JPH02252223A - Sintering roll for rare earth element magnet and sintering method thereof - Google Patents

Sintering roll for rare earth element magnet and sintering method thereof

Info

Publication number
JPH02252223A
JPH02252223A JP7442689A JP7442689A JPH02252223A JP H02252223 A JPH02252223 A JP H02252223A JP 7442689 A JP7442689 A JP 7442689A JP 7442689 A JP7442689 A JP 7442689A JP H02252223 A JPH02252223 A JP H02252223A
Authority
JP
Japan
Prior art keywords
rare earth
sintering
roller
earth element
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7442689A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7442689A priority Critical patent/JPH02252223A/en
Publication of JPH02252223A publication Critical patent/JPH02252223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To sinter a rare earth element magnet having a large size by using a roll formed substantially in a spherical shape of rare earth element oxide. CONSTITUTION:A rare earth element oxide is formed in a spherical, columnar, cylindrical shape, etc., to form a roll 2. Rolls 2 are laid at a suitable interval on a baking tray 1, a rare earth element magnet molded piece is placed thereon, and sintered. Thus, when the surface of the roll 2 is formed of a material having lower or equivalent Gibbs free energy than that of the rare earth element, the rare earth element of the rare earth element magnet is not oxidized. A large contraction in case of sintering is absorbed by the rotation of the rolls 2. As a result, the rare earth element magnet having a large size can be sintered.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、比較的大型の希土類永久磁石の焼結方法と
、その焼結方法に用いる焼結用コロとに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of sintering a relatively large rare earth permanent magnet, and a sintering roller used in the sintering method.

[従来の技術及び発明が解決しようとする課題]従来希
土類永久磁石は、音響機器、OAlAl器機器動車用電
装品に用いられるスピーカーや小型回転機等に代表され
るように5専ら小型の用途に限られて用いられていたが
、その優れた磁気特性によってシンクロトロン放射光を
発生させるウィグラ及びアンジュレータなどの用途のよ
うに、大型の磁石としても用いることが望まれている。
[Prior art and problems to be solved by the invention] Conventionally, rare earth permanent magnets have been used exclusively for small-sized applications, such as speakers and small rotating machines used in audio equipment, OAlAl equipment, motor vehicle electrical components, etc. Although its use has been limited, it is desired to use it as a large magnet, such as in wigglers and undulators that generate synchrotron radiation due to its excellent magnetic properties.

しかるに希土類磁石は一般にプレス成形した後に焼結す
ることによって製造されるが、焼結の過程でほぼ18%
はど長さが収縮するために、従来小型の磁石を焼結する
ときにはタンタル等の耐熱性の金属製焼成皿に成形体を
収納して焼結していたが、このような焼結方法によって
大型の磁石を焼結すると、収縮量が大きいために収縮し
きらずに亀裂を生じて完成品を製造することができない
However, rare earth magnets are generally manufactured by press forming and then sintering, but in the sintering process approximately 18%
Conventionally, when small magnets were sintered, the molded body was stored in a baking dish made of heat-resistant metal such as tantalum, as the length of the tube would shrink. When a large magnet is sintered, the amount of shrinkage is large, and cracks occur before the magnet shrinks completely, making it impossible to manufacture a finished product.

他方大型のフェライトコアの焼結方法として、アルミナ
等で成形したコロを焼成皿に敷いてその上にプレス成形
したフェライトコアを載置して焼結する方法が提案され
ているが(特願昭63−225443号)、この方法に
よって希土類磁石を焼結すると、希土類成分元素が酸化
されて磁石を製造することができない。
On the other hand, as a method for sintering large ferrite cores, a method has been proposed in which a roller molded from alumina or the like is placed on a firing plate, and a press-formed ferrite core is placed on top of it for sintering (Japanese Patent Application No. No. 63-225443), when a rare earth magnet is sintered by this method, the rare earth component elements are oxidized and the magnet cannot be manufactured.

したがって本発明は専ら大型の希土類永久磁石の焼結方
法と、その焼結方法に使用する焼結用コロとを提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a method for sintering a large rare earth permanent magnet and a sintering roller used in the sintering method.

