JP5742012B2 - Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet - Google Patents

Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet Download PDF

Info

Publication number
JP5742012B2
JP5742012B2 JP2011074051A JP2011074051A JP5742012B2 JP 5742012 B2 JP5742012 B2 JP 5742012B2 JP 2011074051 A JP2011074051 A JP 2011074051A JP 2011074051 A JP2011074051 A JP 2011074051A JP 5742012 B2 JP5742012 B2 JP 5742012B2
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
vapor deposition
based sintered
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011074051A
Other languages
Japanese (ja)
Other versions
JP2012209428A (en
Inventor
小幡 徹
徹 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011074051A priority Critical patent/JP5742012B2/en
Publication of JP2012209428A publication Critical patent/JP2012209428A/en
Application granted granted Critical
Publication of JP5742012B2 publication Critical patent/JP5742012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、R−T−B系焼結磁石の製造に使用される蒸着拡散処理用ケース及び当該蒸着拡散処理用ケースを用いたR−T−B系焼結磁石の製造方法に関する。   The present invention relates to a case for vapor deposition diffusion treatment used for production of an RTB-based sintered magnet and a method for producing an RTB-based sintered magnet using the vapor deposition diffusion treatment case.

R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに使用されている。   An RTB-based sintered magnet body (R is at least one of rare earth elements and T is Fe or Fe and Co) is known as the most powerful magnet among permanent magnets, and is used for hybrid vehicles. It is used in various motors for electric vehicles and home appliances.

しかし、R−T−B系焼結磁石体は高温で保磁力HcJ(以下、単に「HcJ」と記載する)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用のモータに使用される場合、高温下でも高いHcJを維持することが要求されている。 However, the RTB -based sintered magnet body has a low coercive force H cJ (hereinafter simply referred to as “H cJ ”) at high temperatures, causing irreversible thermal demagnetization. Therefore, especially when used for a motor for a hybrid vehicle or an electric vehicle, it is required to maintain a high HcJ even at a high temperature.

近年、R−T−B系焼結磁石体のHcJ向上を目的として、焼結した後に蒸着手段を用いてDy、Ho、Tb等の重希土類元素RHを磁石表面に供給し、その重希土類元素RHを磁石内部へ拡散させることによって、残留磁束密度B(以下、単に「B」と記載する)の低下を抑制しつつHcJを向上させる蒸着拡散法が提案されている。 In recent years, for the purpose of improving HcJ of an R-T-B based sintered magnet body, after sintering, a heavy rare earth element RH such as Dy, Ho, Tb or the like is supplied to the magnet surface using vapor deposition means, and the heavy rare earth A vapor deposition diffusion method has been proposed in which the element RH is diffused into the magnet to improve H cJ while suppressing a decrease in residual magnetic flux density B r (hereinafter simply referred to as “B r ”).

特許文献1は、R−T−B系焼結磁石と重希土類元素RHを含有するバルク体とを所定の間隔を形成して対向配置し、これらを所定温度に加熱することにより、前記バルク体から重希土類元素RHをR−T−B系焼結磁石の表面に供給しつつ、重希土類元素RHをR−T−B系焼結磁石の内部に拡散させる蒸着拡散法を開示している。   Patent Document 1 discloses that an R-T-B sintered magnet and a bulk body containing a heavy rare earth element RH are arranged to face each other at a predetermined interval, and these are heated to a predetermined temperature. The vapor deposition diffusion method is disclosed in which the heavy rare earth element RH is diffused into the inside of the RTB-based sintered magnet while supplying the rare earth element RH to the surface of the RTB-based sintered magnet.

特許文献1では、R−T−B系焼結磁石の両面から同時に蒸着拡散を行う方法として、R−T−B系焼結磁石をNb網に載せ、その上下に所定の間隔を形成して重希土類元素RHを含有する前記バルク体を配置する方法を開示している。   In Patent Document 1, as a method of performing vapor diffusion simultaneously from both sides of an R-T-B system sintered magnet, an R-T-B system sintered magnet is placed on an Nb net, and a predetermined interval is formed above and below it. A method of disposing the bulk body containing the heavy rare earth element RH is disclosed.

特許文献2は、Dy及びTbの少なくとも一方を含む金属蒸発材料とR−T−B系焼結磁石を処理箱内に収納し、真空雰囲気にて所定温度に加熱することにより、金属蒸発材料を蒸発させてR−T−B系焼結磁石に付着させ、この付着したDy及びTbの金属原子を当該焼結磁石の結晶粒界及び/又は結晶粒界相に拡散させる蒸着拡散法を開示している。   Patent Document 2 discloses that a metal evaporation material containing at least one of Dy and Tb and an R-T-B sintered magnet are housed in a processing box and heated to a predetermined temperature in a vacuum atmosphere. An evaporation diffusion method is disclosed in which it is evaporated and attached to an R-T-B sintered magnet, and the attached Dy and Tb metal atoms are diffused into the crystal grain boundary and / or the grain boundary phase of the sintered magnet. ing.

特許文献2では、金属蒸発材料とR−T−B系焼結磁石との間に、これらが相互に接触せず、かつ、蒸発した金属原子の通過を許容し、前記R−T−B系焼結磁石の複数個が並置できるエキスパンドメタルを介在させ、金属蒸発材料とR−T−B系焼結磁石を上下方向へ交互に積み重ねる収納方法を開示している。   In Patent Document 2, the metal evaporating material and the R-T-B system sintered magnet are not in contact with each other, and allow the evaporated metal atoms to pass through. A storage method is disclosed in which an expanded metal in which a plurality of sintered magnets can be juxtaposed is interposed, and a metal evaporation material and an RTB-based sintered magnet are alternately stacked in the vertical direction.

特許文献3は、希土類磁石の焼結処理を行う際に用いる焼結ケースに関するもので、熱伝導性に優れ、熱変形を起こし難く、高い機械的強度を持つ焼結ケースを開示している。   Patent Document 3 relates to a sintering case used when a rare earth magnet is sintered, and discloses a sintering case that has excellent thermal conductivity, hardly causes thermal deformation, and has high mechanical strength.

特許文献3では、焼結ケースは、開口部を有する本体フレームとその開口部を開閉するドア部材を備え、希土類磁石の成形体を載せた焼結プレートが本体フレーム内に取り付けられたロッド上を水平方向にスライドして本体フレーム内に挿入される。また、本体フレームは補強チャネルにより補強されている。これらの構造により、量産性に富み、また歪みが生じ難い、焼結ケースを開示している。   In Patent Document 3, the sintered case includes a main body frame having an opening and a door member that opens and closes the opening, and a sintered plate on which a molded body of a rare earth magnet is mounted is mounted on a rod attached in the main body frame. It slides horizontally and is inserted into the main body frame. The main body frame is reinforced by a reinforcing channel. With these structures, a sintered case is disclosed which is rich in mass productivity and hardly generates strain.

