JP6177628B2 - Immediate ground motion prediction method using underground ground motion - Google Patents
Immediate ground motion prediction method using underground ground motion Download PDFInfo
- Publication number
- JP6177628B2 JP6177628B2 JP2013178187A JP2013178187A JP6177628B2 JP 6177628 B2 JP6177628 B2 JP 6177628B2 JP 2013178187 A JP2013178187 A JP 2013178187A JP 2013178187 A JP2013178187 A JP 2013178187A JP 6177628 B2 JP6177628 B2 JP 6177628B2
- Authority
- JP
- Japan
- Prior art keywords
- wave
- underground
- maximum
- ground motion
- velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000033001 locomotion Effects 0.000 title claims description 69
- 238000000034 method Methods 0.000 title claims description 43
- 230000001133 acceleration Effects 0.000 claims description 51
- 230000005855 radiation Effects 0.000 claims description 7
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- OQCFWECOQNPQCG-UHFFFAOYSA-N 1,3,4,8-tetrahydropyrimido[4,5-c]oxazin-7-one Chemical compound C1CONC2=C1C=NC(=O)N2 OQCFWECOQNPQCG-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Description
本発明は、地中地震動を利用した即時地震動予測方法に関するものである。 The present invention relates to an immediate ground motion prediction method using underground ground motion.
鉄道における地震対策は、事前に鉄道施設の耐震性を向上させる耐震補強のようなハード対策に加え、地震発生時に迅速かつ適切に列車運行を制御するための早期地震警報や、地震発生後に鉄道施設の被害が予測される範囲の列車運転を規制する地震時運転規制のようなソフト対策が重要である。 In addition to hardware measures such as seismic reinforcement to improve the earthquake resistance of railway facilities in advance, railway earthquake countermeasures include early earthquake warnings to control train operations quickly and appropriately in the event of an earthquake, and railway facilities after an earthquake occurs. It is important to take soft measures such as seismic operation regulation that regulates train operation in the range where damage is expected.
鉄道分野の早期地震警報で用いられている方法は大きく二つに分けられる。一つは地震計の観測値から計算した任意の地震動指標が予め定めた値(規定値)を超過したタイミングで警報を出力する方法である。もう一つは地震計で検知したP波初動から震源位置と規模を推定し、影響範囲に対して警報を出力する方法である。P波初動による震源推定方法は、1992年にUrEDAS(ユレダス)として初めて実用化された(下記非特許文献1参照)。UrEDASでは、P波初動部数秒間の卓越周波数から推定したマグニチュードと観測された振幅から震源距離を推定し、過去の鉄道被害例に基づいて影響範囲を判断して警報を出力する方法が取られている。その後、P波初動部の振幅のエンベロープ形状と震央距離の関係を用いて震央距離を推定するB−Δ法(下記非特許文献2,3参照)が新たな早期地震防災システムに組み込まれて、2004年から現在に至るまで国内の一部の新幹線で使用されている。
The methods used for early earthquake warnings in the railway field can be broadly divided into two. One is a method of outputting an alarm at a timing when an arbitrary seismic motion index calculated from observation values of a seismometer exceeds a predetermined value (specified value). The other method is to estimate the location and scale of the epicenter from the initial P wave detected by the seismometer and output an alarm for the affected area. The epicenter estimation method based on the initial P wave was first put into practical use as UrEDAS in 1992 (see Non-Patent
直下地震では、地震発生から主要動到達までの時間が短く、警報出力が間に合わないことが指摘されている。そこで、震源を推定せずにP波から直接的に主要動を予測して警報を出力する方法として、P波が卓越する上下動から求めた警報用震度(上記非特許文献4参照)により定めた規定値によって警報を出力する方法が国内の一部の新幹線で実用化されている。また、鉄道以外の分野でも、P波初動の加速度とS波主要動の速度の統計的な関係を用いて直接的に主要動を予測する生産施設向けのシステムが開発されている(上記非特許文献5参照)。近年では、リアルタイムで観測された波動場を実況値として境界積分方程式法を用いて時間発展的に波動場を予測する方法(上記非特許文献6参照)や、ある観測点にP波が到達したときに未だ強い揺れの到着していない地域のS波を予測する方法(上記非特許文献7参照)など、理論的にP波からS波を予測する方法の研究も行われている。首都直下地震の切迫性が指摘されているなか(上記非特許文献8参照)、早期地震警報の即時性と精度の向上への期待はさらに高まっており、より早く確実に警報を出力する方法の開発が急務となっている。
In direct earthquakes, it has been pointed out that the time from the occurrence of the earthquake to the arrival of the main motion is short, and the alarm output is not in time. Therefore, as a method of predicting the main motion directly from the P wave without estimating the epicenter and outputting an alarm, it is determined by the alarm seismic intensity (see
一方、鉄道の地震時運転規制方法は各鉄道事業者において若干の違いはあるものの、鉄道沿線に一定間隔で設置された地震計の観測値から計算された地震動指標値に基づいて行われることが多い。ある地震計の地震動指標値が運転規制の発令基準値を超過した場合、その地震計に関して予め定められた区間において速度規制や運転中止のような運転規制措置が取られる。運転中止の場合は運転規制対象区間の全てに対して徒歩等による警備を実施し、鉄道施設に異常がなければ運転再開となる。鉄道沿線の地震計の設置間隔は路線によって様々であるが、密に配置された路線でも5km程度であり、ローカル線では40km程度である。そのため運転中止が発令されると、徒歩等による警備に時間を要するため、仮に鉄道施設が無被害であった場合でも、運転再開までに多大な時間を要する。近年、一部の鉄道事業者では、運転規制に用いる地震動指標値を被害との関連性が高いものに変更して、運転規制を合理的に行う試みがなされている(上記非特許文献9,10参照)。また、地震計を増設して運転規制区間を細分化し、運転中止時の警備対象区間を短くすることも実施されている(上記非特許文献11参照)。現在の方法では運転規制区間内での地震動のバラツキは評価されていないため、運転規制区間内での地震動分布を地震発生直後に高精度で予測することができれば、警備範囲の最適化を検討する上での重要な情報になり得る。