[課題を解決するための手段] 本発明は上記目的を達成するために成されたものであり
、すなわち本発明の請求項1ないし3は、希土類の酸化
物を球形もしくは円柱ないしは円筒形に成形し、又は球
形もしくは円柱ないしは円筒形の非磁性体もしくは弱磁
性体材料の表面に希土類の酸化物を塗付して形成した希
土類磁石の焼結用コロである。ここでコロにおける希土
類は、磁石における希土類と同一であると否とを問わな
い。
[Means for Solving the Problems] The present invention has been made to achieve the above object, that is, claims 1 to 3 of the present invention are directed to forming a rare earth oxide into a sphere, a cylinder, or a cylinder. A sintering roller for a rare earth magnet is formed by coating a rare earth oxide on the surface of a spherical, cylindrical, or cylindrical nonmagnetic or weakly magnetic material. Here, the rare earth in the roller may or may not be the same as the rare earth in the magnet.

また本発明においてコロは、狭い文言にとらbれるので
はなく希土類磁石がその上を転勤、しゆう動する機能、
作用を有するものであれば何でもよいことは言うまでも
ない6 請求項4ないしらは、希土類磁石の当該希土類よりもギ
ブスの自由エネルギーが低いもしくは同等な材料によっ
て球形もしくは円柱ないしは円筒形に成形した多数のコ
ロを、又は球形もしくは円柱ないしは円筒形の非磁性体
もしくは弱磁性体材料の表面に希土類磁石の当該希土類
よりもギブスの自由エネルギーが低いもしくは同等な材
料を塗付して形成した多数のコロを、焼成皿と希土類磁
石成形体との間に介在させて焼結する希土類磁石の焼結
方法である。
In addition, in the present invention, the term "roller" is not limited to a narrow wording, but includes a function on which a rare earth magnet moves and moves.
Needless to say, anything that has the effect may be used.6 Claim 4 and others are a rare earth magnet made of a material having a Gibbs free energy lower than or equivalent to that of the rare earth, and formed into a spherical, cylindrical, or cylindrical shape. A large number of rollers formed by coating the surface of a spherical, cylindrical, or cylindrical nonmagnetic or weakly magnetic material with a material that has a Gibbs free energy lower than or equivalent to that of the rare earth of the rare earth magnet. , is a method for sintering a rare earth magnet, in which the rare earth magnet is sintered by being interposed between a firing plate and a rare earth magnet molded body.

[作用] 希土類磁石における最も酸化されやすい成分は当該希土
類であり、その希土類よりもギブスの自由エネルギーが
低い又は同等な材質によって少なくともコロの表面を形
成すれば、酸化反応も化学変化の1つであるのでギブス
の自由エネルギーの高い方向には進行しないから、希土
類磁石における当該希土類は酸化することがなく、希土
類磁石としての性質を保ったまま焼結され、かつ焼結に
際する収縮はコロの回転によって吸収される。
[Function] The component most easily oxidized in a rare earth magnet is the rare earth, and if at least the surface of the roller is made of a material with a Gibbs free energy lower than or equivalent to that of the rare earth, the oxidation reaction is also a chemical change. Therefore, the rare earth in the rare earth magnet does not oxidize and is sintered while maintaining its properties as a rare earth magnet, and the shrinkage during sintering is the same as that of the roller. Absorbed by rotation.

希土類磁石の当該希土類よりもギブスの自由エネルギー
の低い又は同等な材料としては、l当該又は異なる希土
類の酸化物があげられる。
Examples of materials of rare earth magnets having Gibbs free energy lower than or equivalent to that of the rare earth include oxides of the same or different rare earths.