国際公開第2007/102391号International Publication No. 2007/102391 特開2009−135393号公報JP 2009-135393 A 特開2000−315611号公報JP 2000-315611 A

特許文献1、2に記載される蒸着拡散法では、熱処理による拡散反応を利用し、R−T−B系焼結磁石の主相外殻部に重希土類元素RHの濃縮層を形成する。その時、重希土類元素RHが、R−T−B系焼結磁石の表面から当該R−T−B系焼結磁石の内部に拡散すると同時に、前記R−T−B系焼結磁石の内部に含まれている軽希土類元素RL(RLは、NdおよびPrの少なくとも一種)を主体とする液相成分が、前記R−T−B系焼結磁石の表面に向かって拡散する。この様に、前記重希土類元素RHが、前記R−T−B系焼結磁石の表面から内部へ、前記軽希土類元素RLが、前記R−T−B系焼結磁石の内部から表面へと相互に拡散が起こることにより、R−T−B系焼結磁石表面に、軽希土類元素RLを主体とする溶出部分が形成される。この部分は、R−T−B系焼結磁石を支持する支持体と反応を起こす。そのため、支持体とR−T−B系焼結磁石とが固着(以下、「溶着」と記載する)してしまう。   In the vapor deposition diffusion method described in Patent Documents 1 and 2, a concentrated layer of heavy rare earth element RH is formed in the main phase outer shell portion of the RTB-based sintered magnet using a diffusion reaction by heat treatment. At that time, the heavy rare earth element RH diffuses from the surface of the RTB-based sintered magnet into the RTB-based sintered magnet, and at the same time, into the RTB-based sintered magnet. A liquid phase component mainly composed of contained light rare earth element RL (RL is at least one of Nd and Pr) diffuses toward the surface of the RTB-based sintered magnet. In this way, the heavy rare earth element RH passes from the surface of the RTB-based sintered magnet to the inside, and the light rare earth element RL extends from the interior of the RTB-based sintered magnet to the surface. Due to mutual diffusion, an elution portion mainly composed of the light rare earth element RL is formed on the surface of the RTB-based sintered magnet. This part reacts with the support that supports the R-T-B system sintered magnet. Therefore, the support and the RTB-based sintered magnet are fixed (hereinafter referred to as “welding”).

特許文献1、2ではRH拡散源(特許文献2では、金属蒸発材料に相当)やR−T−B系焼結磁石がNb網(特許文献2では、エキスパンドメタルに相当)からなる支持体の上に載置されている。
特許文献1、2の方法では、支持体が網やエキスパンドメタル等で構成されているため、R−T−B系焼結磁石と接触する箇所が多い。そのため、複数のR−T−B系焼結磁石を蒸着拡散法により処理した場合、多くのR−T−B系焼結磁石が支持体と溶着してしまうという問題があった。
溶着を引き起こしたR−T−B系焼結磁石を支持体から無理に取り外そうとすると、R−T−B系焼結磁石自体を破壊してしまう恐れがある。よって、慎重に取り外す必要があり、支持体からR−T−B系焼結磁石を取り外す作業の工数が増大してしまう。よって、支持体とR−T−B系焼結磁石との接触箇所を出来る限り少なくし、支持体とR−T―B系焼結磁石との溶着を減少させることが望まれている。
In Patent Documents 1 and 2, an RH diffusion source (corresponding to a metal evaporation material in Patent Document 2) and an RTB-based sintered magnet are made of an Nb net (corresponding to expanded metal in Patent Document 2). It is placed on top.
In the methods of Patent Documents 1 and 2, since the support is made of a net, an expanded metal, or the like, there are many places that come into contact with the R-T-B system sintered magnet. For this reason, when a plurality of RTB-based sintered magnets are processed by the vapor deposition diffusion method, there is a problem that many RTB-based sintered magnets are welded to the support.
If the R-T-B system sintered magnet that causes welding is forcibly removed from the support, the R-T-B system sintered magnet itself may be destroyed. Therefore, it is necessary to remove carefully, and the man-hour of the operation | work which removes a RTB system sintered magnet from a support body will increase. Therefore, it is desired to reduce the number of contact points between the support and the RTB-based sintered magnet as much as possible, and reduce welding between the support and the RTB-based sintered magnet.

特許文献3の焼結ケースは、希土類磁石の焼結処理を行う際に用いるものであり、蒸着拡散処理に関しては全く記載がない。
仮に、特許文献3の焼結ケースを使用して蒸着拡散処理を行っても、重希土類元素RHは、RH拡散源とR−T−B系焼結磁石との間に配置される焼結プレートに付着してしまい、蒸着拡散処理そのものを行うことができない。
The sintered case of Patent Document 3 is used when a rare earth magnet is sintered, and there is no description about the vapor deposition diffusion process.
Even if the vapor deposition diffusion process is performed using the sintered case of Patent Document 3, the heavy rare earth element RH is disposed between the RH diffusion source and the RTB-based sintered magnet. The vapor deposition diffusion process itself cannot be performed.

本発明は、上記問題を解決するためになされたものであり、その目的とするところは、R−T−B系焼結磁石体と支持体との接触面積を大幅に低減させることにより、R−T−B系焼結磁石と支持体との溶着の発生を減少させる蒸着拡散処理用ケース及びその蒸着拡散処理用ケースを用いたR−T−B系焼結磁石の製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to reduce the contact area between the R-T-B system sintered magnet body and the support body, thereby reducing the R area. Provided is a case for vapor deposition diffusion treatment that reduces the occurrence of welding between a TB sintered magnet and a support, and a method for producing an RTB-based sintered magnet using the vapor deposition diffusion treatment case. It is in.

請求項1に記載の本発明による蒸着拡散処理用ケースは、R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)とRH供給源(重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金。ただし、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種)を加熱することにより、前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理に用いるケースであって、四角形の底板と、前記底板に取り付けられた、互いに対向する一対の四角形の側板と、前記側板を介して前記底板と対向するように前記側板に取り付けられた四角形の天板とを有する筒状ケース本体と、前記筒状ケース本体の開口部を開閉可能にする蓋体を有し、前記筒状ケース本体内において、前記RH供給源と前記R−T−B系焼結磁石体とを上下方向へ交互に多段配置すべく、前記一対の側板間に取り付けられた複数の棒状部材が水平方向に所定の空隙を形成し並列配置してなる支持体を、上下方向に所定の空隙を形成し多段配置したことを特徴とする。   The case for vapor deposition diffusion treatment according to the first aspect of the present invention includes an R-T-B sintered magnet body (R is at least one rare earth element, T is Fe or Fe and Co) and an RH supply source ( A metal composed of heavy rare earth element RH or an alloy containing 25 atomic% or more of heavy rare earth element RH, wherein heavy rare earth element RH is heated from at least one of Dy, Ho, and Tb) from the RH source. For vapor deposition diffusion treatment in which the heavy rare earth element RH is diffused into the RTB-based sintered magnet body while supplying the heavy rare earth element RH to the surface of the RTB-based sintered magnet body. A case to be used, a quadrangular bottom plate, a pair of quadrangular side plates opposed to each other attached to the bottom plate, and a quadrangular top plate attached to the side plate so as to face the bottom plate via the side plate And A cylindrical case main body, and a lid that can open and close the opening of the cylindrical case main body, and the RH supply source and the RTB-based sintered magnet body in the cylindrical case main body And a plurality of rod-shaped members attached between the pair of side plates form a predetermined gap in the horizontal direction and are arranged in parallel to form a predetermined gap in the vertical direction. And is arranged in multiple stages.

請求項2に記載の本発明は、請求項1に記載の蒸着拡散処理用ケースにおいて、前記筒状ケース本体の開口部の一方が封鎖されていることを特徴とする。   According to a second aspect of the present invention, in the vapor deposition diffusion processing case according to the first aspect, one of the openings of the cylindrical case main body is sealed.

