JP2012234895A - Method of manufacturing r-t-b based sintered magnet - Google Patents

Method of manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2012234895A
JP2012234895A JP2011101001A JP2011101001A JP2012234895A JP 2012234895 A JP2012234895 A JP 2012234895A JP 2011101001 A JP2011101001 A JP 2011101001A JP 2011101001 A JP2011101001 A JP 2011101001A JP 2012234895 A JP2012234895 A JP 2012234895A
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
based sintered
supply source
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011101001A
Other languages
Japanese (ja)
Other versions
JP5871172B2 (en
Inventor
Toru Obata
徹 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011101001A priority Critical patent/JP5871172B2/en
Publication of JP2012234895A publication Critical patent/JP2012234895A/en
Application granted granted Critical
Publication of JP5871172B2 publication Critical patent/JP5871172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an R-T-B based sintered magnet which can reduce occurrence of deposition between an R-T-B based sintered magnet and a support body, and also achieves an efficient supply of a heavy rare earth element RH from RH supply sources to R-T-B based sintered magnet bodies.SOLUTION: A vertical multi-stage arrangement of RH supply sources and R-T-B based sintered magnet bodies is obtained by respectively interposing a spacer having a specific shape therebetween. This achieves a considerable reduction of the occurrence of deposition between an R-T-B based sintered magnet and a support body than using a conventionally employed support body, such as a mesh. Additionally, a small contact area between the RH supply source and the R-T-B based sintered magnet body allows an efficient supply of a heavy rare earth element RH from the RH supply sources to the R-T-B based sintered magnet bodies, thereby improving a yield of the heavy rare earth element RH.

Description

本発明は、R−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも1種、TはFeまたはFeおよびCo)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに使用されている。   R-T-B based sintered magnets (R is at least one of rare earth elements, T is Fe or Fe and Co) are known as the most powerful magnets among permanent magnets, It is used in various motors for electric vehicles and home appliances.

しかし、R−T−B系焼結磁石は高温で保磁力HcJ(以下、単に「HcJ」と記載する)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用のモータに使用される場合、高温下でも高いHcJを維持することが要求されている。 However, the RTB -based sintered magnet has a reduced coercive force H cJ (hereinafter simply referred to as “H cJ ”) at a high temperature, causing irreversible thermal demagnetization. Therefore, especially when used for a motor for a hybrid vehicle or an electric vehicle, it is required to maintain a high HcJ even at a high temperature.

近年、R−T−B系焼結磁石のHcJ向上を目的として、焼結した後に蒸着手段を用いてDy、Ho、Tb等の重希土類元素RHを磁石表面に供給し、その重希土類元素RHを磁石内部へ拡散させることによって、残留磁束密度B(以下、単に「B」と記載する)の低下を抑制しつつ、HcJを向上させる蒸着拡散法が提案されている。 In recent years, for the purpose of improving HcJ of RTB -based sintered magnets, after sintering, heavy rare earth elements RH such as Dy, Ho, Tb, etc., are supplied to the magnet surface using vapor deposition means, and the heavy rare earth elements There has been proposed a vapor deposition diffusion method that improves H cJ while suppressing a decrease in residual magnetic flux density B r (hereinafter simply referred to as “B r ”) by diffusing RH into the magnet.

特許文献1は、R−T−B系焼結磁石と重希土類元素RHを含有するバルク体とを所定の間隔を形成して対向配置し、これらを所定温度に加熱することにより、前記バルク体から重希土類元素RHをR−T−B系焼結磁石の表面に供給しつつ、重希土類元素RHをR−T−B系焼結磁石の内部に拡散させる蒸着拡散法を開示している。   Patent Document 1 discloses that an R-T-B sintered magnet and a bulk body containing a heavy rare earth element RH are arranged to face each other at a predetermined interval, and these are heated to a predetermined temperature. The vapor deposition diffusion method is disclosed in which the heavy rare earth element RH is diffused into the inside of the RTB-based sintered magnet while supplying the rare earth element RH to the surface of the RTB-based sintered magnet.

特許文献1は、R−T−B系焼結磁石の両面から同時に蒸着拡散を行う方法として、R−T−B系焼結磁石をNb網に載せ、その上下に所定の間隔を形成して重希土類元素RHを含有する前記バルク体を配置する方法を開示している。   In Patent Document 1, as a method of performing simultaneous vapor diffusion from both sides of an RTB-based sintered magnet, an RTB-based sintered magnet is placed on an Nb net, and a predetermined interval is formed above and below it. A method of disposing the bulk body containing the heavy rare earth element RH is disclosed.

特許文献2は、DyおよびTbの少なくとも一方を含む金属蒸発材料とR−T−B系焼結磁石を処理箱内に収納し、真空雰囲気にて所定温度に加熱することにより、金属蒸発材料を蒸発させてR−T−B系焼結磁石に付着させ、この付着したDy及びTbの金属原子を当該焼結磁石の表面および/または結晶粒界相に拡散させる蒸着拡散法を開示している。   Patent Document 2 discloses that a metal evaporation material containing at least one of Dy and Tb and an R-T-B system sintered magnet are housed in a processing box and heated to a predetermined temperature in a vacuum atmosphere. An evaporation diffusion method is disclosed in which it is evaporated and attached to an R-T-B system sintered magnet, and the attached Dy and Tb metal atoms are diffused to the surface of the sintered magnet and / or to the grain boundary phase. .

特許文献2は、金属蒸発材料とR−T−B系焼結磁石との間に、これらが相互に接触せず、かつ、蒸発した金属原子の通過を許容し、前記R−T−B系焼結磁石の複数個が並置できるエキスパンドメタルを介在させ、金属蒸発材料とR−T−B系焼結磁石を上下方向へ交互に積み重ねる収納方法を開示している。   In Patent Document 2, the metal evaporation material and the R-T-B system sintered magnet are not in contact with each other, and the evaporated metal atoms are allowed to pass through. A storage method is disclosed in which an expanded metal in which a plurality of sintered magnets can be juxtaposed is interposed, and a metal evaporation material and an RTB-based sintered magnet are alternately stacked in the vertical direction.

国際公開第2007/102391号International Publication No. 2007/102391 特開2009−135393号公報JP 2009-135393 A

特許文献1、2に記載される蒸着拡散法では、熱処理による拡散反応を利用し、R−T−B系焼結磁石の主相外殻部に重希土類元素RHの濃縮層を形成する。その時、重希土類元素RHが、R−T−B系焼結磁石の表面から当該R−T−B系焼結磁石の内部に拡散すると同時に、前記R−T−B系焼結磁石の内部に含まれている軽希土類元素RL(RLは、NdおよびPrの少なくとも一種)を主体とする液相成分が、前記R−T−B系焼結磁石の表面に向かって拡散する。この様に、前記重希土類元素RHが、前記R−T−B系焼結磁石の表面から内部へ、前記軽希土類元素RLが、前記R−T−B系焼結磁石の内部から表面へと相互に拡散が起こることにより、R−T−B系焼結磁石表面に、軽希土類元素RLを主体とする溶出部分が形成される。この溶出部分は、R−T−B系焼結磁石を支持する支持体と反応を起こす。そのため、支持体とR−T−B系焼結磁石とが固着(以下、「溶着」と記載する)してしまう。   In the vapor deposition diffusion method described in Patent Documents 1 and 2, a concentrated layer of heavy rare earth element RH is formed in the main phase outer shell portion of the RTB-based sintered magnet using a diffusion reaction by heat treatment. At that time, the heavy rare earth element RH diffuses from the surface of the RTB-based sintered magnet into the RTB-based sintered magnet, and at the same time, into the RTB-based sintered magnet. A liquid phase component mainly composed of contained light rare earth element RL (RL is at least one of Nd and Pr) diffuses toward the surface of the RTB-based sintered magnet. In this way, the heavy rare earth element RH passes from the surface of the RTB-based sintered magnet to the inside, and the light rare earth element RL extends from the interior of the RTB-based sintered magnet to the surface. Due to mutual diffusion, an elution portion mainly composed of the light rare earth element RL is formed on the surface of the RTB-based sintered magnet. This elution part reacts with the support body which supports the R-T-B system sintered magnet. Therefore, the support and the RTB-based sintered magnet are fixed (hereinafter referred to as “welding”).