[実施例] 以下本発明の詳細な説明すると、磁気特性が最も高いも
のとして知られるNd −Fe −Bよりなる大型の永
久磁石を本発明に従って次のように製造した。すなわち
所要の組成を有するNd −Fe −B磁石の磁性粉末
をリフティング付油圧プレスにより成形して153X 
116 X 37+mの成形体を得た。しかる後第1図
に示すようにW製の焼成皿1の上に球形の焼結用コロ2
を適当な間隔、すなわちNd−Fe−B成形体の収縮を
吸収できるほどの間隔をあけて敷きつめ、そのコロ2の
上にNd −Fe −B成形体3を載置して真空中にて
1200℃X2Hr焼結した。
[Example] To explain the present invention in detail below, a large permanent magnet made of Nd-Fe-B, which is known to have the highest magnetic properties, was manufactured in the following manner according to the present invention. That is, magnetic powder of Nd-Fe-B magnet having the required composition is molded using a hydraulic press with a lifting device to form a 153X
A molded body of 116 x 37+m was obtained. After that, as shown in Fig. 1, a spherical sintering roller 2 is placed on a baking tray 1 made of W.
The Nd-Fe-B molded product 3 was placed on the rollers 2 and heated for 1200 minutes in a vacuum. It was sintered at ℃×2 hours.

ただしAr雰囲気中にて焼結することもできる。また焼
結用コロ2は本実施例ではNd、20.よりなる直径1
0mmの球であり、1 ton/c−の静水圧プレスに
よって成形し、1650℃X2Hrの焼結によって製造
したものである。以上のようにして焼成したNd−Fe
−B焼結体に真空中で650℃で熱処理を施した後、寸
法が125X  100X 25mmになるように千両
加工を行った。然る後、パルス磁界中25KOeで着磁
を施し磁気特性を測定した結果、磁気特性は飽和磁束密
度Brが12.5にG、保磁力bHcが11KOe、i
Hcが19KOe 、最大エネルギー積(BH)、、、
、が3614GOeの大型の磁石を得た。また製品に亀
裂等は生じていなかった。
However, sintering can also be performed in an Ar atmosphere. In this embodiment, the sintering roller 2 is made of Nd, 20. Diameter 1
It is a sphere of 0 mm, and is manufactured by molding with a 1 ton/c- isostatic press and sintering at 1650° C. for 2 hours. Nd-Fe fired as above
-B sintered body was heat-treated at 650° C. in vacuum, and then subjected to senryo processing so that the dimensions were 125 x 100 x 25 mm. After that, magnetization was performed in a pulsed magnetic field at 25 KOe, and the magnetic properties were measured.
Hc is 19KOe, maximum energy product (BH)...
obtained a large magnet of 3614 GOe. Moreover, no cracks or the like were observed in the product.

以上において焼結用コロ2の材質は、希土類磁石成形体
3の当該希土類の酸化反応が生じない材質であることが
必要であるから、当該希土類よりもギブスの自由エネル
ギーの低い又は同等な材質、例えばNd−Fe−B磁石
については上記のようにNd2O,8あるいはDy2(
hを選ぶことができ、SmCoqあるいは512COl
 7磁石についてはS+2(hを選ぶことができる。ま
たその他にBN、 CaO114goなどによってコロ
2を形成することもできる6なおステンレス鋼のように
、焼成中に希土類磁石と酸化以外の反応を生じるものは
当然にコロとして利用することができない。
In the above, the material of the sintering roller 2 needs to be a material that does not cause the oxidation reaction of the rare earth of the rare earth magnet molded body 3, so it may be made of a material that has a Gibbs free energy lower than or equivalent to that of the rare earth. For example, for Nd-Fe-B magnets, as mentioned above, Nd2O,8 or Dy2(
You can choose h, SmCoq or 512COl
7 For magnets, S+2 (h can be selected. In addition, the rollers 2 can also be formed using BN, CaO114go, etc. 6 In addition, materials that cause reactions other than oxidation with rare earth magnets during firing, such as stainless steel) Of course, it cannot be used as a roller.

また上記実施例では球形の焼結用コロ2を使用したが、
長辺方向のみ収縮量が大きくて短辺方向の収縮量が小さ
い細長の磁石を焼成するときには、球形に代えて円柱形
のコロを使用することができる。その際円柱形のコロを
焼成皿上に置かずに軸支すれば、成形体の収縮を吸収で
きるほどの間隔をあける必要はなくなり、すなわち−層
密にコロを配置することができる。
Furthermore, in the above embodiment, a spherical sintering roller 2 was used.
When firing an elongated magnet that has a large amount of shrinkage only in the long side direction and a small amount of shrinkage in the short side direction, a cylindrical roller can be used instead of a spherical roller. At this time, if the cylindrical rollers are not placed on the firing plate but instead supported, there is no need to provide a sufficient spacing to absorb the shrinkage of the molded body, that is, the rollers can be arranged in a dense layer.

