126 A JP2006343126 A JP 2006343126A JP 2005166777 A JP2005166777 A JP 2005166777A JP 2005166777 A JP2005166777 A JP 2005166777A JP 2006343126 A JP2006343126 A JP 2006343126A
Authority
JP
Japan
Prior art keywords
seismometer
earthquake
along
wayside
alarm system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166777A
Other languages
Japanese (ja)
Inventor
Shinji Sato
新二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2005166777A priority Critical patent/JP2006343126A/en
Publication of JP2006343126A publication Critical patent/JP2006343126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-time alarm system capable of rapidly and accurately controlling a feeder in an earthquake occurring near a wayside of the railroad line. <P>SOLUTION: In the earthquake-time alarm system of wayside seismometers arranged along the railroad line, each wayside seismometer has a means for estimating an earthquake occurrence position with P wave. When only other station goes into an M-Δ regulation range according to the estimation of the earthquake occurrence position with the wayside seismometer of its own station, feeder stop of the own station is not performed on the condition that the wayside seismometer of the own station having transmitted the estimation of the focus position is out of the M-Δ regulation range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄道線路の沿線地震計の地震時警報システムに関するものである。   The present invention relates to an earthquake alarm system for a seismometer along a railway line.

鉄道の給電線に電力を供給するための変電所には沿線地震計という地震計が設置されている。この沿線地震計は海岸線地震計による海岸線検知点の情報で被害推定を行うが、それ以外の機能としてはS波と呼ばれる大きな加速度にのみ警報を出すような仕組みになっている。   A seismometer called a seismometer along the railway line is installed at a substation for supplying electric power to the railway feeder. This alongside seismometer performs damage estimation based on the information of the coastline detection point by the coastline seismometer, but other than that, the system is configured to issue an alarm only for a large acceleration called S wave.

従来、地震の際には下に示す2つの手順で鉄道線路を運行する列車に安全運行のための規制を行っていた。   Conventionally, in the event of an earthquake, regulations for safe operation have been performed on trains that operate railroad tracks in the following two procedures.

図7は従来の鉄道線路の沿線地震計の地震時警報システムの説明図である。   FIG. 7 is an explanatory view of a conventional earthquake alarm system for a seismometer along a railway line.

まず、図7(a)に示すように、海岸線検知点において海岸線地震計104が地震波のP波を検知し、それにより地震発生位置(震源位置107)とマグニチュード(地震の大きさ)を推定して、この推定した震源位置107とマグニチュードの情報を沿線地震計101,102,103に送信する。沿線地震計101,102,103は直ちにその震源位置107とマグニチュード情報から、自身の位置が被害推定範囲(規制範囲)に入るかどうかをM−Δ法〔マグニチュード(M)−震央距離(Δ)法〕やDI値(単位時間当たりの地震動パワー)(コンパクトユレダス)法(下記非特許文献1)で判断する。その結果、図7(b)に示すように、被害推定範囲(規制範囲)に入った場合はき電停止(列車停止)の動作を行う。なお、図7において、105は海、106は陸地である。
中村豊「合理的な地震動強度指標値の検討」、土木学会地震工学論文集 pp.1〜4
First, as shown in FIG. 7 (a), the coastline seismometer 104 detects the P wave of the seismic wave at the coastline detection point, thereby estimating the earthquake occurrence position (seismic source position 107) and magnitude (magnitude of the earthquake). Then, the information of the estimated seismic source position 107 and magnitude is transmitted to the seismometers 101, 102, and 103 along the railway. The seismometers 101, 102, and 103 along the line immediately determine from their epicenter position 107 and magnitude information whether their position falls within the damage estimation range (regulation range) by the M-Δ method [Magnitude (M)-Epicenter distance (Δ) Method] and DI value (earthquake power per unit time) (compact uredas) method (non-patent document 1 below). As a result, as shown in FIG. 7B, when entering the damage estimation range (regulation range), the operation of stopping feeding (stopping the train) is performed. In FIG. 7, 105 is the sea and 106 is the land.
Yutaka Nakamura “Study on rational seismic intensity index values”, Proceedings of JSCE Earthquake Engineering pp. 1-4