特許文献1、2では、RH拡散源(特許文献2では、金属蒸発材料に相当)とR−T−B系焼結磁石との間にNb網やエキスパンドメタルを支持体として介在させ、RH拡散源やR−T−B系焼結磁石を上下方向へ交互に積み重ねて配置している。Nb網やエキスパンドメタルは、RH拡散源やR−T−B系焼結磁石を支持するための強度が必要である。そのため、Nb網やエキスパンドメタルの開口率を大きくすることに限界がある。例えば、特許文献2では、エキスパンドメタルの開口率は、30%〜80%で形成すればよいと記載され、一例として、約60%の開口率でエキスパンドメタルを形成した場合が記載されている。このように、Nb網やエキスパンドメタルなどの支持体は開口率が制限されるため、R−T−B系焼結磁石との接触面積が大きくなる。よって、複数のR−T−B系焼結磁石を蒸着拡散法により処理した場合、多くのR−T−B系焼結磁石がNb網やエキスパンドメタルなどの支持体と溶着してしまうという問題があった。   In Patent Documents 1 and 2, an RH diffusion source (corresponding to a metal evaporation material in Patent Document 2) and an RTB-based sintered magnet are interposed as a support with an Nb net or an expanded metal, and RH diffusion is performed. Sources and RTB-based sintered magnets are alternately stacked in the vertical direction. The Nb net and the expanded metal need strength to support the RH diffusion source and the RTB-based sintered magnet. For this reason, there is a limit to increasing the aperture ratio of the Nb net or the expanded metal. For example, Patent Document 2 describes that the opening ratio of the expanded metal may be 30% to 80%, and as an example, describes the case where the expanded metal is formed with an opening ratio of about 60%. As described above, since the opening ratio of the support such as the Nb net or the expanded metal is limited, the contact area with the RTB-based sintered magnet is increased. Therefore, when a plurality of RTB-based sintered magnets are processed by the vapor deposition diffusion method, many RTB-based sintered magnets are welded to a support such as an Nb net or an expanded metal. was there.

溶着を引き起こしたR−T−B系焼結磁石を支持体から無理に取り外そうとすると、R−T−B系焼結磁石自体を破壊してしまう恐れがある。そのため、慎重に取り外す必要があり、支持体とR−T−B系焼結磁石との取り外し作業の工数が増大してしまう。よって、支持体とR−T−B系焼結磁石との接触面積を出来る限り小さくし、支持体とR−T−B系焼結磁石との溶着を減少させることが望まれている。   If the R-T-B system sintered magnet that causes welding is forcibly removed from the support, the R-T-B system sintered magnet itself may be destroyed. Therefore, it is necessary to remove carefully, and the man-hour of the removal work of a support body and a RTB system sintered magnet will increase. Therefore, it is desired to reduce the contact area between the support and the RTB-based sintered magnet as much as possible to reduce the welding between the support and the RTB-based sintered magnet.

さらに、特許文献1、2のように、支持体とR−T−B系焼結磁石との接触面積が大きいと、RH拡散源により供給された重希土類元素RHが、支持体(Nb網やエキスパンドメタル)に多く付着してしまい、希少な重希土類元素RHを無駄にしてしまう。そのため、RH拡散源からR−T−B系焼結磁石へ重希土類元素RHを歩留まりよく供給するためにも、支持体とR−T−B系焼結磁石との接触面積を低減することが望まれている。   Further, as in Patent Documents 1 and 2, when the contact area between the support and the RTB-based sintered magnet is large, the heavy rare earth element RH supplied from the RH diffusion source is converted into the support (Nb network or A large amount of the rare earth element RH is wasted. Therefore, in order to supply the heavy rare earth element RH from the RH diffusion source to the RTB-based sintered magnet with a high yield, the contact area between the support and the RTB-based sintered magnet can be reduced. It is desired.

本発明は、上記問題を解決するためになされたものであり、その目的とするところは、R−T−B系焼結磁石と支持体との溶着の発生を減少させるとともに、RH供給源からR−T―B系焼結磁石へ重希土類元素RHの供給を効率よくすることができる、R−T−B系焼結磁石の製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to reduce the occurrence of welding between the R-T-B system sintered magnet and the support, and from the RH supply source. An object of the present invention is to provide a method for producing an RTB-based sintered magnet that can efficiently supply the heavy rare earth element RH to the RTB-based sintered magnet.

請求項1に記載の本発明によるR−T−B系焼結磁石の製造方法は、処理ケース内に、R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも一種、TはFeまたはFeおよびCo)とRH供給源(重希土類元素RHからなる金属または重希土類元素RHを25原子%以上含む合金。ただし、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも一種)を、スペーサを介して上下方向に多段配置した状態で加熱することにより、前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理において、前記スペーサは、厚みが0.1mm以上15mm以下の複数の棒状部材および/または小片状部材からなり、前記スペーサの前記R−T−B系焼結磁石体への接触面積が、前記スペーサと接触する側の前記R−T−B系焼結磁石体全面積の15%以下であり、かつ、前記スペーサの前記RH供給源への接触面積が、前記スペーサと接触する側の前記RH供給源全面積の15%以下であることを特徴とする。   According to the first aspect of the present invention, there is provided a method of manufacturing an RTB-based sintered magnet according to an embodiment of the present invention, wherein an RTB-based sintered magnet body (where R is at least one rare earth element, T is Fe or Fe and Co) and an RH source (a metal comprising heavy rare earth element RH or an alloy containing 25 atomic% or more of heavy rare earth element RH, where heavy rare earth element RH is at least one of Dy, Ho, and Tb) The heavy rare earth element RH is supplied from the RH supply source to the surface of the RTB-based sintered magnet body by heating in a state of being arranged in multiple stages in the vertical direction via a spacer. In the vapor deposition diffusion process in which the element RH is diffused into the RTB-based sintered magnet body, the spacer includes a plurality of rod-like members and / or small piece-like members having a thickness of 0.1 mm to 15 mm. The contact area of the spacer to the RTB-based sintered magnet body is 15% or less of the total area of the RTB-based sintered magnet body on the side in contact with the spacer, and the The contact area of the spacer with the RH supply source is 15% or less of the total area of the RH supply source on the side in contact with the spacer.

請求項2に記載の本発明は、請求項1に記載のR−T−B系焼結磁石の製造方法において、前記スペーサを、前記R−T−B系焼結磁石体および前記RH供給源の各幅方向の両端から幅方向の寸法の1/4の領域および/または各長さ方向の両端から長さ方向の1/4の領域に、2個以上配置することを特徴とする。   According to a second aspect of the present invention, in the method for producing an RTB-based sintered magnet according to the first aspect, the spacer may be the RTB-based sintered magnet body and the RH supply source. Two or more are arranged in a region of ¼ of the dimension in the width direction from both ends in each width direction and / or in a region of ¼ in the length direction from both ends in each length direction.

請求項3に記載の本発明は、請求項1または2に記載のR―T−B系焼結磁石の製造方法において、前記R−T−B系焼結磁石体及び前記RH供給源を、800℃以上950℃以下に加熱して前記蒸着拡散処理を行うことを特徴とする。   According to a third aspect of the present invention, in the method for producing an RTB-based sintered magnet according to the first or second aspect, the RTB-based sintered magnet body and the RH supply source are The vapor deposition diffusion treatment is performed by heating to 800 ° C. or more and 950 ° C. or less.

請求項4に記載の本発明は、請求項3に記載のR−T−B系焼結磁石の製造方法において、処理ケース内の圧力を、0.1Pa以上50Pa以下として前記蒸着拡散処理を行うことを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing an RTB-based sintered magnet according to the third aspect, the vapor deposition diffusion treatment is performed by setting the pressure in the processing case to 0.1 Pa to 50 Pa. It is characterized by that.

請求項5に記載の本発明は、請求項3または4に記載のR−T−B系焼結磁石の製造方法において、前記蒸着拡散処理後、前記処理ケース内の圧力を、圧力200Pa以上2kPa以下として、前記R−T−B系焼結磁石体及び前記RH供給源を800℃以上950℃以下に加熱して熱処理を行うことを特徴とする。   According to a fifth aspect of the present invention, in the method for producing an RTB-based sintered magnet according to the third or fourth aspect, after the vapor deposition diffusion treatment, the pressure in the treatment case is set to a pressure of 200 Pa or more and 2 kPa. In the following, heat treatment is performed by heating the RTB-based sintered magnet body and the RH supply source to 800 ° C. or more and 950 ° C. or less.

