JP2014038065A - Method for identifying train vibration noise of seismometer installed along rail road - Google Patents

Method for identifying train vibration noise of seismometer installed along rail road Download PDF

Info

Publication number
JP2014038065A
JP2014038065A JP2012181630A JP2012181630A JP2014038065A JP 2014038065 A JP2014038065 A JP 2014038065A JP 2012181630 A JP2012181630 A JP 2012181630A JP 2012181630 A JP2012181630 A JP 2012181630A JP 2014038065 A JP2014038065 A JP 2014038065A
Authority
JP
Japan
Prior art keywords
train vibration
seismometer
installed along
vibration noise
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012181630A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ito
賀章 伊藤
Naoyasu Iwata
直泰 岩田
Shunroku Yamamoto
俊六 山本
Shunta Noda
俊太 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2012181630A priority Critical patent/JP2014038065A/en
Publication of JP2014038065A publication Critical patent/JP2014038065A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for identifying the train vibration noise of a seismometer installed along the rail road in which the seismometer is installed along the rail road and the determination accuracy of the train vibration noise is enhanced based on an observed waveform of acceleration.SOLUTION: In the train vibration identifying method of a seismometer installed along the rail road, the seismometer is installed along the rail road, and by paying the attention to the fact that the seismic motion observed by this seismometer and the train vibration are different in dominant frequency bandwidth, the train vibration noise identification of the seismometer installed along the rail road is performed using high frequency sampling data with the seismic motion and the train vibration, respectively. In particular, R=high frequency component vertical motion acceleration absolute value/low frequency component vertical motion acceleration absolute value of the seismic motion and the train vibration is obtained, respectively. It is determined that R>α represents the train vibration and R<α represents the seismic motion.

Description

本発明は、鉄道における早期地震防災システムに係り、特に、線路沿線に設置された地震計の列車振動ノイズ識別方法に関するものである。   The present invention relates to an early earthquake disaster prevention system for railways, and more particularly to a method for identifying train vibration noise of a seismometer installed along a railway line.

従来、鉄道では、線路沿線に地震計を設置し、観測された地震波形をもとに地震諸元の推定や警報出力を行うようにしている。P波の初動数秒間から地震の位置と規模を推定し、一定以上の揺れが生じると推定される範囲に警報を発令し、列車を制御する。線路沿線に設置された地震計では、列車振動がノイズとして日常的に観測され、これらノイズに起因する地震諸元の誤推定や誤警報の出力が、鉄道の定時性を低下させる要因となる(下記非特許文献1参照)。   Conventionally, in a railway, seismometers are installed along the railway line, and earthquake parameters are estimated and warnings are output based on observed earthquake waveforms. Estimate the position and scale of the earthquake from the first few seconds of the P wave, issue a warning in the range where it is estimated that a certain level of shaking will occur, and control the train. In seismometers installed along railway lines, train vibrations are routinely observed as noise, and misestimation of earthquake specifications and output of false alarms caused by these noises are factors that reduce railway punctuality ( Non-patent document 1 below).

現行の早期地震防災システムのサンプリング周波数は、100Hzが一般的である。100Hzサンプリングで記録された波形データをフーリエ変換した場合、計算結果が出力されて検討の対象として用いることができるのは、概ね50Hzまでである。しかしながら、列車振動はこれよりも高い周波数で卓越することが知られており、50Hz程度の帯域では、波形データ上で地震動と列車振動の差異を見出すことは難しい。線路沿線に設置する地震計は、列車振動による地震諸元の誤推定・誤報の出力を避けるため、センサー感度(以下、トリガレベルとする)を鈍らせる等の対策を取っており、列車振動ノイズ判別の精度向上により地震諸元の誤推定や誤警報出力の防止が期待されている。   The sampling frequency of the current early earthquake disaster prevention system is generally 100 Hz. When the waveform data recorded by 100 Hz sampling is Fourier transformed, the calculation result is output and can be used as a subject of consideration up to approximately 50 Hz. However, it is known that train vibration is dominant at higher frequencies, and it is difficult to find the difference between seismic motion and train vibration on waveform data in a band of about 50 Hz. The seismometers installed along the tracks take measures such as dampening the sensor sensitivity (hereinafter referred to as the trigger level) in order to avoid erroneous estimation of the earthquake specifications and output of false alarms due to train vibration. The improvement of discrimination accuracy is expected to prevent erroneous estimation of earthquake data and false alarm output.