On the other hand, although railway railway operation control methods vary slightly among railway operators, they may be performed based on seismic motion index values calculated from seismometer observations installed at regular intervals along the railway. Many. When the seismic motion index value of a certain seismometer exceeds the operational regulation issuance reference value, operation regulation measures such as speed regulation and operation suspension are taken in a predetermined section for the seismometer. In the case of driving stoppage, security by walking etc. will be implemented for all sections subject to driving restrictions, and if there is no abnormality in the railway facility, driving will resume. The interval between seismometers along the railway varies depending on the route, but it is about 5 km for densely arranged routes and about 40 km for local lines. For this reason, when operation is canceled, it takes time for security by walking or the like, so even if the railway facility is harmless, it takes a long time to resume operation. In recent years, some railway operators have attempted to rationalize the operation regulation by changing the seismic motion index value used for the operation regulation to one that is highly related to damage (Non-Patent
本発明は、上記状況に鑑みて、地震基盤で観測されたP波の振幅を利用することにより、地表でのS波の振幅を直接的に予測することができる地中地震動を利用した即時地震動予測方法を提供することを目的とする。 In view of the above-described situation, the present invention uses immediate ground motion using underground ground motion that can directly predict the amplitude of the S wave on the ground surface by using the amplitude of the P wave observed on the earthquake base. An object is to provide a prediction method.
本発明は、上記目的を達成するために、
〔1〕地中地震動を利用した即時地震動予測方法において、
(a)地中S波の最大加速度または最大速度ub s と地表S波の最大加速度または最大速度us s の関係について、観測点ごとに、地中S波と地表S波の観測最大加速度または観測最大速度の関係に対して、式logus s =logub s +a1 (式2)を、最小二乗法により全観測記録に対する誤差が最小となるようにフィッティングすることでパラメータa1 を決定し、
(b)地中P波の最大加速度または最大速度ub p と地中S波の最大加速度または最大速度ub s の関係について、観測点ごとに、地中P波と地中S波の観測最大加速度または観測最大速度の関係に対して、式logub s =logub p +a2 (式7)を、最小二乗法により全観測記録に対する誤差が最小となるようにフィッティングすることでパラメータa2 を決定し、
(c)上記式(2)と上記式(7)から求めた地中P波と地表S波の最大加速度または最大速度の関係を示す式logus s =logub p +a(式9)のパラメータaをa=a1 +a2 で決定し、上記式(9)を用いて前記地中P波の最大加速度または最大速度ub p から前記地表S波の最大加速度または最大速度us s を直接的に予測することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the immediate ground motion prediction method using underground ground motion,
(A) Regarding the relationship between the maximum acceleration or maximum velocity u b s of the underground S wave and the maximum acceleration or maximum velocity u s s of the surface S wave, the observed maximum acceleration of the underground S wave and the surface S wave for each observation point Alternatively, the parameter a 1 is determined by fitting the expression log s s = log b s + a 1 (expression 2) to the maximum observation speed relationship so that the error for all observation records is minimized by the least square method. And
(B) Regarding the relationship between the maximum acceleration or maximum velocity u b p of underground P wave and the maximum acceleration or maximum velocity u b s of underground S wave, observation of underground P wave and underground S wave for each observation point By fitting the equation log b s = logu b p + a 2 (Equation 7) with respect to the relationship between the maximum acceleration or the observed maximum velocity, the parameter a 2 Decide
(C) A parameter of an expression log s s = logu b p + a (expression 9) indicating the relationship between the maximum acceleration or maximum velocity of the underground P wave and the surface S wave obtained from the expression (2) and the expression (7). a is determined by a = a 1 + a 2 , and the maximum acceleration or maximum velocity u s s of the surface S wave is directly calculated from the maximum acceleration or maximum velocity u b p of the underground P wave using the above equation (9). Prediction.
〔2〕上記〔1〕記載の地中地震動を利用した即時地震動予測方法において、地表地震動を利用するよりも最大1秒程度早く警報を出力できることを特徴とする地中地震動を利用した即時地震動予測方法。 [2] Immediate ground motion prediction using ground motion, characterized in that in the method for predicting immediate ground motion using ground motion in [1] above, a warning can be output up to about 1 second faster than using ground motion. Method.
〔3〕上記〔1〕記載の地中地震動を利用した即時地震動予測方法において、地下構造の影響や震源の放射特性の影響を反映した最大振幅(加速度,速度)の関係を構築することを特徴とする。 [3] In the immediate ground motion prediction method using underground ground motion described in [1] above, the relationship between the maximum amplitude (acceleration, velocity) reflecting the influence of underground structure and the radiation characteristics of the epicenter is constructed. And
〔4〕上記〔1〕記載の地中地震動を利用した即時地震動予測方法において、前記地中S波と地下速度構造を用い、地表S波を面的予測することを特徴とする。 [4] The immediate ground motion prediction method using underground ground motion according to [1] above, wherein the surface S wave is predicted in a plane using the underground S wave and the underground velocity structure.
本発明によれば、地震基盤で観測されたP波の振幅を利用することにより、地表でのS波の振幅を直接的に予測することができ、早期地震動予測を行うことができる。 According to the present invention, by using the amplitude of the P wave observed on the earthquake base, the amplitude of the S wave on the ground surface can be directly predicted, and early earthquake motion prediction can be performed.