なお、本発明においては、蒸着拡散処理前のR−T−B系焼結磁石を「R−T−B系焼結磁石体」とし、蒸着拡散処理後のR−T−B系焼結磁石を「R−T−B系焼結磁石」とし、それぞれ区別して表記する。   In the present invention, the RTB-based sintered magnet before the vapor deposition diffusion treatment is referred to as an “RTB-based sintered magnet body”, and the RTB-based sintered magnet after the vapor deposition diffusion treatment is used. Are referred to as “R-T-B system sintered magnet”.

本発明によれば、特許文献1、2に使用されているNb網やエキスパンドメタルなどの支持体ではなく、特定形状のスペーサを用いることにより、RH供給源やR−T−B系焼結磁石体との接触面積を大幅に削減することができる。よって、R−T−B系焼結磁石とスペーサとの溶着の発生を低減することができ、R−T−B系焼結磁石との取り外し工数を大幅に削減することができる。また、接触面積が小さいため、RH供給源からR−T―B系焼結磁石体へ重希土類元素RHを効率良く供給することができ、重希土類元素RHの歩留まりを向上させることができる。   According to the present invention, an RH supply source and an RTB-based sintered magnet can be obtained by using a spacer having a specific shape instead of a support such as Nb net and expanded metal used in Patent Documents 1 and 2. The contact area with the body can be greatly reduced. Therefore, generation | occurrence | production of welding with a RTB system sintered magnet and a spacer can be reduced, and the removal man-hour with an RTB system sintered magnet can be reduced significantly. Further, since the contact area is small, the heavy rare earth element RH can be efficiently supplied from the RH supply source to the RTB-based sintered magnet body, and the yield of the heavy rare earth element RH can be improved.

本発明の実施形態の一例を示す説明図である。It is explanatory drawing which shows an example of embodiment of this invention. スペーサの配置領域を示す説明図である。It is explanatory drawing which shows the arrangement | positioning area | region of a spacer. スペーサの配置領域を示す説明図である。It is explanatory drawing which shows the arrangement | positioning area | region of a spacer. スペーサの配置領域を示す説明図である。It is explanatory drawing which shows the arrangement | positioning area | region of a spacer. 棒状部材を配置した一例を示す説明図である。It is explanatory drawing which shows an example which has arrange | positioned the rod-shaped member. 棒状部材を配置した一例を示す説明図である。It is explanatory drawing which shows an example which has arrange | positioned the rod-shaped member. 小片状部材を配置した一例を示す説明図である。It is explanatory drawing which shows an example which has arrange | positioned the small piece member. 棒状部材と小片状部材を組み合わせて配置した一例を示す説明図である。It is explanatory drawing which shows an example arrange | positioned combining the rod-shaped member and the small piece-shaped member.

本発明において、スペーサとR−T−B系焼結磁石体との接触面積とは、スペーサを構成する個々の棒状部材または小片状部材において、スペーサと接触する側のR−T−B系焼結磁石体の面と平行する横断面のうち最大面積の総和と定義する。例えば、スペーサと接触する側の面の全面積が1000mm(幅20mm×長さ50mm)のR−T−B系焼結磁石体に、直径3mm×長さ25mmの断面(縦断面)円形の棒状部材からなるスペーサを周面が接するように2本配置した場合、断面円形の棒状部材の、R−T−B系焼結磁石体の面と平行する横断面のうちの最大面積とは、円の中心を通る横断面、つまり、直径×長さとなる。この場合、接触面積は、150mm(3mm×25mm×2本)/1000mm(20mm×50mm)×100%=15%となる。 In the present invention, the contact area between the spacer and the R-T-B system sintered magnet body refers to the R-T-B system on the side in contact with the spacer in the individual rod-like member or small piece member constituting the spacer. It is defined as the sum of the maximum areas in the cross section parallel to the surface of the sintered magnet body. For example, an R-T-B system sintered magnet body having a total area of 1000 mm 2 (width 20 mm x length 50 mm) on the side in contact with the spacer is circular in cross section (longitudinal section) 3 mm in diameter x 25 mm in length. When two spacers made of rod-shaped members are arranged so that the peripheral surfaces are in contact with each other, the maximum area of the cross-section of the rod-shaped member having a circular cross section parallel to the surface of the RTB-based sintered magnet body is: Cross section passing through the center of the circle, that is, diameter × length. In this case, the contact area is 150 mm 2 (3 mm × 25 mm × 2) / 1000 mm 2 (20 mm × 50 mm) × 100% = 15%.

断面(縦断面)が三角形や台形などの棒状部材または小片状部材の場合、R−T−B系焼結磁石体の面と平行する横断面のうちの最大面積とは、三角形であれば底辺×長さ、台形であれば長い方の底辺×長さ、となる。なお、上記においては、スペーサとR−T−B系焼結磁石体との接触面積について説明したが、スペーサとRH供給源との接触面積も同様である。   When the cross section (longitudinal cross section) is a rod-shaped member or a small piece member such as a triangle or trapezoid, the maximum area of the cross section parallel to the surface of the RTB-based sintered magnet body is a triangle. If it is a trapezoid, the longest base x length. In the above description, the contact area between the spacer and the RTB-based sintered magnet body has been described, but the contact area between the spacer and the RH supply source is the same.

スペーサの縦断面形状が円形の場合、スペーサはRH供給源やR−T−B系焼結磁石体と線接触しているため、実際の接触面積は、上記に定義した接触面積よりも小さくなる。よって、本発明においては、スペーサとRH供給源やR−T−B系焼結磁石体との接触面積が、同じである場合は、スペーサの縦断面形状が、面接触する多辺形状よりも線接触する円形状の方が、実際の接触面積が小さいため好ましい。   When the vertical cross-sectional shape of the spacer is circular, since the spacer is in line contact with the RH supply source and the RTB-based sintered magnet body, the actual contact area is smaller than the contact area defined above. . Therefore, in the present invention, when the contact area between the spacer and the RH supply source or the R-T-B system sintered magnet body is the same, the vertical cross-sectional shape of the spacer is more than the multi-sided shape in surface contact. A circular shape that is in line contact is preferable because the actual contact area is small.

本発明における蒸着拡散処理とは、R−T−B系焼結磁石体とRH供給源を加熱することにより、RH供給源から重希土類元素RHをR−T−B系焼結磁石体の表面に供給しつつ、重希土類元素RHをR−T−B系焼結磁石体の内部に拡散させることによって、Bの低下を抑制しつつ、HcJを向上させるものである。 The vapor deposition diffusion treatment in the present invention means that the R—T—B system sintered magnet body and the RH supply source are heated, whereby the heavy rare earth element RH is transferred from the RH supply source to the surface of the R—T—B system sintered magnet body. while supplying to, by diffusing the heavy rare-earth element RH inside of the R-T-B sintered magnet body while suppressing a decrease in B r, and improves the H cJ.

特許文献1、2に記載されるような、Nb網やエキスパンドメタルなどの支持体を用いた場合は、R−T−B系焼結磁石体やRH拡散源を支持するための強度が必要であった。そのため、Nb網やエキスパンドメタルの開口率を大きくすることに限界があった。一般に市場に提供されているNb網やエキスパンドメタルの開口率は通常60%程度であり、最大でも80%程度である。すなわち、支持体の接触面積は、R−T−B系焼結磁石体やRH供給源の支持体と接する側の全面積の通常40%程度であり、最小でも20%程度である。これに対し、本発明における特定形状からなるスペーサは、R−T−B系焼結磁石体やRH供給源を小さな接触面積で支持することができる。本発明の目的を達成するためには、スペーサの接触面積をR−T−B系焼結磁石体やRH供給源のスペーサと接する側の全面積の15%以下とすることが必要である。好ましくは、接触面積を10%以下、さらに好ましくは、5%以下にする。   When using a support such as an Nb net or expanded metal as described in Patent Documents 1 and 2, strength to support the RTB-based sintered magnet body or RH diffusion source is required. there were. For this reason, there is a limit to increasing the aperture ratio of the Nb net or the expanded metal. In general, the opening ratio of Nb nets and expanded metals provided on the market is usually about 60%, and about 80% at the maximum. That is, the contact area of the support is usually about 40% of the total area on the side in contact with the RTB-based sintered magnet body or the support of the RH supply source, and is about 20% at the minimum. On the other hand, the spacer having a specific shape in the present invention can support the RTB-based sintered magnet body and the RH supply source with a small contact area. In order to achieve the object of the present invention, the contact area of the spacer needs to be 15% or less of the total area on the side in contact with the RTB-based sintered magnet body or the spacer of the RH supply source. Preferably, the contact area is 10% or less, more preferably 5% or less.

