JP5490597B2 - Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth - Google Patents

Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth Download PDF

Info

Publication number
JP5490597B2
JP5490597B2 JP2010088821A JP2010088821A JP5490597B2 JP 5490597 B2 JP5490597 B2 JP 5490597B2 JP 2010088821 A JP2010088821 A JP 2010088821A JP 2010088821 A JP2010088821 A JP 2010088821A JP 5490597 B2 JP5490597 B2 JP 5490597B2
Authority
JP
Japan
Prior art keywords
substrate
susceptor
growth
outer peripheral
growth substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010088821A
Other languages
Japanese (ja)
Other versions
JP2011222670A (en
Inventor
進一 田中
智昭 児玉
睦 森田
正之 金近
政幸 牧嶋
泰郎 近郷
利幸 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010088821A priority Critical patent/JP5490597B2/en
Publication of JP2011222670A publication Critical patent/JP2011222670A/en
Application granted granted Critical
Publication of JP5490597B2 publication Critical patent/JP5490597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体結晶のエピタキシャル成長を行う気相成長装置に関する。   The present invention relates to a vapor phase growth apparatus that performs epitaxial growth of a semiconductor crystal.

エピタキシャル成長(気相成長)を行う結晶成長装置は、その反応容器(リアクタ)内に導入された反応ガス(材料ガス)が加熱された半導体結晶成長用の基板(ウエハ、成長基板)上で熱分解反応して、化合物やその固溶体結晶となり、その時、基板の結晶面方位を維持したまま同じ結晶面の単結晶層が該基板上に成長するようにした気相成長装置である。   A crystal growth apparatus for performing epitaxial growth (vapor phase growth) is pyrolyzed on a semiconductor crystal growth substrate (wafer, growth substrate) in which a reaction gas (material gas) introduced into the reaction vessel (reactor) is heated. It is a vapor phase growth apparatus in which a single crystal layer having the same crystal plane grows on the substrate while maintaining the crystal plane orientation of the substrate while reacting to become a compound or a solid solution crystal thereof.

気相成長反応装置のうち、たとえば、2フローリアクタでは、ウエハ上の材料ガスの層流と押さえガス流の合成流で成膜ガス流が形成され、材料ガスは基板と平行に、かつ直上に流される(特許文献1、参照)。その結果、材料ガスが基板に押し付けられるように流れる。この2つのガス流(フロー)構成により、例えば、GaN結晶成長において、材料ガスが基板上で高温(1000℃程度)になり約4.5倍の体積膨張が起こっても、基板上で安定的な材料ガス流が保たれる。   Among the vapor phase growth reactors, for example, in a two-flow reactor, a film forming gas flow is formed by a synthetic flow of a laminar flow of material gas and a holding gas flow on the wafer, and the material gas is parallel to and directly above the substrate. (Refer to Patent Document 1). As a result, the material gas flows so as to be pressed against the substrate. With these two gas flow (flow) configurations, for example, in GaN crystal growth, even if the material gas becomes high temperature (about 1000 ° C.) on the substrate and the volume expansion is about 4.5 times, it is stable on the substrate. Material gas flow is maintained.

図1は従来の2フローリアクタの排気可能な反応容器(図示せず)の内部構造の一例を示す概略断面図である。同図において、11は材料ガスの層流を水平に供給する材料ガスノズルであり、12は材料ガスの層流を押さえる押さえガスを供給する押さえガス噴出器であり、14は回転自在に配置されたサセプタであり、15は基板であり、17はサセプタを輻射加熱する加熱器である。   FIG. 1 is a schematic cross-sectional view showing an example of an internal structure of a reaction vessel (not shown) that can be evacuated in a conventional two-flow reactor. In the figure, 11 is a material gas nozzle that horizontally supplies a laminar flow of material gas, 12 is a pressure gas ejector that supplies a pressure gas that suppresses the laminar flow of material gas, and 14 is rotatably arranged. A susceptor, 15 is a substrate, and 17 is a heater that radiates and heats the susceptor.

図2(a)、(b)に示すように、加熱されるサセプタ14上に基板15を設置して、基板を加熱する気相成長装置において、凹部(ザグリ)を持つサセプタで基板裏面の外周部を支持することにより、凹部底Bから離間した基板15の反りなどに起因する基板のスリップを防止する技術が知られている(特許文献2、参照)。   As shown in FIGS. 2A and 2B, in a vapor phase growth apparatus in which a substrate 15 is placed on a susceptor 14 to be heated and the substrate is heated, the outer periphery of the back surface of the substrate is formed with a susceptor having a recess (counterbore). A technique is known in which the substrate is prevented from slipping due to the warp of the substrate 15 separated from the recess bottom B by supporting the portion (see Patent Document 2).

特開平04−284623JP 04-284623 A 特開平05−238882JP 05-238882

従来技術のサセプタでは、図2(a)、(b)に示すように、基板15の側面とサセプタ14の間に隙間SPを生じているため、図3に示すように、基板15の外周部の隙間SPにて層流ガスフローが乱れ、基板15の外周部に副生成物を生じさせる。その後、その副生成物が、材料ガスフローと共に基板15上の内部へ混入し、ヒロックなどの結晶欠陥部位を発生させる。   In the susceptor of the prior art, as shown in FIGS. 2A and 2B, a gap SP is formed between the side surface of the substrate 15 and the susceptor 14, so that the outer peripheral portion of the substrate 15 as shown in FIG. The laminar gas flow is disturbed by the gap SP, and a by-product is generated in the outer peripheral portion of the substrate 15. Thereafter, the by-product is mixed into the substrate 15 together with the material gas flow to generate crystal defect sites such as hillocks.

従来技術では、基板とサセプタが異種材料からなるため、精度良く基板とサセプタを密着させると熱膨張差により、冷却時に基板割れなどを生じる。このため、基板設置スペースに隙間SPが必要となり、この隙間SPにより、副生成物を発生させてしまう。   In the prior art, since the substrate and the susceptor are made of different materials, if the substrate and the susceptor are brought into close contact with each other with precision, the substrate cracks during cooling due to a difference in thermal expansion. For this reason, the space | interval SP is required in a board | substrate installation space, and a by-product will be generated by this space | gap SP.

従来技術では、基板裏面の外周部でサセプタと接しているため基板外周部の温度が内部とは異なり、基板外周部では、膜の均一性が阻害される。結果、基板を回転させつつ成長しても膜厚均一にならず凹状膜厚分布になる。   In the prior art, since the outer peripheral portion of the back surface of the substrate is in contact with the susceptor, the temperature of the outer peripheral portion of the substrate is different from the inside, and the uniformity of the film is hindered at the outer peripheral portion of the substrate. As a result, even if the substrate is grown while being rotated, the film thickness is not uniform and a concave film thickness distribution is obtained.

そこで本発明は、エピタキシャル層の凹状膜厚分布を抑制し、膜厚均一性を向上させることができ、歩留まりが高い気相成長装置およびその方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a vapor phase growth apparatus and method that can suppress the concave film thickness distribution of the epitaxial layer, improve the film thickness uniformity, and have a high yield.