また、地中S波と地下速度構造を用い、地表S波を面的予測することができる。 In addition, surface S waves can be predicted in a plane using underground S waves and underground velocity structures.
さらに、従来の地表地震記録を利用した規制値の設定では原則的に地下速度構造による地震動増幅効果を考慮することができなかったが、地中地震記録を利用することにより、その地震動増幅効果を考慮することができる。 Furthermore, in the setting of control values using conventional surface earthquake records, in principle, the ground motion amplification effect due to the underground velocity structure could not be taken into account. Can be considered.
本発明の地中地震動を利用した即時地震動予測方法は、(a)地中S波の最大加速度または最大速度ub s と地表S波の最大加速度または最大速度us s の関係について、観測点ごとに、地中S波と地表S波の観測最大加速度または観測最大速度の関係に対して、式logus s =logub s +a1 (式2)を、最小二乗法により全観測記録に対する誤差が最小となるようにフィッティングすることでパラメータa1 を決定し、
(b)地中P波の最大加速度または最大速度ub p と地中S波の最大加速度または最大速度ub s の関係について、観測点ごとに、地中P波と地中S波の観測最大加速度または観測最大速度の関係に対して、式logub s =logub p +a2 (式7)を、最小二乗法により全観測記録に対する誤差が最小となるようにフィッティングすることでパラメータa2 を決定し、
(c)上記式(2)と上記式(7)から求めた地中P波と地表S波の最大加速度または最大速度の関係を示す式logus s =logub p +a(式9)のパラメータaをa=a1 +a2 で決定し、上記式(9)を用いて前記地中P波の最大加速度または最大速度ub p から前記地表S波の最大加速度または最大速度us s を直接的に予測する。
Immediate ground motion prediction method using underground seismic motion of the present invention, the relationship between (a) the maximum acceleration or the maximum speed of the underground S-wave u b s and surface S-wave maximum acceleration or maximum velocity u s s of observation points For each relationship between the observed maximum acceleration or the observed maximum velocity of the underground S wave and the surface S wave , the expression log s s = log b s + a 1 (Expression 2) Parameter a 1 is determined by fitting so that is minimized,
(B) Regarding the relationship between the maximum acceleration or maximum velocity u b p of underground P wave and the maximum acceleration or maximum velocity u b s of underground S wave, observation of underground P wave and underground S wave for each observation point By fitting the equation log b s = logu b p + a 2 (Equation 7) with respect to the relationship between the maximum acceleration or the observed maximum velocity, the parameter a 2 Decide
(C) A parameter of an expression log s s = logu b p + a (expression 9) indicating the relationship between the maximum acceleration or maximum velocity of the underground P wave and the surface S wave obtained from the expression (2) and the expression (7). a is determined by a = a 1 + a 2 , and the maximum acceleration or maximum velocity u s s of the surface S wave is directly calculated from the maximum acceleration or maximum velocity u b p of the underground P wave using the above equation (9). Predict.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の地中地震動を利用した即時地震動予測を行う模式図であり、図1(a)は地中P波を用いた地表S波の即時予測を示し、図1(b)は地中S波を用いた地表S波の面的予測を示す図である。 FIG. 1 is a schematic diagram for performing an immediate ground motion prediction using the ground motion of the present invention. FIG. 1 (a) shows an immediate prediction of a surface S wave using an underground P wave, and FIG. It is a figure which shows the surface prediction of the surface S wave which used underground S wave.
これらの図において、1は地震基盤、2は堆積層、3は地表面、4は地表面3から地震基盤1に届く深いボアホール、5は地震基盤1に配置される地中地震計、6は地表面3に配置される地表地震計、7は震源、8は震源7から放射されたたP波、9は震源7から放射されたS波、11は地中地震計5で観測されたP波(PBH)、12は地中地震計5で観測されたS波(SBH)、13は地表地震計6で観測されたP波(PSF)、14は地表地震計6で観測されたS波(SSF)である。
In these figures, 1 is the seismic base, 2 is the sedimentary layer, 3 is the ground surface, 4 is a deep borehole reaching from the
この図に示すように、地震基盤1に設置された地中地震計5で観測されたP波(PBH)11の振幅を利用することにより、地表3での地表地震計6で観測されたS波(SSF)14の振幅を直接的に予測する方法を採用する。
As shown in this figure, by using the amplitude of the P wave (P BH ) 11 observed by the
この方法により、地震波が厚い堆積層2を伝播する時間だけ、現行のシステムに比べ余裕時間を増加させることが可能となる。
By this method, it is possible to increase the margin time as compared with the current system only by the time during which the seismic wave propagates through the
そこで、首都直下地震を対象として、首都圏および周辺地域におけるKiK−net(防災科研の基盤強震観測網)(上記非特許文献15参照)のデータを用いて、地震基盤1のP波(PBH)11と地震基盤1のS波(SBH)12、および地震基盤1のS波(SBH)12と地表S波(SSF)14の関係性を調べ、地震基盤P波(PBH)11の情報により地表S波(SSF)14を面的に予測する手法の開発を実施した。 Therefore, using the data of KiK-net (Base Earthquake Strong Motion Observation Network of National Research Institute for Earth Science and Disaster Prevention) (see Non-Patent Document 15 above) in the Tokyo metropolitan area and surrounding areas for earthquakes directly under the metropolitan area, the P wave (P BH ) 11 and the seismic base 1 S wave (S BH ) 12, and the seismic base 1 S wave (S BH ) 12 and the surface S wave (S SF ) 14 are examined, and the seismic base P wave (P BH ) We developed a method to predict the surface S wave (S SF ) 14 according to 11 information.