上記のように、本発明におけるスペーサを用いることにより、Nb網やエキスパンドメタルなどの支持体を用いる場合に比べ、スペーサとR−T−B系焼結磁石体およびRH供給源との接触面積を大幅に低減することができる。そのため、R−T−B系焼結磁石との溶着の発生を減少させることができるとともに、RH供給源からR−T−B系焼結磁石体への重希土類元素RHの供給を効率よくすることができ、重希土類元素RHの歩留まり(処理前後のRH供給源の重量の差分と、処理後のR−T−B系焼結磁石において磁石内部に拡散された重希土類元素RHの重量(成分分析による測定結果)との比率)を向上させることができる。   As described above, by using the spacer in the present invention, the contact area between the spacer, the RTB-based sintered magnet body, and the RH supply source can be reduced as compared with the case of using a support such as an Nb net or expanded metal. It can be greatly reduced. Therefore, it is possible to reduce the occurrence of welding with the RTB-based sintered magnet, and to efficiently supply the heavy rare earth element RH from the RH supply source to the RTB-based sintered magnet body. The yield of heavy rare earth element RH (the difference in the weight of the RH supply source before and after the treatment and the weight of the heavy rare earth element RH diffused in the magnet in the R-T-B sintered magnet after the treatment (component It is possible to improve the ratio) to the measurement result by analysis).

以下に、本発明を実施するための形態を図面に基づき説明する。各図面において、同じ部分には同じ符号を付している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. In the drawings, the same parts are denoted by the same reference numerals.

図1は、処理ケース1内において、RH供給源2とR−T−B系焼結磁石体3を、スペーサ4を介して上下方向に多段配置した本発明の実施形態の一例を示す説明図である。図1に示すように、処理ケース1の底部上にRH供給源2を配置し、当該RH供給源2上に2本の棒状部材からなるスペーサ4を配置している。そのスペーサ4上にR−T−B系焼結磁石体3を配置し、さらに、当該R−T−B系焼結磁石体3上にスペーサ4を配置している。このように、スペーサ4を介して上下方向にRH供給源2とR−T−B系焼結磁石体3を交互に多段配置している   FIG. 1 is an explanatory view showing an example of an embodiment of the present invention in which an RH supply source 2 and an RTB-based sintered magnet body 3 are arranged in multiple stages in the vertical direction with spacers 4 in a processing case 1. It is. As shown in FIG. 1, an RH supply source 2 is arranged on the bottom of the processing case 1, and a spacer 4 made of two rod-like members is arranged on the RH supply source 2. The RTB-based sintered magnet body 3 is disposed on the spacer 4, and the spacer 4 is disposed on the RTB-based sintered magnet body 3. In this way, the RH supply source 2 and the R-T-B system sintered magnet bodies 3 are alternately arranged in multiple stages in the vertical direction via the spacers 4.

スペーサ4は、安定してRH供給源2とR−T−B系焼結磁石体3を上下方向に交互に多段配置することができれば、その配置位置は特に限定されない。例えば、2本の棒状部材を任意の位置に配置したり、複数の小片状部材を任意の位置に散在させればよい。好ましい形態として、前記スペーサを、前記R−T−B系焼結磁石体および前記RH供給源の各幅方向の両端から幅方向の寸法の1/4の領域および/または各長さ方向の両端から長さ方向の寸法の1/4の領域に、2個以上配置することが好ましい。以下に詳述する。   If the spacer 4 can stably arrange the RH supply source 2 and the RTB-based sintered magnet body 3 in multiple stages alternately in the vertical direction, the arrangement position is not particularly limited. For example, two rod-like members may be arranged at arbitrary positions, or a plurality of small piece-like members may be scattered at arbitrary positions. As a preferred embodiment, the spacer is formed by using the RTB-based sintered magnet body and the RH supply source from both ends in the width direction to a quarter region of the dimension in the width direction and / or both ends in the length direction. It is preferable to arrange two or more in a region of ¼ of the dimension in the length direction. This will be described in detail below.

図2〜図4は、好ましい形態として、スペーサの配置領域を示す説明図である。図2では、R―T−B系焼結磁石体3の幅方向Wの両端から幅方向の寸法の1/4(図中1/4W)の領域5(斜線部)に4個の小片状部材からなるスペーサ4を配置している。また、図3では、R−T−B系焼結磁石体3の長さ方向Lの両端から長さ方向の寸法の1/4(図中1/4L)の領域5(斜線部)に2個の小片状部材からなるスペーサ4を配置している。さらに、図4は、図2と図3を合わせた領域5(斜線部)に3個の小片状部材からなるスペーサ4を配置している。このように、R−T−B系焼結磁石体3の中心部ではなく、長さ方向又は幅方向の両端部に2個以上スペーサ4を配置した方が、より安定してRH供給源2とR−T−B系焼結磁石体3を上下方向に交互に多段配置することができる。   2-4 is explanatory drawing which shows the arrangement | positioning area | region of a spacer as a preferable form. In FIG. 2, four small pieces are provided in a region 5 (shaded portion) of 1/4 (1/4 W in the drawing) of the width direction from both ends in the width direction W of the RTB-based sintered magnet body 3. A spacer 4 made of a member is disposed. Further, in FIG. 3, the region 2 (shaded part) is ¼ (¼L in the figure) of the dimension in the length direction from both ends in the length direction L of the RTB-based sintered magnet body 3. A spacer 4 made of a small piece-like member is arranged. Further, in FIG. 4, spacers 4 made up of three small pieces are arranged in a region 5 (shaded portion) obtained by combining FIGS. 2 and 3. As described above, the RH supply source 2 is more stable when the two or more spacers 4 are arranged at both ends in the length direction or the width direction rather than the center portion of the RTB-based sintered magnet body 3. And RTB-based sintered magnet bodies 3 can be arranged in multiple stages alternately in the vertical direction.

処理ケース1及びスペーサ4は、Mo、W、Taなどの高融点金属や、窒化硼素、ジルコニア、アルミナ、イットリア、カルシア、マグネシアなどを含むセラミックス材料等、蒸着拡散処理時に、変形や変質を発生し難い材料で構成することが好ましい。また、Mo等の高融点金属の表面に、ジルコニア、アルミナ、イットリア等の酸化物を溶射してもよい。   The processing case 1 and the spacer 4 are deformed or altered during vapor deposition diffusion processing, such as refractory metals such as Mo, W, Ta, and ceramic materials including boron nitride, zirconia, alumina, yttria, calcia, magnesia, etc. It is preferable to use a difficult material. Further, an oxide such as zirconia, alumina or yttria may be sprayed on the surface of a refractory metal such as Mo.

スペーサ4は、RH供給源2やR−T−B系焼結磁石体3の大きさに応じて、接触面積が15%以下となるように選定する。また、スペーサ4の厚さは、0.1mmから15mmの範囲に設定することが好ましい。RH供給源2とR−T−B系焼結磁石体3の距離が近すぎると、RH供給源2やR−T−B系焼結磁石体3の寸法ばらつきなどにより、両者が接触してしまう可能性がある。そのため、スペーサ4の厚さは、0.1mm以上とするのが好ましい。また、15mm以下とすることで、効率良く重希土類元素RHをR−T−B系焼結磁石体3へ供給することができる。   The spacer 4 is selected so that the contact area is 15% or less according to the size of the RH supply source 2 and the RTB-based sintered magnet body 3. The thickness of the spacer 4 is preferably set in the range of 0.1 mm to 15 mm. If the distance between the RH supply source 2 and the R-T-B system sintered magnet body 3 is too short, the two come into contact with each other due to dimensional variations of the RH supply source 2 and the R-T-B system sintered magnet body 3. There is a possibility. Therefore, the thickness of the spacer 4 is preferably 0.1 mm or more. Moreover, by setting it as 15 mm or less, the heavy rare earth element RH can be efficiently supplied to the RTB-based sintered magnet body 3.