本発明の気相成長装置は、基板を支持するサセプタと、サセプタの上面に沿って流れる材料ガス流を供給するノズルと、を含む。サセプタは、それぞれが基板と同一材料からなる、サセプタの上面に基板に嵌合する凹状の基板保持部を画定する外周サセプタ部とサセプタの裏面を画定する底面サセプタ部とから構成されていること、外周サセプタ部は、基板の上面と同一平面となる基板保持部を囲む上面を有しかつ、基板保持部を囲む上面が基板の上面の結晶面方位と同一の結晶面方位を有することを特徴とする。   The vapor phase growth apparatus of the present invention includes a susceptor that supports a substrate and a nozzle that supplies a material gas flow that flows along the upper surface of the susceptor. Each of the susceptors is made of the same material as the substrate, and is composed of an outer peripheral susceptor portion that defines a concave substrate holding portion that fits on the upper surface of the susceptor and a bottom surface susceptor portion that defines the back surface of the susceptor, The outer peripheral susceptor portion has an upper surface surrounding the substrate holding portion that is flush with the upper surface of the substrate, and the upper surface surrounding the substrate holding portion has the same crystal plane orientation as the crystal plane orientation of the upper surface of the substrate. To do.

かかる本発明の構成により、基板上に流入するガスフローを乱すことがなくなると共に、副生成物の発生範囲を狭くして外周サセプタ部上に収めることができる。そのため、副生成物の発生箇所と基板との距離が遠くなることでガスフローにより基板上に副生成物流入する可能性が低くなる。特に、外周サセプタ部の材料ガス接触上面を基板と同じ材料かつ、同じ結晶面方位で作製することにより、外周サセプタ部上にも基板同様に結晶成長が行われるためである。基板上に流入する層流ガスフローを乱すことがなくなるので、基板外周部への副生成物の発生および、その混入によるヒロックの発生、ひいては結晶欠陥の発生を抑制することができる。また、従来なし得なかった基板外周部までの均一な膜成長を実現できる。このため、エピタキシャル基板からのLEDチップの歩留まりが向上できる。   According to the configuration of the present invention, the gas flow flowing onto the substrate is not disturbed, and the generation range of by-products can be narrowed and stored on the outer peripheral susceptor portion. Therefore, the possibility that the by-product flows into the substrate by the gas flow is reduced because the distance between the generation site of the by-product and the substrate is increased. This is because the material gas contact upper surface of the outer peripheral susceptor portion is made of the same material and the same crystal plane orientation as the substrate, so that crystal growth is performed on the outer peripheral susceptor portion as well as the substrate. Since the laminar gas flow flowing into the substrate is not disturbed, generation of by-products on the outer peripheral portion of the substrate, generation of hillocks due to the mixture, and hence generation of crystal defects can be suppressed. Further, it is possible to realize uniform film growth up to the outer peripheral portion of the substrate, which could not be achieved conventionally. For this reason, the yield of LED chips from the epitaxial substrate can be improved.

従来では基板異種材料で構成されていたサセプタを、かかる本発明の構成によれば、基板と同じ材料により構成するので、加熱および冷却による熱膨張差がなくなるため加工限界の精度レベルでサセプタと基板とを密着させることができるようになり、結晶成長中、基板とサセプタとの間および、基板裏面に材料ガスが流れ込むことがなく、層流ガスフローの乱れをなくすことができる。   According to the configuration of the present invention, a susceptor that has conventionally been composed of a different material from the substrate is composed of the same material as the substrate. Therefore, there is no difference in thermal expansion due to heating and cooling, so that the susceptor and the substrate can be processed at an accuracy level that is the processing limit. Since the material gas does not flow between the substrate and the susceptor and the back surface of the substrate during crystal growth, disturbance of the laminar gas flow can be eliminated.

本発明のエピタキシャル成長層の製造方法は、成長基板と同一材料からなり、成長基板が嵌合する凹状の基板保持部と、成長基板の上面と同一平面に位置しかつ成長基板の上面の結晶面方位と同一の結晶面方位を有する基板保持部を囲む上面と、を備えたサセプタを気相成長装置に用意する工程と、サセプタの基板保持部に成長基板を載置する工程と、サセプタを加熱し回転させつつ、成長基板上に材料ガスを供給してエピタキシャル成長する工程と、を含むことを特徴とする。かかる本発明の製造方法によれば、基板外周部への副生成物の発生を抑制することができ、ガスフローへの副生成物の流入等を抑制することができる。また、凹状の基板保持部と基板側面に隙間が不要となったことにより、基板裏面への材料ガスの回りこみ、層流ガスフローの乱れがなくなる。さらに、サセプタと成長基板とを同一材料で構成することにより、加工精度限界まで基板保持部においてサセプタと基板を密着させても、基板割れを生じることなく結晶成長ができるようになる。   The method for producing an epitaxial growth layer of the present invention comprises a concave substrate holding part, which is made of the same material as the growth substrate, fits into the growth substrate, and is located on the same plane as the upper surface of the growth substrate, and the crystal plane orientation of the upper surface of the growth substrate A susceptor having a top surface surrounding a substrate holding part having the same crystal plane orientation as in the vapor phase growth apparatus, a step of placing a growth substrate on the substrate holding part of the susceptor, and heating the susceptor And a process of epitaxial growth by supplying a material gas on the growth substrate while rotating. According to this manufacturing method of the present invention, generation of by-products on the outer peripheral portion of the substrate can be suppressed, and inflow of by-products into the gas flow can be suppressed. Further, since the gap between the concave substrate holding portion and the side surface of the substrate is no longer necessary, the material gas flows around the back surface of the substrate and the laminar gas flow is not disturbed. Furthermore, by configuring the susceptor and the growth substrate with the same material, crystal growth can be performed without causing substrate cracking even if the susceptor and the substrate are brought into close contact with each other in the substrate holding portion up to the processing accuracy limit.

従来の2フローリアクタの内部構造を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of the conventional 2 flow reactor. 従来のサセプタおよび基板の概略断面図である。It is a schematic sectional drawing of the conventional susceptor and a board | substrate. 従来の2フローリアクタのサセプタと材料ガスノズルの関係を示す概略上面図である。It is a schematic top view which shows the relationship between the susceptor and material gas nozzle of the conventional 2 flow reactor. 本発明による実施形態の2フローリアクタの内部構造を示す概略断面図である。It is a schematic sectional drawing which shows the internal structure of 2 flow reactor of embodiment by this invention. 本発明による実施形態の2フローリアクタの嵌合サセプタおよび基板の概略断面図である。It is a schematic sectional drawing of the fitting susceptor and board | substrate of 2 flow reactor of embodiment by this invention. 本発明による実施形態の2フローリアクタの嵌合サセプタと材料ガスノズルの関係を示す概略斜視図である。It is a schematic perspective view which shows the relationship between the fitting susceptor and material gas nozzle of 2 flow reactor of embodiment by this invention. 本発明による他の実施形態の2フローリアクタの嵌合サセプタおよび基板の概略断面図である。It is a schematic sectional drawing of the fitting susceptor and board | substrate of 2 flow reactor of other embodiment by this invention.