上記したように、本発明では、首都直下地震を対象とした地表地震動の即時予測方法を実現するために、関東平野内の地中地震記録を利用する。 As described above, in the present invention, an underground earthquake record in the Kanto Plain is used in order to realize an immediate prediction method of surface ground motion for an earthquake directly below the capital.
図1(a)のように、地中地震計で観測したP波(地中P波)から直接的に地表S波を予測することで、直下地震に対しては、現行の地表P波初動による推定方法よりも早く確実に警報を出力することができる。また、図1(b)のように、地中地震計で観測したS波(地中S波)と堆積層の地下速度構造を組み合わせることで、地震発生直後に地表S波を面的に予測できる。緊急地震速報の迅速化や高度化に向けた検討(上記非特許文献12参照)では、緊急地震速報の既存方法への適用性の確認と課題の抽出が行われている。また、地中と地表の地震動指標の関係式から地表地震動を予測する方法(上記非特許文献13参照)も提案されているが、統計的関係を示すに留まっている。
As shown in Fig. 1 (a), by predicting the surface S wave directly from the P wave (ground P wave) observed by the underground seismometer, It is possible to output an alarm faster and more reliably than the estimation method according to. In addition, as shown in Fig. 1 (b), by combining the S wave (underground S wave) observed with the underground seismometer and the underground velocity structure of the sedimentary layer, the surface S wave is predicted in a plane immediately after the occurrence of the earthquake. it can. In the study for speeding up and sophisticating the earthquake early warning (see
本発明では、防災科学技術研究所のKiK−net観測点データを使用して、地震動を構成する震源特性、伝播経路特性、サイト増幅特性が地中と地表地震記録の最大振幅におよぼす影響について考慮したうえで、地表地震動の即時予測方法を提案する。
(A)観測点と使用したデータ
関東平野のKiK−net観測点の分布を図2に示す。この図2の観測点のうち、本発明では、ボアホールが先新第三系に到達している12観測点(上記非特許文献14参照)の地中と地表地震記録を使用した。
In the present invention, using the KiK-net observation point data of the National Research Institute for Earth Science and Disaster Prevention, consideration is given to the effects of seismic source characteristics, propagation path characteristics, and site amplification characteristics on the maximum amplitude of underground and surface earthquake records. In addition, we propose an immediate prediction method for ground motion.
(A) Observation points and data used Fig. 2 shows the distribution of KiK-net observation points in the Kanto Plain. Among the observation points in FIG. 2, the present invention uses the underground and surface earthquake records of 12 observation points (see
本発明では、関東平野周辺を震源とする地震に限定するため、北緯34.5〜37.0°、東経138.5〜141.0°を震源とする地震を使用した。また、地震動が概ね関東平野全域に渡って観測される地震を対象とするため、気象庁マグニチュード4.5〜7.0の243地震を使用した。使用した地震の震源分布を図3に示す。ただし、震源距離が大きく地震が観測されない場合があることなどが原因で、実際には各観測点で使用した地震数に違いがある。 In the present invention, in order to limit the earthquake to the epicenter around the Kanto Plain, an earthquake having an epicenter of 34.5 to 37.0 ° north latitude and 138.5 to 141.0 ° east longitude was used. In addition, 243 earthquakes with a magnitude of 4.5-7.0 were used because the earthquake motions were mainly observed over the entire Kanto Plain. Fig. 3 shows the epicenter distribution of the used earthquake. However, there are actually differences in the number of earthquakes used at each observation point due to the fact that there are cases where the epicenter distance is large and earthquakes are not observed.
次に、今回使用した地震の地表最大加速度〔gal〕のヒストグラムを図4に示す。この図4より、今回使用した地震は最大加速度は数10gal程度が大多数を占めているため、地盤の非線形性の影響を受けたデータは少ないと考えられる。 Next, FIG. 4 shows a histogram of the maximum ground acceleration [gal] of the earthquake used this time. According to FIG. 4, since most of the earthquakes used this time have a maximum acceleration of about several tens of gals, it is considered that there is little data affected by the non-linearity of the ground.
図3に示す地震で観測された加速度波形を用いてP波とS波の到達時間の検測を目視で行った。P波は鉛直成分、S波は水平2成分を用いて検測を行った。次に、加速度波形を積分して速度波形を求めた。加速度波形に対してカットオフ周波数0.1Hz、20Hzの3次のButterworth型バンドパスフィルタ処理を施した。最後に、加速度波形と速度波形のそれぞれについてP波とS波の最大振幅を求めた。P波の最大振幅はP波到達からS波到達までの時間における鉛直成分の絶対値の最大値、S波の最大振幅はS波到着後の水平2成分ベクトル和の最大値をそれぞれ採用した。図5に波形例として、2005年7月23日に千葉県北西部で発生したマグニチュード6.0、深さ73.0kmの地震におけるCHBH04の地中と地表の加速度波形および速度波形を示す。
(B)地中地震記録利用時の余裕時間の増分
各観測点における地中P波と地表P波の到着時間差を図6に示す。今回使用した観測点では到達時間差は0.1〜1.2秒となっており、ボアホールが深い観測点ほど大きいことがわかる。したがって、地中地震記録を利用するよりも最大1秒程度早く警報を出力できる。
Using the acceleration waveform observed in the earthquake shown in FIG. 3, the arrival times of the P wave and the S wave were visually observed. Inspection was performed using a vertical component for the P wave and two horizontal components for the S wave. Next, the acceleration waveform was integrated to obtain a velocity waveform. The acceleration waveform was subjected to third-order Butterworth type bandpass filter processing with cutoff frequencies of 0.1 Hz and 20 Hz. Finally, the maximum amplitude of the P wave and S wave was determined for each of the acceleration waveform and the velocity waveform. The maximum amplitude of the P wave is the maximum absolute value of the vertical component in the time from the arrival of the P wave to the arrival of the S wave, and the maximum amplitude of the S wave is the maximum value of the horizontal two-component vector sum after arrival of the S wave. FIG. 5 shows the acceleration waveform and velocity waveform of CHBH04 in the ground and on the surface in an earthquake of magnitude 6.0 and depth of 73.0 km that occurred in the northwestern part of Chiba Prefecture on July 23, 2005 as a waveform example.