更に上記実施例では焼結用コロ2のすべてをNd2O3
によって形成したが、コロ2はその表面においてのみ希
土類磁石成形体3と接するから、′第2図に示すように
適当な芯4の上にN+J20を等の塗付材5を塗付して
球形又は円柱形に形成して用いてもよい。この際には芯
材として上記のステンレス鋼なども用いることができる
。その際芯4となる部材自体を球形又は円柱形に形成し
、その上に一様に塗付材5をコーティングするのが製造
上簡易である。また第2図では芯4が中実である場合を
示したが、芯4は中空でもよい。ただし希土類磁石成形
体3は磁場中でプレス成形した後に脱磁されているが、
完全に脱磁されはしないから、芯4として磁性体を使用
すると、該芯が成形体に吸着されてコロとして焼成皿に
均一に敷くことができない。したがって成形体3の下に
敷かれるコロとして使用するには、芯4は非磁性体又は
磁性の少ない材料である必要があり、例えば5US30
4などが適する。
Furthermore, in the above embodiment, all of the sintering rollers 2 are made of Nd2O3.
However, since the roller 2 is in contact with the rare earth magnet molded body 3 only on its surface, a coating material 5 such as N+J20 is applied onto a suitable core 4 to form a spherical shape, as shown in Fig. 2. Alternatively, it may be formed into a cylindrical shape. In this case, the above-mentioned stainless steel or the like can also be used as the core material. In this case, it is easy to manufacture by forming the member itself which becomes the core 4 into a spherical or cylindrical shape, and uniformly coating the application material 5 thereon. Further, although FIG. 2 shows the case where the core 4 is solid, the core 4 may be hollow. However, although the rare earth magnet molded body 3 is demagnetized after being press-formed in a magnetic field,
Since it is not completely demagnetized, if a magnetic material is used as the core 4, the core will be attracted to the molded body and cannot be spread uniformly on the baking dish as a roller. Therefore, in order to use the core 4 as a roller placed under the molded body 3, the core 4 needs to be made of a non-magnetic material or a material with low magnetism, such as 5US30.
4 etc. are suitable.

[発明の効果] 本発明による焼結用コロを使用することにより、また本
発明による焼結方法を使用することによって初めて、大
型の希土類磁石の焼結を行うことができる。
[Effects of the Invention] By using the sintering roller according to the present invention and by using the sintering method according to the present invention, large-sized rare earth magnets can be sintered for the first time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法と本発明に係る焼結用コロとの一実
施例を示す説明図、第2図は焼結用コロの別の実施例を
示す断面図である。
FIG. 1 is an explanatory view showing one embodiment of the method of the present invention and a sintering roller according to the present invention, and FIG. 2 is a sectional view showing another embodiment of the sintering roller.

Claims (6)