佐藤 新二,中村 洋光,「早期地震検知手法の汎用的な評価システムの開発」,RTRI REPORT Vol.19,No.10,2005.10,pp17−20Shinji Sato, Hiromitsu Nakamura, “Development of general-purpose evaluation system for early earthquake detection method”, RTRI REPORT Vol. 19, no. 10, 2005.10, pp17-20

上記したように、線路沿線に地震計を設置し、観測された地震波形をもとに地震諸元の推定や警報出力を行う鉄道では、地震諸元の誤推定・誤警報出力の防止が望まれる。
本発明は、上記状況に鑑みて、線路沿線に地震計を設置し、観測された加速度波形をもとに列車振動ノイズの判別精度を向上させる線路沿線に設置された地震計の列車振動ノイズ識別方法を提供することを目的とする。
As described above, in railways where seismometers are installed along railway lines and earthquake parameters are estimated and warnings are output based on observed earthquake waveforms, it is desirable to prevent erroneous estimation and false alarm output of earthquake parameters. It is.
In view of the above situation, the present invention installs a seismometer along the railway line, and improves train vibration noise discrimination accuracy based on the observed acceleration waveform. It aims to provide a method.

本発明は、上記目的を達成するために、
〔1〕線路沿線に設置された地震計の列車振動ノイズ識別方法において、線路沿線に地震計を設置し、この地震計によって観測された地震動と列車振動とで卓越する周波数帯域が異なることに着目し、前記地震動と前記列車振動とのそれぞれの高周波サンプリングデータを用いて線路沿線の地震計の列車振動ノイズ識別を行うことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the seismometer train vibration noise identification method installed along the railway line, install a seismometer along the railway line and pay attention to the fact that the seismic motion observed by the seismometer and the train vibration differ in the dominant frequency band. The train vibration noise of the seismometer along the track is identified using high-frequency sampling data of the seismic motion and the train vibration.

〔2〕上記〔1〕記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記地震動の波形と前記列車振動の波形にフィルタ処理を施すことにより線路沿線に設置された地震計の列車振動ノイズ識別を行うことを特徴とする。
〔3〕上記〔1〕記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記フィルタ処理は、漸化式バンドパスフィルタ(例えばバターワース型)であることを特徴とする。
[2] In the seismometer train vibration noise identification method installed along a railway line according to [1] above, a seismometer installed along the railway line by filtering the waveform of the ground motion and the waveform of the train vibration The train vibration noise is identified.
[3] In the seismometer train vibration noise identification method installed along the railway line according to [1], the filter processing is a recursive bandpass filter (for example, a Butterworth type).

〔4〕上記〔3〕記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記地震動と前記列車振動のそれぞれのRUD=高周波成分上下動加速度絶対値/低周波成分上下動加速度絶対値を求め、RUD>αでは列車振動、RUD<αでは地震動であると判別することを特徴とする。
〔5〕上記〔4〕記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記αは1.0であることを特徴とする。
[4] In the train vibration noise identifying method for seismometers installed along the railway line as described in [3] above, each of the earthquake motion and the train vibration R UD = high frequency component vertical acceleration absolute value / low frequency component vertical motion An absolute value of acceleration is obtained, and it is determined that train vibration is detected when R UD > α, and earthquake vibration is detected when R UD <α.
[5] In the train vibration noise identifying method for seismometers installed along the railway line according to [4] above, the α is 1.0.

本発明によれば、線路沿線に設置された地震計による地震動と列車振動とを明確に識別でき、このことにより、地震諸元の誤推定や誤警報出力の防止を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the seismic motion and train vibration by the seismometer installed along the track can be clearly identified, and this makes it possible to prevent erroneous estimation of earthquake specifications and false alarm output.

地震動の100Hzサンプリング波形である。It is a 100 Hz sampling waveform of ground motion. 地震動の1000Hzサンプリング波形である。It is a 1000 Hz sampling waveform of seismic motion. 地震動のフーリエスペクトルを示す図である。It is a figure which shows the Fourier spectrum of a ground motion. 列車振動の100Hzサンプリング波形である。It is a 100 Hz sampling waveform of train vibration. 列車振動の1000Hzサンプリング波形である。It is a 1000 Hz sampling waveform of train vibration. 列車振動のフーリエスペクトルを示す図である。It is a figure which shows the Fourier spectrum of a train vibration. 漸化式バンドパスフィルタ(バターワース型)を用いた地震動波形のフィルタ処理を示す図である。It is a figure which shows the filter process of a seismic-motion waveform using a recurrence type band pass filter (Butterworth type). 漸化式バンドパスフィルタ(バターワース型)を用いた列車振動波形のフィルタ処理を示す図である。It is a figure which shows the filter process of a train vibration waveform using a recurrence type band pass filter (Butterworth type). 漸化式バンドパスフィルタ(バターワース型)の高周波帯域と低周波帯域のフィルタ特性を示す図である。It is a figure which shows the filter characteristic of the high frequency band and low frequency band of a recurrence type band pass filter (Butterworth type). ノイズ識別に使用するRUDの算出タイミングの概念を示す図である。It is a figure which shows the concept of the calculation timing of RUD used for noise identification. 図10における4のタイミングのRUDを使用した際の各ETLに対する判定結果を示す図である。It is a figure which shows the determination result with respect to each ETL at the time of using RUD of the timing of 4 in FIG.

本発明の線路沿線に設置された地震計の列車振動ノイズ識別方法は、線路沿線に地震計を設置し、この地震計により観測された地震動と列車振動の卓越する周波数帯域が異なることに着目し、前記地震動と前記列車振動とのそれぞれの高周波サンプリングデータを用いて線路沿線に設置された地震計の列車振動ノイズ識別を行う。   The seismometer train vibration noise identification method installed along the railway line of the present invention is based on the fact that seismometers are installed along the railway line and the seismic motion observed by this seismometer differs from the dominant frequency band of train vibration. Then, train vibration noise identification of a seismometer installed along the track is performed using high-frequency sampling data of each of the earthquake motion and the train vibration.

以下、本発明の実施の形態について詳細に説明する。
本発明では、地震動と列車振動で卓越する周波数帯域が異なることに着目する。通常の地震計(例えば100Hzサンプリング)よりも高い周波数(例えば1000Hzサンプリング)まで観測し、高周波成分を透過するフィルタと低周波成分を透過するフィルタの2種類を用意し、観測した波形にこれら2種類のフィルタ処理〔漸化式バンドパスフィルタ(例えば、バターワース型)〕を行う。フィルタ処理されたデータから、タイムウィンドウ0.5秒の単純移動平均による平滑化処理を行い、高周波成分と低周波成分の各上下動加速度絶対値を求め、これらの両者の比(以下、RUD=高周波成分上下動加速度絶対値/低周波成分上下動加速度絶対値とする)を取る。列車振動は高周波の上下動成分が卓越することから、RUDが一定値αよりも大きい場合(RUD>α)は「列車振動」、RUDが一定値αよりも小さい場合(RUD<α)は「地震動」と判断できる。αは予め設定する値(例えば、1)である。例えば、トリガレベル倍率ETL=15、α=1とすれば、本発明の方法による地震動と列車振動の判別誤差は1%以下になる。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, attention is paid to the fact that the frequency bands that prevail are different between seismic motion and train vibration. Observe up to a higher frequency (for example, 1000 Hz sampling) than a normal seismometer (for example, 100 Hz sampling), and prepare two types of filters that transmit high-frequency components and filters that transmit low-frequency components. [Recursive bandpass filter (for example, Butterworth type)]. From the filtered data, smoothing processing by a simple moving average with a time window of 0.5 seconds is performed to obtain the absolute values of the vertical motion acceleration of the high-frequency component and the low-frequency component, and the ratio between them (hereinafter referred to as R UD). = High frequency component vertical acceleration absolute value / Low frequency component vertical acceleration absolute value). Since train vibration has a high-frequency vertical movement component, when R UD is larger than a certain value α (R UD > α), “train vibration”, and when R UD is smaller than a certain value α (R UD < α) can be judged as “earthquake motion”. α is a preset value (for example, 1). For example, if the trigger level magnification ETL = 15 and α = 1, the discrimination error between the earthquake motion and the train vibration by the method of the present invention is 1% or less.

図1は地震動の100Hzサンプリング波形であり、図1(a)はそのNS成分を示す図、図1(b)はそのEW成分を示す図、図1(c)はそのUD成分を示す図である。縦軸の単位はガル(cm/秒2 )、横軸は時間(秒)である。
図2は地震動の1000Hzサンプリング波形であり、図2(a)はそのNS成分を示す図、図2(b)はそのEW成分を示す図、図2(c)はそのUD成分を示す図である。縦軸の単位はガル(cm/秒2 )、横軸は時間(秒)である。
1 is a 100 Hz sampling waveform of ground motion, FIG. 1 (a) is a diagram showing its NS component, FIG. 1 (b) is a diagram showing its EW component, and FIG. 1 (c) is a diagram showing its UD component. is there. The unit of the vertical axis is gal (cm / sec 2 ), and the horizontal axis is time (second).
2 is a 1000 Hz sampling waveform of seismic motion, FIG. 2 (a) is a diagram showing its NS component, FIG. 2 (b) is a diagram showing its EW component, and FIG. 2 (c) is a diagram showing its UD component. is there. The unit of the vertical axis is gal (cm / sec 2 ), and the horizontal axis is time (second).

図3は地震動のフーリエスペクトルを示す図であり、図3(a)はそのNS成分を示す図、図3(b)はそのEW成分を示す図、図3(c)はそのUD成分を示す図である。横軸は周波数(Hz)、縦軸はガル・秒である。
図4は列車振動の100Hzサンプリング波形であり、図4(a)はそのNS成分を示す図、図4(b)はそのEW成分を示す図、図4(c)はそのUD成分を示す図である。縦軸の単位はガル(cm/秒2 )、横軸は時間(秒)である。
FIG. 3 is a diagram showing a Fourier spectrum of seismic motion, FIG. 3 (a) is a diagram showing its NS component, FIG. 3 (b) is a diagram showing its EW component, and FIG. 3 (c) is its UD component. FIG. The horizontal axis represents frequency (Hz), and the vertical axis represents gal · second.
4 is a 100 Hz sampling waveform of train vibration, FIG. 4 (a) is a diagram showing its NS component, FIG. 4 (b) is a diagram showing its EW component, and FIG. 4 (c) is a diagram showing its UD component. It is. The unit of the vertical axis is gal (cm / sec 2 ), and the horizontal axis is time (second).

図5は列車振動の1000Hzサンプリング波形であり、図5(a)はそのNS成分を示す図、図5(b)はそのEW成分を示す図、図5(c)はそのUD成分を示す図である。縦軸の単位はガル(cm/秒2 )、横軸は時間(秒)である。
図6は列車振動のフーリエスペクトルを示す図であり、図6(a)はそのNS成分を示す図、図2(b)はそのEW成分を示す図、図2(c)はそのUD成分を示す図である。横軸は周波数(Hz)、縦軸はガル・秒である。
5 is a 1000 Hz sampling waveform of train vibration, FIG. 5 (a) is a diagram showing its NS component, FIG. 5 (b) is a diagram showing its EW component, and FIG. 5 (c) is a diagram showing its UD component. It is. The unit of the vertical axis is gal (cm / sec 2 ), and the horizontal axis is time (second).
FIG. 6 is a diagram showing the Fourier spectrum of train vibration, FIG. 6 (a) is a diagram showing its NS component, FIG. 2 (b) is a diagram showing its EW component, and FIG. 2 (c) is its UD component. FIG. The horizontal axis represents frequency (Hz), and the vertical axis represents gal · second.

図7はバターワース型バンドパスフィルタを用いた地震動波形のフィルタ処理を示す図であり、図7(a)は地震動の生波形を示す図(gal)、図7(b)は地震動の高周波帯域フィルタ処理後の波形を示す図(gal)、図7(c)は地震動の低周波帯域フィルタ処理後の波形を示す図(gal)、図7(d)は地震動のRUDを示す図である。なお、横軸は時間(秒)を示している。 7A and 7B are diagrams showing seismic motion waveform filter processing using a Butterworth type bandpass filter. FIG. 7A is a diagram (gal) showing a raw waveform of seismic motion, and FIG. 7B is a high-frequency band filter for seismic motion. The figure (gal) which shows the waveform after a process, FIG.7 (c) is the figure (gal) which shows the waveform after the low frequency band filter process of a ground motion, FIG.7 (d) is a figure which shows RUD of a ground motion. The horizontal axis represents time (seconds).

図8はバターワース型バンドパスフィルタを用いた列車振動波形のフィルタ処理を示す図であり、図8(a)は列車振動の生波形を示す図(gal)、図8(b)は列車振動の高周波帯域フィルタ処理後の波形を示す図(gal)、図8(c)は列車振動の低周波帯域フィルタ処理後の波形を示す図(gal)、図8(d)は列車振動のRUDを示す図である。なお、横軸は時間(秒)を示している。 FIG. 8 is a diagram showing train vibration waveform filtering using a Butterworth type bandpass filter. FIG. 8A is a diagram (gal) showing a train vibration raw waveform, and FIG. shows the waveform after the high-frequency band filter (gal), FIG. FIG. 8 (c) showing the low frequency band after filtering the waveform of the train vibrations (gal), Figure 8 (d) is a train vibrations R UD FIG. The horizontal axis represents time (seconds).

図9は漸化式バンドパスフィルタ(バターワース型)の高周波帯域と低周波帯域のフィルタ特性を示す図である。
この図から明らかなように、aは通過帯域:5〜15Hz(低周波帯域フィルタ)であり、bは通過帯域:50〜100Hz(高周波帯域フィルタ)である。
次に、判別効果の検証について説明する。
FIG. 9 is a diagram showing the filter characteristics of the recursive bandpass filter (Butterworth type) in the high frequency band and the low frequency band.
As is apparent from this figure, a is a pass band: 5 to 15 Hz (low frequency band filter), and b is a pass band: 50 to 100 Hz (high frequency band filter).
Next, verification of the discrimination effect will be described.

図10はノイズ識別に使用するRUDの算出タイミングの概念を示す図であり、縦軸は加速度、横軸は時間、1は振幅レベル〔ある時刻の振幅レベル(変動)〕、2はノイズレベル〔NL:過去の振幅情報により平滑化処理を行ったある時刻の振幅レベル(変動)〕、3はトリガレベル〔NL×ETL:ノイズレベル(NL)に定数(ETL)をかけたもの(変動)〕であり、4はトリガ判定(早期地震諸元推定処理等を開始)を示している。 FIG. 10 is a diagram showing the concept of calculation timing of R UD used for noise identification, where the vertical axis is acceleration, the horizontal axis is time, 1 is the amplitude level (amplitude level (variation) at a certain time), and 2 is the noise level. [NL: amplitude level (variation) at a certain time when smoothing processing is performed based on past amplitude information], 3 is a trigger level [NL × ETL: noise level (NL) multiplied by a constant (ETL) (variation) 4 indicates trigger determination (starts early earthquake specification estimation processing and the like).

図11は図10における4のタイミングのRUDを使用した際の各ETLに対する判定結果を示す図であり、図11(a)はETL(トリガレベル倍率)が10の場合の列車振動(□)と地震動(◇)の分布を示す図、図11(b)はETL(トリガレベル倍率)が15の場合の列車振動(□)と地震動(◇)の分布を示す図、図11(c)はETL(トリガレベル倍率)が20の場合の列車振動(□)と地震動(◇)の分布を示す図、図11(d)はETL(トリガレベル倍率)が30の場合の列車振動(□)と地震動(◇)の分布を示す図である。これらの検証結果から、いずれのトリガレベル倍率においてもRUDが1.0以上では列車振動(□)が分布し、RUDが1.0以下では地震動(◇)が分布していることから、本発明により地震動と列車振動が明瞭に分離できている。 Figure 11 is a diagram showing a determination result for each ETL when using the R UD timing 4 in FIG. 10, FIG. 11 (a) the train vibrations when ETL (trigger level ratio) of 10 (□) Fig. 11 (b) shows the distribution of train vibration (□) and seismic motion (◇) when ETL (trigger level magnification) is 15, and Fig. 11 (c) shows the distribution of earthquake motion (◇). FIG. 11 (d) shows the train vibration (□) when the ETL (trigger level magnification) is 30, and FIG. 11 (d) shows the distribution of the train vibration (□) and the seismic motion (◇) when the ETL (trigger level magnification) is 20. It is a figure which shows distribution of a seismic motion (◇). From these verification results, train vibration (□) is distributed when RUD is 1.0 or more at any trigger level magnification, and seismic motion (◇) is distributed when RUD is 1.0 or less. According to the present invention, seismic motion and train vibration can be clearly separated.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の線路沿線に設置された地震計の列車振動ノイズ識別方法は、線路沿線に地震計を設置し、この地震計により観測された加速度波形をもとに列車振動ノイズの判別精度を向上させる線路沿線に設置された地震計の列車振動ノイズ識別方法として利用することができる。   The method for discriminating train vibration noise of a seismometer installed along a railway line of the present invention is to install a seismometer along a railway line and improve the discrimination accuracy of train vibration noise based on the acceleration waveform observed by the seismometer. It can be used as a train vibration noise identification method for seismometers installed along railway lines.

