JP2012234924A - Manufacturing method of semiconductor epi wafer and gallium arsenic substrate - Google Patents
Manufacturing method of semiconductor epi wafer and gallium arsenic substrate Download PDFInfo
- Publication number
- JP2012234924A JP2012234924A JP2011101511A JP2011101511A JP2012234924A JP 2012234924 A JP2012234924 A JP 2012234924A JP 2011101511 A JP2011101511 A JP 2011101511A JP 2011101511 A JP2011101511 A JP 2011101511A JP 2012234924 A JP2012234924 A JP 2012234924A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor
- manufacturing
- grown
- chamfered portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、有機金属気相成長法においてフェイスダウンで半導体結晶を成長する半導体エピウェハの製造方法及びガリウム砒素基板に関する。 The present invention relates to a method for manufacturing a semiconductor epi-wafer and a gallium arsenide substrate in which a semiconductor crystal is grown face-down in metal organic vapor phase epitaxy.
MOVPE(Metal−Organic Vaper Phase Epitaxy;有機金属気相成長法)は、原料として有機金属やガスを用いた結晶成長法である。 MOVPE (Metal-Organic Vapor Phase Epitaxy) is a crystal growth method using an organic metal or gas as a raw material.
この方法は化合物半導体結晶を成長するのに用いられ、原子層オーダで膜厚を制御することができるため、半導体レーザダイオード、発光ダイオードを初めとするナノテクノロジといった数nmの膜厚制御が必要な分野で用いられる。 This method is used to grow compound semiconductor crystals, and the film thickness can be controlled on the atomic layer order. Therefore, it is necessary to control the film thickness of several nanometers such as nanotechnology such as semiconductor laser diodes and light emitting diodes. Used in the field.
代表的な半導体結晶成長装置であるMBE(Molecular Beam Epitaxy;分子線エピタキシ法)と比較し、面内での膜厚の偏差が少なく、高速成長が可能であるほか、超高真空を必要としないために装置の大型化が容易であり、大量生産用の結晶成長装置として、半導体レーザダイオード、発光ダイオードなど光デバイス、パワーアンプなどの電子デバイスの結晶成長に多く用いられている。 Compared to MBE (Molecular Beam Epitaxy), which is a typical semiconductor crystal growth device, there is less in-plane film thickness deviation, high-speed growth is possible, and no ultra-high vacuum is required. Therefore, it is easy to increase the size of the apparatus, and as a crystal growth apparatus for mass production, it is widely used for crystal growth of optical devices such as semiconductor laser diodes and light emitting diodes and electronic devices such as power amplifiers.
図5に、MOVPEにより基板上に化合物半導体結晶を作製するためのMOVPE装置50を示す。 FIG. 5 shows an MOVPE apparatus 50 for producing a compound semiconductor crystal on a substrate by MOVPE.
MOVPEは化合物半導体の作製において、III族元素のIn(インジウム)の原料としてTMI(Tri−Methyl−Indium)や、Ga(ガリウム)の原料としてTMG(Tri−Methyl−Gallium)、Al(アルミニウム)の原料としてTMA(Tri−Methyl−Aluminum)等の有機金属原料51を用いる。 MOVPE is a TMI (Tri-Methyl-Indium) source material for group III elements In (indium), a TMG (Tri-Methyl-Gallium) source material for Al (aluminum), and a Ga (gallium) source material. An organometallic raw material 51 such as TMA (Tri-Methyl-Aluminum) is used as the raw material.
V族の原料ガス52にはAs(砒素)の水素化物であるAsH3(アルシン)や、P(燐)の水素化物であるPH3(ホスフィン)、N(窒素)の水素化物であるNH3(アンモニア)など特殊高圧ガスを利用する。 The group V source gas 52 includes AsH 3 (arsine) which is a hydride of As (arsenic), PH 3 (phosphine) which is a hydride of P (phosphorus), and NH 3 which is a hydride of N (nitrogen). Use special high-pressure gas such as ammonia.