【特許請求の範囲】[Claims] (1)希土類の酸化物を実質的に球形に成形した希土類
磁石の焼結用コロ。
(1) A sintering roller for rare earth magnets made of rare earth oxide formed into a substantially spherical shape.
(2)球形の非磁性体又は弱磁性体材料の表面に希土類
酸化物を塗付して得た希土類磁石の焼結用コロ。
(2) A roller for sintering a rare earth magnet obtained by coating a rare earth oxide on the surface of a spherical nonmagnetic or weakly magnetic material.
(3)前記球形に代えて、円柱形及び/又は円筒形に形
成した請求項1又は2記載の希土類磁石の焼結用コロ。
(3) The roller for sintering a rare earth magnet according to claim 1 or 2, wherein the roller is formed into a columnar shape and/or a cylindrical shape instead of the spherical shape.
(4)希土類磁石の当該希土類よりもギブスの自由エネ
ルギーが低い又は同等な材料によって球形に成形した多
数のコロを、焼成皿と希土類磁石成形体との間に介在さ
せて焼結する希土類磁石の焼結方法。
(4) Rare earth magnets are sintered by interposing a number of spherical rollers made of a material with a Gibbs free energy lower than or equivalent to that of the rare earth magnet, interposed between the firing plate and the rare earth magnet molded body. Sintering method.
(5)球形の非磁性体又は弱磁性体材料の表面に希土類
磁石の当該希土類よりもギブスの自由エネルギーが低い
又は同等な材料を塗付して得た多数のコロを、焼成皿と
希土類磁石成形体との間に介在させて焼結する希土類磁
石の焼結方法。
(5) A large number of rollers obtained by coating the surface of a spherical non-magnetic material or a weakly magnetic material with a material having a Gibbs free energy lower than or equivalent to that of the rare earth of the rare earth magnet are attached to a firing plate and a rare earth magnet. A method of sintering rare earth magnets by interposing them between a molded body and sintering them.
(6)前記球形に代えて、円柱形及び/又は円筒形に形
成したコロを用いる請求項4又は5記載の希土類磁石の
焼結方法。
(6) The method for sintering a rare earth magnet according to claim 4 or 5, wherein a cylindrical and/or cylindrical roller is used instead of the spherical roller.
JP7442689A 1989-03-27 1989-03-27 Sintering roll for rare earth element magnet and sintering method thereof Pending JPH02252223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7442689A JPH02252223A (en) 1989-03-27 1989-03-27 Sintering roll for rare earth element magnet and sintering method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7442689A JPH02252223A (en) 1989-03-27 1989-03-27 Sintering roll for rare earth element magnet and sintering method thereof

Publications (1)

Publication Number Publication Date
JPH02252223A true JPH02252223A (en) 1990-10-11

Family

ID=13546870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7442689A Pending JPH02252223A (en) 1989-03-27 1989-03-27 Sintering roll for rare earth element magnet and sintering method thereof

Country Status (1)

Country Link
JP (1) JPH02252223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234895A (en) * 2011-04-28 2012-11-29 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234895A (en) * 2011-04-28 2012-11-29 Hitachi Metals Ltd Method of manufacturing r-t-b based sintered magnet

Similar Documents

Publication Publication Date Title
US20180226190A1 (en) Single-step Manufacturing of Flux-Directed Permanent Magnet Assemblies
KR960005636A (en) Rolling core
EP0685983A2 (en) Magnetic circuit unit for loud-speaker and method of manufacturing the same
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP2756471B2 (en) Method for manufacturing radially oriented magnet and radially oriented magnet
EP2631918A2 (en) Method of manufacturing magnet and magnet
WO2018088393A1 (en) Method for producing rare earth magnet
JPH031504A (en) Manufacture of permanent magnet
US3274303A (en) Method and apparatus for making magnetically anisotropic permanent magnets
JPH02252223A (en) Sintering roll for rare earth element magnet and sintering method thereof
JPS6134249B2 (en)
EP2631919B1 (en) Method of manufacturing magnet
KR101071424B1 (en) Method for manufacturing of radial sintered magnet having anisotropic
KR102148877B1 (en) Rare earth-transition metal magnet one-dimension structure
EP3703086B1 (en) Production method of self-magnetised net-shape permanent magnets by additive manufacturing
JPS628506A (en) Radial direction bipolar magnet and apparatus for manufacturing same
Garino et al. Fabrication of MEMS devices by powder-filling into DXRL-formed molds
JPH1174143A (en) Method of molding magnetic powder
JPH03265102A (en) Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JP2545688Y2 (en) Material removal equipment for permanent magnet molded products
JP2021083287A (en) Permanent magnet rotor manufacturing method and manufacturing apparatus
JPS61154118A (en) Molding method in magnetic field of rare earth magnet and device thereof
JP2005197594A (en) Method of manufacturing soft magnetic material, soft magnetic member, and cylindrical iron core
KR20170043716A (en) Permanent magnet forming device
KR20230059473A (en) Manufacturing method of manganese-based magnetic powder