1 振幅レベル〔ある時刻の振幅レベル(変動)〕
2 ノイズレベル〔NL:過去の振幅情報により平滑化処理を行ったある時刻の振幅レベル(変動)〕
3 トリガレベル〔NL×ETL:ノイズレベル(NL)に定数(ETL)をかけたもの(変動)〕
4 トリガ判定(早期地震諸元推定処理等を開始)
1 Amplitude level [Amplitude level at a certain time (variation)]
2 Noise level [NL: amplitude level (fluctuation) at a certain time when smoothing processing is performed based on past amplitude information]
3 Trigger level [NL x ETL: Noise level (NL) multiplied by constant (ETL) (variation)]
4 Trigger judgment (starts early earthquake specification estimation process)

Claims (5)

線路沿線に地震計を設置し、該地震計によって観測された地震動と列車振動とで卓越する周波数帯域が異なることに着目し、前記地震動と前記列車振動とのそれぞれの高周波サンプリングデータを用いて線路沿線の地震計の列車振動ノイズ識別を行うことを特徴とする線路沿線に設置された地震計の列車振動ノイズ識別方法。   A seismometer is installed along the railway line, paying attention to the fact that the seismic motion and train vibration observed by the seismometer have different frequency bands, and using the respective high-frequency sampling data of the seismic motion and the train vibration A train vibration noise identification method for seismometers installed along a railway line, comprising identifying train vibration noise for a seismometer along a railway line. 請求項1記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記地震動の波形と前記列車振動の波形にフィルタ処理を施すことにより線路沿線に設置された地震計の列車振動ノイズ識別を行うことを特徴とする線路沿線に設置された地震計の列車振動ノイズ識別方法。 The seismometer train vibration noise identification method according to claim 1, wherein the seismometer train vibration noise is installed along the track by filtering the seismic vibration waveform and the train vibration waveform. A method for discriminating train vibration noise of a seismometer installed along a railway line, characterized by performing identification. 請求項1記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記フィルタ処理は、漸化式バンドパスフィルタであることを特徴とする線路沿線に設置された地震計の列車振動ノイズ識別方法。   The seismometer train vibration noise identifying method according to claim 1, wherein the filter processing is a recursive bandpass filter, wherein the seismometer train vibration is installed along the track. Noise identification method. 請求項3記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記地震動と前記列車振動のそれぞれのRUD=高周波成分上下動加速度絶対値/低周波成分上下動加速度絶対値を求め、RUD>αでは列車振動、RUD<αでは地震動であると判別することを特徴とする線路沿線に設置された地震計の列車振動ノイズ識別方法。 4. A method for identifying train vibration noise of a seismometer installed along a railway line according to claim 3, wherein R UD = high frequency component vertical motion acceleration absolute value / low frequency component vertical motion acceleration absolute value of each of the earthquake motion and the train vibration. A method for discriminating train vibration noise of a seismometer installed along a railway line, characterized in that the train vibration is determined when R UD > α and the earthquake motion is detected when R UD <α. 請求項4記載の線路沿線に設置された地震計の列車振動ノイズ識別方法において、前記αは1.0であることを特徴とする線路沿線に設置された地震計の列車振動ノイズ識別方法。   The seismometer train vibration noise identification method for seismometers installed along railway lines according to claim 4, wherein the α is 1.0.
JP2012181630A 2012-08-20 2012-08-20 Method for identifying train vibration noise of seismometer installed along rail road Pending JP2014038065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181630A JP2014038065A (en) 2012-08-20 2012-08-20 Method for identifying train vibration noise of seismometer installed along rail road

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181630A JP2014038065A (en) 2012-08-20 2012-08-20 Method for identifying train vibration noise of seismometer installed along rail road

Publications (1)

Publication Number Publication Date
JP2014038065A true JP2014038065A (en) 2014-02-27

Family

ID=50286313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181630A Pending JP2014038065A (en) 2012-08-20 2012-08-20 Method for identifying train vibration noise of seismometer installed along rail road

Country Status (1)

Country Link
JP (1) JP2014038065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230019A (en) * 2020-10-10 2021-01-15 西安交通大学 High-speed rail train running acceleration estimation method using multiple geophones
JP2021042976A (en) * 2019-09-06 2021-03-18 株式会社ホームサイスモメータ Seismic analysis device and seismic analysis program
CN114879252A (en) * 2022-07-11 2022-08-09 中国科学院地质与地球物理研究所 DAS (data acquisition system) same-well monitoring real-time microseism effective event identification method based on deep learning
CN116109786A (en) * 2023-02-16 2023-05-12 中铁四院集团南宁勘察设计院有限公司 Method for constructing urban rail transit vibration map

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343126A (en) * 2005-06-07 2006-12-21 Railway Technical Res Inst Earthquake-time alarm system of wayside seismometer along railroad line
JP2009103672A (en) * 2007-10-24 2009-05-14 Home Seismometer:Kk Analysis method for discriminating between earthquake and vibration caused by noise
JP2011002371A (en) * 2009-06-19 2011-01-06 Hakusan Kogyo Kk Seismic intensity estimation method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343126A (en) * 2005-06-07 2006-12-21 Railway Technical Res Inst Earthquake-time alarm system of wayside seismometer along railroad line
JP2009103672A (en) * 2007-10-24 2009-05-14 Home Seismometer:Kk Analysis method for discriminating between earthquake and vibration caused by noise
JP2011002371A (en) * 2009-06-19 2011-01-06 Hakusan Kogyo Kk Seismic intensity estimation method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042976A (en) * 2019-09-06 2021-03-18 株式会社ホームサイスモメータ Seismic analysis device and seismic analysis program
CN112230019A (en) * 2020-10-10 2021-01-15 西安交通大学 High-speed rail train running acceleration estimation method using multiple geophones
CN114879252A (en) * 2022-07-11 2022-08-09 中国科学院地质与地球物理研究所 DAS (data acquisition system) same-well monitoring real-time microseism effective event identification method based on deep learning
CN114879252B (en) * 2022-07-11 2022-09-13 中国科学院地质与地球物理研究所 DAS (data acquisition system) same-well monitoring real-time microseism effective event identification method based on deep learning
CN116109786A (en) * 2023-02-16 2023-05-12 中铁四院集团南宁勘察设计院有限公司 Method for constructing urban rail transit vibration map

Similar Documents

Publication Publication Date Title
US10607632B2 (en) Abnormal sound detection apparatus and detection method
CN106845429B (en) Vibration signal classification judgment and identification method, rockfall energy scale calculation method and rockfall risk early warning method
RU2608789C2 (en) System and method for early detection of train
Bianchi et al. Wavelet packet transform for detection of single events in acoustic emission signals
CN101221066B (en) Engineering nonlinear vibration detecting method
JP2019518515A5 (en)
RU2301167C2 (en) Method of revealing derailment by determining falling velocity
JP6990566B2 (en) Rail wavy wear detection device and rail wavy wear detection method
RU2660336C2 (en) Device and method for identifying obstacles for rail vehicles
JP2014038065A (en) Method for identifying train vibration noise of seismometer installed along rail road
CN110987348A (en) Catenary hard spot determination method and device based on pantograph-catenary dynamic response
JP2017509965A5 (en)
CN109059839B (en) Method, device and system for diagnosing out-of-roundness fault of wheel tread
CN113009566A (en) In-situ seismic motion prediction model and construction method thereof
IWATA et al. Improved algorithms of seismic parameters estimation and noise discrimination in earthquake early warning
JP2009103672A (en) Analysis method for discriminating between earthquake and vibration caused by noise
US10288640B2 (en) Method for measuring the rotation speed of a vehicle wheel
CN115712029A (en) Electromagnetic compatibility test evaluation method for train and trackside axle counter and related equipment
CN112219361A (en) Event statistic generation method and device for intrusion detection
CN110514861B (en) High-speed rail running speed estimation method utilizing amplitude spectrum autocorrelation
JP6605855B2 (en) Insulation abnormality diagnosis device
Nakutis et al. Bridge vibration logarithmic decrement estimation at the presence of amplitude beat
JP5950508B2 (en) External force discrimination method in acceleration sensor response
JP2010216911A (en) Method for estimating magnitude using data of single observation point
JP6437729B2 (en) Insulation abnormality diagnosis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160614