以下に、本発明による一実施形態の装置について、図面を用いて説明する。   Hereinafter, an apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図4は、横形の成長炉として構成された実施形態の2フローリアクタの排気可能な反応容器(図示せず)の内部構造を示す概略断面図である。同図において、11は材料ガスノズルであり、12は押さえガス噴出器であり、13は押さえガスを受けるためのフロー補助板であり、14aは底面サセプタ部であり、14bは外周サセプタ部であり、15は半導体成長用の基板であり、16は遮熱板であり、17は加熱器であり、20は水冷ジャケットである。図5は、実施形態の2フローリアクタの嵌合サセプタおよび基板の概略断面図である。図6は、かかる2フローリアクタの嵌合サセプタと材料ガスノズルの関係を示す概略斜視図である。   FIG. 4 is a schematic cross-sectional view showing the internal structure of an evacuable reaction vessel (not shown) of the two-flow reactor of the embodiment configured as a horizontal growth furnace. In the figure, 11 is a material gas nozzle, 12 is a holding gas ejector, 13 is a flow auxiliary plate for receiving the holding gas, 14a is a bottom surface susceptor part, and 14b is an outer periphery susceptor part, 15 is a substrate for semiconductor growth, 16 is a heat shield, 17 is a heater, and 20 is a water cooling jacket. FIG. 5 is a schematic cross-sectional view of the fitting susceptor and the substrate of the two-flow reactor of the embodiment. FIG. 6 is a schematic perspective view showing the relationship between the fitting susceptor and the material gas nozzle of the two-flow reactor.

底面サセプタ部14aは円盤形状をしており、その中心に回転軸を持ち、10回/min〜30回/minで回転できる。   The bottom surface susceptor portion 14a has a disk shape, has a rotation shaft at the center thereof, and can be rotated at 10 times / min to 30 times / min.

また、フロー補助板13は、その上面が外周サセプタ部14bと基板の上面と同一平面となるように、底面サセプタ部14aおよび外周サセプタ部14bに取り付けられており一緒に、回転する。また、加熱器17は、底面サセプタ部14a裏面に取り付けられており、外周サセプタ部14bより若干大きく底面サセプタ部14aおよび外周サセプタ部14bを均一な温度に1000℃以上に加熱できる。加熱器17の近傍には、熱電対が設置され、その値から温度制御して底面サセプタ部14aおよび外周サセプタ部14bを設定温度に加熱する。なお、基板15を保持する底面サセプタ部14aおよび外周サセプタ部14bは嵌合サセプタと呼ぶこととして、後に詳述する。   Further, the flow auxiliary plate 13 is attached to the bottom surface susceptor portion 14a and the outer periphery susceptor portion 14b and rotates together so that the upper surface thereof is flush with the outer periphery susceptor portion 14b and the upper surface of the substrate. Moreover, the heater 17 is attached to the back surface of the bottom surface susceptor portion 14a, and can slightly heat the bottom surface susceptor portion 14a and the outer periphery susceptor portion 14b to a uniform temperature to 1000 ° C. or higher. A thermocouple is installed in the vicinity of the heater 17, and the temperature is controlled from the value to heat the bottom surface susceptor portion 14 a and the outer peripheral susceptor portion 14 b to a set temperature. The bottom surface susceptor portion 14a and the outer peripheral susceptor portion 14b that hold the substrate 15 are referred to as fitting susceptors and will be described in detail later.

遮熱板16は、加熱器17の外周に位置し、加熱器の輻射熱でノズル11が加熱されないように遮断する。なお、遮熱板16の外周に水冷ジャケット20が設けると更に断熱性は向上する。また、水冷ジャケット20の上端はフロー補助板13の直下まで延長されている。但し、フロー補助板13の回転を妨げないように僅かな隙間を設けてある。   The heat shield plate 16 is located on the outer periphery of the heater 17 and blocks the nozzle 11 from being heated by the radiant heat of the heater. If the water cooling jacket 20 is provided on the outer periphery of the heat shield plate 16, the heat insulation is further improved. Further, the upper end of the water cooling jacket 20 is extended to just below the auxiliary flow plate 13. However, a slight gap is provided so as not to prevent the rotation of the flow auxiliary plate 13.

一般にGaN系エピタキシャル結晶成長は、材料分解位置が基板に近いほうが良質な結晶が成長する。これは、AlGaInP、AlGaAsなどが800℃程度で成長するのに対してGaN系結晶では1050℃と高温で成長するため、従来のMOCVD装置と同様な熱設計では材料分解が基板遠方の上流で開始されるので、材料の枯渇による成膜エリアが減少する問題や、基板上への不活性結晶種が飛来し結晶性が低下する問題が発生することを防止するためである。   In general, in GaN-based epitaxial crystal growth, better quality crystals grow when the material decomposition position is closer to the substrate. This is because AlGaInP, AlGaAs, etc. grow at about 800 ° C, whereas GaN-based crystals grow at a high temperature of 1050 ° C, so material decomposition starts upstream far from the substrate in a thermal design similar to conventional MOCVD equipment. Therefore, it is possible to prevent the problem that the film forming area is reduced due to the material depletion and the problem that the crystallinity is lowered due to the inactive crystal seed flying on the substrate.

GaN結晶の結合エネルギーは高く、結晶の融点は2500℃以上である。そのため、基板表面で材料ガス(例えばTMGaとNH)が分解生成した結晶種(GaN最小単位)が、結晶成長面の安定サイトに移動し、結合する時間を長くするために、結晶成長温度が約1050℃と高くなる。また、同理由により基板成長面以外の低温部で生成した結晶種(不活性結晶種)は、ただちにエネルギーを失うため結晶成長に寄与できない(再加熱しても十分なエネルギーに達しない)。または、多結晶の核などになり結晶成長を阻害する。一方、TMGaなどの有機金属化合物の分解温度は約400℃〜450℃と低い。そのため、400℃〜450℃のガス材料分解熱の温度分布(ガス材料分解熱等温度線)が基板より離れていると、成長速度が遅くなったり、基板全面に結晶成長できなったり、結晶性が低下する。以上より、GaN系結晶の成長においては、材料ガスのガス材料分解熱等温度線をできる限り基板上流端に近づける必要があるので、材料ガスノズル11と基板15の距離は基板から5mm〜15mm以内とされている。 The binding energy of the GaN crystal is high, and the melting point of the crystal is 2500 ° C. or higher. For this reason, the crystal growth temperature is increased in order to lengthen the bonding time of the crystal seed (GaN minimum unit) in which the material gas (for example, TMGa and NH 3 ) decomposes and moves to the stable site on the crystal growth surface. As high as about 1050 ° C. For the same reason, a crystal seed (inactive crystal seed) generated in a low-temperature portion other than the substrate growth surface loses energy immediately and cannot contribute to crystal growth (it does not reach sufficient energy even when reheated). Alternatively, it becomes a polycrystal nucleus and inhibits crystal growth. On the other hand, the decomposition temperature of organometallic compounds such as TMGa is as low as about 400 ° C to 450 ° C. Therefore, if the temperature distribution of the gas material decomposition heat at 400 ° C. to 450 ° C. (gas material decomposition heat isotherm) is far from the substrate, the growth rate becomes slow, the crystal cannot grow on the entire surface of the substrate, the crystallinity Decreases. From the above, in the growth of GaN-based crystals, it is necessary to bring the gas material decomposition heat isothermal line of the material gas as close as possible to the upstream end of the substrate, so the distance between the material gas nozzle 11 and the substrate 15 is within 5 mm to 15 mm from the substrate. Has been.

そこで、図4に示すように、円形基板15を用いる場合、基板の均熱性を作り易い理由によって、底面サセプタ部14aおよび外周サセプタ部14bおよび加熱器17を円形になし、エピタキシャル成長膜が均一になるように基板を担持した底面サセプタ部14aおよび外周サセプタ部14bを回転させる。   Therefore, as shown in FIG. 4, when the circular substrate 15 is used, the bottom surface susceptor portion 14a, the outer peripheral susceptor portion 14b, and the heater 17 are formed in a circle for the reason that it is easy to make the substrate soaking, and the epitaxial growth film becomes uniform. Thus, the bottom surface susceptor portion 14a and the outer periphery susceptor portion 14b carrying the substrate are rotated.