(B) Increase in margin time when using underground earthquake records Fig. 6 shows the arrival time difference between the underground P wave and the ground P wave at each observation point. At the observation points used this time, the arrival time difference is 0.1 to 1.2 seconds, and it can be seen that the observation points with deeper boreholes are larger. Therefore, it is possible to output an alarm about one second earlier than using an underground earthquake record.
地中および地表の地震記録における最大振幅の関係
〔1〕地中S波と地表S波の最大振幅の関係
本発明ではボアホールが地震基盤に到達している観測点を使用しているため、地中S波と地表S波の関係は地震基盤と地表の伝達関数G(ω) を用いて式 (1) で表される。
Relationship between maximum amplitude in underground and surface earthquake records [1] Relationship between maximum amplitude of underground S-wave and surface S-wave In the present invention, an observation point where the borehole reaches the earthquake base is used. The relationship between the medium S wave and the surface S wave is expressed by equation (1) using the transfer function G (ω) between the earthquake base and the surface.
ここで、uは地震波の振幅を表す。上添字SはS波を表し、下添字bとsはそれぞれ地中と地表を表す。上記式 (1) の両辺の対数をとると、式 (2) が得られる。 Here, u represents the amplitude of the seismic wave. The superscript S represents the S wave, and the subscripts b and s represent the underground and the ground, respectively. Taking the logarithm of both sides of the above equation (1), equation (2) is obtained.
ここで、 here,
である。つまり、地中S波と地表S波は対数軸上で線形関係が成り立ち、地震基盤と地表の伝達関数、すなわち地震基盤から地表までの増幅率を表すパラメータa1 を決めることができれば、地中S波から地表S波を予測することが可能となる。 It is. In other words, if the underground S wave and the surface S wave have a linear relationship on the logarithmic axis and the transfer function between the earthquake base and the ground surface, that is, the parameter a 1 representing the amplification factor from the earthquake base to the ground surface can be determined, It becomes possible to predict the surface S wave from the S wave.
各観測点における地中S波と地表S波の最大加速度および最大速度の観測値の関係をそれぞれ図7、図8に示す。図中の直線は式 (2) を全観測記録に対して誤差が最小になるようにフィッティングした結果である。各観測点におけるパラメータa1 の比較を図9に示す。図9より、a1 は最大加速度で0.39〜0.90、最大速度で0.58〜0.96程度の値であり観測点によって異なることがわかる。これは観測点ごとにサイト増幅特性が異なるためである。地中S波と地表S波の最大振幅の相関係数は最大加速度で0.76〜0.98、最大速度で0.83〜0.99である。多くの観測点で相関係数が0.9を超えており、地中S波の最大振幅から地表S波の最大振幅を精度良く予測することが可能である。これは、観測点直下の地下速度構造を与えることで地中S波から地表S波を高精度に予測できる可能性を示している。 The relationship between the observed values of the maximum acceleration and maximum velocity of the underground S wave and the surface S wave at each observation point is shown in FIGS. 7 and 8, respectively. The straight line in the figure is the result of fitting equation (2) to minimize the error for all observation records. A comparison of the parameter a 1 at each observation point is shown in FIG. From FIG. 9, it can be seen that a 1 has a maximum acceleration of 0.39 to 0.90 and a maximum speed of about 0.58 to 0.96, and varies depending on the observation point. This is because the site amplification characteristics are different for each observation point. The correlation coefficient between the maximum amplitude of the underground S wave and the surface S wave is 0.76 to 0.98 at the maximum acceleration and 0.83 to 0.99 at the maximum speed. The correlation coefficient exceeds 0.9 at many observation points, and the maximum amplitude of the surface S wave can be accurately predicted from the maximum amplitude of the underground S wave. This indicates the possibility that the surface S wave can be predicted with high accuracy from the underground S wave by giving an underground velocity structure directly below the observation point.
〔2〕地中P波と地中S波の最大振幅の関係
震源をダブルカップルと仮定すると、震源から十分離れたボアホール観測点におけるP波とS波の波動場はそれぞれ式 (4) と式 (5) で表される(上記非特許文献16参照)。
[2] Relationship between the maximum amplitude of underground P-wave and underground S-wave Assuming that the epicenter is a double couple, the wave fields of the P-wave and S-wave at the borehole observation point sufficiently away from the seismic source are given by equations (4) and (4), respectively. (5) (see
ここで、ρは媒質の密度、Vは媒質内の弾性波速度、rは震源距離、f (t) は震源に働く力、Rθφはラディエーション係数である。式(4)と式(5)の振幅比をとると、式(6)が得られる。 Here, ρ is the density of the medium, V is the elastic wave velocity in the medium, r is the epicenter distance, f (t) is the force acting on the epicenter, and R θφ is the radiation coefficient. When the amplitude ratio of Expression (4) and Expression (5) is taken, Expression (6) is obtained.
式 (6) の両辺の対数をとると、式 (7) が得られる。 Taking the logarithm of both sides of equation (6), equation (7) is obtained.