スペーサ4は、図1においては、棒状部材を用いているが、その他に小片状部材などを用いることができる。これらのスペーサは、RH供給源2やR−T−B系焼結磁石体3の形状や大きさによって選定することが好ましい。以下に棒状部材、小片状部材について、それぞれ詳述する。   In FIG. 1, the spacer 4 uses a rod-shaped member, but a small piece-like member or the like can also be used. These spacers are preferably selected according to the shape and size of the RH supply source 2 and the RTB-based sintered magnet body 3. Hereinafter, the rod-shaped member and the small piece-shaped member will be described in detail.

棒状部材は、その長さ方向をRH供給源2やR−T−B系焼結磁石体3との接触面と平行方向に配置すればよく、その断面(縦断面)形状は任意である。RH供給源2やR−T−B系焼結磁石体3と面接触してもよいが、線接触の方が好ましく、例えば、断面形状は円形や楕円形などの場合が好ましい。   The rod-shaped member may be arranged in a direction parallel to the contact surface with the RH supply source 2 or the RTB-based sintered magnet body 3 in the length direction, and the cross-sectional (vertical cross-sectional) shape is arbitrary. The RH supply source 2 and the RTB-based sintered magnet body 3 may be in surface contact, but line contact is preferable. For example, the cross-sectional shape is preferably circular or elliptical.

図5では、棒状部材4aは、RH供給源2やR−T−B系焼結磁石体3の両端部に平行に2本配置している。しかし、特にその角度や方向などを厳密に管理する必要はなく、斜めに配置しても良い。斜めに配置する時は、RH供給源2とR−T−B系焼結磁石体3を多段配置した時に、不安定にならないように棒状部材4aを配置すれば良い。また、棒状部材4aは、転動防止のため両端部を湾曲させてもよい。   In FIG. 5, two rod-like members 4 a are arranged in parallel to both end portions of the RH supply source 2 and the RTB-based sintered magnet body 3. However, it is not particularly necessary to strictly manage the angle and direction, and they may be arranged obliquely. When the RH supply source 2 and the RTB-based sintered magnet body 3 are arranged in multiple stages, the rod-like member 4a may be arranged so as not to become unstable when arranged obliquely. Further, the rod-like member 4a may be curved at both ends to prevent rolling.

棒状部材4aは、図6に示すように、4本を組み合して枠状にしてもよい、さらに、4本をつなげて一体品として使用してもよい。   As shown in FIG. 6, four rod-shaped members 4a may be combined into a frame shape, or four may be connected and used as an integrated product.

図7は、小片状部材4bを配置した一例を示す平面図である。図7では、R−T−B系焼結磁石体3上の四隅に円柱形状の小片状部材4bを配置している。小片状部材4bは、RH供給源2とR−T−B系焼結磁石体3を上下方向に安定して多段配置できれば、RH供給源2やR−T−B系焼結磁石体3に配置する場所やその形状は任意である。例えば、多面体からなる略球状のものを、RH供給源2やR−T−B系焼結磁石体3上の数箇所に、散在させてもよい。また、多面体からなる略球状以外のサイコロ形状、円すい形状や角すい形状であってもよい。   FIG. 7 is a plan view showing an example in which small pieces 4b are arranged. In FIG. 7, cylindrical small pieces 4 b are arranged at four corners on the RTB-based sintered magnet body 3. If the RH supply source 2 and the R-T-B system sintered magnet body 3 can be stably arranged in multiple stages in the vertical direction, the small piece-like member 4b can have the RH supply source 2 and the R-T-B system sintered magnet body 3. The location and the shape thereof are arbitrary. For example, a substantially spherical shape made of a polyhedron may be scattered at several locations on the RH supply source 2 and the R-T-B system sintered magnet body 3. Further, it may be a dice shape other than a substantially spherical shape made of a polyhedron, a conical shape, or a rectangular shape.

図8は、R−T−B系焼結磁石体上に棒状部材4aと小片状部材4bを組み合わせて配置した一例を示す平面図である。図8に示す通り、棒状部材4aをR−T−B系焼結磁石体3の両端部に配置し、小片状部材4bをR−T−B系焼結磁石体3のほぼ中心位置に配置してもよい。   FIG. 8 is a plan view showing an example in which the rod-like member 4a and the small piece-like member 4b are arranged in combination on the RTB-based sintered magnet body. As shown in FIG. 8, the rod-shaped member 4 a is disposed at both ends of the RTB-based sintered magnet body 3, and the small piece-like member 4 b is positioned at the substantially central position of the RTB-based sintered magnet body 3. You may arrange.

以上のように、複数の棒状部材および/または小片状部材からなるスペーサを用いることにより、Nb網やエキスパンドメタルなどの支持体を用いる場合と比べて、接触面積を低減させることが可能となる。   As described above, by using a spacer made of a plurality of rod-like members and / or small piece-like members, the contact area can be reduced as compared with the case of using a support such as an Nb net or an expanded metal. .

RH供給源2は、重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金であり、当該重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種である。例えばDyメタル、Tbメタル、Hoメタル、DyFe合金、TbFe合金、HoFe合金などである。Dy、Tb、Ho、Fe以外に他の元素を含んでいても良い。RH供給源2は、塊状(バルク体)、板状など、大きさは特に限定されないが、重希土類元素RHを25原子%以上含むことが好ましい。重希土類元素RHの含有量が25原子%よりも少なくなると、RH供給源2からの重希土類元素RHの供給量が少なくなり、所望のHcJ向上効果を得るためには処理時間が非常に長くなるため、好ましくない。 The RH supply source 2 is a metal composed of a heavy rare earth element RH or an alloy containing 25 atomic% or more of the heavy rare earth element RH, and the heavy rare earth element RH is at least one of Dy, Ho, and Tb. For example, Dy metal, Tb metal, Ho metal, DyFe alloy, TbFe alloy, and HoFe alloy. Other elements may be included in addition to Dy, Tb, Ho, and Fe. The size of the RH supply source 2 is not particularly limited, such as a block shape (bulk body) or a plate shape, but it is preferable that the RH supply source 2 contains 25 atomic% or more of the heavy rare earth element RH. When the content of the heavy rare earth element RH is less than 25 atomic%, the supply amount of the heavy rare earth element RH from the RH supply source 2 is decreased, and the processing time is very long in order to obtain the desired effect of improving HcJ. Therefore, it is not preferable.

蒸着拡散処理を行う処理条件は公知の方法で行えば良い。好ましい方法の一例を以下に詳述する。   The processing conditions for performing the vapor deposition diffusion processing may be performed by a known method. An example of a preferred method is described in detail below.

まず、処理ケース1内にRH供給源2とR−T−B系焼結磁石体3とをスペーサ4を介して上下方向に交互に多段配置し、その処理ケース1を蒸着拡散処理装置内(図示せず)に配置する。その後、RH供給源2とR−T−B系焼結磁石体3を、800℃以上950℃以下に加熱して蒸着拡散処理を行う。温度が800℃未満であると、重希土類元素RHのR−T−B系焼結磁石体3への供給不足が発生する恐れがある。950℃を超えると前記重希土類元素RHがR−T−B系焼結磁石体3に過剰に供給され、スペーサとの溶着箇所が増大してしまう恐れがある。   First, the RH supply source 2 and the RTB-based sintered magnet body 3 are alternately arranged in multiple stages in the vertical direction via the spacers 4 in the processing case 1, and the processing case 1 is placed in the vapor deposition diffusion processing apparatus ( (Not shown). Thereafter, the RH supply source 2 and the RTB-based sintered magnet body 3 are heated to 800 ° C. or higher and 950 ° C. or lower to perform vapor deposition diffusion treatment. If the temperature is lower than 800 ° C., insufficient supply of heavy rare earth element RH to the R—T—B based sintered magnet body 3 may occur. If the temperature exceeds 950 ° C., the heavy rare earth element RH is excessively supplied to the RTB-based sintered magnet body 3, which may increase the number of welded portions with the spacer.