有機金属原料51は常温では液体・固体であるが、飽和蒸気圧が高い性質を利用して恒温槽で温度を一定に保った原料中にH2やN2をキャリアガス53として用いてバブリングすることで、結晶成長に十分な量の成長用原料を、安定したガス流量で成長基板に供給することができる。 Although the organometallic raw material 51 is liquid or solid at normal temperature, it is bubbled using H 2 or N 2 as the carrier gas 53 in the raw material kept at a constant temperature in a thermostatic bath using the property of high saturated vapor pressure. Thus, a sufficient amount of growth raw material for crystal growth can be supplied to the growth substrate at a stable gas flow rate.
これら有機金属原料51とV族の原料ガス52とキャリアガス53とが混合された原料ガスがインジェクタ54から噴き出して、ヒータ55で加熱された基板(ガリウム砒素基板)56に達すると、分解・化学反応を起こし、結晶情報を引き継いで半導体結晶が成長する。原料ガスの流量比・温度・圧力などを変えることによって様々な組成・物性・構造を持つ半導体を作ることができる。 When the source gas in which the organometallic source 51, the group V source gas 52, and the carrier gas 53 are mixed is ejected from the injector 54 and reaches the substrate (gallium arsenide substrate) 56 heated by the heater 55, decomposition and chemistry occur. A semiconductor crystal grows by reacting and taking over crystal information. Semiconductors with various compositions, physical properties, and structures can be made by changing the flow rate ratio, temperature, and pressure of the source gas.
基板56の両面の周縁部57には、図6に示すように、研磨工程や搬送時の些細な衝撃での割れ・欠けを防止するための面取部58が、例えばテーパ角15°、テーパ長さ120〜180μmで形成されている。 As shown in FIG. 6, chamfered portions 58 for preventing cracks and chips due to slight impacts during the polishing process and conveyance are provided at the peripheral portions 57 on both surfaces of the substrate 56, for example, with a taper angle of 15 °. The length is 120 to 180 μm.
このような基板56を均熱板59とともに、ディスク60のサセプタ61にセットする場合、基板56の面の向きは、オモテ面(成長面62)を上にして成長する場合(フェイスアップ)と、オモテ面を下にして成長する場合(フェイスダウン)がある。 When such a substrate 56 is set on the susceptor 61 of the disk 60 together with the soaking plate 59, the direction of the surface of the substrate 56 is the case where the front surface (growth surface 62) is grown up (face up), There is a case of growing up face down (face down).
フェイスダウンで成長する場合、従来技術では、基板56を支持し、落下を防止するために、サセプタ61に設けられたツメ部63を使用しており、図5〜7に示すように、基板56の端面(周縁部57)において成長面62がツメ部63に掛かるようにして、数箇所(図7では3箇所)のツメ部63で基板56の端面を引っ掛けて支持する設計となっていた。 In the case of growing face down, in the prior art, a claw portion 63 provided on the susceptor 61 is used to support the substrate 56 and prevent the substrate 56 from falling, and as shown in FIGS. The end face of the substrate 56 is designed to be hooked and supported by several (three in FIG. 7) claw portions 63 so that the growth surface 62 is hooked on the claw portion 63 at the end surface (peripheral portion 57).
ところで、従来技術では基板56の支持に使用するツメ部63が、図6に示すように基板の成長面62であるオモテ面に掛かるようにしているため、ツメ部63に掛かるオモテ面は未成長領域となる問題がある。 In the prior art, the claw portion 63 used to support the substrate 56 is placed on the front surface, which is the growth surface 62 of the substrate, as shown in FIG. 6, so that the front surface applied to the claw portion 63 is not grown. There is a problem that becomes an area.
また、ツメ部63の周囲1〜5mm程度の成長面62上においても原料の供給が阻害され、半導体結晶の面内分布(厚さ分布など)を悪化させる原因となっており、特に4インチサイズ以上の基板56を用いる場合に問題であった。 In addition, the supply of the raw material is hindered even on the growth surface 62 around 1 to 5 mm around the claw portion 63, which causes the in-plane distribution (thickness distribution, etc.) of the semiconductor crystal to deteriorate, particularly in the 4-inch size. This is a problem when the above substrate 56 is used.
本発明は上記課題を解決するためになされたものであり、基板をフェイスダウンに保持してMOVPEで半導体結晶を成長するに際し、半導体結晶の未成長領域を無くすと共に基板への原料供給の阻害を低減することを目的とするものである。 The present invention has been made to solve the above-described problems. When a semiconductor crystal is grown by MOVPE while holding the substrate face-down, an ungrown region of the semiconductor crystal is eliminated and the supply of the raw material to the substrate is inhibited. The purpose is to reduce.
上記目的を達成するために本発明は、加熱した基板上に原料ガスを供給し、前記基板上に半導体結晶を成長させる半導体エピウェハの製造方法において、前記基板は、前記半導体結晶が成長される成長面側の周縁部に面取部を有しており、フェイスダウンで、かつ前記面取部のみが保持され、前記半導体結晶は、前記基板の成長面を下方に向けて成長される方法である。 In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor epi-wafer by supplying a source gas on a heated substrate and growing a semiconductor crystal on the substrate, wherein the substrate is grown by growing the semiconductor crystal. This is a method in which a chamfered portion is provided on the peripheral edge of the surface side, the face is down, and only the chamfered portion is held, and the semiconductor crystal is grown with the growth surface of the substrate facing downward. .
前記基板は、前記成長面側の周縁部にのみテーパ加工により形成された前記面取部を有し、前記面取部のテーパ角が13°以上17°以下、テーパ長さが900μm以上1400μm以下であると良い。 The substrate has the chamfered portion formed by taper processing only at the peripheral portion on the growth surface side, the taper angle of the chamfered portion is 13 ° to 17 °, and the taper length is 900 μm to 1400 μm. Good to be.
前記基板は、サセプタに設けられたツメ部により、前記面取部の全周が保持されると良い。 It is preferable that the entire circumference of the chamfered portion is held by a claw portion provided on the susceptor.
また本発明は、半導体結晶が成長される成長面側の周縁部にのみテーパ加工により形成された面取部を有するガリウム砒素基板である。 Further, the present invention is a gallium arsenide substrate having a chamfered portion formed by taper processing only at a peripheral portion on a growth surface side on which a semiconductor crystal is grown.
前記ガリウム砒素基板は、4インチサイズ以上の円形状であり、かつ前記面取部のテーパ角が13°以上17°以下、テーパ長さが900μm以上1400μm以下であると良い。 The gallium arsenide substrate may have a circular shape with a size of 4 inches or more, a taper angle of the chamfered portion of 13 ° to 17 °, and a taper length of 900 μm to 1400 μm.
本発明によれば、基板をフェイスダウンに保持してMOVPEで半導体結晶を成長するに際し、半導体結晶の未成長領域を無くすと共に基板への原料供給の阻害を低減できる。 According to the present invention, when a semiconductor crystal is grown by MOVPE while holding the substrate face-down, an ungrown region of the semiconductor crystal can be eliminated and the inhibition of the supply of the raw material to the substrate can be reduced.
以下に、本発明の好適な実施の形態について図面に基づき説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図1は、本実施の形態を示す部分断面図であり、基板をMOVPE装置のサセプタでフェイスダウンに保持する方法を説明する図である。 FIG. 1 is a partial cross-sectional view showing the present embodiment, and is a diagram for explaining a method of holding a substrate face down by a susceptor of an MOVPE apparatus.
図1に示すように、本実施の形態に係る半導体エピウェハの製造方法では、化合物半導体の結晶成長用の基板11を、半導体結晶が成長される成長面12を下方に向けてフェイスダウンに、サセプタ61に設けられたツメ部13で保持する。基板11の上方には、均熱板59を配置する。 As shown in FIG. 1, in the method for manufacturing a semiconductor epiwafer according to the present embodiment, a substrate 11 for crystal growth of a compound semiconductor is placed face down with a growth surface 12 on which a semiconductor crystal is grown facing downward. It is held by the claw portion 13 provided at 61. A soaking plate 59 is disposed above the substrate 11.
基板11は、厚さ450μm、4インチサイズの円形状を有するガリウム砒素基板であり、周縁部14の一部にオリエンテーションフラットが形成されているものを用いる。なお、本発明では4インチサイズ以上のガリウム砒素基板を使用することもできる。 The substrate 11 is a gallium arsenide substrate having a circular shape with a thickness of 450 μm and 4 inches, and a substrate having an orientation flat formed on a part of the peripheral edge portion 14 is used. In the present invention, a gallium arsenide substrate having a size of 4 inches or more can also be used.
また基板11は、成長面12側の周縁部14にのみテーパ加工により形成される面取部15を有しており、サセプタ61に設けられたツメ部13で面取部15のみを保持することで(すなわち、面取部15のみにツメが掛かるようにして)、半導体結晶が成長面12を下方に向けて成長されるようにする。なお、本発明では成長面12とは反対側の面(ウラ面)にもテーパ加工を施した基板を用いることもできるが、成長面12側にのみ面取部15が形成された基板11では、半導体結晶を成長させた後のバックラップ(ウラ面研磨)工程において周縁部14でのチッピング・割れの発生を低減できるため好適である。 Further, the substrate 11 has a chamfered portion 15 formed by taper processing only at the peripheral edge portion 14 on the growth surface 12 side, and the claw portion 13 provided on the susceptor 61 holds only the chamfered portion 15. (That is, only the chamfered portion 15 is clawed) so that the semiconductor crystal is grown with the growth surface 12 facing downward. In the present invention, it is possible to use a substrate on which the surface opposite to the growth surface 12 (back surface) is tapered, but in the substrate 11 in which the chamfered portion 15 is formed only on the growth surface 12 side. It is preferable because the occurrence of chipping / cracking at the peripheral portion 14 can be reduced in the back lapping (back surface polishing) step after the semiconductor crystal is grown.
図2,3に、テーパ加工により基板11の周縁部14に形成される面取部15の形状・寸法の例を示している。本実施の形態では、図2に示すように、厚さ450μmの4インチサイズの基板11に対し、テーパ長さ1000μm、テーパ高さ225μmで、テーパ角が約12.68°となるように面取部15を形成する。ただし、より好ましくは、例えば図3に示すようにテーパ長さ900μm以上1400μm以下、テーパ角13°以上17°以下の範囲内で面取部15を形成すると良い。このようにされることで、基板11の直径のバラツキを±0.3mm、ツメ部13の機械加工の精度を±0.5mmと仮定しても、基板11が落下しないようにすることができる。 2 and 3 show examples of the shape and dimensions of the chamfered portion 15 formed on the peripheral edge portion 14 of the substrate 11 by taper processing. In the present embodiment, as shown in FIG. 2, a surface of the substrate 11 having a taper length of 1000 μm, a taper height of 225 μm, and a taper angle of about 12.68 ° with respect to a substrate 11 having a thickness of 450 μm. A catch portion 15 is formed. However, more preferably, for example, as shown in FIG. 3, the chamfered portion 15 may be formed within a taper length of 900 μm to 1400 μm and a taper angle of 13 ° to 17 °. By doing so, it is possible to prevent the substrate 11 from falling even if the variation in the diameter of the substrate 11 is assumed to be ± 0.3 mm and the accuracy of machining of the claw portion 13 is assumed to be ± 0.5 mm. .
以上の条件を満たす基板11(ガリウム砒素基板)が、本発明のエピウェハの製造方法に使用するのに好適である。 A substrate 11 (gallium arsenide substrate) that satisfies the above conditions is suitable for use in the epiwafer manufacturing method of the present invention.
本実施の形態では面取部15を保持するツメ部13の形状を、図4に示すように、基板11のオモテ面(成長面12)には掛からずに、かつ基板11が落ちない程度に極力小さく(厚さを薄く)する。その一方で、厚さを薄くすることで低下する強度を補うべく、基板11の全周を保持できるように、基板11の外周形状に合わせた形状とする。 In the present embodiment, as shown in FIG. 4, the shape of the claw portion 13 that holds the chamfered portion 15 does not hang on the front surface (growth surface 12) of the substrate 11 and does not drop the substrate 11. Make it as small as possible (thinner). On the other hand, in order to compensate for the strength that is reduced by reducing the thickness, the shape of the outer periphery of the substrate 11 is adjusted so that the entire periphery of the substrate 11 can be maintained.
このような基板11をサセプタ61のツメ部13に保持させ、図5に示したようなMOVPE装置50にセットし、基板11を均熱板59を介してヒータ55で加熱しつつ、有機金属原料51とV族の原料ガス52とキャリアガス53とを供給することで、原料ガスが基板上で分解・化学反応して半導体結晶が成長し、半導体エピウェハが製造される。 Such a substrate 11 is held by the claw portion 13 of the susceptor 61 and set in the MOVPE apparatus 50 as shown in FIG. 5, and the substrate 11 is heated by the heater 55 via the heat equalizing plate 59, and the organometallic raw material By supplying the source gas 51 and the group V source gas 52 and the carrier gas 53, the source gas is decomposed and chemically reacted on the substrate to grow a semiconductor crystal, and a semiconductor epi-wafer is manufactured.
以上のように、本発明においては、MOVPEにより半導体エピウェハを製造するに際し、半導体結晶を成長させる成長面側の周縁部に面取部を形成した基板を用い、フェイスダウンで、かつ面取部のみを保持し、基板の成長面を下方に向けて半導体結晶を成長させるようにする。 As described above, in the present invention, when a semiconductor epi-wafer is manufactured by MOVPE, a substrate in which a chamfered portion is formed at the peripheral portion on the growth surface side on which a semiconductor crystal is grown is used, face-down and only the chamfered portion. The semiconductor crystal is grown with the growth surface of the substrate facing downward.
このようにされることで、従来方法ではサセプタのツメ部が掛かることで未成長領域となっていた部分を無くし、基板の成長面全体で半導体結晶を成長させることができる。また、基板の成長面がより下方側に位置するようになるため、原料ガスの供給がツメ部に阻害されることを抑制することができる。 By doing so, it is possible to eliminate the portion which has become an ungrown region due to the claw portion of the susceptor in the conventional method, and to grow the semiconductor crystal over the entire growth surface of the substrate. In addition, since the growth surface of the substrate is positioned on the lower side, it is possible to suppress the supply of the source gas from being hindered by the claw portion.
さらに、サセプタのツメ部を、基板の面取部の全周を保持するような形状としたときには、ツメ部の強度を保ちつつ極力小さくする(薄くする)ことができるようになり、ツメ部による原料供給の阻害をより抑制できる。 Furthermore, when the claw portion of the susceptor is shaped so as to hold the entire circumference of the chamfered portion of the substrate, the claw portion can be made as small as possible (thinner) while maintaining the strength of the claw portion. Inhibition of raw material supply can be further suppressed.
さらにまた、基板の成長面側にのみ面取部を形成する場合には、両面に面取部を形成する従来の基板と比較して端面が鈍く厚くなるため、半導体結晶を成長させた後の基板のウラ面研磨工程(バックラップ工程)において、鋭い端面で発生しやすいチッピング・割れを低減することもできる。 Furthermore, when the chamfered portion is formed only on the growth surface side of the substrate, the end surface becomes dull and thick as compared with the conventional substrate in which the chamfered portion is formed on both sides. It is also possible to reduce chipping / cracking that is likely to occur at a sharp end face in the back surface polishing step (back wrap step) of the substrate.
本発明は上記実施の形態に限られるものではなく、種々の変更を加え得ることは言うまでもない。 It goes without saying that the present invention is not limited to the above embodiment, and various modifications can be made.
11 基板
12 成長面
14 周縁部
15 面取部
11 Substrate 12 Growth surface 14 Edge 15 Chamfer
Claims (5)
前記基板は、前記半導体結晶が成長される成長面側の周縁部に面取部を有しており、フェイスダウンで、かつ前記面取部のみが保持され、
前記半導体結晶は、前記基板の成長面を下方に向けて成長されることを特徴とする半導体エピウェハの製造方法。 In a method for manufacturing a semiconductor epi-wafer by supplying a source gas onto a heated substrate and growing a semiconductor crystal on the substrate,
The substrate has a chamfered portion at the peripheral portion on the growth surface side on which the semiconductor crystal is grown, face-down, and only the chamfered portion is held,
The method of manufacturing a semiconductor epi-wafer, wherein the semiconductor crystal is grown with a growth surface of the substrate facing downward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011101511A JP2012234924A (en) | 2011-04-28 | 2011-04-28 | Manufacturing method of semiconductor epi wafer and gallium arsenic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011101511A JP2012234924A (en) | 2011-04-28 | 2011-04-28 | Manufacturing method of semiconductor epi wafer and gallium arsenic substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012234924A true JP2012234924A (en) | 2012-11-29 |
Family
ID=47434974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011101511A Withdrawn JP2012234924A (en) | 2011-04-28 | 2011-04-28 | Manufacturing method of semiconductor epi wafer and gallium arsenic substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012234924A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015101221A1 (en) * | 2014-11-26 | 2016-06-02 | Von Ardenne Gmbh | Substrate holding device, substrate transport device, processing device and method for processing a substrate |
WO2018216226A1 (en) * | 2017-05-26 | 2018-11-29 | アドバンストマテリアルテクノロジーズ株式会社 | Film-forming device and film-forming method |
US10770324B2 (en) | 2014-11-26 | 2020-09-08 | VON ARDENNE Asset GmbH & Co. KG | Substrate holding device, substrate transport device, processing arrangement and method for processing a substrate |
TWI757781B (en) * | 2020-07-06 | 2022-03-11 | 大陸商蘇州雨竹機電有限公司 | Chemical vapor deposition reaction chamber and substrate carrier device thereof |
-
2011
- 2011-04-28 JP JP2011101511A patent/JP2012234924A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015101221A1 (en) * | 2014-11-26 | 2016-06-02 | Von Ardenne Gmbh | Substrate holding device, substrate transport device, processing device and method for processing a substrate |
US10770324B2 (en) | 2014-11-26 | 2020-09-08 | VON ARDENNE Asset GmbH & Co. KG | Substrate holding device, substrate transport device, processing arrangement and method for processing a substrate |
WO2018216226A1 (en) * | 2017-05-26 | 2018-11-29 | アドバンストマテリアルテクノロジーズ株式会社 | Film-forming device and film-forming method |
JPWO2018216226A1 (en) * | 2017-05-26 | 2020-03-26 | アドバンストマテリアルテクノロジーズ株式会社 | Film forming apparatus and film forming method |
TWI757781B (en) * | 2020-07-06 | 2022-03-11 | 大陸商蘇州雨竹機電有限公司 | Chemical vapor deposition reaction chamber and substrate carrier device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8274087B2 (en) | Nitride semiconductor substrate and manufacturing method of the same | |
JP5697246B2 (en) | Epitaxial growth susceptor, epitaxial growth apparatus using the same, and epitaxial growth method using the same | |
US9194055B2 (en) | Nitride semiconductor substrate | |
US20070045662A1 (en) | Substrate for film growth of group iii nitrides, method of manufacturing the same, and semiconductor device using the same | |
JP2007153712A (en) | Free-standing gallium nitride single crystal substrate and its manufacturing method | |
US10472715B2 (en) | Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer | |
WO2008024932A2 (en) | Hotwall reactor and method for reducing particle formation in gan mocvd | |
JP2007335484A (en) | Nitride semiconductor wafer | |
JP2012234924A (en) | Manufacturing method of semiconductor epi wafer and gallium arsenic substrate | |
JP2009167057A (en) | Method for manufacturing nitride semiconductor substrate | |
JP5904101B2 (en) | Compound semiconductor manufacturing apparatus and wafer holder | |
JP2009208991A (en) | Method for producing nitride semiconductor substrate | |
US8992684B1 (en) | Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials | |
JP2007273660A (en) | Vapor phase growth device | |
EP2065489A1 (en) | PROCESS FOR PRODUCING GaN SINGLE-CRYSTAL, GaN THIN-FILM TEMPLATE SUBSTRATE AND GaN SINGLE-CRYSTAL GROWING APPARATUS | |
KR20150052246A (en) | Epitaxial wafer and method for producing same | |
KR101335937B1 (en) | Method for fabricating gan wafer using llo(laser lift-off) process | |
TW472299B (en) | III-V compound semiconductor | |
JP4844086B2 (en) | Semiconductor manufacturing method and satellite | |
JP6250368B2 (en) | Method for manufacturing free-standing substrate and free-standing substrate | |
JP5490597B2 (en) | Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth | |
JP4096678B2 (en) | Semiconductor crystal film growth equipment | |
JP2005057064A (en) | Group iii nitride semiconductor layer and growth method thereof | |
JP2012174731A (en) | Vapor phase deposition method and compound semiconductor film formed by vapor phase deposition method | |
JP3104677B2 (en) | Group III nitride crystal growth equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140701 |