ここで、 here,
である。つまり、地中P波と地中S波は対数軸上で線形関係が成り立ち、各地震のラディエーション係数および地震発生域のS波/P波速度比の影響を含んだパラメータa2 を決めることができれば、地中P波から地中S波を予測することが可能となる。 It is. In other words, the ground P wave and the ground S wave have a linear relationship on the logarithmic axis, and the parameter a 2 including the influence of the radiation coefficient of each earthquake and the S wave / P wave velocity ratio of the earthquake occurrence area is determined. If it is possible, the underground S wave can be predicted from the underground P wave.
各観測点における地中P波と地中S波の最大加速度および最大速度の観測値の関係をそれぞれ図10、図11に示す。図中の直線は式 (7) を全観測記録に対して誤差が最小になるようにフィッティングした結果である。各観測点におけるパラメータa2 の比較を図12に示す。図12より、a2 は最大加速度で0.25〜0.92、最大速度で0.45〜0.84程度の値であり、観測点によって異なることがわかる。これは地震発生域のS波/P波速度比や、各地震のラディエーションパターンの違いによる影響が各観測点で異なるためである。地中P波と地中S波の最大振幅の相関係数は最大加速度で0.75〜0.92、最大速度で0.73〜0.92であり、観測点ごとに異なる。前項のケースと比較して全体的に相関性が小さくなるのは、各地震のラディエーションパターンのバラツキの影響によるものと考えられる。 The relationship between the observed values of the maximum acceleration and maximum velocity of the underground P wave and underground S wave at each observation point is shown in FIGS. 10 and 11, respectively. The straight line in the figure is the result of fitting Equation (7) so that the error is minimized with respect to all observation records. A comparison of the parameter a 2 at each observation point is shown in FIG. From FIG. 12, it can be seen that a 2 has a maximum acceleration of 0.25 to 0.92 and a maximum speed of about 0.45 to 0.84, and varies depending on the observation point. This is because the influence of the S wave / P wave velocity ratio in the earthquake occurrence region and the difference in the radiation pattern of each earthquake differs at each observation point. The correlation coefficient between the maximum amplitude of the underground P wave and the underground S wave is 0.75 to 0.92 at the maximum acceleration and 0.73 to 0.92 at the maximum velocity, and is different for each observation point. The fact that the overall correlation is smaller than in the previous case is thought to be due to the effects of variations in the radiation pattern of each earthquake.
〔3〕地中P波と地表S波の最大振幅の関係
地中P波と地表S波の関係は式 (2) と式 (7) から次式のように求められる。
[3] Relationship between the maximum amplitude of underground P wave and ground surface S wave The relationship between underground P wave and ground surface S wave is obtained from the following equation from equations (2) and (7).
ここで、 here,
である。つまり、パラメータaには地下速度構造による地震動増幅、ラディエーション係数および地震発生域のS波/P波速度比の影響が含まれる。 It is. That is, the parameter a includes the influence of the ground motion amplification due to the underground velocity structure, the radiation coefficient, and the S wave / P wave velocity ratio in the earthquake occurrence area.
各観測点における地中P波と地表S波の最大加速度および最大速度の観測値の関係をそれぞれ図13、図14に示す。図中の直線は式 (9) を全観測記録に対して誤差が最小になるようにフィッティングした結果である。各観測点におけるパラメータaの比較を図15に示す。図15より、その結果、パラメータaは式 (10) のようにa1 とa2 の和となっていることが確認された。図16は最大振幅の相関係数を示す図であり、この図から地中P波と地表S波の最大振幅の相関係数は最大加速度で0.68〜0.89、最大速度で0.74〜0.91である。 The relationship between the observed values of the maximum acceleration and maximum velocity of the underground P wave and the surface S wave at each observation point is shown in FIGS. 13 and 14, respectively. The straight line in the figure is the result of fitting equation (9) so that the error is minimized with respect to all observation records. A comparison of the parameter a at each observation point is shown in FIG. As a result, it was confirmed from FIG. 15 that the parameter a is the sum of a 1 and a 2 as shown in Expression (10). FIG. 16 is a diagram showing the correlation coefficient of the maximum amplitude. From this figure, the correlation coefficient of the maximum amplitude of the underground P wave and the surface S wave is 0.68 to 0.89 at the maximum acceleration, and is 0.00 at the maximum speed. 74 to 0.91.
ボアホール地震記録と地下速度構造を利用した地表地震動の予測
上述の検討により、地中S波と地下速度構造を用いて地表地震動を高精度に予測できる可能性があることがわかった。つまり、地表に地震計が存在しない任意の地点においても、地下速度構造が推定されていれば近傍の地中地震記録を用いて地表地震動を推定できる可能性がある。そこで、地下速度構造が既往研究で推定されている観測点を対象として、地中S波を基盤からの入力地震動として、1次元重複反射理論により求めた伝達関数を用いて地表地震動を計算し、観測記録と比較を行う。ここで、Q値は周波数依存型として式 (11) で与えた。
Prediction of ground motion using borehole seismograms and underground velocity structure From the above examination, it was found that surface earthquake motion may be predicted with high accuracy using underground S wave and underground velocity structure. In other words, even if there is no seismometer on the ground surface, it is possible that the ground motion can be estimated by using the nearby underground earthquake records if the underground velocity structure is estimated. Therefore, for the observation point where the underground velocity structure has been estimated in previous studies, the ground motion is calculated using the transfer function obtained by the one-dimensional overlapping reflection theory using the ground S wave as the input ground motion from the basement. Compare with observation records. Here, the Q value is given by Equation (11) as a frequency dependent type.