なお、前記蒸着拡散処理では、処理ケース1内の雰囲気圧力を、0.1Pa以上50Pa以下とすることが好ましい。0.1Pa未満の雰囲気圧力で蒸着拡散処理を行うと、重希土類元素RHが過剰に供給されてしまうことがあり、R−T−B系焼結磁石3とスペーサ4との溶着箇所が増大してしまう恐れがある。一方、50Paを超えて行うと、前記重希土類元素RHのR−T−B系焼結磁石体3への供給を十分に確保できない恐れがある。   In addition, in the said vapor deposition diffusion process, it is preferable that the atmospheric pressure in the process case 1 shall be 0.1 Pa or more and 50 Pa or less. When the vapor deposition diffusion treatment is performed at an atmospheric pressure of less than 0.1 Pa, the heavy rare earth element RH may be excessively supplied, and the number of welded portions between the RTB-based sintered magnet 3 and the spacer 4 increases. There is a risk that. On the other hand, when the pressure exceeds 50 Pa, there is a possibility that the supply of the heavy rare earth element RH to the RTB-based sintered magnet body 3 cannot be sufficiently ensured.

前記蒸着拡散処理後、さらに処理ケース1内の雰囲気圧力を200Pa以上2kPa以下、RH供給源とR−T−B系焼結磁石を800℃以上950℃以下に加熱して熱処理を行うことが好ましい。200Pa以上2kPa以下の雰囲気圧力とすることで、RH供給源2から重希土類元素RHがR−T−B系焼結磁石体3の表面に供給されなくなり、拡散のみが進行する。また、800℃以上950℃以下の温度範囲にすることで、R−T−B系焼結磁石の内部へより均質に前記重希土類元素RHを拡散することができる。   After the vapor deposition diffusion treatment, it is preferable to further perform a heat treatment by heating the atmospheric pressure in the treatment case 1 to 200 Pa to 2 kPa, heating the RH supply source and the RTB-based sintered magnet to 800 ° C. to 950 ° C. . By setting the atmospheric pressure to 200 Pa or more and 2 kPa or less, the heavy rare earth element RH is not supplied from the RH supply source 2 to the surface of the RTB-based sintered magnet body 3, and only diffusion proceeds. Further, by setting the temperature range to 800 ° C. or more and 950 ° C. or less, the heavy rare earth element RH can be more uniformly diffused into the RTB-based sintered magnet.

前記蒸着拡散処理を行う蒸着拡散処理装置が、一室の処理室からなり、当該処理室で前記熱処理を引き続き行う場合、不活性ガスを流気させて、雰囲気圧力を200Pa以上2kPa以下に調整してから前記熱処理を行えばよい。   When the vapor deposition diffusion treatment apparatus for performing the vapor deposition diffusion treatment is composed of a single processing chamber, and when the heat treatment is continued in the processing chamber, an inert gas is flowed to adjust the atmospheric pressure to 200 Pa or more and 2 kPa or less. Then, the heat treatment may be performed.

前記蒸着拡散処理を行う蒸着拡散処理装置が、前記蒸着拡散処理を行う処理室と前記熱処理を行う処理室との2つの処理室を有する場合、当該熱処理を行う処理室を、200Pa以上2kPa以下の雰囲気圧力で800℃以上950℃以下の処理温度にあらかじめ設定しておき、前記蒸着拡散処理を行う処理室にて前記蒸着拡散処理を行った後、前記熱処理を行う処理室に処理ケース1を搬送台(図示せず)にて搬送させ、前記熱処理を行えば良い。   When the vapor deposition diffusion treatment apparatus that performs the vapor deposition diffusion treatment includes two treatment chambers, that is, a treatment chamber that performs the vapor deposition diffusion treatment and a treatment chamber that performs the heat treatment, the treatment chamber in which the heat treatment is performed is 200 Pa or more and 2 kPa or less. A processing temperature of 800 ° C. or higher and 950 ° C. or lower is set in advance at an atmospheric pressure, and after performing the vapor deposition diffusion treatment in the vapor deposition diffusion treatment chamber, the processing case 1 is transferred to the treatment chamber in which the heat treatment is performed. The heat treatment may be performed by carrying it on a table (not shown).

前記熱処理は、必ずしも前記蒸着拡散処理装置と同じ装置で行う必要はなく、別の装置で行っても良い。   The heat treatment is not necessarily performed by the same apparatus as the vapor deposition diffusion processing apparatus, and may be performed by another apparatus.

蒸着拡散処理後のR−T−B系焼結磁石に表面処理を施すことが好ましい。表面処理は、公知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。表面処理を行う前に、サンドブラスト処理、バレル処理、機械研磨等公知の前処理を行っても良い。また、寸法調整のための加工研磨を行っても良い。寸法調整のための研磨量は、1〜300μm、好ましくは、5〜100μm、さらに好ましくは、10〜30μmである。これらの表面処理や加工研磨の工程を経ても、HcJ向上効果はほとんど変わらない。 It is preferable to subject the RTB-based sintered magnet after the vapor deposition diffusion treatment to a surface treatment. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al vapor deposition, electric Ni plating, or resin coating can be performed. Prior to the surface treatment, a known pretreatment such as sandblasting, barrel treatment, or mechanical polishing may be performed. Moreover, you may perform the process grinding | polishing for a dimension adjustment. The polishing amount for adjusting the dimensions is 1 to 300 μm, preferably 5 to 100 μm, and more preferably 10 to 30 μm. Even after these surface treatment and processing / polishing steps, the HcJ improvement effect is hardly changed.

以下の全ての実験は、蒸着拡散処理を行うために、まず、処理ケース1内の底部上にRH供給源2を配置する。次に、当該RH供給源2上にスペーサ4を配置し、その上にR−T−B系焼結磁石体3を配置する。このように、スペーサを介して交互にRH供給源2とR−T−B系焼結磁石体3を上下方向に多段配置する。実験に使用するための処理ケース1は、高さ430×幅420×長さ520(mm)の大きさのものを準備した。   In all the following experiments, in order to perform the vapor deposition diffusion treatment, first, the RH supply source 2 is disposed on the bottom in the treatment case 1. Next, the spacer 4 is disposed on the RH supply source 2, and the RTB-based sintered magnet body 3 is disposed thereon. Thus, the RH supply source 2 and the RTB-based sintered magnet body 3 are alternately arranged in multiple stages in the vertical direction via the spacers. The treatment case 1 for use in the experiment was prepared with a size of height 430 × width 420 × length 520 (mm).

〔実施例1〕
組成がNd19.3Pr5.7Dy4.30.95Co2.0Al0.15Cu0.1Ga0.08残部Fe(質量%)からなるR−T−B系焼結磁石体3を準備した。磁気特性は、B=1.31T、HcJ=1740kA/mであった。
[Example 1]
R-T-B system sintering whose composition is Nd 19.3 Pr 5.7 Dy 4.3 B 0.95 Co 2.0 Al 0.15 Cu 0.1 Ga 0.08 balance Fe (mass%) Magnet body 3 was prepared. The magnetic properties were B r = 1.31 T and H cJ = 1740 kA / m.

R−T−B系焼結磁石体3を厚み20×幅65×長さ90(mm)に加工した。RH供給源2も、加工したR−T−B焼結磁石体3とほぼ同寸法のDyメタルを準備した。また、スペーサ4は、断面が円形の棒状部材4aを準備した。棒状部材4aの外径はφ3mmで、長さは60mmであった。   The RTB-based sintered magnet body 3 was processed into a thickness of 20 × width of 65 × length of 90 (mm). The RH supply source 2 was also prepared with Dy metal having substantially the same dimensions as the processed RTB sintered magnet body 3. Moreover, the spacer 4 prepared the rod-shaped member 4a with a circular cross section. The rod-shaped member 4a had an outer diameter of 3 mm and a length of 60 mm.

図5のように、処理ケース1内に、棒状部材4aを配置したスペーサ4を介して、RH供給源2とR−T−B系焼結磁石体3を上下方向に交互に多段配置した。   As shown in FIG. 5, the RH supply source 2 and the RTB-based sintered magnet bodies 3 are alternately arranged in multiple stages in the vertical direction through the spacer 4 in which the rod-like member 4 a is arranged in the processing case 1.

本発明の処理ケース内1を、900℃になるまで昇温した後、圧力10−3Paの真空中で2時間蒸着拡散処理を行った。蒸着拡散処理の後、さらに、900℃、圧力1.5kPaで6時間熱処理を行いR−T−B系焼結磁石を作製した。 After raising the temperature in the treatment case 1 of the present invention to 900 ° C., vapor deposition diffusion treatment was performed in a vacuum at a pressure of 10 −3 Pa for 2 hours. After the vapor deposition diffusion treatment, heat treatment was further performed at 900 ° C. and a pressure of 1.5 kPa for 6 hours to produce an R-T-B system sintered magnet.

〔実施例2〕
実施例1と同じ組成、磁気特性であるR−T−B系焼結磁石体3を厚み20×幅130×長さ210(mm)に加工した。RH供給源2も、加工したR−T−B焼結磁石体3とほぼ同寸法のDyメタルを準備した。また、スペーサ4は、断面が円形の棒状部材4aを準備した。円形の外径はφ5mm×110mmとφ5×200mmの2種類であった。
[Example 2]
The RTB-based sintered magnet body 3 having the same composition and magnetic characteristics as in Example 1 was processed into a thickness of 20 × width of 130 × length of 210 (mm). The RH supply source 2 was also prepared with Dy metal having substantially the same dimensions as the processed RTB sintered magnet body 3. Moreover, the spacer 4 prepared the rod-shaped member 4a with a circular cross section. There were two types of circular outer diameters of φ5 mm × 110 mm and φ5 × 200 mm.

図6のように、処理ケース1内に、棒状部材4aを枠状に配置したスペーサ4を介して、RH供給源2とR−T−B系焼結磁石体3を上下方向に交互に多段配置し、実施例1と同じ蒸着拡散処理を行い、R−T−B系焼結磁石を作製した。   As shown in FIG. 6, the RH supply source 2 and the RTB-based sintered magnet body 3 are alternately multi-staged in the vertical direction through the spacer 4 in which the rod-like members 4 a are arranged in a frame shape in the processing case 1. Then, the same vapor deposition diffusion treatment as in Example 1 was performed, and an RTB-based sintered magnet was produced.

〔実施例3〕
実施例1と同じ組成、磁気特性であるR−T−B系焼結磁石体3を厚み20×幅110×長さ110(mm)に加工した。RH供給源2も、加工したR−T−B焼結磁石体3とほぼ同寸法のDyメタルを準備した。また、スペーサ4は、円柱の小片状部材4bを準備した。外径はφ4mmで、厚みは5mmであった。
Example 3
The RTB-based sintered magnet body 3 having the same composition and magnetic characteristics as in Example 1 was processed into a thickness of 20 × width of 110 × length of 110 (mm). The RH supply source 2 was also prepared with Dy metal having substantially the same dimensions as the processed RTB sintered magnet body 3. Moreover, the spacer 4 prepared the cylindrical small piece member 4b. The outer diameter was 4 mm and the thickness was 5 mm.

図7のように、処理ケース1内に、小片状部材4bを4隅に配置したスペーサ4を介して、RH供給源2とR−T−B系焼結磁石体3を上下方向に交互に多段配置し、実施例1と同じ蒸着拡散処理を行い、R−T−B系焼結磁石を作製した。   As shown in FIG. 7, the RH supply source 2 and the RTB-based sintered magnet body 3 are alternately arranged in the vertical direction through spacers 4 in which small pieces 4 b are arranged at four corners in the processing case 1. And the same vapor deposition diffusion treatment as in Example 1 was performed to produce an RTB-based sintered magnet.

〔比較例1〕
スペーサの換わりに直径2mmのNb製の線材で編んだ網(3メッシュ、開口率56%)を使用したことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
[Comparative Example 1]
An RTB-based sintered magnet was produced under the same conditions as in Example 1 except that a net (3 mesh, aperture ratio 56%) knitted with a 2 mm diameter wire rod was used instead of the spacer. .

〔実施例4〕
蒸着拡散処理の雰囲気圧力を3.0Paで行ったことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
Example 4
An RTB-based sintered magnet was produced under the same conditions as in Example 1 except that the atmospheric pressure of the vapor deposition diffusion treatment was 3.0 Pa.

実施例1〜4、比較例1の結果を表1に示す。表1において「圧力」は、蒸着拡散処理時の雰囲気圧力(処理ケース内の圧力)を示す。「△HcJ」は、処理前のR−T−B系焼結磁石体のHcJ(1740kA/m)と処理後のHcJの差分を示す。「△B」は、処理前のR−T−B系焼結磁石体のB(1.31T)と処理後のBの差分を示す。「溶着率」は、R−T−B系焼結磁石をスペーサより取り外した時に溶着の有無を確認し、溶着が発生したR−T−B系焼結磁石の数を、処理した全体の個数で割ることにより、溶着した割合を%で示す。「接触面積」は、スペーサの接触面積をR−T−B系焼結磁石体のスペーサと接触する側の全面積で割ることにより、スペーサの接触面積における、R−T−B系焼結磁石体と接触している割合を%で示す。「Dy歩留まり」は、R−T−B系焼結磁石とRH供給源(Dyメタル)の蒸着拡散処理前後の重量変化から(R−T−B系焼結磁石のDy増加量)/(Dyメタルの減少量)×100%で算出した値である。「処理数」は、実施例1、実施例2、実施例3、実施例4、比較例1それぞれに使用した、R−T−B系焼結磁石の数を示す。 The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1. In Table 1, “pressure” indicates an atmospheric pressure (pressure in the processing case) during the vapor deposition diffusion treatment. “ ΔH cJ ” indicates the difference between H cJ (1740 kA / m) of the RTB -based sintered magnet body before processing and H cJ after processing. "△ B r" indicates the difference between the B r after treatment with pretreatment the R-T-B-based sintered magnet body B r (1.31T). “Welding rate” is the number of R-T-B system sintered magnets that were welded when the R-T-B system sintered magnet was removed from the spacer, By dividing by, the percentage of welding is shown in%. The “contact area” is obtained by dividing the contact area of the spacer by the total area of the RTB-based sintered magnet body on the side in contact with the spacer, thereby obtaining the RTB-based sintered magnet in the spacer contact area. The percentage of contact with the body is shown in%. “Dy yield” is calculated from the weight change before and after the vapor deposition diffusion treatment of the RTB-based sintered magnet and the RH supply source (Dy metal) (Dy increase amount of RTB-based sintered magnet) / (Dy This is a value calculated by (metal reduction amount) × 100%. “Number of treatments” indicates the number of R—T—B system sintered magnets used in each of Example 1, Example 2, Example 3, Example 4, and Comparative Example 1.

Figure 2012234895
Figure 2012234895

比較例1は、R−T−B系焼結磁石に網目状に溶着が発生していた。全ての実施例において、比較例1と比べて溶着率が半分以下となり、大幅に減少した。さらに、Dy歩留まりも比較例1と比べて改善された。
また、実施例4では、R−T−B系焼結磁石とスペーサとの溶着は見られず、Dy歩留まりも比較例と比べて大幅に改善された。
In Comparative Example 1, the R-T-B system sintered magnet was welded in a mesh shape. In all the examples, compared with Comparative Example 1, the welding rate was less than half, which was significantly reduced. Furthermore, the Dy yield was also improved as compared with Comparative Example 1.
Further, in Example 4, no welding between the RTB-based sintered magnet and the spacer was observed, and the Dy yield was significantly improved as compared with the comparative example.

以上のように、実施例によれば、R−T−B系焼結磁石の溶着の発生を大幅に減少させることができる。これにより、蒸着拡散処理後の取り外し工数を大幅に削減することができ、量産に適した蒸着拡散処理を行うことが可能となる。また、接触面積が小さいため、RH供給源からR−T―B系焼結磁石へ重希土類元素RHの供給を効率よくすることができ、重希土類元素RHの歩留まりを向上させることができる。   As mentioned above, according to the Example, generation | occurrence | production of the welding of a RTB system sintered magnet can be reduced significantly. Thereby, the removal man-hour after a vapor deposition diffusion process can be reduced significantly, and it becomes possible to perform the vapor deposition diffusion process suitable for mass production. In addition, since the contact area is small, it is possible to efficiently supply the heavy rare earth element RH from the RH supply source to the RTB-based sintered magnet, and it is possible to improve the yield of the heavy rare earth element RH.

本発明によるR−T−B系焼結磁石は、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに好適に利用することができる。   The RTB-based sintered magnet according to the present invention can be suitably used for various motors for hybrid vehicles, electric vehicles, home appliances, and the like.