請求項3に記載の本発明は、請求項1及び2に記載の蒸着拡散処理用ケース内に、前記RH供給源と前記R−T−B系焼結磁石体を前記支持体を介して上下方向へ交互に配置する工程と、前記蒸着拡散処理用ケース内を、800℃以上950℃以下として前記蒸着拡散処理を行う工程とを含むR−T−B系焼結磁石の製造方法を特徴とする。
請求項4に記載の本発明は、請求項3に記載のR−T−B系焼結磁石の製造方法において、蒸着拡散処理用ケース内の圧力を、0.1Pa以上50Pa以下として前記蒸着拡散処理を行うことを特徴とする。
請求項5に記載の本発明は、請求項3又は4に記載のR−T−B系焼結磁石の製造方法において、蒸着拡散処理の後、前記蒸着拡散処理用ケース内を、圧力200Pa以上2000Pa以下、温度800℃以上950℃以下として熱処理を行うことを特徴とする。
According to a third aspect of the present invention, in the vapor deposition diffusion processing case according to the first and second aspects, the RH supply source and the R-T-B system sintered magnet body are vertically moved via the support. Characterized in that the method includes a step of alternately arranging in a direction and a step of performing the vapor deposition diffusion treatment in the vapor deposition diffusion treatment case at a temperature of 800 ° C. or higher and 950 ° C. or lower. To do.
The present invention according to claim 4 is the method for producing an RTB-based sintered magnet according to claim 3, wherein the pressure in the case for the vapor deposition diffusion treatment is set to 0.1 Pa or more and 50 Pa or less. It is characterized by performing processing.
The present invention according to claim 5 is the method for producing an RTB-based sintered magnet according to claim 3 or 4, wherein after the vapor deposition diffusion treatment, the inside of the case for vapor deposition diffusion treatment is at a pressure of 200 Pa or more. The heat treatment is performed at 2000 Pa or less and at a temperature of 800 ° C. or more and 950 ° C. or less.

本発明の蒸着拡散処理用ケース及びR−T−B系焼結磁石の製造方法により、R−T−B系焼結磁石と支持体との溶着の発生を減少させることができる。これにより、R−T−B系焼結磁石と支持体との取り外し工数を大幅に削減させることができる。   By the vapor deposition diffusion treatment case and the R-T-B sintered magnet manufacturing method of the present invention, the occurrence of welding between the R-T-B sintered magnet and the support can be reduced. Thereby, the removal man-hour of a RTB system sintered magnet and a support body can be reduced significantly.

本発明の蒸着拡散処理用ケ―スの一例を示す斜視図である。It is a perspective view which shows an example of the case for vapor deposition diffusion processing of this invention. 本発明の蒸着拡散処理用ケースを構成する筒状ケース本体の一例を示す斜視図である。It is a perspective view which shows an example of the cylindrical case main body which comprises the case for vapor deposition diffusion processing of this invention. 図1のX−X断面を示す断面図である。It is sectional drawing which shows the XX cross section of FIG. 図1のY−Y断面を示す断面図である。It is sectional drawing which shows the YY cross section of FIG. 支持体を形成する棒状部材の配置状態の一例を示す説明図である。It is explanatory drawing which shows an example of the arrangement | positioning state of the rod-shaped member which forms a support body. 図1の蓋体と天板との係合の一例を示す部分拡大図である。It is the elements on larger scale which show an example of engagement with the cover body of FIG. 1, and a top plate. 図1をZ方向から見た時のR−T−B系焼結磁石体の配置の一例を示す平面図である。It is a top view which shows an example of arrangement | positioning of the RTB type | system | group sintered magnet body when seeing FIG. 1 from a Z direction. 図1をZ方向から見た時のRH供給源の配置の一例を示す平面図である。It is a top view which shows an example of arrangement | positioning of the RH supply source when FIG. 1 is seen from a Z direction.

以下に、本発明を実施するための形態を図面に基づき説明する。各図面において、同じ部分には同じ符号を付している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. In the drawings, the same parts are denoted by the same reference numerals.

なお、本発明においては、蒸着拡散処理前のR−T−B系焼結磁石を「R−T−B系焼結磁石体」とし、蒸着拡散処理後のR−T−B系焼結磁石を「R−T―B系焼結磁石」とし、それぞれ区別して表記する。
また、本発明における蒸着拡散処理とは、R−T−B系焼結磁石体とRH供給源を加熱することにより、前記RH供給源から重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させることによって、Bの低下を抑制しつつ、HcJを向上させる処理方法である。
In the present invention, the RTB-based sintered magnet before the vapor deposition diffusion treatment is referred to as an “RTB-based sintered magnet body”, and the RTB-based sintered magnet after the vapor deposition diffusion treatment is used. Are denoted as “RTB-based sintered magnet”.
Further, the vapor deposition diffusion treatment in the present invention means that the R-T-B system sintered magnet body and the RH supply source are heated so that the heavy rare earth element RH is converted from the R-T-B system sintering from the RH supply source. while supplying to the surface of the magnet body, said by diffusing a heavy rare-earth element RH inside the sintered R-T-B based magnet body, processing method while suppressing a decrease in B r, improving H cJ It is.

本発明ではRH供給源とR−T−B系焼結磁石体を、支持体を介して上下方向に交互に載置した後、RH供給源から前記重希土類元素RHをR−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHをR−T−B系焼結磁石体の内部へ拡散させる。   In the present invention, the RH supply source and the RTB-based sintered magnet body are alternately placed in the vertical direction via the support, and then the heavy rare earth element RH is transferred from the RH supply source to the RTB system. While supplying the surface of the sintered magnet body, the heavy rare earth element RH is diffused into the RTB-based sintered magnet body.

図1における本発明の蒸着拡散処理用ケース1は、図2に示す筒状ケース本体2と、筒状ケース本体2の開口部を開閉可能にする蓋体6,6を有する。筒状ケース本体2は、底板5と、底板5に取り付けられた、互いに対向する一対の側板3,3と、側板3,3を介して底板5と対向するように側板3,3に取り付けられた天板4とから構成される。   A vapor deposition diffusion treatment case 1 of the present invention in FIG. 1 has a cylindrical case body 2 shown in FIG. 2 and lid bodies 6 and 6 that can open and close the opening of the cylindrical case body 2. The cylindrical case body 2 is attached to the side plates 3 and 3 so as to face the bottom plate 5 via the side plates 3 and 3 and the pair of side plates 3 and 3 facing each other and attached to the bottom plate 5. And the top plate 4.

図3は、図1のX−X断面を示す断面図であり、図4は、図1のY−Y断面を示す断面図である。図3のように、蒸着拡散処理用ケース1は、互いに対向する一対の側板3,3間に棒状部材7が取り付けられている。また、棒状部材7は、図4のように、断面が円形の形状を有し、所定の空隙を形成し水平方向に並列配置している。
図5は、支持体8を形成する棒状部材7の配置状態の一例を示す説明図である。図5のように、棒状部材7は、互いの空隙をW1とする2本を一組(図中A)とし、それら組同士の空隙をW2とし水平方向に7組配置することにより、支持体8を形成している。
3 is a cross-sectional view showing the XX cross section of FIG. 1, and FIG. 4 is a cross-sectional view showing the YY cross section of FIG. As shown in FIG. 3, the vapor diffusion process case 1 is provided with a rod-like member 7 between a pair of side plates 3 and 3 facing each other. Further, as shown in FIG. 4, the rod-like member 7 has a circular cross section, forms a predetermined gap, and is arranged in parallel in the horizontal direction.
FIG. 5 is an explanatory diagram showing an example of an arrangement state of the rod-like members 7 that form the support 8. As shown in FIG. 5, the rod-like member 7 is a support body by arranging two sets having a gap W1 as one set (A in the figure) and seven sets in the horizontal direction with the gap between the sets as W2. 8 is formed.

図3及び図4に示すように、蒸着拡散処理用ケース1は、支持体8を上下方向に14段有している。最上段に位置する支持体8上及びケース内最下部に位置する底板5上にゲッター11を配置している。上記最上段以外の支持体8を介して、RH供給源9とR−T−B系焼結磁石体10を交互に上下方向へ多段配置している。図では、支持体8を上下方向に14段有しているが、その段数は任意である。支持体8の段数は、蒸着拡散処理用ケース1の大きさやRH供給源9、R−T−B系焼結磁石体10等の形状や大きさによってそれらを効率良く収納できるよう選定することが好ましい。   As shown in FIGS. 3 and 4, the vapor deposition diffusion treatment case 1 has 14 stages of support bodies 8 in the vertical direction. A getter 11 is disposed on the support 8 located on the uppermost stage and on the bottom plate 5 located on the lowermost part in the case. The RH supply source 9 and the RTB-based sintered magnet body 10 are alternately arranged in multiple stages in the vertical direction via the support body 8 other than the uppermost stage. In the figure, the support 8 has 14 steps in the vertical direction, but the number of steps is arbitrary. The number of stages of the support 8 should be selected so that they can be efficiently accommodated depending on the size of the case 1 for vapor deposition diffusion treatment, the shape and size of the RH supply source 9, the RTB-based sintered magnet body 10, and the like. preferable.

蒸着拡散処理用ケース1を構成する各部材は、Mo、W、Taなどを含む高融点金属や、窒化硼素、ジルコニア、カルシア、マグネシアなどを含むセラミックス材料等、蒸着拡散処理時に、変形や変質を発生し難い材料で構成されていることが望ましい。   Each member constituting the vapor deposition diffusion treatment case 1 is deformed or altered during vapor deposition diffusion treatment, such as refractory metals including Mo, W, Ta, etc., ceramic materials including boron nitride, zirconia, calcia, magnesia, etc. It is desirable that the material is made of a material that is difficult to generate.

筒状ケース本体2は、棒状部材7を介し、RH供給源9やR−T−B系焼結磁石体10を上下に多段配置し、かつ、RH供給源9やR−T−B系焼結磁石体10に接触せずにこれらを覆う必要がある。そのため、四角形の側板3,3、天板4、底板5により筒状形状を形成することが望ましく、図1においては、側板3,3、天板4、底板5はそれぞれ、所定寸法の矩形状にて形成されている。   The cylindrical case main body 2 has a RH supply source 9 and a R-T-B system sintered magnet body 10 arranged in a plurality of stages up and down via a rod-shaped member 7, and the RH supply source 9 and the R-T-B system firing. It is necessary to cover these without contacting the magnetized body 10. Therefore, it is desirable to form a cylindrical shape by the rectangular side plates 3, 3, the top plate 4, and the bottom plate 5. In FIG. 1, each of the side plates 3, 3, the top plate 4, and the bottom plate 5 has a rectangular shape with a predetermined dimension. It is formed by.

棒状部材7は、RH供給源9やR−T−B系焼結磁石体10を線接触にて支持でき、RH供給源9からのR−T−B系焼結磁石体10への重希土類元素RHの良好なる供給が阻害されなければその断面形状、寸法は任意である。断面形状は例えば、円形以外の楕円形であっても良いし、三角形または4つ以上の頂点を有する多角形であっても良い。
棒状部材7の直径(断面形状が円形以外の場合は、その外接円の直径)は、RH供給源9やR−T−B系焼結磁石体10を支持するために、0.4mm以上から10mm以下の範囲に設定することが好ましい。0.4mm未満であると量産規模で多用されるRH供給源9やR−T−B系焼結磁石体10を支持するための機械的強度が不足する恐れがある。また、10mmを超える直径があれば、十分な機械的強度が得られるが、RH供給源からR−T−B系焼結磁石への重希土類元素RHの供給が阻害されるため、上記範囲内に設定することが好ましい。
The rod-shaped member 7 can support the RH supply source 9 and the RTB-based sintered magnet body 10 by line contact, and the heavy rare earth to the RTB-based sintered magnet body 10 from the RH supply source 9. If good supply of the element RH is not hindered, its cross-sectional shape and dimensions are arbitrary. The cross-sectional shape may be, for example, an ellipse other than a circle, a triangle or a polygon having four or more vertices.
In order to support the RH supply source 9 and the RTB-based sintered magnet body 10, the diameter of the rod-shaped member 7 (when the cross-sectional shape is other than circular, the diameter of the circumscribed circle) is from 0.4 mm or more. It is preferable to set in the range of 10 mm or less. If it is less than 0.4 mm, the mechanical strength for supporting the RH supply source 9 and the RTB-based sintered magnet body 10 that are frequently used on a mass production scale may be insufficient. Further, if the diameter exceeds 10 mm, sufficient mechanical strength can be obtained, but the supply of heavy rare earth element RH from the RH supply source to the RTB-based sintered magnet is hindered. It is preferable to set to.

棒状部材7同士の空隙は、等間隔である方が汎用性があり、いろいろな大きさのRH供給源9やR−T−B系焼結磁石体10を支持できる。さらに、支持体8とR−T−B系焼結磁石体10との接触面積を低減するため、RH供給源9やR−T−B系焼結磁石体10を支持できる範囲で棒状部材7同士の空隙を広くとった方が好ましい。そのため、棒状部材7同士の空隙は、10mm以上とするのが好ましく、更に好ましくは、15mm以上、最も好ましくは、25mm以上である。
ただし、棒状部材7同士の空隙は、必ずしも等間隔にする必要はなく、RH供給源9やR−T−B系焼結磁石体10を安定して支持でき、かつ、支持体8とR−T−B系焼結磁石体10との接触面積を低減できるように、RH供給源9やR−T−B系焼結磁石体10の大きさに合わせて適宜設定してもよい。例えば図5に示すように、2本の棒状部材7を一組とし、水平方向に複数組配置することで支持体8を形成してもよい。。
The gaps between the rod-like members 7 are more versatile if they are equally spaced, and can support various sizes of the RH supply source 9 and the RTB-based sintered magnet body 10. Furthermore, in order to reduce the contact area between the support 8 and the RTB-based sintered magnet body 10, the rod-shaped member 7 is within a range in which the RH supply source 9 and the RTB-based sintered magnet body 10 can be supported. It is preferable to take a wide gap between them. Therefore, the gap between the rod-like members 7 is preferably 10 mm or more, more preferably 15 mm or more, and most preferably 25 mm or more.
However, the gaps between the rod-like members 7 do not necessarily need to be equally spaced, can stably support the RH supply source 9 and the RTB-based sintered magnet body 10, and can support the support 8 and the R−. You may set suitably according to the magnitude | size of the RH supply source 9 or the R-T-B system sintered magnet body 10 so that a contact area with the TB system sintered magnet body 10 can be reduced. For example, as shown in FIG. 5, the support body 8 may be formed by arranging two rod-shaped members 7 as a set and arranging a plurality of sets in the horizontal direction. .

RH供給源9やR−T−B系焼結磁石体10と、そのすぐ上側に位置する支持体8との空隙は、0.1mmから15mmの範囲に設定することが好ましい。RH供給源9やR−T−B系焼結磁石体10が棒状部材7と接触しないように、0.1mm以上の空隙を確保することが好ましい。また、15mm以下とすることで、効率よく重希土類元素RHをR−T−B系焼結磁石体10へ供給することができる。   It is preferable that the gap between the RH supply source 9 and the RTB-based sintered magnet body 10 and the support body 8 located immediately above the RH supply source 9 is set in a range of 0.1 mm to 15 mm. It is preferable to secure a gap of 0.1 mm or more so that the RH supply source 9 and the RTB-based sintered magnet body 10 do not come into contact with the rod-shaped member 7. Moreover, by setting it as 15 mm or less, the heavy rare earth element RH can be efficiently supplied to the RTB-based sintered magnet body 10.

蓋体6は図1に示すように、筒状ケース本体2の開口部を開閉可能にするように2箇所設けているが、必ずしも2箇所に設ける必要はなく、2箇所のうち一方が封鎖されていても良い。すなわち、蓋体6は、筒状ケース本体2の開口部からRH供給源9とR−T−B系焼結磁石体10を所定の位置に配置した後、当該開口部を閉じることが出来れば良く、RH供給源9とR−T−B系焼結磁石体10の配置作業の効率等を考慮し、その数、開閉機構等を適宜選定すれば良い。例えば図6のように、蓋体6は、一方端に屈曲部を形成した逆さJ字形状を有し、天板4の外側面開口部側に形成された凸部への掛け外しにより開閉を可能としている。   As shown in FIG. 1, the lid 6 is provided at two locations so that the opening of the cylindrical case body 2 can be opened and closed, but is not necessarily provided at two locations, and one of the two locations is sealed. May be. That is, if the lid 6 can close the opening after the RH supply source 9 and the RTB-based sintered magnet body 10 are arranged at predetermined positions from the opening of the cylindrical case body 2. The number, opening / closing mechanism, etc. may be appropriately selected in consideration of the efficiency of arrangement work of the RH supply source 9 and the R-T-B system sintered magnet body 10. For example, as shown in FIG. 6, the lid body 6 has an inverted J shape in which a bent portion is formed at one end, and can be opened and closed by detaching from a convex portion formed on the outer surface opening side of the top plate 4. It is possible.

RH供給源9は、重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金であり、当該重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種である。例えば、Dyメタル、Tbメタル、Hoメタル、DyFe合金、TbFe合金、HoFe合金などである。Dy、Tb、Ho、Fe以外に他の元素を含んでいても良い。RH供給源9は、塊状(バルク体)、サイコロ状、板状、線状、など任意の形状であって、大きさも特に限定されないが、支持体8を形成する複数の棒状部材7間に形成される空隙から落下しないような大きさにしなければならない。
RH供給源9は、重希土類元素RHを25原子%以上含むことが好ましい。重希土類元素RHの含有量が25原子%よりも少なくなると、RH供給源9からの重希土類元素RHの供給量が少なくなり、所望のHcJ向上効果を得るためには処理時間が非常に長くなる為、好ましくない。
The RH supply source 9 is a metal made of heavy rare earth element RH or an alloy containing 25 atomic% or more of heavy rare earth element RH, and the heavy rare earth element RH is at least one of Dy, Ho, and Tb. For example, Dy metal, Tb metal, Ho metal, DyFe alloy, TbFe alloy, and HoFe alloy. Other elements may be included in addition to Dy, Tb, Ho, and Fe. The RH supply source 9 has an arbitrary shape such as a lump (bulk body), a dice shape, a plate shape, a linear shape, and the size is not particularly limited, but is formed between a plurality of rod-like members 7 forming the support 8. It must be sized so that it does not fall out of the gap.
The RH supply source 9 preferably contains 25 atomic% or more of the heavy rare earth element RH. When the content of the heavy rare earth element RH is less than 25 atomic%, the supply amount of the heavy rare earth element RH from the RH supply source 9 decreases, and the processing time is very long in order to obtain the desired effect of improving HcJ. Therefore, it is not preferable.

ゲッター11は、蒸着拡散処理中に炉内(図示せず)や蒸着拡散用ケースの搬送台(図示せず)などに付着している酸素や水蒸気などを吸収する役割を持つ。酸素や水蒸気によるR−T−B系焼結磁石体10の磁気特性低下を防止するために用いることが好ましい。
ゲッター11を配置しなくても、蒸着拡散処理を問題なく行うことができるが、好ましくは、図3及び図4のように蒸着拡散処理用ケース内部にゲッター11を配置した方がよい。ゲッター11には、公知のゲッター材を用いればよい。例えば、R−T−B系焼結磁石体の焼結前の成形体くずなどを用いることができる。
The getter 11 has a role of absorbing oxygen, water vapor, and the like adhering to the inside of a furnace (not shown) or a carrier table (not shown) of a case for vapor deposition diffusion during the vapor deposition diffusion process. It is preferably used for preventing deterioration of the magnetic properties of the RTB-based sintered magnet body 10 due to oxygen or water vapor.
Even if the getter 11 is not arranged, the vapor deposition diffusion process can be performed without any problem. However, it is preferable that the getter 11 is arranged inside the vapor deposition diffusion treatment case as shown in FIGS. A known getter material may be used for the getter 11. For example, it is possible to use compacted body waste before sintering of the RTB-based sintered magnet body.

本発明では、支持体8に棒状部材7を用いることにより、従来用いられている格子状の網などにくらべて、R−T−B系焼結磁石体10と支持体8との接触面積を大幅に低減することができる。それにより、溶着の発生箇所を減少させることができ、蒸着拡散処理後のR−T−B系焼結磁石の取り外し工数を大幅に削減することができる。   In the present invention, the contact area between the RTB-based sintered magnet body 10 and the support body 8 can be reduced by using the rod-like member 7 for the support body 8 as compared with a conventionally used lattice net or the like. It can be greatly reduced. Thereby, the generation | occurrence | production location of welding can be reduced and the removal man-hour of the R-T-B type | system | group sintered magnet after vapor deposition diffusion processing can be reduced significantly.

蒸着拡散処理を行う処理条件は公知の方法で行えば良い。好ましい方法の一例を以下に詳述する。   The processing conditions for performing the vapor deposition diffusion processing may be performed by a known method. An example of a preferred method is described in detail below.

まず、ゲッター、RH供給源およびR−T−B系焼結磁石体が載置された蒸着拡散処理用ケースを蒸着拡散処理装置内(図示せず)に配置する。
その後、前記蒸着拡散処理ケース内の温度を800℃以上950℃以下として蒸着拡散処理を行う。
蒸着拡散処理ケース内の温度が800℃未満であると、重希土類元素RHのR−T−B系焼結磁石体10への供給不足が発生する恐れがある。950℃を超えると前記重希土類元素RHがR−T−B系焼結磁石体10に過剰に供給され、支持体8との溶着箇所が増大してしまう恐れがある。
First, a vapor deposition diffusion treatment case on which a getter, an RH supply source, and an RTB-based sintered magnet body are placed is disposed in a vapor deposition diffusion treatment apparatus (not shown).
Then, the vapor deposition diffusion treatment is performed at a temperature in the vapor deposition diffusion treatment case of 800 ° C. or higher and 950 ° C. or lower.
If the temperature in the vapor deposition diffusion treatment case is less than 800 ° C., there is a possibility that insufficient supply of the heavy rare earth element RH to the RTB-based sintered magnet body 10 may occur. If it exceeds 950 ° C., the heavy rare earth element RH is excessively supplied to the RTB-based sintered magnet body 10, and there is a possibility that the number of welded portions with the support body 8 will increase.

なお、前記蒸着拡散処理では、蒸着拡散処理ケース内の雰囲気圧力を、0.1Pa以上50Pa以下とするのが好ましい。0.1Pa未満の雰囲気圧力で蒸着拡散処理を行うと、重希土類元素RHが過剰に供給されてしまうことがあり、R−T−B系焼結磁石と支持体8との溶着箇所が大幅に増加してしまう恐れがある。一方、50Pa以上で行うと、前記重希土類元素RHのR−T−B系焼結磁石体10への供給を十分に確保できない恐れがある。   In addition, in the said vapor deposition diffusion process, it is preferable that the atmospheric pressure in a vapor deposition diffusion process case shall be 0.1 Pa or more and 50 Pa or less. When the vapor deposition diffusion treatment is performed at an atmospheric pressure of less than 0.1 Pa, the heavy rare earth element RH may be excessively supplied, and the welding location between the R-T-B system sintered magnet and the support 8 is greatly increased. May increase. On the other hand, if it is performed at 50 Pa or more, there is a possibility that the supply of the heavy rare earth element RH to the R—T—B based sintered magnet body 10 cannot be sufficiently ensured.

前記蒸着拡散処理後、更に蒸着拡散処理用ケース内の雰囲気圧力を200Pa以上2kPa以下、温度を800℃以上950℃以下として熱処理を行うことが好ましい。200Pa以上2kPa以下の雰囲気圧力とすることで、RH供給源9から重希土類元素RHがR−T−B系焼結磁石の表面に供給されなくなり拡散のみが進行する。また、800℃以上950℃以下の温度範囲にすることで、R−T−B系焼結磁石の内部へより均質に前記重希土類元素RHを拡散することができる。   After the vapor deposition diffusion treatment, it is preferable to perform heat treatment at an atmospheric pressure in the vapor deposition diffusion treatment case of 200 Pa to 2 kPa and a temperature of 800 ° C. to 950 ° C. By setting the atmospheric pressure to 200 Pa or more and 2 kPa or less, the heavy rare earth element RH is not supplied from the RH supply source 9 to the surface of the RTB-based sintered magnet, and only diffusion proceeds. Further, by setting the temperature range to 800 ° C. or more and 950 ° C. or less, the heavy rare earth element RH can be more uniformly diffused into the RTB-based sintered magnet.

前記蒸着拡散処理を行う蒸着拡散処理装置が、一室の処理室からなり、当該処理室で前記熱処理を引き続き行う場合、不活性ガスを流気させて、雰囲気圧力を200Pa以上2kPa以下に調整してから前記熱処理を行えばよい。   When the vapor deposition diffusion treatment apparatus for performing the vapor deposition diffusion treatment is composed of a single processing chamber, and when the heat treatment is continued in the processing chamber, an inert gas is flowed to adjust the atmospheric pressure to 200 Pa or more and 2 kPa or less. Then, the heat treatment may be performed.

前記蒸着拡散処理を行う蒸着拡散処理装置が、前記蒸着拡散処理を行う処理室と前記熱処理を行う処理室との2つの処理室を有する場合、当該熱処理を行う処理室を、200Pa以上2kPa以下の雰囲気圧力で800℃以上950℃以下の処理温度にあらかじめ設定しておき、前記蒸着拡散処理を行う処理室にて前記蒸着拡散処理を行った後、前記熱処理を行う処理室に蒸着拡散処理用ケースを搬送台にて搬送させ、前記熱処理を行えばよい。   When the vapor deposition diffusion treatment apparatus that performs the vapor deposition diffusion treatment includes two treatment chambers, that is, a treatment chamber that performs the vapor deposition diffusion treatment and a treatment chamber that performs the heat treatment, the treatment chamber in which the heat treatment is performed is 200 Pa or more and 2 kPa or less. A case for vapor deposition diffusion treatment is set in advance at a processing temperature of 800 ° C. or higher and 950 ° C. or lower at atmospheric pressure, and after performing the vapor deposition diffusion treatment in the treatment chamber for performing the vapor deposition diffusion treatment, May be transported on a transport stand and the heat treatment may be performed.

前記熱処理は、必ずしも前記蒸着拡散処理装置と同じ装置で行う必要はなく、別の装置で行ってもよい。   The heat treatment is not necessarily performed by the same apparatus as the vapor deposition diffusion processing apparatus, and may be performed by another apparatus.

蒸着拡散処理後のR−T−B系焼結磁石に表面処理を施すことが好ましい。表面処理は、公知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。表面処理を行う前に、サンドブラスト処理、バレル処理、機械研磨等公知の前処理を行っても良い。また、寸法調整のための加工研磨を行ってもよい。寸法調整のための研削量は、1〜300μm、好ましくは、5〜100μm、さらに好ましくは10〜30μmである。これらの表面処理や加工研磨の工程を経ても、HcJ向上効果はほとんど変わらない。 It is preferable to subject the RTB-based sintered magnet after the vapor deposition diffusion treatment to a surface treatment. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al vapor deposition, electric Ni plating, or resin coating can be performed. Prior to the surface treatment, a known pretreatment such as sandblasting, barrel treatment, or mechanical polishing may be performed. Moreover, you may perform the process grinding | polishing for a dimension adjustment. The grinding amount for dimensional adjustment is 1 to 300 μm, preferably 5 to 100 μm, and more preferably 10 to 30 μm. Even after these surface treatment and processing / polishing steps, the HcJ improvement effect is hardly changed.

〔実施例1〕
組成がNd19.3Pr5.7Dy4.30.95Co2.0Al0.15Cu0.1Ga0.08残部Fe(mass%)からなり、加工後の寸法形状が、厚み11×横30×縦60(mm)のR−T−B系焼結磁石体10を準備した。そして、図7に示すように、側板3,3間に取り付けられた棒状部材7上にR−T−B系焼結磁石10を配置した。R−T−B系焼結磁石体の磁気特性は、B=1.31T、HcJ=1740kA/mであった。
[Example 1]
The composition consists of Nd 19.3 Pr 5.7 Dy 4.3 B 0.95 Co 2.0 Al 0.15 Cu 0.1 Ga 0.08 balance Fe (mass%), and the dimensional shape after processing is An RTB-based sintered magnet body 10 having a thickness of 11 × width of 30 × length of 60 (mm) was prepared. Then, as shown in FIG. 7, the RTB-based sintered magnet 10 was disposed on the rod-like member 7 attached between the side plates 3 and 3. The magnetic properties of the RTB -based sintered magnet body were B r = 1.31 T and H cJ = 1740 kA / m.

RH供給源9は、2種類の寸法(厚み11×横155×縦220(mm)と厚み11×横155×縦170(mm))の平板状Dyメタルを準備した。そして、図8に示すように、側板3,3間に取り付けられた棒状部材7上に平板状DyメタルからなるRH供給源9を配置した。ゲッターは、R−T−B系焼結磁石体の成形体くずを集め、Mo製のトレーに乗せて準備した。   The RH supply source 9 was prepared as a flat plate-shaped Dy metal having two types of dimensions (thickness 11 × width 155 × length 220 (mm) and thickness 11 × width 155 × length 170 (mm)). Then, as shown in FIG. 8, the RH supply source 9 made of flat plate-like Dy metal is arranged on the rod-like member 7 attached between the side plates 3 and 3. The getter was prepared by collecting molded waste of the R-T-B system sintered magnet body and placing it on a Mo tray.

支持体8を構成する棒状部材7は、φ6(mm)からなる断面円形状のものを用いた。
支持体8は、2本を一組として、水平方向に7組配置した。前記一組を構成する棒状部材7の2本の空隙(図5のW1)を20mmに、隣接する組同士の空隙(図5のW2)を30mmに設定した。
The rod-shaped member 7 constituting the support 8 was a circular cross section having a diameter of 6 mm.
Seven sets of support bodies 8 were arranged in a horizontal direction with two sets as one set. Two gaps (W1 in FIG. 5) of the rod-shaped members 7 constituting the set were set to 20 mm, and a gap between adjacent sets (W2 in FIG. 5) was set to 30 mm.

実験には図1の蒸着拡散処理用ケース1を用いた。蒸着拡散処理用ケース1は、高さ430×幅(互いに対向する一対の側板間の方向)400×長さ500(mm)である。図4に示すように、ゲッター11を支持体8の最上段とケース最下部の底板5の上に2箇所配置した。最下部のゲッター11のすぐ上側にはRH供給源9を、そのすぐ上側には、R−T−B系焼結磁石体10を上下方向へ交互に配置した。このように、下から順にゲッター11/RH供給源9/R−T−B系焼結磁石体10/RH供給源9・・・・ゲッター11とし、合計15段(上下のゲッター11を含む)になるように多段配置した。そして蓋体6で開口部を閉じた。   In the experiment, the case 1 for vapor deposition diffusion treatment of FIG. 1 was used. The case 1 for vapor deposition diffusion treatment has a height 430 × width (direction between a pair of side plates facing each other) 400 × length 500 (mm). As shown in FIG. 4, two getters 11 are arranged on the uppermost stage of the support 8 and the bottom plate 5 at the lowermost part of the case. The RH supply source 9 is arranged immediately above the lowermost getter 11 and the R-T-B system sintered magnet bodies 10 are alternately arranged in the vertical direction immediately above it. Thus, in order from the bottom, getter 11 / RH supply source 9 / R-T-B system sintered magnet body 10 / RH supply source 9... Getter 11, total 15 stages (including upper and lower getters 11) It was arranged in multiple stages so that The opening was closed with the lid 6.

まず、本発明の蒸着拡散処理用ケース1内を、900℃になるまで昇温した後、圧力10−3Paの真空中で2時間蒸着拡散処理を行った。蒸着拡散処理工程の後、更に、900℃、圧力1.5kPaの真空中で6時間熱処理を行いR−T−B系焼結磁石を作製した。 First, after raising the temperature in the case 1 for vapor deposition diffusion treatment of the present invention to 900 ° C., vapor diffusion treatment was performed in a vacuum at a pressure of 10 −3 Pa for 2 hours. After the vapor deposition diffusion treatment step, heat treatment was further performed in a vacuum at 900 ° C. and a pressure of 1.5 kPa for 6 hours to produce an R-T-B system sintered magnet.

〔比較例1〕
棒状部材7の代わりに直径2mmのNb製の線材で編んだ網(4メッシュ)を使用し、その上にRH供給源9やR−T−B系焼結磁石体10を載せたことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
[Comparative Example 1]
A net (4 mesh) knitted with Nb wire having a diameter of 2 mm is used in place of the rod-shaped member 7, and the RH supply source 9 and the RTB-based sintered magnet body 10 are placed thereon. An RTB-based sintered magnet was produced under the same conditions as in Example 1.

〔実施例2〕
蒸着拡散処理の処理圧力を3.0Paの真空中で行ったことを除き、実施例1と同じ条件でR−T−B系焼結磁石を作製した。
[Example 2]
An RTB-based sintered magnet was produced under the same conditions as in Example 1 except that the deposition diffusion treatment was performed in a vacuum of 3.0 Pa.

実施例1、比較例1、実施例2の結果を表1に示す。表1において、「圧力」は、蒸着拡散処理時の雰囲気圧力(蒸着拡散処理用ケース内の圧力)を示す。「△HcJ」は、処理前のR−T−B系焼結磁石のHcJ(1740kA/m)と処理後のHcJの差分を示す。「△B」は、処理前のR−T−B系焼結磁石のB(1.31T)と処理後のBの差分を示す。「溶着した磁石」は、R−T−B系焼結磁石を支持体8より取り外した時に溶着発生の有無を確認し、溶着が発生したR−T−B系焼結磁石の数を示す。「処理数」は、実施例1、比較例1、実施例2それぞれに使用した、R−T−B系焼結磁石の数を示す。 The results of Example 1, Comparative Example 1, and Example 2 are shown in Table 1. In Table 1, “pressure” indicates an atmospheric pressure during the vapor deposition diffusion treatment (pressure in the vapor deposition diffusion treatment case). “ ΔH cJ ” indicates the difference between H cJ (1740 kA / m) of the RTB -based sintered magnet before processing and H cJ after processing. "△ B r" indicates the difference between the B r after treatment with pretreatment R-T-B based sintered magnet of B r (1.31T). “Welded magnet” indicates the number of R-T-B type sintered magnets in which welding has been confirmed by checking whether or not welding has occurred when the R-T-B type sintered magnet is removed from the support 8. “Number of treatments” indicates the number of RTB-based sintered magnets used in Example 1, Comparative Example 1, and Example 2, respectively.

Figure 0005742012
Figure 0005742012

比較例1ではR−T−B系焼結磁石に網目状に溶着が発生しており、溶着が発生したR−T−B系焼結磁石の数も多かった。実施例1では、溶着が発生したR−T−B系焼結磁石の数は、比較例1と比べて半分以下となり、大幅に減少した。更に実施例2では、R−T−B系焼結磁石の支持体8との溶着は見られなかった。   In Comparative Example 1, the R-T-B system sintered magnet was welded in a mesh shape, and the number of R-T-B system sintered magnets in which the weld was generated was large. In Example 1, the number of RTB-based sintered magnets in which welding occurred was less than half that of Comparative Example 1, and was significantly reduced. Furthermore, in Example 2, welding with the support body 8 of the RTB system sintered magnet was not seen.

以上の様に、実施例1、2によれば、R−T−B系焼結磁石と支持体8との溶着の発生を大幅に減少させることができた。これにより、蒸着拡散処理後の取り外し工数を大幅に削減することができ、量産に適した蒸着拡散処理を行うことが可能となった。   As described above, according to Examples 1 and 2, it was possible to significantly reduce the occurrence of welding between the RTB-based sintered magnet and the support 8. As a result, the number of removal steps after the vapor deposition diffusion treatment can be greatly reduced, and the vapor deposition diffusion treatment suitable for mass production can be performed.

本発明によるR−T−B系焼結磁石は、ハイブリッド自動車用、電気自動車用や家電製品等用の各種モータに好適に利用することができる。   The RTB-based sintered magnet according to the present invention can be suitably used for various motors for hybrid vehicles, electric vehicles, home appliances, and the like.

1 蒸着拡散処理用ケース
2 筒状ケース本体
3 側板
4 天板
5 底板
6 蓋体
7 棒状部材
8 支持体
9 RH供給源
10 R−T−B系焼結磁石体
11 ゲッター
DESCRIPTION OF SYMBOLS 1 Case for vapor deposition diffusion processing 2 Cylindrical case main body 3 Side plate 4 Top plate 5 Bottom plate 6 Lid body 7 Rod-shaped member 8 Support body 9 RH supply source 10 RTB system sintered magnet body 11 Getter

Claims (3)

R−T−B系焼結磁石体(Rは希土類元素のうち少なくとも1種、TはFeまたはFe及びCo)とRH供給源(重希土類元素RHからなる金属又は重希土類元素RHを25原子%以上含む合金。ただし、重希土類元素RHは、Dy、HoおよびTbのうち少なくとも1種)を加熱することにより、前記RH供給源から前記重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−T−B系焼結磁石体の内部に拡散させる蒸着拡散処理に用いるケースであって、
四角形の底板と、
前記底板に取り付けられた、互いに対向する一対の四角形の側板と、
前記側板を介して前記底板と対向するように前記側板に取り付けられた四角形の天板とを有する筒状ケース本体と、
前記筒状ケース本体の開口部を開閉可能にする蓋体を有し、
前記筒状ケース本体内において、前記RH供給源と前記R−T−B系焼結磁石体とを上下方向へ交互に多段配置すべく、前記一対の側板間に取り付けられた複数の棒状部材が水平方向に所定の空隙を形成し並列配置してなる支持体を、上下方向に所定の空隙を形成し多段配置した蒸着拡散処理用ケースを用い、
前記蒸着拡散処理用ケース内に、前記RH供給源と前記R−T−B系焼結磁石体を前記支持体を介して上下方向へ交互に配置する工程と、
前記蒸着拡散処理用ケース内の温度を800℃以上950℃以下、圧力を3.0Pa以上50Pa以下、として前記蒸着拡散処理を行う工程とを含むR−T−B系焼結磁石の製造方法。
R-T-B sintered magnet body (R is at least one of rare earth elements, T is Fe or Fe and Co) and RH supply source (metal or heavy rare earth element RH consisting of heavy rare earth element RH at 25 atomic%) An alloy including the above, wherein the heavy rare earth element RH is at least one of Dy, Ho, and Tb), and the heavy rare earth element RH is heated from the RH supply source to the RTB-based sintered magnet. A case where the heavy rare earth element RH is diffused into the inside of the RTB-based sintered magnet body while being supplied to the surface of the body,
A rectangular bottom plate,
A pair of square side plates facing each other, attached to the bottom plate;
A cylindrical case body having a square top plate attached to the side plate so as to face the bottom plate via the side plate;
A lid that can open and close the opening of the cylindrical case body;
In the cylindrical case main body, a plurality of rod-like members attached between the pair of side plates are arranged in order to alternately arrange the RH supply source and the RTB-based sintered magnet body in the vertical direction. A support formed by forming a predetermined gap in the horizontal direction and arranged in parallel , using a case for vapor deposition diffusion treatment in which a predetermined gap is formed in the vertical direction and arranged in multiple stages ,
In the vapor deposition diffusion treatment case, the step of alternately arranging the RH supply source and the RTB-based sintered magnet body in the vertical direction via the support,
And a step of performing the vapor deposition diffusion treatment at a temperature in the vapor deposition diffusion treatment case of 800 ° C. or higher and 950 ° C. or lower and a pressure of 3.0 Pa or higher and 50 Pa or lower.
前記筒状ケース本体の開口部の一方が封鎖されている蒸着拡散処理ケースを用いる、請求項1に記載のR−T−B系焼結磁石の製造方法。 The manufacturing method of the RTB type | system | group sintered magnet of Claim 1 using the vapor deposition diffusion processing case by which one side of the opening part of the said cylindrical case main body is sealed . 請求項1に記載の蒸着拡散処理の後、前記蒸着拡散処理用ケース内を、圧力200Pa以上2kPa以下、温度800℃以上950℃以下として熱処理を行う請求項1又は2に記載のR−T−B系焼結磁石の製造方法。
After the evaporation diffusion process of claim 1, the evaporation diffusion process for the case, more than the pressure 200 Pa 2 kPa or less, R-T-according to claim 1 or 2 is subjected to heat treatment as follows 950 ° C. temperature of 800 ° C. or higher Manufacturing method of B system sintered magnet.
JP2011074051A 2011-03-30 2011-03-30 Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet Active JP5742012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074051A JP5742012B2 (en) 2011-03-30 2011-03-30 Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074051A JP5742012B2 (en) 2011-03-30 2011-03-30 Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2012209428A JP2012209428A (en) 2012-10-25
JP5742012B2 true JP5742012B2 (en) 2015-07-01

Family

ID=47188929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074051A Active JP5742012B2 (en) 2011-03-30 2011-03-30 Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP5742012B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395968B2 (en) * 1999-03-03 2003-04-14 住友特殊金属株式会社 Sintering case used for sintering rare-earth magnet, and method for producing rare-earth sintered magnet performing sintering process using the sintering case
JP2003082406A (en) * 2001-06-29 2003-03-19 Sumitomo Special Metals Co Ltd Hydrogen treatment apparatus for rare earth alloy, and method for producing rare earth sintered magnet using the apparatus
CN103227022B (en) * 2006-03-03 2017-04-12 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing same
CN101842862B (en) * 2007-10-31 2013-08-14 株式会社爱发科 Process for producing permanent magnet and permanent magnet
JP5348124B2 (en) * 2008-02-28 2013-11-20 日立金属株式会社 Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method

Also Published As

Publication number Publication date
JP2012209428A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
KR101456841B1 (en) Permanent magnet and process for producing the same
JP5247717B2 (en) Method for manufacturing permanent magnet and permanent magnet
TWI433174B (en) Vacuum steam treatment device
JP5088596B2 (en) Method for producing RTB-based sintered magnet
JP5880448B2 (en) Method for producing RTB-based sintered magnet
JP6248925B2 (en) Method for producing RTB-based sintered magnet
JP5510456B2 (en) Method for producing R-Fe-B rare earth sintered magnet and steam control member
JP2009135393A (en) Method for manufacturing permanent magnet
EP2879142B1 (en) PROCESS FOR PRODUCING NdFeB-BASED SINTERED MAGNET
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5818137B2 (en) Method for producing RTB-based sintered magnet
JP5117219B2 (en) Method for manufacturing permanent magnet
JP5742012B2 (en) Vapor deposition diffusion treatment case and method for producing RTB-based sintered magnet
JP2012234895A (en) Method of manufacturing r-t-b based sintered magnet
JP4999661B2 (en) Method for manufacturing permanent magnet
JP2011204965A (en) Method of manufacturing r-t-b-based sintered magnet, and tool for rh diffusion treatment
JP2014135441A (en) Method for manufacturing permanent magnet
JP6408284B2 (en) Method for manufacturing permanent magnet
JP2014135442A (en) Method for manufacturing permanent magnet
WO2014108950A1 (en) Permanent magnet producing method
JP2010245392A (en) Sintered magnet for neodymium iron boron base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5742012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350