ここで、Q0 は減衰定数、fは振動数である。CHBH04において事前計算を実施した結果に基づき、Q0 はS波速度〔m/s〕の1/25の値を与えている。
Here, Q 0 is a damping constant and f is a frequency. Based on the result of pre-calculation in CHBH04, Q 0 gives a
CHBH04における地表地震動の観測波形と計算波形の比較例を図17に示す。観測波形と計算波形の最大加速度は近い値が得られており、地下速度構造および減衰定数が概ね妥当であることを示している。次に、各観測点における地中S波の観測値と地表S波の計算値の関係を図18に示す。図中の直線は図7で示した地中S波と地表S波の観測値の関係である。事前計算を実施したCHBH04においては観測値と計算値が平均的に一致している。一方、それ以外の観測点では計算値が観測値を過大評価している場合と過小評価している場合があることがわかる。これは、観測点によって堆積層内の減衰定数が異なることや、地下速度構造の精度に違いがあることが原因であると考えられる。したがって、地震計が存在しない地点の地表地震動を精度よく推定するためには、事前に地下速度構造や減衰構造を精度良く明らかにしておく必要がある。 FIG. 17 shows a comparative example of the observed waveform and the calculated waveform of the ground motion in CHBH04. The maximum accelerations of observed and calculated waveforms are close to each other, indicating that the underground velocity structure and damping constant are generally appropriate. Next, FIG. 18 shows the relationship between the observed value of the underground S wave and the calculated value of the surface S wave at each observation point. The straight line in the figure represents the relationship between the observed values of the underground S wave and the ground S wave shown in FIG. In CHBH04 for which the pre-calculation was performed, the observed value and the calculated value coincide on average. On the other hand, at other observation points, it can be seen that the calculated value may overestimate or underestimate the observed value. This is thought to be due to the fact that the attenuation constant in the sedimentary layer differs depending on the observation point and the accuracy of the underground velocity structure is different. Therefore, it is necessary to clarify the underground velocity structure and attenuation structure in advance in order to accurately estimate the ground motion at a point where there is no seismometer.
本発明によれば、地中地震記録を利用した即時地震動予測方法はサイト増幅特性を考慮するため、観測点毎に異なる地震動規制値を与えることが可能であり、従来の方法よりもきめ細やかな規制が可能となる。 According to the present invention, since the immediate ground motion prediction method using underground earthquake records considers site amplification characteristics, it is possible to give different seismic motion control values for each observation point, which is finer than the conventional method. Regulation becomes possible.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の地中地震動を利用した即時地震動予測方法は、地震基盤で観測されたP波の振幅を利用することにより、地表でのS波の振幅を直接的に予測することができる地中地震動を利用した即時地震動予測方法として利用可能である。 The instantaneous ground motion prediction method using the ground motion of the present invention is capable of directly predicting the amplitude of the S wave on the ground surface by using the amplitude of the P wave observed on the earthquake base. It can be used as an immediate earthquake motion prediction method using
1 地震基盤
2 堆積層
3 地表面
4 深いボアホール
5 地中地震計
6 地表地震計
7 震源
8 震源から放射されたP波
9 震源から放射されたS波
11 地中地震計で観測されたP波(PBH)
12 地中地震計で観測されたS波(SBH)
13 地表地震計で観測されたP波(PSF)
14 地表地震計で観測されたS波(SSF)
DESCRIPTION OF
12 S wave (S BH ) observed by underground seismometer
13 P wave ( PSF ) observed by surface seismometer
14 S wave (S SF ) observed by surface seismometer
Claims (4)
(b)地中P波の最大加速度または最大速度ub p と地中S波の最大加速度または最大速度ub s の関係について、観測点ごとに、地中P波と地中S波の観測最大加速度または観測最大速度の関係に対して、式logub s =logub p +a2 (式7)を、最小二乗法により全観測記録に対する誤差が最小となるようにフィッティングすることでパラメータa2 を決定し、
(c)上記式(2)と上記式(7)から求めた地中P波と地表S波の最大加速度または最大速度の関係を示す式logus s =logub p +a(式9)のパラメータaをa=a1 +a2 で決定し、上記式(9)を用いて前記地中P波の最大加速度または最大速度ub p から前記地表S波の最大加速度または最大速度us s を直接的に予測することを特徴とする地中地震動を利用した即時地震動予測方法。 (A) Regarding the relationship between the maximum acceleration or maximum velocity u b s of the underground S wave and the maximum acceleration or maximum velocity u s s of the surface S wave, the observed maximum acceleration of the underground S wave and the surface S wave for each observation point Alternatively, the parameter a 1 is determined by fitting the expression log s s = log b s + a 1 (expression 2) to the maximum observation speed relationship so that the error for all observation records is minimized by the least square method. And
(B) Regarding the relationship between the maximum acceleration or maximum velocity u b p of underground P wave and the maximum acceleration or maximum velocity u b s of underground S wave, observation of underground P wave and underground S wave for each observation point By fitting the equation log b s = logu b p + a 2 (Equation 7) with respect to the relationship between the maximum acceleration or the observed maximum velocity, the parameter a 2 Decide
(C) A parameter of an expression log s s = logu b p + a (expression 9) indicating the relationship between the maximum acceleration or maximum velocity of the underground P wave and the surface S wave obtained from the expression (2) and the expression (7). a is determined by a = a 1 + a 2 , and the maximum acceleration or maximum velocity u s s of the surface S wave is directly calculated from the maximum acceleration or maximum velocity u b p of the underground P wave using the above equation (9). Prediction method for ground motion using underground ground motion, characterized by dynamic prediction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013178187A JP6177628B2 (en) | 2013-08-29 | 2013-08-29 | Immediate ground motion prediction method using underground ground motion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013178187A JP6177628B2 (en) | 2013-08-29 | 2013-08-29 | Immediate ground motion prediction method using underground ground motion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015045616A JP2015045616A (en) | 2015-03-12 |
JP6177628B2 true JP6177628B2 (en) | 2017-08-09 |
Family