しかしながら、海岸線地震計104のP波による推定は1回のみ(P波検知後3秒後に実施)しか行われていないため、規模の大きな地震に対しては十分に対応できないといった問題があった。また、上記したように沿線地震計101,102,103ではP波による推定を行わないため、沿線付近で発生する直下型地震に関してはさらなる工夫が必要である。現に新潟地震は上越新幹線直下で発生しており、その対策が急務となっている。   However, since the coastline seismometer 104 is estimated only once (implemented 3 seconds after the detection of the P wave), there is a problem that it cannot sufficiently cope with a large-scale earthquake. Further, as described above, the along-line seismometers 101, 102, and 103 do not perform the estimation by the P wave, and therefore further contrivance is necessary for the direct type earthquake that occurs near the along-line. In fact, the Niigata earthquake has occurred directly under the Joetsu Shinkansen, and countermeasures are urgently needed.

本発明は、上記状況に鑑みて、鉄道線路の沿線付近で発生する地震に対しても迅速、かつ的確にき電の制御を行うことができる鉄道線路の沿線地震計の地震時警報システムを提供することを目的とする。   In view of the above situation, the present invention provides an earthquake alarm system for a railway seismometer along a railway line that can quickly and accurately control electric power even with respect to an earthquake that occurs near the railway line. The purpose is to do.

本発明は、上記目的を達成するために、
〔1〕鉄道線路の沿線に配置される沿線地震計の地震時警報システムにおいて、沿線地震計がそれぞれP波によって地震発生位置の推定を行う手段を備え、自局の沿線地震計による地震発生位置の推定により他局のみがP波に基づく規制範囲に入った場合には、震源位置推定を発信した自局の沿線地震計がP波に基づく規制範囲に入っていないことを条件として、自局のき電停止を行わないようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the earthquake alarm system for seismometers along railroad tracks, the seismometers along the railroad line each have means for estimating the location of the earthquake using P-waves, If only other stations are in the P-wave-based restricted range due to the estimation of the location, the local station along the seismometer that sent the epicenter location estimate is not within the P-wave-based restricted range. It is characterized by not stopping the power supply.

〔2〕上記〔1〕記載の鉄道線路の沿線地震計の地震時警報システムにおいて、P波を検知して複数の時間後に地震発生位置の推定を行う機能を付加するようにしたことを特徴とする。   [2] In the earthquake warning system for a seismometer along the railroad track as described in [1] above, a function for detecting a P wave and estimating an earthquake occurrence position after a plurality of times is added. To do.

本発明によれば、鉄道線路の沿線に配置される沿線地震計の地震時警報システムにおいて、沿線地震計がそれぞれP波によって地震発生位置の推定を行う手段を備えた場合であっても、沿線地震計相互間での干渉によるき電停止の拡大を防止することができる。   According to the present invention, in a seismometer warning system for seismometers located along railway lines, even if the seismometers are provided with means for estimating an earthquake occurrence position using P waves, It is possible to prevent an increase in power supply stoppage due to interference between seismometers.

鉄道線路の沿線に配置される沿線地震計の地震時警報システムは、沿線地震計がそれぞれP波によって地震発生位置の推定を行う手段を備え、自局の沿線地震計による地震発生位置の推定により他局のみがM−Δ法に基づく規制範囲に入った場合には、震源位置推定を発信した自局の沿線地震計がM−Δ法に基づく規制範囲に入っていないことを条件として、自局のき電停止を行わないようにしたので、沿線地震計がそれぞれP波によって地震発生位置の推定を行う手段を備えた場合であっても、沿線地震計相互間での干渉によるき電停止の拡大を防止することができる。   The seismometer warning system for seismometers located along railway lines is equipped with a means for each seismometer to estimate the location of the earthquake using P-waves. When only other stations are within the control range based on the M-Δ method, the station's along-line seismometer that sent the seismic source position estimation is not within the control range based on the M-Δ method. Since the station power supply was not stopped, the power station was stopped due to interference between the seismometers along the seismometers, even if the seismometers along the line had means to estimate the location of the earthquake using P waves. Can be prevented from expanding.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す沿線地震計の地震時警報システムの説明図である。   FIG. 1 is an explanatory view of an earthquake alarm system for a railroad seismometer showing a first embodiment of the present invention.

ここでは、鉄道線路に沿った沿線地震計1,2,3はP波を検知して震源位置7とマグニチュードを推定し、M−Δ法を用いて規制範囲を算出し、警報を出す機能を備えている。つまり、海岸線地震計4が有する機能を沿線地震計1,2,3に付加するようにしている。震源位置7が沿線地震計1,2,3の直下である場合では有効性に限界があるものの、付近を走っている列車には有効性が高い。しかも、沿線地震計1,2,3はP波を検知して1秒、3秒、5秒後にマグニチュードの追加推定を行う機能も備えている。これにより、非常に規模が大きい地震に対しても従来の地震時警報システムより有効である。なお、図において、5は海、6は陸地である。   Here, the seismometers 1, 2 and 3 along the railroad track have the function of detecting the P wave, estimating the epicenter 7 and the magnitude, calculating the regulation range using the M-Δ method, and issuing an alarm. I have. That is, the function of the coastline seismometer 4 is added to the along-line seismometers 1, 2, and 3. In the case where the epicenter 7 is directly under the seismometers 1, 2, and 3 along the line, the effectiveness is limited, but the effectiveness is high for a train running in the vicinity. Moreover, the seismometers 1, 2, and 3 along the line have a function of detecting the P wave and performing additional estimation of the magnitude after 1 second, 3 seconds, and 5 seconds. As a result, it is more effective than a conventional earthquake warning system even for a very large earthquake. In the figure, 5 is the sea and 6 is the land.

沿線地震計の設置目的はその沿線地震計の周辺が危ないかどうかを監視することにある。沿線地震計の敷設間隔は約20kmであり、この範囲の地震を的確に捉えるよう設定することが重要である。また、海岸線地震計とは異なって、ノイズや振動の多い場所での観測であるから、誤検知を防ぐよう、沿線地震計の機能を強化するようにしている。   The purpose of installing the alongside seismometer is to monitor whether the area around the alongside seismometer is dangerous. The installation interval of seismometers along the railway line is about 20 km, and it is important to set the seismometer in this range so that it can be accurately captured. In addition, unlike coastline seismometers, observations are made in places with a lot of noise and vibration, so the functions of the alongside seismometers are strengthened to prevent false detections.

しかし、上記実施例では、沿線地震計がおのおの規制範囲を推定し、判断することになるので、例えば、図1の沿線地震計3が自局を規制範囲外と判断したにもかかわらず、沿線地震計2が沿線地震計3を規制範囲内と判断したような場合、沿線地震計3はき電停止することになり、必要以上に列車を止めてしまう可能性がある。そのため、さらに工夫が必要となる。   However, in the above embodiment, the along-line seismometer estimates and judges each regulation range. For example, even though the along-line seismometer 3 in FIG. If the seismometer 2 determines that the along-line seismometer 3 is within the regulation range, the along-line seismometer 3 will stop feeding and may stop the train more than necessary. Therefore, further ingenuity is required.

図2は本発明の第2実施例を示す沿線地震計の地震時警報システムの説明図である。以下、沿線地震計2を中心に説明する。   FIG. 2 is an explanatory view of an earthquake alarm system for a seismometer along the line showing a second embodiment of the present invention. Hereinafter, the explanation will be made focusing on the seismometer 2 along the railway.

この実施例では、まず、地震のP波により各沿線地震計1,2,3はマグニチュードと震源位置7の推定を行うが、図2の場合、沿線地震計2では自局のみが規制範囲に入っているため、沿線地震計2のみき電停止の判断を行う。すなわち、図2(a)に示すように、自局のみ規制範囲に入った場合は、図2(b)に示すように、震源位置7の推定情報をもとに沿線地震計2が独自に判断してき電停止を行う。   In this embodiment, first, each alongside seismometers 1, 2 and 3 estimate the magnitude and the location of the epicenter 7 by the P wave of the earthquake. In the case of FIG. Since it is on, it is judged that the power line is stopped along the seismometer 2 along the rail line. That is, as shown in FIG. 2 (a), when only the local station enters the restricted range, the seismometer 2 along the seismometer along the seismic source position 7's own information as shown in FIG. 2 (b). Judgment is made and the power supply is stopped.

図3は本発明の第3実施例を示す沿線地震計の地震時警報システムの説明図である。   FIG. 3 is an explanatory view of an earthquake alarm system for a seismometer along the line showing a third embodiment of the present invention.

この実施例では、まず、地震のP波により各沿線地震計1,2,3はマグニチュードと震源位置7の推定を行うが、図3に示すように、沿線地震計2では自局及び沿線地震計3が規制範囲内にあると判断した場合でも、自局のみのき電停止を行う。また、沿線地震計3も自局の判断で自局のき電停止を行う。すなわち、図3(a)に示すように、自局及び他局が規制範囲に入った場合でも、図3(b)に示すように、震源位置7の推定情報をもとに沿線地震計2,3がそれぞれ独自に判断して自局のき電停止を行う。   In this embodiment, first, each alongside seismometers 1, 2, and 3 estimate the magnitude and the location of the epicenter 7 by the P wave of the earthquake. As shown in FIG. Even when it is determined that the total 3 is within the regulation range, only the own station is stopped. In addition, along the seismometer 3 along the line, the station stops feeding at its own discretion. That is, as shown in FIG. 3 (a), even when the local station and other stations are within the restricted range, as shown in FIG. 3 (b), along the seismometer 2 along the seismometer 2 , 3 make their own judgments and stop feeding their own stations.

図4は本発明の第4実施例を示す沿線地震計の地震時警報システムの説明図である。   FIG. 4 is an explanatory diagram of an earthquake alarm system for a seismometer along the line showing a fourth embodiment of the present invention.

この実施例では、まず、地震のP波により各沿線地震計1,2,3はマグニチュードと震源位置7の推定を行うが、図4に示すように沿線地震計2では他局である沿線地震計3のみが規制範囲に入っている場合には、自局沿線地震計2のき電停止は行わないようにする。   In this embodiment, first, each alongside seismometers 1, 2, and 3 estimate the magnitude and the location of the epicenter 7 by the P wave of the earthquake. As shown in FIG. When only the total 3 is within the control range, do not stop the feeding of the seismometer 2 along the local station.

このように構成したのは、このとき図4(b)に示すように、震源位置7に近い沿線地震計3は、P波を検知してき電停止を行っているため、規制範囲に入っていない沿線地震計2の推定情報は取り扱わないでよいプロトコルとする。つまり、自局が危険である(規制範囲内にある)という場合のみ警報を有効にすることによって、必要以上に列車を停止させないで済むようにする。   In this way, as shown in FIG. 4 (b), the railway seismometer 3 near the epicenter 7 is not in the restricted range because it detects the P wave and stops power transmission. Estimated information of the alongside seismometer 2 is a protocol that should not be handled. In other words, by enabling the alarm only when the own station is dangerous (within the regulation range), it is possible to avoid stopping the train more than necessary.

また、上記実施例では、M−Δ法を用いて規制範囲を算出するようにしたが、その他の方法を用いて、規制範囲を算出するようしてもよい。   In the above embodiment, the restriction range is calculated using the M-Δ method, but the restriction range may be calculated using other methods.

例えば、DI値(単位時間当たりの地震動パワー)(コンパクトユレダス)法(下記非特許文献1)によってもよい。   For example, the DI value (earthquake power per unit time) (compact uredas) method (non-patent document 1 below) may be used.

次に、沿線地震計間で通信される警報電文の具体例について説明する。   Next, a specific example of a warning message communicated between along-line seismometers will be described.

このシステムで使用する電文には情報電文と応答電文とがある。   There are an information message and a response message as messages used in this system.

図5は本発明の実施例を示す情報電文の構成例を示す図である。   FIG. 5 is a diagram showing a configuration example of an information message showing an embodiment of the present invention.

情報電文とは、沿線地震計から受信側に向けて送信される電文である。   The information message is a message transmitted from the seismometer along the railway line toward the receiving side.

この情報電文は、以下の情報を含むものとする。(a)地震を検知した時刻、(b)地震を検知した観測点番号、(c)き電停止をした場合は、その判断理由、(d)地震発生位置(推定)、(e)推定マグニチュード。なお、電文サイズは80バイト固定とする。   This information message includes the following information. (A) Time at which the earthquake was detected, (b) Observation point number at which the earthquake was detected, (c) Reason for determination when the power supply was stopped, (d) Earthquake occurrence position (estimated), (e) Estimated magnitude . The message size is fixed at 80 bytes.

図6は本発明の実施例を示す応答電文の構成例を示す図である。   FIG. 6 is a diagram showing a configuration example of a response message showing an embodiment of the present invention.

応答電文とは、受信側で受信した電文の成否を送信側に伝える電文である。   The response message is a message that informs the transmission side of success or failure of the message received on the reception side.

応答電文の内容としては、(1)処理した電文の処理一連番号、(2)処理した電文の観測点番号、(3)処理結果フラグが示される。なお、電文サイズは7バイト固定とする。   As the contents of the response message, (1) the processing serial number of the processed message, (2) the observation point number of the processed message, and (3) the processing result flag are shown. The message size is fixed at 7 bytes.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の地震時警報システムは、鉄道線路の沿線地震計を用いた迅速的確な警報システムとして利用可能である。   The earthquake alarm system of the present invention can be used as a quick and accurate alarm system using a seismometer along a railway line.

本発明の第1実施例を示す鉄道線路の沿線地震計の地震時警報システムの説明図である。It is explanatory drawing of the alarm system at the time of the earthquake of the along-railway seismometer of the railway track which shows 1st Example of this invention. 本発明の第2実施例を示す沿線地震計の地震時警報システムの説明図である。It is explanatory drawing of the alarm system at the time of the earthquake of a alongside seismometer which shows 2nd Example of this invention. 本発明の第3実施例を示す沿線地震計の地震時警報システムの説明図である。It is explanatory drawing of the alarm system at the time of the earthquake of a along-line seismometer which shows 3rd Example of this invention. 本発明の第4実施例を示す沿線地震計の地震時警報システムの説明図である。It is explanatory drawing of the alarm system at the time of the earthquake of a alongside seismometer which shows 4th Example of this invention. 本発明の実施例を示す情報電文の構成例を示す図である。It is a figure which shows the structural example of the information message | telegram which shows the Example of this invention. 本発明の実施例を示す応答電文の構成例を示す図である。It is a figure which shows the structural example of the response message which shows the Example of this invention. 従来の鉄道線路の沿線地震計の地震時警報システムの説明図である。It is explanatory drawing of the alarm system at the time of the earthquake of the conventional seismometer along a railroad track.

符号の説明Explanation of symbols

1,2,3 鉄道線路に沿った沿線地震計
4 海岸線地震計
5 海
6 陸地
7 震源位置
1,2,3 Seismometers along railway lines 4 Coastline seismometers 5 Seas 6 Lands 7 Locations of epicenters

Claims (2)

鉄道線路の沿線に配置される沿線地震計の地震時警報システムにおいて、
沿線地震計がそれぞれP波によって地震発生位置の推定を行う手段を備え、自局の沿線地震計による地震発生位置の推定により他局のみがP波に基づく規制範囲に入った場合には、震源位置推定を発信した自局の沿線地震計がP波に基づく規制範囲に入っていないことを条件として、自局のき電停止を行わないようにしたことを特徴とする鉄道線路の沿線地震計の地震時警報システム。
In the earthquake warning system of the seismometer along the railway line,
Each seismometer along the railway line has a means for estimating the location of the earthquake using P-waves. A seismometer along the railroad track, which does not stop the power station on the condition that the seismometer along the railroad that sent the position estimate is not within the regulation range based on the P wave. Earthquake warning system.
請求項1記載の鉄道線路の沿線地震計の地震時警報システムにおいて、P波を検知して複数の時間後に地震発生位置の推定を行う機能を付加するようにしたことを特徴とする鉄道線路の沿線地震計の地震時警報システム。   A railway line alarm system for a seismometer along a railway line according to claim 1, wherein a function for detecting a P wave and estimating an earthquake occurrence position after a plurality of times is added. An earthquake warning system for seismometers along railway lines.
JP2005166777A 2005-06-07 2005-06-07 Earthquake-time alarm system of wayside seismometer along railroad line Pending JP2006343126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166777A JP2006343126A (en) 2005-06-07 2005-06-07 Earthquake-time alarm system of wayside seismometer along railroad line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166777A JP2006343126A (en) 2005-06-07 2005-06-07 Earthquake-time alarm system of wayside seismometer along railroad line

Publications (1)

Publication Number Publication Date
JP2006343126A true JP2006343126A (en) 2006-12-21

Family

ID=37640209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166777A Pending JP2006343126A (en) 2005-06-07 2005-06-07 Earthquake-time alarm system of wayside seismometer along railroad line

Country Status (1)