ところで、GaN系結晶を成長させる場合は、成長温度が1050℃と高温であるため、その輻射熱は基板遠方まで到達する。遮熱対策をしないと基板遠方より材料ガスの熱分解が起こり、基板上への材料ガス供給量が激減し枯渇する問題が発生する。また遠方で分解した材料ガスの残渣成分が基板へのエピタキシャル成長を阻害するため、GaN系結晶の結晶品質を低下させる問題が発生する。   By the way, when growing a GaN-based crystal, since the growth temperature is as high as 1050 ° C., the radiant heat reaches far away from the substrate. If heat shield measures are not taken, the material gas is thermally decomposed from a distance from the substrate, and the amount of material gas supplied onto the substrate is drastically reduced and depleted. Further, since the residual component of the material gas decomposed at a distance hinders the epitaxial growth on the substrate, there arises a problem of deteriorating the crystal quality of the GaN-based crystal.

材料ガスノズル11は、基板15に対し水平もしくは数度傾斜した状態で設置されていて基板上に材料ガスを噴射する。ここで、材料ガスには、窒素(N)、水素(H)、アンモニアガス(NH)、n型ドーパントガス(モノシランガス(SiH)、ジシランガス(Si))、有機金属ガス(TMGa(トリメチルガリウム)、TEGa(トリエチルガリウム)、TMAl(トリメチルアルミニウム)、TMIn(トリメチルインジウム)、CpMg(ビスシクロペンタジエニルマグネシウム))を含む。 The material gas nozzle 11 is installed in a state that is horizontal or inclined by several degrees with respect to the substrate 15 and injects a material gas onto the substrate. Here, the material gas includes nitrogen (N 2 ), hydrogen (H 2 ), ammonia gas (NH 3 ), n-type dopant gas (monosilane gas (SiH 4 ), disilane gas (Si 2 H 6 )), organometallic gas. including (TMGa (trimethyl gallium), TEGa (triethyl gallium), TMAl (trimethyl aluminum), TMIn (trimethyl indium), Cp 2 Mg (bis-cyclopentadienyl magnesium)).

押さえガス噴出器は基板中央部上面に設置され基板に対し垂直もしくは数度で材料ガスの下流部方向に傾斜した状態で設置されている。押さえガス噴出器12は、材料ガスの層流を外周サセプタ部14bと基板15の全面に押さえる押さえガスを供給する。押さえガス噴出器から噴出されるガスは水素ガスもしくは窒素ガスであり、材料ガスは含まない。押さえガス噴出器12からの押さえガス流(フロー)としては、基板15を覆う面積で、基板と垂直からやや斜めの角度θ(0°≦θ<40°)にHまたはNまたはこれらの混合ガスを吹付ける。 The holding gas ejector is installed on the upper surface of the central portion of the substrate and is inclined in the direction perpendicular to the substrate or at a few degrees toward the downstream portion of the material gas. The holding gas ejector 12 supplies a holding gas that holds the laminar flow of the material gas over the entire surface of the outer peripheral susceptor portion 14 b and the substrate 15. The gas ejected from the holding gas ejector is hydrogen gas or nitrogen gas, and does not include material gas. The pressed gas flow (flow) from the pressed gas ejector 12 is an area covering the substrate 15 and is H 2 or N 2 at an angle θ (0 ° ≦ θ <40 °) slightly inclined from the vertical to the substrate. Spray the gas mixture.

(嵌合サセプタ)
化学気相成長方法において、基板(サファイア、GaNなど)15を保持する底面サセプタ部14aおよび外周サセプタ部14bからなる嵌合サセプタを説明する。
(Mating susceptor)
In the chemical vapor deposition method, a fitting susceptor including a bottom surface susceptor portion 14a and a peripheral susceptor portion 14b for holding a substrate (sapphire, GaN, etc.) 15 will be described.

底面サセプタ部14aは基板15と同質材料からなる。外周サセプタ部14bも基板15と同質材料からなる。嵌合サセプタは、基板同質材料から形成されるため、結晶成長中の加熱、冷却による熱膨張も基板と同様の変化を示すため、基板設置時と同様の基板と底面サセプタ部14aの密着状態を維持できる。その結果、結晶成長中、基板と底面サセプタ部14aの間および、基板裏面に材料ガスが流れ込むことがなく、層流ガスフローの乱れをなくすことができる。これにより、基板外周部への副生成物の発生および、その混入によるヒロックの発生、ひいては結晶欠陥の発生を抑制することができる。   The bottom susceptor portion 14 a is made of the same material as the substrate 15. The outer peripheral susceptor portion 14 b is also made of the same material as the substrate 15. Since the mating susceptor is formed from the same material as the substrate, the thermal expansion due to heating and cooling during crystal growth shows the same change as the substrate. Therefore, the contact state between the substrate and the bottom susceptor part 14a is the same as when the substrate is installed. Can be maintained. As a result, the material gas does not flow between the substrate and the bottom susceptor portion 14a and the back surface of the substrate during crystal growth, and the disturbance of the laminar gas flow can be eliminated. Thereby, generation | occurrence | production of the by-product to a board | substrate outer peripheral part, generation | occurrence | production of the hillock by the mixing, and hence generation | occurrence | production of a crystal defect can be suppressed.

底面サセプタ部14aには、図5に示すように、基板15を支持するための窪み(凹状の基板保持部の下側の凹部)が高精度に形成されており、この凹部位置に基板を嵌合させ設置することにより、加工限界の精度レベルで底面サセプタ部14aと基板15を密着させることができる。経験的には、±0.05mmの加工精度があれば、フローの乱れを誘発する隙間および段差とはならない。このように、底面サセプタ部14aの上面に基板の裏面を支持する接触部14acが設けられる。   As shown in FIG. 5, the bottom susceptor portion 14a is formed with a recess for supporting the substrate 15 (a concave portion on the lower side of the concave substrate holding portion) with high precision. By installing them together, the bottom surface susceptor portion 14a and the substrate 15 can be brought into close contact with each other at a processing limit accuracy level. Empirically, if there is a machining accuracy of ± 0.05 mm, there will be no gaps and steps that induce flow disturbance. Thus, the contact part 14ac which supports the back surface of a board | substrate is provided in the upper surface of the bottom face susceptor part 14a.

底面サセプタ部14a上の基板セット位置に配置される基板15の外周部には、基板と同一結晶面を上面として持つ環状の外周サセプタ部14bを別部品として配置する。外周サセプタ部14bに基板を嵌合させ設置することにより、加工限界の精度レベルで外周サセプタ部14bと基板を密着させることができる。ここで、嵌合させるとは外周サセプタ部14bと基板15の隙間が0.05mm以下であることをいう。基板15は、その上面15cが外周サセプタ部14bの上面14bcと共に同一平面となるように、底面サセプタ部14a上に載置される。すなわち、外周サセプタ部14bは基板15の側面に嵌合するように環状に形成され、外周サセプタ部の上面14bcが底面サセプタ部14aの接触部14acから基板の上面15cに一致する高さHで同一平面となるように形成されている。すなわち底面サセプタ部14aと外周サセプタ部14bで画定される凹状の基板保持部の深さHが基板15の厚さとなっている。   An annular outer peripheral susceptor portion 14b having the same crystal plane as the upper surface is disposed as a separate component on the outer peripheral portion of the substrate 15 disposed at the substrate setting position on the bottom surface susceptor portion 14a. By fitting and installing the substrate on the outer periphery susceptor portion 14b, the outer periphery susceptor portion 14b and the substrate can be brought into close contact with each other at a processing limit accuracy level. Here, fitting means that the gap between the outer peripheral susceptor portion 14b and the substrate 15 is 0.05 mm or less. The substrate 15 is placed on the bottom surface susceptor portion 14a so that the top surface 15c is flush with the top surface 14bc of the outer peripheral susceptor portion 14b. That is, the outer peripheral susceptor portion 14b is formed in an annular shape so as to be fitted to the side surface of the substrate 15, and the upper surface 14bc of the outer peripheral susceptor portion is the same at a height H that coincides with the upper surface 15c of the substrate from the contact portion 14ac of the bottom surface susceptor portion 14a. It is formed to be a plane. That is, the depth H of the concave substrate holding portion defined by the bottom surface susceptor portion 14 a and the outer peripheral susceptor portion 14 b is the thickness of the substrate 15.

さらに、外周サセプタ部14bの材料ガス接触上面14bcは、基板上面15cと同一の結晶面方位とし、基板と同様モード(2次元成長、3次元成長など)の成長が行われるようにする。結晶面方位には、c面、m面、R面、n面など、あるいはこれらの面からオフセットされた面を含む。たとえば、c面ではa軸方向へ±0.05°またはm軸方向へ±0.05°のオフ角度のものが同一の結晶面方位に含まれる。このオフ角度以内であれば許容できるレベルの成長が再現できる。外周サセプタ部14bを別部品とする理由は、様々な結晶面方位を持つ基板を使用する際にも、外周サセプタ部14bのみ変更すれば、対応可能となるためである。ある結晶面方位を持つ基板のみを繰り返し使用する場合には、別部品とせず、外周サセプタ部14bと底面サセプタ部14aを一体化しても良い。また、外周サセプタ部14bの結晶面方位については、目的に応じて、多種多様に基板が変更されることから、上記に記載した結晶面方位に限定されないことは言うまでもない。外周サセプタ部14bの半径方向の大きさ(幅)は、0.5〜5mmが望ましい。0.5mm以下の場合、基板外周部と外周サセプタ部14b外周部との距離が近すぎるため、以下に述べる外周サセプタ部14bの効果が小さい。5mm以上の場合、外周サセプタ部14bの効果は損なわれないが、リアクタ自体が大きくなってしまうので、適当な大きさが良い。   Further, the material gas contact upper surface 14bc of the outer peripheral susceptor portion 14b has the same crystal plane orientation as that of the substrate upper surface 15c so that growth in the same mode (two-dimensional growth, three-dimensional growth, etc.) as that of the substrate is performed. The crystal plane orientation includes c-plane, m-plane, R-plane, n-plane, etc., or planes offset from these planes. For example, in the c-plane, those having an off angle of ± 0.05 ° in the a-axis direction or ± 0.05 ° in the m-axis direction are included in the same crystal plane orientation. Within this off angle, an acceptable level of growth can be reproduced. The reason why the outer peripheral susceptor portion 14b is a separate component is that even when a substrate having various crystal plane orientations is used, it is possible to cope with it by changing only the outer peripheral susceptor portion 14b. When only a substrate having a certain crystal plane orientation is repeatedly used, the outer peripheral susceptor portion 14b and the bottom surface susceptor portion 14a may be integrated without using separate components. Further, it is needless to say that the crystal plane orientation of the outer peripheral susceptor portion 14b is not limited to the crystal plane orientation described above because the substrate is changed in various ways according to the purpose. The size (width) in the radial direction of the outer peripheral susceptor portion 14b is desirably 0.5 to 5 mm. In the case of 0.5 mm or less, since the distance between the outer peripheral portion of the substrate and the outer peripheral portion of the outer peripheral susceptor portion 14b is too short, the effect of the outer peripheral susceptor portion 14b described below is small. In the case of 5 mm or more, the effect of the outer peripheral susceptor portion 14b is not impaired, but the reactor itself becomes large, so an appropriate size is good.

外周サセプタ部14bと基板15の結晶面方位を一致させるために、図6に示すように、外周サセプタ部14bは、基板15のオリフラFに一致する内周オリフラFbを備える。   In order to match the crystal plane orientations of the outer peripheral susceptor portion 14 b and the substrate 15, the outer peripheral susceptor portion 14 b includes an inner peripheral orientation flat Fb that matches the orientation flat F of the substrate 15, as shown in FIG. 6.

外周サセプタ部14bの厚みの違いにより、図5に示す外周サセプタ部の薄型タイプの他に、図7に示す外周サセプタ部の厚型タイプがある。薄型タイプは、基板厚みより、外周サセプタ部14bの厚みが薄いタイプである。低材料コストであるが、機械的強度が懸念事項となる。厚型タイプは、基板厚みより、外周サセプタ部14bの厚みが厚いタイプである。材料コストはかかるが、機械的強度の問題がなくなる。図7に示す外周サセプタ部の厚型タイプの場合、底面サセプタ部14aの接触部14acが凹部ではなく凸部となるが、かかる凸部接触部14acの外側面に外周サセプタ部14bが基板15とともに嵌合する。これら薄型や厚型のタイプは、基板の厚み、大きさに応じて最適なタイプを選択することが好ましい。   Depending on the difference in thickness of the outer peripheral susceptor part 14b, there is a thick type of outer peripheral susceptor part shown in FIG. 7 in addition to the thin type of outer peripheral susceptor part shown in FIG. The thin type is a type in which the outer peripheral susceptor portion 14b is thinner than the substrate thickness. At low material costs, mechanical strength is a concern. The thick type is a type in which the outer peripheral susceptor portion 14b is thicker than the substrate thickness. The material cost is high, but the problem of mechanical strength is eliminated. In the case of the thick type of outer peripheral susceptor portion shown in FIG. 7, the contact portion 14ac of the bottom surface susceptor portion 14a is not a concave portion but a convex portion, and the outer peripheral susceptor portion 14b is formed together with the substrate 15 on the outer surface of the convex portion contact portion 14ac. Mating. These thin and thick types are preferably selected in accordance with the thickness and size of the substrate.

本実施形態によると外周サセプタ部14b(基板に合わせて結晶面方位を変更する)上面自体にも結晶成長が行われるため、従来法に比べ、基板のより外周部まで正常な成長膜が得られ、より大面積での均一な膜成長を実現できる。   According to the present embodiment, since crystal growth is also performed on the upper surface of the outer peripheral susceptor portion 14b (the crystal plane orientation is changed in accordance with the substrate), a normal growth film can be obtained up to the outer peripheral portion of the substrate as compared with the conventional method. A uniform film growth in a larger area can be realized.

なお、サファイア基板など光透過性を有する材料からなる底面サセプタ部14aの場合は、その裏面には、図5(b)に示すように、基板セット面と反対側下方に位置する加熱器からの熱を吸収するようにSiC被覆膜18を形成する。SiC被覆膜18が15μm×2回被覆膜の30μm厚程度であれば熱吸収を行える。SiC被覆膜が、30μm厚未満と薄い場合、熱吸収が不十分となり、厚すぎると基板と同一の熱膨張変化を行えなくなるためである。   In the case of the bottom surface susceptor portion 14a made of a light-transmitting material such as a sapphire substrate, as shown in FIG. 5B, the bottom surface susceptor portion 14a is from a heater located on the lower side opposite to the substrate setting surface. SiC coating film 18 is formed so as to absorb heat. If the SiC coating film 18 is about 15 μm × twice the coating film thickness of about 30 μm, heat absorption can be performed. This is because when the SiC coating film is as thin as less than 30 μm, heat absorption is insufficient, and when it is too thick, the same thermal expansion change as that of the substrate cannot be performed.

SiC被覆膜18は、底面サセプタ部14aの裏面全体に熱吸収するように施され、その際、基板セット用の窪み半径方向幅(面積)より、大きいことが不可欠である。これは、基板のみでなく、基板外周に位置する外周サセプタ部14bへの加熱も均一に行うためである。外周サセプタ部14b外周部から幅3mm以上大きい半径の加熱器を設置することが望ましい。   The SiC coating film 18 is applied to the entire back surface of the bottom surface susceptor portion 14a so as to absorb heat, and at that time, it is essential that the SiC coating film 18 is larger than the width (area) of the recess in the substrate set. This is because not only the substrate but also the outer peripheral susceptor portion 14b located on the outer periphery of the substrate is uniformly heated. It is desirable to install a heater having a radius that is at least 3 mm wide from the outer peripheral portion of the outer peripheral susceptor portion 14b.

なお、気相成長装置として、2フローリアクタ装置で説明したが、本発明はこの例に限定されるものではない。   Although the two-flow reactor apparatus has been described as the vapor phase growth apparatus, the present invention is not limited to this example.

なお、上記気相成長装置では、材料ガスが基板半径方向である横方向から噴射されるように配置されているが、特に、この例に限定されるものではなく、気相成長装置では材料ガスが上方から噴射されるように配置されても良く、様々な化学気相成長装置の構成に対応可能である。   In the vapor phase growth apparatus, the material gas is disposed so as to be injected from the lateral direction which is the radial direction of the substrate. However, the present invention is not limited to this example. May be arranged so as to be sprayed from above, and can be applied to various chemical vapor deposition apparatus configurations.

実施形態では、サファイア基板上にGaN層の成長例が挙げられるが、その他の本実施形態を適用可能な組み合わせは、サファイア基板上にAlN層、GaN基板上にGaN層、GaN基板上にAlN層を、成膜する場合なども挙げられる。   In the embodiment, an example of growing a GaN layer on a sapphire substrate is given, but other combinations to which this embodiment can be applied include an AlN layer on a sapphire substrate, a GaN layer on a GaN substrate, and an AlN layer on a GaN substrate. In the case of forming a film, there may be mentioned.

上記実施形態では、フロー補助板13の上面が外周サセプタ部14bと基板15の上面と同一平面となるように、設けられ、フロー乱れのないものであるが、他の実施形態においては、フロー補助板13を除いたり、あるいは、フロー補助板13上に外周サセプタ部14bと基板15の上面が突出させる場合も、本発明は実行可能であり、この場合、副生成物が外周サセプタ部14bの外側端部(側面)に生成されている。しかしながら、従来に比べ、温度の影響のみになるので副生成物生成範囲は狭くなり(量の減少)、かつ基板までの距離も遠くなる。その結果、基板上への副生成物、ヒロック、結晶欠陥の発生が従来方法より少なくなる。   In the above embodiment, the flow auxiliary plate 13 is provided so that the upper surface of the flow auxiliary plate 13 is flush with the upper surface of the outer peripheral susceptor portion 14b and the substrate 15, and there is no flow disturbance. The present invention can also be carried out when the plate 13 is removed, or when the outer peripheral susceptor portion 14b and the upper surface of the substrate 15 protrude on the flow auxiliary plate 13, and in this case, the by-product is outside the outer peripheral susceptor portion 14b. It is generated at the end (side surface). However, compared to the prior art, only the influence of temperature is present, so that the by-product generation range is narrowed (decrease in amount) and the distance to the substrate is also increased. As a result, generation of by-products, hillocks, and crystal defects on the substrate is reduced as compared with the conventional method.

以下に、上記の嵌合サセプタを用いたリアクタ構成にて製造する結晶成長およびLEDチップ化プロセスを記載する。   In the following, the crystal growth and LED chip manufacturing process manufactured in a reactor configuration using the above-described fitting susceptor will be described.

上記実施形態の2フローリアクタ装置によりGaN結晶などを成長させ、半導体発光そしを製造した。   A GaN crystal or the like was grown by the two-flow reactor apparatus of the above embodiment to manufacture a semiconductor light emitting device.

2フロータイプのMOCVD(有機金属気相成長)装置にて、AlInGaN(0≦x≦1,0≦y≦1,0<z≦1、x+y+z=1)を成長可能な基板(c面サファイア基板)を準備し、この基板上にAlInGaNからなるn層、活性層、p層が積層された半導体膜を結晶成長させた。 Al x In y Ga z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1, x + y + z = 1) can be grown in a two-flow type MOCVD (metal organic chemical vapor deposition) apparatus. A substrate (c-plane sapphire substrate) was prepared, and a semiconductor film in which an n layer, an active layer, and a p layer made of Al x In y Ga z N were stacked was grown on this substrate.

具体的には、成長用の基板には、2インチφのc面サファイア単結晶基板、厚みt=0.43mm、面方位が<10−10>方向へ0.05°傾いた0.05°オフ基板、いわゆる(0001)0.05°off to<10−10>基板を用いた。よって、嵌合サセプタも(0001)0.05°off to<10−10>の面方位のc面サファイア単結晶板から切り出した。まず、サファイア基板を反応容器内の嵌合サセプタに設置し、水素雰囲気中1000℃で10分間加熱し、サーマルクリーニングを行った。   Specifically, the growth substrate is a 2 inch φ c-plane sapphire single crystal substrate, a thickness t = 0.43 mm, and the plane orientation is 0.05 ° inclined by 0.05 ° in the <10-10> direction. An off substrate, a so-called (0001) 0.05 ° off to <10-10> substrate was used. Therefore, the fitting susceptor was also cut out from a c-plane sapphire single crystal plate having a (0001) 0.05 ° off to <10-10> plane orientation. First, a sapphire substrate was placed on a fitting susceptor in a reaction vessel, and heated in a hydrogen atmosphere at 1000 ° C. for 10 minutes to perform thermal cleaning.

次に、ノズルから約500℃でTMGa(トリメチルガリウム)を流量10.4μmol/min、NH(アンモニアガス)を流量3.3LMで3分間供給して、サファイア基板上に低温バッファ層(GaN層)を形成した。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流した。 Next, TMGa (trimethyl gallium) is supplied from the nozzle at a flow rate of 10.4 μmol / min and NH 3 (ammonia gas) at a flow rate of 3.3 LM for 3 minutes at about 500 ° C., and a low-temperature buffer layer (GaN layer) is formed on the sapphire substrate. ) Was formed. H 2 (hydrogen) + N 2 (nitrogen) was supplied to the holding gas at a mixing ratio of 1: 1 at 30 L / min.

その後、1000℃まで昇温し、形成した低温バッファ層を結晶化させ、そのままの温度でノズルからTMGaを流量45μmol/min、NHを流量4.4LMで20分間供給して結晶化した低温バッファ層上に下地GaN層を約1μmの厚さに形成した。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流した。 Thereafter, the temperature is raised to 1000 ° C., the formed low-temperature buffer layer is crystallized, and the low-temperature buffer crystallized by supplying TMGa from the nozzle at a flow rate of 45 μmol / min and NH 3 at a flow rate of 4.4 LM for 20 minutes. A base GaN layer was formed to a thickness of about 1 μm on the layer. H 2 (hydrogen) + N 2 (nitrogen) was supplied to the holding gas at a mixing ratio of 1: 1 at 30 L / min.

次に温度1000℃でTMGaを流量45μmol/min、NHを流量4.4LM、SiH(モノシラン)を流量2.7×10−9μmol/minで40分間供給して、n型GaN層を約2〜4μmの厚さに成長させた。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流した。 Next, at a temperature of 1000 ° C., TMGa is supplied at a flow rate of 45 μmol / min, NH 3 is supplied at a flow rate of 4.4 LM, and SiH 4 (monosilane) is supplied at a flow rate of 2.7 × 10 −9 μmol / min for 40 minutes to form an n-type GaN layer. Growing to a thickness of about 2-4 μm. H 2 (hydrogen) + N 2 (nitrogen) was supplied to the holding gas at a mixing ratio of 1: 1 at 30 L / min.

活性層には例えば、InGaN/GaNからなるMQW(多重量子井戸)構造を適用した。ここでは、InGaN/GaNを1周期として、5周期成長を行った。温度約700℃で、TMGaを流量3.6μmol/min、TMIn(トリメチルインジウム)を流量10μmol/min、NHを流量4.4LMで33秒間供給して膜厚約2.2nmのInGaN井戸層を成長させ、TMGaを流量3.6μmol/min、NHを流量4.4LMで320秒間供給して膜厚約15nmのGaN障壁層を成長させることを5周期分繰り返した。これらでは、押さえガスにはN(窒素)を30L/min流した。 For example, an MQW (multiple quantum well) structure made of InGaN / GaN is applied to the active layer. Here, five cycles of growth were performed with InGaN / GaN as one cycle. At a temperature of about 700 ° C., TMGa is supplied at a flow rate of 3.6 μmol / min, TMIn (trimethylindium) is supplied at a flow rate of 10 μmol / min, and NH 3 is supplied at a flow rate of 4.4 LM for 33 seconds to form an InGaN well layer having a thickness of about 2.2 nm. The GaN barrier layer having a film thickness of about 15 nm was grown by supplying TMGa for 320 seconds at a flow rate of 3.6 μmol / min and NH 3 at a flow rate of 4.4 LM for 5 cycles. In these, N 2 (nitrogen) was flowed at 30 L / min as the holding gas.

その後、温度を870℃まで上げ、TMGaを流量8.1μmol/min、TMAl(トリメチルアルミニウム)を流量7.5μmol/min、NHを流量4.4LM、CpMg(ビスシクロペンタジエニルマグネシウム)を流量2.9×10−7μmol/minで5分間供給して、膜厚約40nmのp型AlGaNクラッド層を成長させた。引き続き、温度870℃でTMGaを流量18μmol/min、NHを流量4.4LM、cp2Mgを流量2.9×10−7μmol/minで7分間供給して、膜厚約150nmのp型GaN層を成長させた。押さえガスにはH(水素)+N(窒素)を1:1の混合比で30L/min流した。 Thereafter, the temperature is increased to 870 ° C., TMGa is supplied at a flow rate of 8.1 μmol / min, TMAl (trimethylaluminum) is supplied at a flow rate of 7.5 μmol / min, NH 3 is supplied at a flow rate of 4.4 LM, and Cp 2 Mg (biscyclopentadienyl magnesium). Was supplied at a flow rate of 2.9 × 10 −7 μmol / min for 5 minutes to grow a p-type AlGaN cladding layer having a thickness of about 40 nm. Subsequently, at a temperature of 870 ° C., TMGa is supplied at a flow rate of 18 μmol / min, NH 3 is supplied at a flow rate of 4.4 LM, and cp2Mg is supplied at a flow rate of 2.9 × 10 −7 μmol / min for 7 minutes. Grew. H 2 (hydrogen) + N 2 (nitrogen) was supplied to the holding gas at a mixing ratio of 1: 1 at 30 L / min.

その後、半導体膜が積層された基板を反応容器から取り出し、基板上の成膜状態を観察した。従来方法であれば、2インチφのc面サファイア基板であれば外周6mm幅で異常成長部が現れ膜厚分布は同心円状の凹状であったが、この実施例では基板の外周まで全面に亘って正常成長ミラー部が形成されていた。   Thereafter, the substrate on which the semiconductor film was laminated was taken out from the reaction container, and the film formation state on the substrate was observed. In the case of the conventional method, in the case of a 2-inch φ c-plane sapphire substrate, an abnormally grown portion appears with a width of 6 mm on the outer periphery, and the film thickness distribution is a concentric concave shape. In this embodiment, the entire surface extends to the outer periphery of the substrate. As a result, a normal growth mirror was formed.

得られた基板に対して、RIE(Reactive Ion Etching)などを用いて、Clドライエッチングを行うことにより、n型GaN層を露出させた。次いで、フォトリソグラフィなどにより、電極形成部分に開口を持つレジストマスクを形成し、EB(電子ビーム)蒸着法などを用いて、n電極金属(Ti/Alなど)を成膜した。続いて、リフトオフにより、n電極を所望のパターンに形成した。さらにn電極のオーミック性を向上させるためにRTA(Rapid Thermal Annealing )などを用いて、温度500℃で20秒間、合金化処理を行った。そして、p電極として透明導電膜(ITOなど)およびパッド電極(TiAuなど)をスパッタおよびEB蒸着法などを用いて成膜させた。最後に、レーザースクライブ、ダイシングなどを用いて、素子分離を行い、LEDチップが作製された。 The n-type GaN layer was exposed by performing Cl 2 dry etching on the obtained substrate using RIE (Reactive Ion Etching) or the like. Next, a resist mask having an opening in the electrode formation portion was formed by photolithography or the like, and an n-electrode metal (Ti / Al or the like) was formed using an EB (electron beam) evaporation method or the like. Subsequently, an n-electrode was formed in a desired pattern by lift-off. Further, in order to improve the ohmic property of the n-electrode, alloying treatment was performed at a temperature of 500 ° C. for 20 seconds using RTA (Rapid Thermal Annealing) or the like. Then, a transparent conductive film (ITO or the like) and a pad electrode (TiAu or the like) were formed as a p-electrode by sputtering, EB vapor deposition or the like. Finally, element separation was performed using laser scribing, dicing or the like, and an LED chip was produced.

実施例にて作製された発光素子の発光波長バラツキを観察した。従来方法による素子では発光波長は基板中心部で短く、同心円状に基板周囲方向に長波長化したが、実施例のものでは基板の外周から得られた素子まで標準偏差の低い特性の揃ったものが得られた。   The light emission wavelength variation of the light emitting element produced in the Example was observed. In the element by the conventional method, the emission wavelength is short at the center of the substrate, and the wavelength is increased concentrically in the circumferential direction of the substrate. However, in the example, the elements with low standard deviation are aligned from the outer periphery of the substrate. was gotten.

11 材料ガスノズル
14 サセプタ
15 基板
16 遮熱板
20 水冷ジャケット
12 押さえガス噴出器
13 フロー補助板
17 加熱器
18 SiC被覆膜
DESCRIPTION OF SYMBOLS 11 Material gas nozzle 14 Susceptor 15 Substrate 16 Heat shield plate 20 Water-cooling jacket 12 Pressing gas ejector 13 Flow auxiliary plate 17 Heater 18 SiC coating film

Claims (5)

基板を支持するサセプタと、前記サセプタの裏面側に備えられた加熱器と、前記サセプタの上面に沿って流れる材料ガス流を供給するノズルと、を含み、
前記サセプタは、それぞれが前記基板と同一材料からなる、前記サセプタの上面に前記基板に嵌合する凹状の基板保持部を画定する外周サセプタ部と前記サセプタの裏面を画定する底面サセプタ部とから構成され、
前記外周サセプタ部は、前記基板の上面と同一平面となる前記基板保持部を囲む上面を有しかつ、前記基板保持部を囲む上面が前記基板の上面の結晶面方位と同一の結晶面方位を有し、
前記加熱器からの熱を吸収するSiC被覆膜が前記底面サセプタ部の裏面に形成されていることを特徴とする気相成長装置。
A susceptor that supports a substrate, a heater provided on the back side of the susceptor, and a nozzle that supplies a material gas flow that flows along the upper surface of the susceptor,
Each of the susceptors is made of the same material as the substrate, and includes an outer peripheral susceptor portion that defines a concave substrate holding portion that fits the substrate on the upper surface of the susceptor and a bottom surface susceptor portion that defines the back surface of the susceptor. And
The outer peripheral susceptor portion has an upper surface surrounding the substrate holding portion that is flush with the upper surface of the substrate, and the upper surface surrounding the substrate holding portion has the same crystal plane orientation as that of the upper surface of the substrate. Yes, and
A vapor phase growth apparatus characterized in that a SiC coating film that absorbs heat from the heater is formed on the back surface of the bottom surface susceptor portion .
前記外周サセプタ部が前記底面サセプタ部と一体となっていることを特徴とする請求項に記載の気相成長装置。 The vapor phase growth apparatus according to claim 1 , wherein the outer peripheral susceptor part is integrated with the bottom surface susceptor part. 成長基板と同一材料からなり、前記成長基板が嵌合する凹状の基板保持部と、前記成長基板の上面と同一平面に位置しかつ前記成長基板の上面の結晶面方位と同一の結晶面方位を有する前記基板保持部を囲む上面と、を備え、前記基板保持部の裏面にSiC被覆膜が形成されているサセプタを気相成長装置に用意する工程と、
前記サセプタの前記基板保持部に前記成長基板を載置する工程と、
前記サセプタを前記SiC被覆膜側から加熱し回転させつつ、前記成長基板上に材料ガスを供給してエピタキシャル成長する工程と、を含むこと、を特徴とするエピタキシャル成長層の製造方法。
A concave substrate holding part, which is made of the same material as the growth substrate, fits into the growth substrate, and is located on the same plane as the upper surface of the growth substrate and has the same crystal plane orientation as the crystal plane orientation of the upper surface of the growth substrate. An upper surface surrounding the substrate holding unit, and a susceptor having a SiC coating film formed on the back surface of the substrate holding unit in a vapor phase growth apparatus;
Placing the growth substrate on the substrate holding portion of the susceptor;
And a method of epitaxial growth by supplying a material gas onto the growth substrate while heating and rotating the susceptor from the SiC coating film side .
前記成長基板がサファイアまたはGaNであることを特徴とする請求項に記載のエピタキシャル成長層の製造方法。 4. The method for manufacturing an epitaxial growth layer according to claim 3 , wherein the growth substrate is sapphire or GaN. 成長基板の裏面を支持する接触部が上面に設けられ、かつ前記成長基板と同一材料からなる底面サセプタ部と、
前記接触部上に載置された前記成長基板の側面に嵌合するように前記成長基板と同一材料で形成され、かつ前記成長基板の上面にと同一平面となるとともに前記成長基板の上面の結晶面方位と同一の結晶面方位の上面を有する外周サセプタ部と、を含み、
SiC被覆膜が前記底面サセプタ部の裏面に形成されていることを特徴とする気相成長用サセプタ。
A bottom surface susceptor portion having a contact portion supporting the back surface of the growth substrate provided on the top surface and made of the same material as the growth substrate;
The crystal of the growth substrate is formed of the same material as that of the growth substrate so as to be fitted to the side surface of the growth substrate placed on the contact portion, and is flush with the upper surface of the growth substrate. an outer peripheral susceptor portion having an upper surface of the plane orientation in the same crystal plane orientation, only including,
A susceptor for vapor phase growth, wherein a SiC coating film is formed on the back surface of the bottom surface susceptor portion .
JP2010088821A 2010-04-07 2010-04-07 Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth Active JP5490597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088821A JP5490597B2 (en) 2010-04-07 2010-04-07 Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088821A JP5490597B2 (en) 2010-04-07 2010-04-07 Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth

Publications (2)

Publication Number Publication Date
JP2011222670A JP2011222670A (en) 2011-11-04
JP5490597B2 true JP5490597B2 (en) 2014-05-14

Family

ID=45039285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088821A Active JP5490597B2 (en) 2010-04-07 2010-04-07 Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth

Country Status (1)

Country Link
JP (1) JP5490597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115312A (en) * 2011-11-30 2013-06-10 Stanley Electric Co Ltd Crystal growth apparatus
JP6129666B2 (en) * 2013-07-10 2017-05-17 古河機械金属株式会社 Vapor growth apparatus and heating apparatus for vapor growth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357311B2 (en) * 1999-02-12 2002-12-16 アプライド マテリアルズ インコーポレイテッド Wafer support device in semiconductor manufacturing equipment
JP2002217121A (en) * 2001-01-23 2002-08-02 Fujitsu Ltd Organic metal vapor deposition apparatus and its deposition method

Also Published As

Publication number Publication date
JP2011222670A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
KR101349480B1 (en) Film forming apparatus
JP5444460B2 (en) Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illumination device
JP2007311558A (en) Vapor phase deposition apparatus and method of manufacturing vapor phase deposition substrate
JP5546287B2 (en) Vapor growth equipment
JP5509680B2 (en) Group III nitride crystal and method for producing the same
JP2011171325A (en) Apparatus for growing nitride semiconductor crystal film, and method for forming nitride semiconductor crystal film
JP4592198B2 (en) III-V compound semiconductor manufacturing apparatus and III-V compound semiconductor manufacturing method
JP3994130B2 (en) III-V compound semiconductor manufacturing apparatus and III-V compound semiconductor manufacturing method
JP2009155141A (en) Method of preparing semiconductor substrate, semiconductor substrate, and compound semiconductor luminous element using it
JP2011246749A (en) Aluminum-based group iii nitride production apparatus and method for producing aluminum-based group iii nitride
JP5490597B2 (en) Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth
JP5045955B2 (en) Group III nitride semiconductor free-standing substrate
JP2006173346A (en) Manufacturing method of organic metal gas phase growing device and semiconductor
JP2012244044A (en) Material gas supply nozzle, vapor growth device and manufacturing method of semiconductor film
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
JP5195613B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2013070016A (en) Nitride semiconductor crystal growth device and growth method of the same
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2012074560A (en) Vapor phase epitaxial growth system
JP5443223B2 (en) Vapor growth apparatus and method for manufacturing nitride semiconductor light emitting device
TW202003894A (en) Method for manufacturing group III nitride semiconductor substrate
JP2631286B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JP2011254015A (en) Compound semiconductor film vapor phase growth susceptor and compound semiconductor film forming method
JP2004207545A (en) Semiconductor vapor phase growth system
JP2012084581A (en) Vapor phase epitaxial growth device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250