1 処理ケース
2 RH供給源
3 R−T−B系焼結磁石体
4 スペーサ
4a 棒状部材
4b 小片状部材
DESCRIPTION OF SYMBOLS 1 Processing case 2 RH supply source 3 RTB system sintered magnet body 4 Spacer 4a Bar-shaped member 4b Small piece-like member

Claims (5)

処理ケース内に、
R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも一種、TはFeまたはFeおよびCo)と、
RH供給源(重希土類元素RHからなる金属または重希土類元素RHを25原子%以上含む合金。但し、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも一種)を、
スペーサを介して上下方向に多段配置した状態で加熱することにより、
前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理において、
前記スペーサは、厚みが0.1mm以上15mm以下の複数の棒状部材および/または小片状部材からなり、
前記スペーサの前記R−T−B系焼結磁石体への接触面積が、
前記スペーサと接触する側の前記R−T−B系焼結磁石体全面積の15%以下であり、かつ、
前記スペーサの前記RH供給源への接触面積が、
前記スペーサと接触する側の前記RH供給源全面積の15%以下であることを特徴とするR−T−B系焼結磁石の製造方法。
In the processing case,
R-T-B system sintered magnet body (R is at least one of rare earth elements, T is Fe or Fe and Co),
RH supply source (a metal comprising heavy rare earth element RH or an alloy containing 25 atomic% or more of heavy rare earth element RH, where heavy rare earth element RH is at least one of Dy, Ho and Tb),
By heating in a multi-stage arrangement in the vertical direction through the spacer,
While supplying the heavy rare earth element RH from the RH supply source to the surface of the RTB-based sintered magnet body, the heavy rare earth element RH is diffused into the RTB-based sintered magnet body. In the vapor deposition diffusion process,
The spacer comprises a plurality of rod-like members and / or small piece-like members having a thickness of 0.1 mm to 15 mm,
The contact area of the spacer to the RTB-based sintered magnet body is as follows:
15% or less of the total area of the RTB-based sintered magnet body on the side in contact with the spacer, and
The contact area of the spacer to the RH supply source is
The manufacturing method of the RTB system sintered magnet characterized by being 15% or less of the total area of the RH supply source on the side in contact with the spacer.
前記スペーサを、前記R−T−B系焼結磁石体および前記RH供給源の各幅方向の両端から幅方向の寸法の1/4の領域および/または各長さ方向の両端から長さ方向の寸法の1/4の領域に、2個以上配置することを特徴とする請求項1に記載のR−T−B系焼結磁石の製造方法。   The spacers are arranged in the length direction from both ends of each width direction of the RTB-based sintered magnet body and the RH supply source, and / or from both ends in the length direction. The method for producing an RTB-based sintered magnet according to claim 1, wherein two or more are arranged in an area of ¼ of the size of the sintered magnet. 前記R−T−B系焼結磁石体及び前記RH供給源を、800℃以上950℃以下に加熱して前記蒸着拡散処理を行うことを特徴とする請求項1または2に記載のR−T−B系焼結磁石の製造方法。   3. The RT according to claim 1, wherein the deposition diffusion treatment is performed by heating the RTB-based sintered magnet body and the RH supply source to 800 ° C. or more and 950 ° C. or less. -Manufacturing method of B type sintered magnet. 前記処理ケース内の圧力を、0.1Pa以上50Pa以下として前記蒸着拡散処理を行うことを特徴とする請求項3に記載のR−T−B系焼結磁石の製造方法。   The method for producing an R-T-B system sintered magnet according to claim 3, wherein the vapor deposition diffusion treatment is performed at a pressure in the treatment case of 0.1 Pa to 50 Pa. 前記蒸着拡散処後、前記処理ケース内の圧力を、200Pa以上2kPa以下として、前記R−T−B系焼結磁石及び前記RH供給源を800℃以上950℃以下に加熱して熱処理を行うことを特徴とする請求項3または4に記載のR−T−B系焼結磁石の製造方法。   After the vapor deposition diffusion treatment, the pressure in the treatment case is set to 200 Pa or more and 2 kPa or less, and the RTB-based sintered magnet and the RH supply source are heated to 800 ° C. or more and 950 ° C. or less to perform heat treatment. The manufacturing method of the RTB type | system | group sintered magnet of Claim 3 or 4 characterized by these.
JP2011101001A 2011-04-28 2011-04-28 Method for producing RTB-based sintered magnet Active JP5871172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101001A JP5871172B2 (en) 2011-04-28 2011-04-28 Method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101001A JP5871172B2 (en) 2011-04-28 2011-04-28 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2012234895A true JP2012234895A (en) 2012-11-29
JP5871172B2 JP5871172B2 (en) 2016-03-01

Family

ID=47434955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101001A Active JP5871172B2 (en) 2011-04-28 2011-04-28 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP5871172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140366991A1 (en) * 2013-06-12 2014-12-18 Vacuumschmelze Gmbh & Co.Kg Method for reducing a rare earth-based magnet
CN113299476A (en) * 2021-06-24 2021-08-24 安徽大地熊新材料股份有限公司 Large-size neodymium iron boron diffusion magnet and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252223A (en) * 1989-03-27 1990-10-11 Hitachi Metals Ltd Sintering roll for rare earth element magnet and sintering method thereof
JP2000315611A (en) * 1999-03-03 2000-11-14 Sumitomo Special Metals Co Ltd Sinter case used for sinter of rare earth magnet and manufacture therefor performing sinter treatment by using same case
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2007102391A (en) * 2005-10-03 2007-04-19 Nec Engineering Ltd Order management system
WO2007102391A1 (en) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
WO2008032668A1 (en) * 2006-09-11 2008-03-20 Ulvac, Inc. Vacuum evaporation processing equipment
WO2009057592A1 (en) * 2007-10-31 2009-05-07 Ulvac, Inc. Process for producing permanent magnet and permanent magnet
JP2009130279A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Method of manufacturing permanent magnet
JP2009135393A (en) * 2007-10-31 2009-06-18 Ulvac Japan Ltd Method for manufacturing permanent magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252223A (en) * 1989-03-27 1990-10-11 Hitachi Metals Ltd Sintering roll for rare earth element magnet and sintering method thereof
JP2000315611A (en) * 1999-03-03 2000-11-14 Sumitomo Special Metals Co Ltd Sinter case used for sinter of rare earth magnet and manufacture therefor performing sinter treatment by using same case
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2007102391A (en) * 2005-10-03 2007-04-19 Nec Engineering Ltd Order management system
WO2007102391A1 (en) * 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
WO2008032668A1 (en) * 2006-09-11 2008-03-20 Ulvac, Inc. Vacuum evaporation processing equipment
WO2009057592A1 (en) * 2007-10-31 2009-05-07 Ulvac, Inc. Process for producing permanent magnet and permanent magnet
JP2009135393A (en) * 2007-10-31 2009-06-18 Ulvac Japan Ltd Method for manufacturing permanent magnet
JP2009130279A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Method of manufacturing permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140366991A1 (en) * 2013-06-12 2014-12-18 Vacuumschmelze Gmbh & Co.Kg Method for reducing a rare earth-based magnet
CN113299476A (en) * 2021-06-24 2021-08-24 安徽大地熊新材料股份有限公司 Large-size neodymium iron boron diffusion magnet and preparation method thereof

Also Published As

Publication number Publication date
JP5871172B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6248925B2 (en) Method for producing RTB-based sintered magnet
JP4788427B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP4241900B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5510456B2 (en) Method for producing R-Fe-B rare earth sintered magnet and steam control member
CN102751086B (en) Method of manufacturing permanent magnet and permanent magnet
JP5088596B2 (en) Method for producing RTB-based sintered magnet
WO2012099186A1 (en) Method of producing r-t-b sintered magnet
JP4788690B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
WO2008032667A1 (en) Permanent magnet and process for producing the same
WO2010113465A1 (en) Alloy for sintered r-t-b-m magnet and method for producing same
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2006265601A (en) Vessel for sintering rare earth magnet and method for producing rare earth magnet using the same
WO2013002170A1 (en) Rh diffusion source, and method for producing r-t-b-based sintered magnet using same
JP5818137B2 (en) Method for producing RTB-based sintered magnet
JP5871172B2 (en) Method for producing RTB-based sintered magnet
JP4556236B2 (en) Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same
JP5471698B2 (en) Manufacturing method of RTB-based sintered magnet and jig for RH diffusion treatment
JP6691667B2 (en) Method for manufacturing RTB magnet
JP5187411B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP5742012B2 (en) Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet
JP2014135441A (en) Method for manufacturing permanent magnet
JP6408284B2 (en) Method for manufacturing permanent magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
JP2014135442A (en) Method for manufacturing permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151231

R150 Certificate of patent or registration of utility model

Ref document number: 5871172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350