Country Link
JP (1) JP2006343126A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249485A (en) * 2007-03-30 2008-10-16 Railway Technical Res Inst Method of estimating earthquake damage in evaluation objective point
JP2012237559A (en) * 2011-05-10 2012-12-06 Railway Technical Research Institute Method for evaluating optimization of seismometer arrangement
KR101333002B1 (en) * 2012-05-24 2013-11-27 한국철도기술연구원 Earthquake early warning system for railway, and method thereof
JP2014038065A (en) * 2012-08-20 2014-02-27 Railway Technical Research Institute Method for identifying train vibration noise of seismometer installed along rail road
JP2014066571A (en) * 2012-09-25 2014-04-17 Railway Technical Research Institute Method for discriminating noise by seismometer
CN103903393A (en) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 High-speed railway disaster prevention safety monitoring three-level alarm system
CN104715597A (en) * 2015-03-13 2015-06-17 南京理工大学 High-speed railway seismic data information acquiring and early warning method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253765A (en) * 1997-03-14 1998-09-25 Kinkei Syst:Kk Earthquake observation and quick notification system
JP2001147272A (en) * 1999-11-19 2001-05-29 System & Data Research:Kk Early earthquake motion detecting/warning method and its device
JP2001147273A (en) * 1999-11-19 2001-05-29 System & Data Research:Kk Early earthquake motion detecting/warning method and its device
JP2002098582A (en) * 2000-09-27 2002-04-05 Omron Corp Seismoscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253765A (en) * 1997-03-14 1998-09-25 Kinkei Syst:Kk Earthquake observation and quick notification system
JP2001147272A (en) * 1999-11-19 2001-05-29 System & Data Research:Kk Early earthquake motion detecting/warning method and its device
JP2001147273A (en) * 1999-11-19 2001-05-29 System & Data Research:Kk Early earthquake motion detecting/warning method and its device
JP2002098582A (en) * 2000-09-27 2002-04-05 Omron Corp Seismoscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249485A (en) * 2007-03-30 2008-10-16 Railway Technical Res Inst Method of estimating earthquake damage in evaluation objective point
JP2012237559A (en) * 2011-05-10 2012-12-06 Railway Technical Research Institute Method for evaluating optimization of seismometer arrangement
KR101333002B1 (en) * 2012-05-24 2013-11-27 한국철도기술연구원 Earthquake early warning system for railway, and method thereof
JP2014038065A (en) * 2012-08-20 2014-02-27 Railway Technical Research Institute Method for identifying train vibration noise of seismometer installed along rail road
JP2014066571A (en) * 2012-09-25 2014-04-17 Railway Technical Research Institute Method for discriminating noise by seismometer
CN103903393A (en) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 High-speed railway disaster prevention safety monitoring three-level alarm system
CN104715597A (en) * 2015-03-13 2015-06-17 南京理工大学 High-speed railway seismic data information acquiring and early warning method and system

Similar Documents

Publication Publication Date Title
JP2006343126A (en) Earthquake-time alarm system of wayside seismometer along railroad line
CN103786755B (en) A kind of meter shaft fault detection method based on ZC system
CN105501256B (en) A kind of middle low speed magnetic suspension train combination speed-position detection device
JP2009504501A5 (en)
CN104269075B (en) Navigation mark based on multiple sensors collision monitoring system
CN104192171B (en) Rail transit train detecting method and device
JP5012568B2 (en) Train approach warning system
KR101333002B1 (en) Earthquake early warning system for railway, and method thereof
CN201970997U (en) Rail transit platform screen door or safety door safety protection system
JP2013141891A (en) Railroad signal system using power supply system
JP2007015517A (en) Train control system
CN110789574A (en) Train barrier detection and comprehensive early warning protection system
JP2009132244A (en) Train approach detection device
JP2008253034A (en) Train control device
CN107966945A (en) A kind of fuel tank monitoring system based on ultrasonic sensor
CN105984475A (en) Novel broken-rail monitoring system
JP2007298446A (en) Seismometer, seismometer system, earthquake alarm issuing method, and program
CN210793222U (en) Detection device for travelling crane track
JP2017185892A (en) Track maintenance personnel management system
JP2008249486A (en) Real-time earthquake motion distribution estimating method using s-wave
Bepperling et al. Estimation of safety requirements for wayside hot box detection systems
CN102765409A (en) Train collision avoidance system based on acoustic echo detection and collision avoidance method thereof
WO2021075226A1 (en) Sensor health confirmation system and railroad vehicle
JP2014111431A (en) Train control device
CN104477213A (en) Digital control system of railway train tail device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129