ID=52671220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013178187A Expired - Fee Related JP6177628B2 (en) | 2013-08-29 | 2013-08-29 | Immediate ground motion prediction method using underground ground motion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6177628B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6559578B2 (en) * | 2016-01-06 | 2019-08-14 | 中部電力株式会社 | Method for estimating maximum amplitude of main motion of earthquake, maximum amplitude estimation program, and computer-readable recording medium recording maximum amplitude estimation program |
TWI661214B (en) * | 2016-11-29 | 2019-06-01 | National Applied Research Laboratories | On-site earthquake early warning system and method thereof accommodating automatic site effect calibration |
JP7015523B2 (en) * | 2017-11-10 | 2022-02-15 | 有限会社日新情報 | Earthquake warning system |
JP7318195B2 (en) | 2018-10-30 | 2023-08-01 | セイコーエプソン株式会社 | Display system, display device and display method |
JP7503023B2 (en) | 2021-04-26 | 2024-06-19 | 公益財団法人鉄道総合技術研究所 | Earthquake motion estimation device and earthquake motion estimation method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06160541A (en) * | 1992-11-16 | 1994-06-07 | Omron Corp | Gas-blast circuit breaker |
JPH11231064A (en) * | 1998-02-12 | 1999-08-27 | Osaka Gas Co Ltd | Earthquake motion estimating method |
JP4253435B2 (en) * | 2000-11-30 | 2009-04-15 | 東京電力株式会社 | Method and apparatus for estimating seismic intensity |
JP2003287574A (en) * | 2002-03-28 | 2003-10-10 | System Soft Corp | System, method and program for predicting earthquake damage |
JP4385948B2 (en) * | 2005-01-11 | 2009-12-16 | 大成建設株式会社 | Real-time earthquake response waveform estimation method using real-time earthquake information |
JP4491399B2 (en) * | 2005-10-13 | 2010-06-30 | Okiセミコンダクタ株式会社 | Earthquake disaster prevention system |
JP2008039446A (en) * | 2006-08-02 | 2008-02-21 | Kajima Corp | Earthquake damage evaluation program |
JP2008096203A (en) * | 2006-10-10 | 2008-04-24 | National Research Institute For Earth Science & Disaster Provention | Information receiver, non-seismograph information receiver using the same, or information receiving system using the information receiver |
JP5009076B2 (en) * | 2007-07-30 | 2012-08-22 | 鹿島建設株式会社 | Earthquake early warning system |
JP5313706B2 (en) * | 2009-01-27 | 2013-10-09 | 大成建設株式会社 | Earthquake motion waveform estimation method |
-
2013
- 2013-08-29 JP JP2013178187A patent/JP6177628B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015045616A (en) | 2015-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Furumura et al. | Anomalous propagation of long-period ground motions recorded in Tokyo during the 23 October 2004 M w 6.6 Niigata-ken Chuetsu, Japan, Earthquake | |
Dybing et al. | Characteristics and spatial variability of wind noise on near‐surface broadband seismometers | |
JP6177628B2 (en) | Immediate ground motion prediction method using underground ground motion | |
Jolly et al. | Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence | |
Çelebi et al. | Responses of two tall buildings in Tokyo, Japan, before, during, and after the M9. 0 Tohoku Earthquake of 11 March 2011 | |
Honda et al. | A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net | |
Goda et al. | Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios | |
Suwa et al. | Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan | |
Furumura et al. | Development of long-period ground motions from the Nankai Trough, Japan, earthquakes: Observations and computer simulation of the 1944 Tonankai (Mw 8.1) and the 2004 SE Off-Kii Peninsula (Mw 7.4) earthquakes | |
Wen et al. | Strong‐motion observations of the Lushan earthquake on 20 April 2013 | |
Stabile et al. | A comprehensive approach for evaluating network performance in surface and borehole seismic monitoring | |
Pamuk et al. | 3D bedrock structure of Bornova plain and its surroundings (İzmir/western Turkey) | |
Büyüksaraç et al. | Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements | |
Pribadi et al. | Characteristics of Earthquake-Generated Tsunamis in Indonesia Based on Source Parameter Analysis. | |
Pamuk et al. | Soil characterization of Bornova Plain (Izmir, Turkey) and its surroundings using a combined survey of MASW and ReMi methods and Nakamura’s (HVSR) technique | |
Czarny et al. | Monitoring velocity changes caused by underground coal mining using seismic noise | |
Cao et al. | Offshore fault geometrics in the Pearl River Estuary, southeastern China: Evidence from seismic reflection data | |
Hartzell et al. | Seismic site characterization of an urban sedimentary basin, Livermore valley, California: Site response, basin‐edge‐induced surface waves, and 3D simulations | |
Matsumoto et al. | Analysis of pressure and acceleration signals from the 2011 Tohoku earthquake observed by the DONET seafloor network | |
Li et al. | Subsurface fault damage zone of the 2014 M w 6.0 South Napa, California, earthquake viewed from fault‐zone trapped waves | |
Kumar et al. | Earthquake genesis and earthquake early warning systems: challenges and a way forward | |
Xie et al. | Rupture directivity effects on strong ground motion during the 15 April 2016 M W 7.0 Kumamoto earthquake in Japan | |
Danilov | The structure of the Onega downthrown block and adjacent geological objects according to the microseismic sounding method | |
Cho | Compensating for the impact of incoherent noise in the spatial autocorrelation microtremor array method | |
Alkan et al. | Seismic Hazard Implications in and Around the Yedisu Seismic Gap (Eastern Türkiye) Based on Coulomb Stress Changes, b-Values, and S-wave Velocity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6177628 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |